FORCED WAVES IN A LOTKA-VOLTERRA COMPETITION-DIFFUSION
MODEL WITH A SHIFTING HABITAT
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ABSTRACT. We establish the existence of traveling waves for a Lotka-Volterra competition-
diffusion model with a shifting habitat. It is assumed that the growth rate of each species is
nondecreasing along the x-axis, positive near co and negative near —oo, and shifting rightward
at a speed c. We show that under appropriate conditions, for the case that one species is
competitively stronger near co and the case that both species coexist near oo, there exists a
critical number ¢(oco0) such that for any ¢ > ¢(oco) there exists a forced traveling wave with speed
¢ connecting the origin and a semi-trivial steady state and for ¢ < &(co) such a traveling wave
does not exist. We also show that when a coexistence steady state exists, for any ¢ > 0, there
is a forced traveling wave with speed ¢ connecting the origin and the coexistence steady state.
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1. INTRODUCTION

In this paper we are concerned with the existence of forced traveling waves for the following

competition-diffusion model

u(t, z) = diugg(t, ) + u(t, z)(r1(z — ct) — u(t, z) — ayv(t, x)),

(1.1)
ve(t, ) = dovge(t, ) + v(t, x)(r2(x — ct) — v(t, ) — agu(t, z)).

This is a Lotka-Volterra type competition model. wu(¢,z),v(t,z) denote the densities of two
competing species, respectively, at time t and space z; d; > 0 are diffusion coefficients; a; > 0
represent interspecific competition coefficients; each r;(xz — ct) describes a population growth
rate as a function of  — ct, which is bounded and nondecreasing in x — ct, positive at oo, and
negative at —oo; ¢ > 0 is a speed at which the habitat shifts. Here the habitat in which two
species grow and compete is shrinking in time. Model (1.1) has been used to investigate the
impacts of climate change on dynamics of competing species [1,18].

The problem of spreading speeds for (1.1) has been studied for two cases: (i) one species is
competitively stronger and (ii) both species coexist in the habitat suitable for growth of both
species. Case (ii) was studied by Zhang el al. [23] and Yuan et al. [21] where a lower bound ¢(c0)
of the speed at which one species spreads into its rival was obtained. Dong et al. [7] showed
that ¢(oco) serves as an upper bound of the speed for both Case (i) and Case (ii) under certain
conditions. In this paper we demonstrate that ¢(co) also plays an important role in determining

traveling waves for (1.1). We particularly show that under appropriate conditions, for case (i)
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and case (ii), if ¢ > ¢(c0) there exists a forced traveling wave with speed ¢ connecting the origin
and a semi-trivial steady state and if ¢ < ¢(oo) such a traveling wave does not exist. We also
prove that when a coexistence steady state exists, for any ¢ > 0, there always is a forced traveling
wave with speed ¢ connecting the origin and the coexistence steady state. Berestycki et al. [2]
established the existence of traveling waves for (1.1) when 7 (z — ct) is nonincreasing in = — ct,
negative at oo, and positive at —oo, and ro(xz — ct) is nondecreasing in x — ct, positive at oo,
and negative at —oo. The existence and stability of traveling waves for scalar reaction-diffusion
equations with shifting habitats related to (1.1) have been extensively studied; see, for example,
Berestycki and Fang [4], Fang et al. [8], Bouhours and Giletti [6], Berestycki et al. [3], Berestycki
and Rossi [5], Hamel [9], Hamel and Roques [10]. The reader is refereed to Hu et al. [11], Hu
and Zou [12], Li et al. [15], Li and Wu [16], Wang et al. [17,19], Wu et al. [20], and Zhang and
Zhao [22] for studies in spreading speeds and traveling waves in temporal-spatial models with
shifting habitats in other forms including integro-difference equations and integral-differential
equations.

The paper is organized as follows. In the next section, we present the main results. Section 3
is devoted to constructing appropriate super-sub solutions. The proofs of main results are given

in Section 4.

2. MAIN RESULTS

This section is devoted to stating the hypotheses and our main results. Now putting u(t,z) =
?(&),v(t,x) = p(§) with £ = x — ¢t and plugging them into (1.1), we have

1" (§) + c¢'(§) + (&) (r1(§) — d(§) — arp(§)) = 0,
da@"(§) + e’ (§) + @(€)(r2(§) — (&) — a2d(§)) = 0.

Define 7i(00) = /(r1(0c0) — a1ra(c0))/d;. We make the following hypotheses

(2.1)

(H): (i) For i = 1,2, () is nondecreasing, bounded, and piecewise continuously differentiable
function in £ for —oo < £ < oo, and r;(—o0) and 7;(00) satisfy —oo < 1i(—00) < 0 <
ri(00) < 00.
(ii) For ¢ = 1,2, there exist a; > 0 and A; such that
where a; > fi(00), ag > 2f1(00).
We are interested in the following two cases:
Case (i): 71(00)/r2(00) > max{ay,1/as},
Case (ii): a1 < r1(00)/r2(c0) < 1/as.
In Case (i), u is competitively stronger than v near oo, and in Case (ii) both species coexist
near co. In the latter case for the system (1.1) with r;(z — ct) replaced by r;(c0), ¢ =1, 2, the
coexistence equilibrium (u*,v*) is given by
«_ Ti(00) —arra(oo) . 1a(00) — agri(o0)

u = , U =
1—a1a2

1—aias
We introduce the following condition:
(LD)' min{l 2 — dl} > (max{ajaz,1}—1)ra(c0)
: ’ da |

= r1(0c0)—aira(o0)
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This condition is similar to and stronger than the linear determinacy condition given by Lewis
et al. [13] in studying the spreading speeds of (1.1) with 7;(z — ct) replaced by r;(c0). Linear
determinacy condition has been used to study traveling waves for competition models with
constant coefficients; see for example Li [14].

Let

E(OO) = 2\/d1(rl(oo) — CL1T2(OO)).
It was shown in [7] that under appropriate conditions, ¢(oo) is the speed at which one species
spreads into its rival for model (1.1).

We are in a position to state our main results. The first theorem is for Case (i).

Theorem 2.1. Consider Case (i). Assume (H) and (LD) hold.
(i) If ¢ > €(0), (1.1) admits a forced traveling wave solution (u(t,x),v(t,z)) = (¢(z —ct), p(x —
ct)) with

(¢(=00), p(=00)) = (0,0), (¢(00),p(20)) = (0,72(0)) (2.2)
and ¢(z9) > 0 for some zy € R.
(ii) If ¢ < €(00), there is no forced traveling wave solution (u(t,x),v(t,z)) = (¢(z—ct), (x—ct))
with (2.2) and ¢(z0) > 0 for some zp € R.

We present results for Case (ii).

Theorem 2.2. Consider Case (ii). Assume (H) and (LD) hold.

(i) If ¢ > €(0), (1.1) admits a forced traveling wave solution (u(t,x),v(t,z)) = (¢(z —ct), p(x —
ct)) with (2.2) and ¢(z0) > 0 for some zy € R.

(ii) If ¢ < €(00), there is no forced traveling wave solution (u(t,x),v(t,z)) = (¢(z—ct), (x—ct))
with (2.2) and ¢(z9) > 0 for some zp € R.

Let ¢*(00) = 24/da(r2(00) — agri(00)), fi* (00) = /(r2(00) — agri(c0))/da. If aq > 2f1*(00), g
> 1*(o0) in the (H) (ii), then by virtue of Theorem 2.2, we have following corollary.

Corollary 2.3. Consider Case (). Assume

d1 } S (max{ajaz, 1} — 1)ri(c0)

minq1,2 — —
{ do r9(00) — agri (o)

and (H) hold. Then
(i) if ¢ > € (00), (1.1) admits a forced traveling wave solution (u(t,z),v(t,x)) = (¢p(x—ct), p(z—
ct)) with

(¢(=00), p(—00)) = (0,0), (#(00), p(20)) = (r1(c0),0) (2.3)
and ¢(zp) > 0 for some zp € R.
(ii) if ¢ < € (00), there is no forced traveling wave solution (u(t,z),v(t,z)) = (p(x—ct), p(z—ct))
with (2.3) and p(z0) > 0 for some zy € R.

Remark 2.4. Corollary 2.3 can be obtained from Theorem 2.2. In fact, we consider following
System
v (t, x) = dovgg(t, ) + v(t, z)(r2(x — ct) — v(t, ) — agu(t, z)),

(2.4)
u(t, @) = diuge (t, ) + u(t, z)(ri(x — ct) —u(t, z) — ajv(t, z)).
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Based on the assumption of Corollary 2.3, then it follows from Theorem 2.2 that
(i) if ¢ > ¢ (oc0), (2.4) admits a forced traveling wave solution (v(t,z),u(t,z)) = (p1(x —
ct), ¢1(x — ct)) with

(p1(=00), ¢1(=00)) = (0,0), (p1(00), ¢1(0)) = (0,71(c0)) (2.5)

and ¢1(z9) > 0 for some zy € R.

(ii)" if ¢ < € (o00), there is no forced traveling wave solution (v(t,z),u(t,z)) = (p1(z —
ct), p1(z — ct)) with (2.5) and ¢1(29) > 0 for some zg € R.

Obviously the statement (ii) of Corollary 2.3 comes from (ii)’. Let ¢(&) = ¢1(£), (&) = p1(£),
then (u(t,z),v(t,x)) = (¢(x — ct), p(x — ct)) is a forced traveling wave solution of (1.1) and
satisfies the statement (i) of Corollary 2.3.

Theorem 2.5. Consider Case (ii). Assume (H) holds. Then for any ¢ > 0, (1.1) admits a
forced traveling wave solution (u(t,x),v(t,x)) = (¢(x — ct), p(x — ct)) with following boundary

conditions
(¢(—00), p(—00)) = (0,0), (#(00),p(00)) = (u”,v"). (2.6)

3. SUPER-SUB SOLUTIONS

In this section, we focus on constructing super-sub solutions for (2.1) and the corresponding
cooperative system (3.1). In the first subsection, the super-sub solutions for Cases (i) and (ii)
are discussed, and the super-sub solutions given in the second subsection are only applicable for
Case (ii).

3.1. Super-sub solutions for Case (i) and (ii). We translate equation (2.1) into a cooper-

ative system by letting 1 (&) = ra(o0) — ¢(&),

d1¢"(€) + c¢'(§) + f1(¢, 9)(§) =0,

(3.1)
dop"(§) + e (§) + f2(8,¥)(§) = 0,

where

f1(@,9)(€) =p(§)[r1(§) — arrz(o0) — ¢(§) + aryp(§)],
fa(&,9)(€) =[ra(00) — ¥ (§)][r2(00) — r2(§) + a2 (§) — P(&)].

For any p > 0, define

Bly) = dipi? 4 11 (00) — ayra (o), 0
agra(00), dopi® — 1ro(00)
Obviously,
2 _
#(00) = inf dyp” + r1(o0) a17‘2(00)’
n>0 1%

the infimum occurs at f(o0). Fix ¢ > ¢(00), let 0 < p. < p1 < min{z(o0),2u.} be constants

such that ¢ = % and % > % > ¢(00), where A\(u) is the principal eigenvalue of B(u).

Let ¢1, 92 be the positive eigenfunctions of B(u.) associated to A(u.) and 11,12 be the positive
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eigenfunctions of B(p1) associated to A(u1). Under the condition (LD), some calculations yield
that

A(p) = dip® + 71(00) — arra(00),
¢1 = (di — da)p? + 71(00) — arra(00) + 73(00), G2 = agra(co),
Y1 = (di — da) i3 + 11(00) — arrz(00) + 12(00), o = agra(co).

Set

5= min{z;, Z;} 9= —(\(m) — cn) > 0,

1 2[e107 + B2YT + are1B(d1b2 + datbr))]

&=

He 18 ’
£y = 1 In 2e102920 + az(efd192 + B211h2)
27 e 9B )

where 0 < e; < 1 will be determined later. From (H) (ii), there exists M; > 0 such that for
§> M,

ri(o0) —ri(&) < (A + 1)6_6”’5. (3.2)
Let

€0 = max{&y, &, My}, nmo = Belt1—He)%o,

We choose the above €1 such that

. noY1 1 noY2 } Y
min In , In > max{0,&}, = > (A1 + 1) ¢1er. 3.3
{Ml — e €101 H1—He €102 0.5} g0 = (s Jher (3:3)
Define
(&) = amax{0, e1pre Het — nowle*‘“{}, V¢ € R,
€0, § < Ea
Y(§) = _
a(ergoe et —nohge 8, € > &,
where £ = miuc In %, €0 is the maximum of oc(q(bge*‘“f - 1701,&26*/“5) inR,and0<a<1

is sufficiently small and satisfies

ra(00) = 72(€) > P(€) = €. (3.4)
Lemma 3.1. Consider Case (i) and Case (ii). Assume (H) holds, then (¢(£),v¢(£)) is a sub-
solution of (3.1).

Proof. We divide our proof into Case I and Case II.

CaseI: £ > miuc In ’Z‘l’ill When £ > £, then ¢(§) = aergre e — ngipre#18),1(€) = ale1do

x e"Hef — norhae™E) by (3.2) and (3.3), we get
d1¢"(§) + ¢/ (§) + f1(2: 1) (€)
=ae1grdipie "t — angrdipie " — acpeprere ¢ + aengiprpp e
+ e Hes [e1¢1 — 7701#16_(“1_“0)5] [1(€) — arra(00) — ae M g1y — morpre” (H1HeE)
+ aare " (e1pg — n0¢2€_(ﬂl_ﬂc)€)]
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ze*"c{{aeubl [dip? — cpie +11(€) — arra(o0)] — amotpr [dip — cpn + 71(00) — arra(0)]
w e~ (mi—pe)§ _ aQe_“Cg[(e%qﬁl + n2€—2(u1 e &1/,1) + arernoe” (1 —pe) (¢1¢2 + ¢2¢1)]}

:066_’“5{79770% — [r1(00) — 71(&)]preretHIE — qe=(RHemm)E (207 + nge 2 mre)Sy 2
+ arermoe”MTHIE (g1ahy + P21 }

2046_”15{197)01#1 — (Ay + 1)preje”(@mmFrE _ qo=(@remim)e (267 + B%¥7)
+are Btz + dovn)] |

Zae*“g{ﬁnowl — (A1 + D)orer — ae™ @i (&7 + B27) + are1 B¢ + d2thn)] }

2046_“15{?7701/11 _ o= (2pe—p1)éo (€% + B23) + arer B(dreba + ¢21/J1)]} (3.5)

When ——-In Zi’il < € <&, then ¢(€) = a(erpre < —nopre18),h(€) = €0 > ave1¢pae s —
Notae™ “15) Since fi(¢,) is increasing in v, an argument similar to that used to show (3.5),

we have
di1¢"(§) + e (¢
=d1¢" (&) + c¢'(§
>d1¢" (&) + ¢¢'(&) + fi(a(ergre ™ — nore 1%, a(e1goe ¢ — noypoe™1%)) > 0. (3.6)
When ¢ < oL In %1 then ¢(¢) = 0,%(£) = €9, so
)

€101’
d19" (&) + ¢¢' (&) + f1(,¥) (&) = f1(0,€0) = 0.

This, (3.5) and (3.6) i In %1 we have
di1g"(€) + ¢¢' (&) + f1(¢,9) (€) = 0. (3.7)
Next we want to show for & # ¢,
day)"(€) + e/ (€) + fa (6, 9) (€) = 0. (3.8)

When & > ¢, then ¢(€) = a(e1gae <5 — noiae1%), ¢(€) = alerpre s — noipre=18), by (3.3),
there holds
datp"(€) + et (&) + f2(0, %) (€)
>dap" (&) + ' (§) + (r2(00) — ¥()) (a2(€) — ¥(€))
=ae1goe P [dap? — cpic) — amopae € [dai — cpa] + aagra(co)e T et (e1dy — mothy
x e~ U =he)E) — ary(00)e o (erdy — mothae 1 THR) (&) (W(€) — azg(€))
=aere " [(dop? — r2(00)) 2 + asra(00)dy — cpieda] — amge ¢ [(dopi? — r2(00))ts
+ agra(00)yn — cpntha] + P (E)(Y(E) — aag(€))

2046_’“5{770?9% + ae” GBI (61 ¢y — poihae” MR gy (€1 g — moihae” (H1THEE)
X (€1 — motpre WrHe )5)]}

2046_#16{770?9@02 — e~ Cpe—p)€ [261¢2n0¢26_(“1_“c)5 + a2(6%¢1¢2 + 7]36_2(“1_”6)57/)11/12)]}
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>aqe ¢ {nowg — e~ @m0 (261 dorpo B + az (16 + 211 } > 0. (3.9)
When ¢ < £, then ¢(&) = €g, ¢(€) > 0. Since fo(, 1) is increasing in ¢, by (3.4), we have
da" () + et/ (&) + f2 (0, 9) ()
> f2(0, €0)
=(r2(00) — €9)(r2(00) — 12(§) — €0)
2(ra(00) = c0) ra(00) = 72(€) — o) 2 0.
This and (3. 9) lead to (3.8).

Case II: uc In nowl > €. When ¢ > In Z?il , then ¢(§) = a(61¢16_“05—n0¢16_“15),g(&)

= a(el(bge et nowge me). An argument similar to that used to show (3.5) and (3.9), we have

{d@”(@ +0¢/(8) + fi(6:1)(§) 2 0 (3.10)
>0

ot (&) + e/ (€) + f2(8,¥) (&)
€11’ 7(6) = 07%(5) < €p, SO
19" (&) + cd'(€) + f1(e, ¥) (€) = f1(0,%(€)) = 0. (3.11)

When £ < ¢ < miuc In Z‘fill, then ¢(&) = 0,9(€) = a(erdoe™ ¢ — nihae1%). Since fa(¢, 1)) is
increasing in ¢ and 0 > a(elqﬁle_"cf — 770¢16_“1£), an argument similar to that used to show
(3.9), we get

dot)" (&) + e’ (&) + f2(¢, %) (€)
=dot)" (€) + ' (&) + f2(0, ae1doe ¢ — noyhoe +1%))
>datp" (&) + ! (&) + fo(a(erdre ™ — nopie %), a(erdae ™ — nohoe #1€)) > 0. (3.12)
When ¢ < €, then ¢(£) = 0,9(€) = €, by (3.4), there holds

do" (&) + e/ (€) + f2(0,9) (€)
=(r2(00) — €0) (r2(00) = r2(§) — €0)
> (r(00) = €0) |ra(00) = 12(8) — 0| = 0. (3.13)
(3.10)-(3.13) imply that (3.7) and (3.8) hold. This completes the proof. ]
For £ € R, define
$(&) = min { Bore %, 71 (00) }, (&) = min { Boae <5, rp(0) },

where B > 0 is a constant and will be determined later.

Lemma 3.2. Consider Case (i) and Case (ii). Assume (LD) and (H) hold, then there exists
B > 0 such that (5(5),@(5)) is a super-solution of (3.1).

Proof. Under the assumption (LD), we first prove

¢1 > max{ai, 1/as} . (3.14)

For p > 0, let

h(p) = (di — do)p® + r1(00) — arra(00) + ra(o0).
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If d; < dy, then (LD) becomes

_ @ > (max{alag, 1} — 1)7"2(00)
dy — r1(00) — aire(oo) ’

Hence
h(Fi(00)) =(d1 — da)ii*(00) + r1(00) — a1ra(00) + ra(c0)

~(2- ;lj)( 1(00) — a173(00)) + 12(00) > max{ajag, 1}ry(c0).

Since 0 < p. < f(c0) and the fact ¢g = agra(o00),
¢1 = h(pe) > h(fi(o0)) > max{aia, 1}ra(o0) = max {a1,1/az} .
If di > dg, then (LD) becomes

(max{ajaz, 1} — 1)re(c0)

12 r1(00) — ayre(00)

Similarly from the above inequality,
¢1 = h(pe) =(d1 — da)p? + r1(00) — arra(00) + 1r2(00)
>(r1(00) — ayre(00)) + r2(00)
> max{ajaz, 1}rs(00) = max {al, 1/a2}¢)2.

Therefore (3.14) holds.
From (H) (ii), there exists Ma > 0 such that for £ > Mp,

ro(00) —ra(€) < (A2 + 1)6_0‘25. (3.15)

Choose B > €1, where € is given by (3.3), such that

min {,ulcln riié)’ :Cln riii) } > max {0, My, - —12Mc In B?Cg)(;()é)li;lf i_;i) } (3.16)
When £ > i In Tﬁﬁé), then ¢(&) = Bpre <€ () < Bpoe H<E. By (3.14), we get
4" (€) + 8 (&) + h1(3.0)(©)
=B¢ie Het [dl,ug — cuc] + Bere Het [7"1 (&) — arre(o0) — Begre Het 1 a@(g)]
§B¢1e*”‘35 [dl,ug — cpie +71(00) — alrg(oo)] + qulef”c£ [aquﬁgef”Cé — Bd)uf“cg]
=B*¢1e a1 — ¢1] < 0. (3.17)

When ¢ < -LIn ;P25 then ¢(¢) = r1(00), $(€) < ra(00), s0

did" (&) + ¢ (€) + f1(, D) (€) < fi(r1(00),ra(00)) < 0.

It follows from this and (3.17) for & # 3 L - In Bé ) we have

T (
did" (€) + ¢ (&) + f1(5,8)(€) < 0. (3.18)
When £ > #iln Tiﬁi) > iln rﬁﬁé) then (&) = Beoe M€ < 19(00), p(€) = Bopre <. By

ot (€) + (&) + f2(5,9) ()

=do)" (€) + e (€) + (r2(00) — P(€)) [r2(00) — 72(E) + a2 (€) — P(€)]
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—=Be Het [dzug% — Cied2 + agra(00) 1 — r2(00)d2| + [ra(co) — B¢26’_“cq
x [ra(00) = r2()] + B2ne [y — asen]

[ 2(00) — Béne™ “cf] [r2(00) = r2(6)] + B2oe ™% [ — asey]
21 [ro (00 — 19(€))e?C + B2po (o — asr)]
et [ra(00) (A2 + 1) (02728 — B2, (a3¢1 — o)) < 0. (3.19)
When ¢ > - In rﬁﬁ;) > Lin Tﬁﬁg), then 1 (€) = Beoe M, ¢(€) = Bre #e¢, an argument
similar to that used to show (3.19), we get
do (€) + P (&) + f2(6,9) (§) < 0. (3.20)
For £ € (1 In ;B2 L BO| then §(€) = Booe <€, 3(€) = ri(00) < Bore <. Since

f2(¢, 1) is increasing in gb, an argument similar to that used to show (3.19), we get
0" (&) + (&) + f2(8,%) (&)
<dyi" (&) + e (€) + f2 (9, Bore ) (€) < 0.
This, (3.19) and (3.20) imply for & > - In 522 we have

2(0)
Ao () + ' (€) + f2(6,9)(€) < 0. (3:21)
Further when & < i In rf(‘zi), then (&) = ro(c0), therefore

do)" (€) + ¢ (€) + f2(8,0) (€) = fa(ra(0), ¥) (€) = 0.
This and (3.21) indicate for £ # Mi In -B¢2

ra(00)?

A0 (€) + el (€) + f2(6,0)(6) < 0
This and (3.18) lead to the desired result. The proof is complete. O

3.2. Super-sub solutions for Case (ii).
In this subsection, we construct a pair of super-sub solution for non-cooperative system (2.1).
This super-sub solutions are only applicable for Case (ii).

For convenience, denote

91(d,9)(€)
92(0, 0)(§)

P(&)(r1(&) — ¢(&) — arp(§)), V€ R,
@) (r2(&) — (&) — a2¢(¢)), V€ € R.

For £ € R, define
¢(&) = min {rl(oo), u* -+ elu*e_%}, ®(£) = min {rg(oo), v+ 620*6_75},
¢(§) = max {O, u* — egu*e*%}, p(§) = max {0, v — 640*6775},
where v > 0 will be determined later and ¢; > 0,7 = 1,2, 3,4 satisfy e3 > 1,¢4 > 1 and
eu’ > a1eav™, ev* > asesu”, esu™ > arev® e4v™ > aseiu®. (3.22)

Note that ajas € (0,1), then €;,i = 1,2, 3,4, are well defined.

Lemma 3.3. Consider Case (ii). Assume (H) holds. For ¢ > 0, there exists v > 0 such that
(&(5),@(5)), (9(5),@(5)) is a pair of super-sub solution of (2.1).
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Proof. From (H) (ii), there exists M > 0 such that for £ > M,
r1(00) — r1(€) < (A1 4+ 1)e™ @, ro(00) — 1o (€) < (Ag + 1)e™ 28, (3.23)

Further, we choose v > 0 sufficiently small such that

+ < min { cel + \/026% + 4d161(61u* — a164?}*) cey + \/0263 + 4d2€2(62’l)* — a263u*)

2d1€1 ’ 2do€9 ’
Ineg Iney c ¢
ey S <
M M VT4, 2d,

(3.24)

where a;,7 = 1,2 are given by (H) (ii).
When ¢ > 1ln %, then ¢(§) = u* + equ*e ™, p(§) > v* — eqv*e™ %, by (3.22) and
(3.24), we have
01§’ (€) + 6/ (&) + 91(6,2) ()
=1 (&) + ¢ (€) + B(E) [r1(&) — 6() — ar ()]
<dieruy2e™ ¢ — ceyutye T + [u* + elu*e_%] [rl(oo) —u* —qute
—av* + a164v*e_75]
—equte ¢ [dlfyz — c*y] + u*e_%(l + 616_’Y§) (a1€4v" — equ™)
<equte ¢ [d1'y2 — C")/] + u*e‘”g(alew* —eu”)
—u*e ¢ [die17? — cery + areqv* — equ*] < 0. (3.25)
When £ < fln %, then ¢(&) = r1(00), p(§) > 0, we have

1!

dig (€) + ¢ (€) + g1 (0.9)(€)
=d18"(€) + & (&) + B(&) [r1(€) — 6(€) — a1 (€)]
<ri(00)[r1(§) —r1(o0)] < 0.

This and (3.25) indicate for £ # 5 Lin ﬁ,

g (€) + ¢ (€) + g1(¢, ) (€) < 0. (3.26)
Next, we want to show for £ # %ln o (2201)’*_1}*,
da"(§) + 7' (€) + 92(¢.2) (§) < 0. (3.27)

When ¢ > 1 S In (627; —, then B(&) = v* + e2v* e, $(£) > u* — egu*e ¢, by (3.22) and (3.24),
we have
do"(€) + ¢7'(§) + 92(6,9) ()
=dyP" (&) + ¢7'(§) + B(&) [r2(€) — B(€) — axg(€)]
<dyeav*y2e ¢ — cequtye ¢ + [v* + 627)*6_%] [Tg(oo) — v — equre
— agu”™ + a263u*6_7€]
=20 e [doy® — ey + v e (1 + e2e ) (azezu” — eav”)
<equre ¢ [dgfyz — c*y] + ’1)*6_76(&2631,6* — €0")

—p*e [dQGQ’yZ — cexy + agegu’ — egv*] <0. (3.28)
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When§<1ln%,the B(&) = ra(00), ¢(&) > 0, so

1(00)
do" (&) + 7' (€) +g2( b, )
=doip" (&) + @' (&) + P(&) [r2(&) — B(&) — a2g(€)]
<ra(oo)[r2(§) — 7“2(00)] < 0.

This and (3.28) lead to (3.27).
It follows from e3 > 1 that

fylg& K 671 :’yl—i>161+ 06%1121263 ;Tl =t
Hence for sufficiently small v > 0, we have
A dir ! < 726;71 )
which equivalent to
(A + 1)6:{,7% < dyezy?. (3.29)
Note that ro(00) —v* = agu® and eav* > agesu™ from (3.22), then l In TQ(Z?)’* = %ln e3. Hence

for € > 2 In 25 then ¢(€) = u* — eau*e %, P(€) = v* + e2v*e ™™, by (3.22), (3.23), (3.29)
and (3.24), we have
d1¢"(€) + c¢'(€) + 91(¢, %) (€)
=d1¢"(€) + ¢/ (&) + (&) [r1 (&) — ¢(§) — a1 B(§)]
= — diesu™y2e 7 + cezutye ™ +ut (1 — ese ) [r1(€) — ut + egute S
— 10" — areqvte ]
=ezu*e 1 [ - div? + oy] +u (1 - 636’_75) [r1(§) — r1(00)]
FuteE(1 - ese ) (exu” — arenv’)
>ezute =iy’ + ] + u (r1(§) — r1(0))
>equte [ — diy? + ey] — ut(Ar + 1)e ¢
diesy® + cezy — (A1 + 1)6(776”)5]

Lln 63]

1—91
d1€3’}/ + cezy — (Al =+ 1)63 v ]

&1

4=
>u*e” 75[ diesy? + cezy — (A1+1)e v
-

—u*ezye 7t [—2diy+c] >0. (3.30)

When %ln e3 < €< %ln 20" then ¢(&) = u* — ezu*e €, B(€) = ra(00) < v* + egv¥e .

ro(0c0)—v*?
Since g1(¢, ¢) is decreasing in ¢, an argument similar to that used to show (3.30), we get

d19" (&) + ¢¢'(§) + 91(¢,9) (€)
=d1¢" (&) + ¢¢'(€) + g1(¢, r2(00)) (€)
>d1¢"(€) + ¢ (€) + g1 (¢, v* + e2v*e ¢ (€) > 0. (3.31)
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When ¢ < %111 €3, then ¢(§) = 0, so
d19"(€) + ¢/ (&) + 91(¢,%) ()

=" (&) + cd'(€) + (&) [r1(€) — d(&) — arB(§)] = 0.
This, (3.30) and (3.31) imply for £ # J Ines,

d1¢"(§) + /() + g1 (¢, %) (§) = 0. (3.32)
Next, we want to show for £ # %ln €4,
da(€) + ¢ (€) + g2 (¢, ) (§) = 0. (3.33)

An argument similar to that used to show (3.29), for sufficiently small v > 0, we have

@2

(Ay+1)ey 7 < doesy* (3.34)

Since r1(00) — u* = a1v* and e;u* > ajeqv* from (3.22), then %ln cv” > lin¢,. Hence for

1
r1(00)—u* v
&> %ln Tl(;’;iu*, then (&) = v* — eqv*e 7%, ¢(£) = u* + equ*e ™S, by (3.22), Z 23), (3.34) and
(3.24), we have
daip" (&) + e’ (€) + g2 (b, ) ()
=day" (&) + e’ (€) + 9(€) [r2(€) — 9(€) — a26(€)]
= — doesv*y2e ¢ + cegv*ye ¢ + o (1 — 646_75) [7“2(5) — v+ eqvre

— agu* — a261u*e_7£}
:640*6_75[ —day? + o]+t (1 - 646_75) [r2(§) — r2(00)]
+ v e (1 — ege ) (egv* — agelu*)
>eqve ™ — day? + cy] +v*(ra(€) — 7"2( ))
>e4v*e*75[ — doyy? + ny] (A2 + 1)e
— dayegy? + cegy — (Ag + 1)6(770‘2)5]

d264’}/ + CeqY — (AQ + 1) = lne4}

1—92
=v*e” 75[ doesy? + cesy — (A2 + 1)e, ”}
[ — 2dsesy® + ceay|

=v*esye 8 [=2doy + ] > 0. (3.35)

When %lne4 <¢< %ln 61“*_u*, then ¢(§) = v* — eqvre™ 8, ¢(€) = r1(00) < u* + equteE,

71(0)
Since ga2(¢, ¢) is decreasing in ¢, an argument similar to that used to show (3.35), we get

da" (&) + e’ (€) + g2 (b, ) (€)
=dap"(€) + ¢/ (§) + g2(r1(00), ) (€)
>da (€) + e (€) + g2 (u* + eue ™, 9) (€) > 0. (3.36)
When ¢ < %ln €4, then p(§) =0, so

da" (&) + ¢’ (&) + g2(d, ©) ()
=da" () + ' (€) + (&) [r2(&) — (&) — a20(§)] =
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This, (3.35) and (3.36) lead to (3.33). Hence the desired results come from (3.26), (3.27), (3.32)
and (3.33). The proof is complete. O

4. PROOFS OF THEOREMS

This section is devoted to proving the main results by applying comparison principle and Schaud-

er’s fixed point theorem. First, we introduce the following function spaces
X = {® = (¢,¢)| ® is a continuous function from R to R2},
X, = {(6,9) € X| 0 < [$(6)] < r1(50),0 < [(€)] < ra(o0) for all € € R},
X1 ={(4,9) € X;| $(€) 2 0,0(¢) >0 for all £ € R}.
p is a constant with p > max{a;ra(00) + 2r1(c0) — r1(—00), agri(00) + 2rz(c0) — re(—o0)}. For
i=1,2, let

—c+ /2 + 4d;
CEVETPL g (4.1)

AZ] = 2dz ) )

Obviously A;j,j = 1,2 are the solutions of
diN4+ch—p=0

and we assume A;o > A\ for i =1, 2.
For (¢,v) € X}, we consider the operator P = (P;, P2) : X;7 — X defined as follows

) — 1 ¢ Ai1(€—s) = Ai2(§=s) | .
Pilo,¢](§) = M[/we +/€ e }Fz(fﬁaw)(s)d& VE e R,

where

Fi(¢,9)(§) :=(&)[p + r1(§) — arra(00) — (&) + arv(§)],

Fy(¢,9)(§) :=p(§) + (r2(00) — ¥(&))[r2(00) — r2(&) + aze(§) — »(§)].
It is easy to check that the operator P satisfies

di P9, ¢](€) + cPi[, ¥](€) — pPi[o, ¥1(€) + Fi(¢,)(§) =0, VE € R.
Lemma 4.1. The functions (¢(£),¥(€)) and (¢(€),¥(E)) defined in Lemmas 3.1, 3.2 satisfy
Pl,¢](€) = (#(€), (), P8, 41(€) < ((6),9(€)), VE € R.
Proof. We only prove
Pi[g, ¢](€) > ¢(§), VE R,

the other cases can be treated similarly.

Denote &* = ﬁ In Z‘f—;fll For € < &*, Lemma 3.1 implies

Pi[o, 9](€)

rré 0o
- - A11(§—s) _|_/ A12(§s):| Fy (6, d
di(A12 — A1) _/oo ¢ ¢ € 1(9,0) (s)ds

[

_—1 (¢ A11(€—s) OO >\12(§—3):| ,, oy
Zd1(/\12 —A11) _/_OO ° +/€ ¢ [d1¢"(s) + ¢ (s) — po(s)]ds

— 3
= [d10(§) + A1 () + diAT, / Bs)eM ) ds + cg(€)

— 00
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£ 3
+ C)\n/ ?(8)6)‘11(5_5)615 — P/ ?(5)e>\11(€—s)d8 + dle/\lg(g—g*)
X (¢(€ =) = (€ +)) — dig (§) — didi2g(§) + dlA%Q/g B(s)eM2E=9)ds

_ C?({) + cA1o /goo ?<3>6)\12(§—8)d8 _ p/OO ¢<s)e)\12(f—s)ds:|

-1
~di(A2 — A11)

(Mg + Az —p /¢ )2 ds + dy et EE) [¢ (65 —) — ¢/ (¢ +)]]

_
A2 — A1

{d@(f)()\n — A12) + (1A} + cAig — / )er(e

M2 ¢ (¢ 4) — ¢/ (€7 ). (4.2)

=p(&) +
Similarly,
P, 9)(€) = 6(€) + x5 g (€7 4) — ¢ (7)), for € > €7
P, ¢](€) > 6(€) + xyiagy [¢/(€°4) — ¢/(6°—)], for €= ¢,
Moreover, some calculations lead to Q’(f*—) =0, and by p1 > pe > 0, we have

L O(E + A9 — 9(¢)
AE—0+ A&
e1pre e ETRY) — pyypy e (E7HAD)

22 (4.3)
> ¢

P(E+) =

N A

=notrpre M8 — ¢ puee Mt

> e (nopre M8 — erpre )

=He(£7) = 0= ¢'(¢" ).
Therefore, (4.2) and (4.3) indicate

The proof is complete. ]

Proof of Theorem 2.1. From Lemma 4.1, we have

Plo,%)(€) > (6(£),¥(€)), P, ¥)(€) < (8(£),¥()), VE e R.

Consider the sequence {(¢,(€),¥n(£))} generated by P with (¢o(£),%0(£)) = (6(£),¥(§)). By
virtue of monotonicity of Fj(¢,1) in ¢ and v, we have
(6(€), ¥(8)) < (Bnt1(8),¥nt1(8)) < (Bn(€),9n(§)) < (0(£),¥(€)), VE € R.
)

It follows that as n — oo, (¢n(§),¥n(€)) approaches a function (¢(§),1(£)), which is a fixed

point for P and
(6(8),1(8)) < (8(6),%(€)) < (0(£),¥(€)), V& € R.

Hence

(¢(00), ¥ (0)) = (0,0),
and ¢(zp) > 0 for some zg € R by the definition of ¢(¢).
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Next, we consider the value of (¢(§),%(€)) at & — —oo. Denote

H($)(€) = ¢(&)(p+r1(§) — 8(¢)), VE € R.
It follows from 0 < ¥ (§) < ra(co) that

¢(&) =P1[9, ¥](§)

1 ¢ A11(§—s) /OO A2 (6—
- - s) 4 12(¢ s):|F ’ d
di (A2 — A1) [/_ooe ¢ © 1(¢,¥)(s)ds

; ¢ A11(§—s) > Ai2(£—s) A
Sle\lz—)\u) [/ooe —&-/5 € ]H(¢)(S)dSQ[¢](§)-

Some calculations yield that

h Q")) + cQ'[9)(€) — pQIAI(E) + H()(§) =0, VE € R.

Consider the sequence {U,(£)} generated by Q with Up(§) = r1(c0). Since 0 < ¢(&) < r1(c0)
and ¢(§) < Q[#](£). Then the monotonicity of the operator ) and induction show that

(&) < Upt1(€) < Un(€) <ri(c0), V€ € R.

It follows that as n — oo, U, (&) approaches a function U(§), which is a fixed point for @) and

P(§) SU(E) < ri(o0), VEER.
By taking limit { — —oo in U(§) = Q[U](&), we get
U(=00)(ri(=o0) = U(=00)) = 0.
Then U(—o00) = 0 because of 0 < ¢(&) < U(€). Therefore
¢(—o0) = 0. (4.4)
Further, since (§) = P2[¢, ¥](§), by taking limit £ — —oo in (&) = Pp, ¥](§), we find
(r2(00) — (=00))(r2(00) — ra(—00) + azd(—o00) — ¢(-00)) = 0.
By virtue of 0 < 9(§) < ry(00) for all £ € R and (4.4), it holds
th(—00) = ra(0).
This proves the statement (i).
Assume that ¢ < ¢é(c0) and (¢(€),%(€)) is a fixed point for P with (¢(—00),9(—00)) =
(0,72(0)), (p(00),9(0)) = (0,0) and ¢(z9) > 0 for some zyg € R. Let u(t,z) = ¢z —
ct),w(t,x) = P(x — ct) for all t and x. Choose ui(x),w1(z) € C(R) with compact support

such that 0 < uy(z) < u(0,2),0 < wi(x) < w(0,z) and uy(z) # 0,wi(x) # 0. Further, the
solution of

ut(t, ) = diugg(t, ) + u(t, z)(r1(z — ct) — arra(o0) — u(t, z) + ayw(t, x)),
w(t,x) = dowgy(t, ) + (r2(00) — w(t, z))(re(c0) — ra(x — ct) — w(t, x) + agu(t, z))

with the initial value (uj(z),wi(z)) is denoted by (u1(t,z),wi(t,z)). Comparison principle
implies
ui(t,z) <wu(t,x), Vt > 0,z € R,
{ 1t 2) < ult,x) (4.5)
<

wy(t,z) <w(t,z), Vit >0,z € R.
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Further, it follows from [7, Lemma 4.3] ( or an argument similar to that of [21, Theorem 2.7])
that for any € € (0, (¢(o0) — ¢)/2),

lim sup [r1(o0) = ui(t, )| + [ra(o0) — wi(t, z)[| = 0.
t=00 | (cte)t<a<(e(00)—e)t
Hence
tlim ui(t, (¢(oc0) — €)t) = ri(c0), tlim wi (t, (¢(co0) — €)t) = ra(00). (4.6)
—00 —00
However,
Jim u(t, (e(o0) = €)t) = lim ¢((¢(00) — ¢ = €)t) = p(o0) = 0,
Jimw(t, (2(00) — ) = lim ((#o0) — ¢ — ) = h(o0) = 0.
this and (4.6) contradict (4.5). Thus the statement (ii) is proved. O

Proof of Theorem 2.2. The statement (i) can be obtained by an argument similar to that used
to show Theorem 2.1 (i), we only need to prove assertion (ii). For Case (ii), (4.5) still holds,
that is,

ui(t,z) <wu(t,z), Vt >0,z € R, (4.7
wy(t,x) <w(t,x), Vt >0,z € R. '

Moreover, it follows from [7, Lemma 4.4] ( or an argument similar to that of [21, Theorem 2.7])
that for any e € (0, (¢(o0) — ¢)/2),

lim inf ui(t,x) > u*, lim inf wi(t, z) > w* = re(co) —v™.
t—00(c+e)t<z<(c(o0)—e)t t—00(cte€)t<z<(c(c0)—e)t
Hence
liminf wuy (¢, (¢(00) — €)t) > u*, liminf wy (¢, (¢(c0) — €)t) > w™. (4.8)
t—00 t—00
However,

Jim u(t, (#(00) — )t) = Jim 6((#(00) — ¢ — ) = 6(0¢) = 0,
lim wi(t, (#(00) — ) = Jim 1((e(o0) — ¢ — )t) = (o0) = 0,
this and (4.8) contradict (4.7). This proves statement (ii). O

Before proving Theorem 2.5, we first give a lemma, which plays an important role in the

following proof.

Lemma 4.2. Consider Case (ii). Assume (H) holds, then for ¢ > 0, (2.1) admits a forced
traveling wave (¢(§), ¢(€)) with

(¢(00), p(20)) = (u®,v").
Proof. Denote

Ba(R,RQ) :{q) € X,| SupH(I)(g)He*a\ﬂ < OO}, @] = sup Hq)(é-)Hefodg\?
£eR ¢eR

I ={(¢,9) € X;7| 6(&) < d(€&) < 0(&),9(&) < p(€) <B(€), V€ € R},

where X,., X, are given in the beginning of the section 4, 0 < a < min{io, oo}, || - || is
the supremum norm in R? and the functions (¢(€), ¢(€)), (¢(€),(£)) are given by Lemma 3.3.



FORCED WAVES IN A COMPETITION-DIFFUSION MODEL WITH A SHIFTING HABITAT 17

Calculations lead to the (B

bounded closed set with respect to the weighted norm.

For any ¢, p € X,I, consider the operator T' =

«(R,R?),|-|,) is a Banach space, and further I is a nonempty convex

(Ty,T3) : X,;F — X defined as follows

. __ 1! © a4 [T paen] g,
Tilg, ¢](§) = di<)‘i2_)‘i1)|:/—ooe +/§ e ]Gz(ﬁf),@)(s)dsa V¢ € R,

where

Gi(e,9)(§) =
©)(€)

Ga(o,

(&) +r1(§) —
= o(&)lp+m2(§) -

$(§) — arp(§)],
@(§) — a20(8)],

and \;;,7,7 = 1,2 are given by (4.1). Some calculations yield that

4T} (6, ¥](§) + T (¢, 9](€)

We first verify that the operator T" satisfies TT' C I'. For any (¢, ¢) € T, then

?(¢)
From (4.9

Ti[6, () !

1

>—
“di(M2 — )

-1

>_ -
“di(M2 — A1)

< (¢)

:d1()\12 —A11)

< P(€), (é) <€) <

?(¢), V¢ eR.

), the monotonicity of G1(¢, ) in ¢ and ¢ and Lemma 3.3, we have

' / s / ¥ a9
LJ—o0 13 i
/E e/\11(€—8)+/oo eMz(E—s)
LJ—0 13 ]
/ s / 7 Pule-s)
LJ—o0 13 i

(4.9)

G1(¢, ¢)(s)ds

An argument similar to that used to show (4.2) and (4.3), we get

Similarly, we can get

Ti[g, ¢](€)

T1[6,¢](€) < 0(8), ©(&) < Tolg, ¢](€) <

Hence TT CT'.

> ¢(§), VEeR.

P(£), Y§E eR.

In the following, we will show the operator T : I' — I' is completely continuous in the sense

of the weighted norm | - |,. For any ®1 = (¢1,¢1), P2 = (¢2,92) € ' and any £ € R,

|G1(d1,01)(§) — G1(d2, p2)(§)]

=[(p +11(E))(1(§) — P2(E)) — (1(E) + ¥2(£))(91() — $2(8))
—a1p1(€)(01(8) — 92(§)) — a192(§) (¥1(§) — p2(8))]

<[p+ 3r1(c0) + air2(c0)]|¢1(§) — 2(§)[ + arri(o0)|¢1(§) — w2(8)I- (4.10)
|G2(1, 1) (§) — G2(92, 2) (§)]

=[(p +12(£))(p1(§) — ¥2(8)) — (1(§) + ¥2(8))(p1(§) — p2(§))
—a201(§)(91(8) — #2(€)) — azg2(8)(p1(§) — w2(€))]

<[p + 3ra(00) + azr1(c0)]lp1(§) — ¢2(§)] + azrz(c0)|P1(§) — 2(8)|- (4.11)
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Moreover for £ < 0, by segment integration and the choose of o, we get

3 00
/ i (6—s) ;€] jals d5+/ Mz(E—s) —alé] als] 7
—00 E

1 1 20
_a+/\11+04+/\12+)\%2—042
< —1 n 1 n 2a
Tat+ A a+tAp A, —a?

e(a+>\12)f

and for £ > 0,

13
/ M1(E-s) €] jals d8+/ M2(E-s) g—alg] jals] g
13

—0o0
1 2c 1
- + eA1—a)¢
o — )\11 )\%1 — a2 )\12 —
1 2c 1
< + -

Oé—)\u )\%1—042 )\12—06'

Similarly for £ <0,

13 0o
/ 21 (6-5) ol galsl gg / A22(6-5) €] als] 7
13

—00

—1 1 2
<
o+ )\21 a4 Ao )\22 o?
and for £ > 0,
13 0o
/ 21 (6-5) ol galsl gg / Aa(6-5) g—ale] jals] g
—c0 £
< 1 n 2 n 1
Ta— Ao )\%1—042 )\22—04'
Let
c -1 1 2 1 n 2c n 1
= max
0 i=1,2 | o+ >\i1 o+ Ao )\12 —a?’ a—\1 /\221 —a? Aig — «

Therefore for £ € R, by (4.10), (4.12) and (4.13), we have

| T (1, 01)(€) el — T1[ha, o] (€)e™1¢]]

x [G1(¢1,¢1)(s) — G1(¢27¢2)(8)]e_a‘3| ds

Sm[0+3r1(oo)+a1r2( 00) + ayry(oo ”q>1 @2}(1

13 0o
y [ / MiE-s) —ole] gals| | / e/\12(65)ea|€ea|8|]ds
—00 g
<C1|@1 — Pola,

where

=
! di( A2 — A1)

1 ¢ Ai(e=s) —alel ol /OOA )
_ alglgals| 4 eM2(E=s) g —alé] pals|
di(A2 — A1) [/_ ¢

[,0 + 3r1(00) + ara(co) + alh(OO)] Co.

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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Similarly for £ € R, by (4.11), (4.14) and (4.15), we have

[ Tolé1, 1)(€)e ! = Taln, o] (€)e |

! © M6 alel ol /OOA —5) ¢
_ alélgals| 4 er22(E=5) g —alé] pals|
da(Xa2 — Aat) [/_ ¢

x [Ga(d1,91)(5) — Ga(¢a, p2)(s)] el

ds

Sm[P-i-Srz(oo)—i-agrl( 00) 4 agry(co ”‘1’1 ,1)2}(1

3 00
y { / Ao (€s) —alé] jals| / 6A22<as>ea|sea|s|]ds
— oo ¢

<Co| Py — Pola, (4.18)

where

1

Cy=—— 3 C

2= 0 = har) [p + 3ra(00) + agri(c0) + agra(o0)] Co

and Cj is given by (4.16). Let C = max{C1,Cs}, then (4.17) and (4.18) indicate
IT®; — T®s|y < C|@1 — Bsa.

Hence T is a continuous operator on I'.
For any ® = (¢, ¢) € T, note

0 < Ti[p, ¢|(§) < 7r1(00), 0 < T, @] (&) < ro(c0), VE € R.

Therefore we have |T'®|,, < ri(00) + ro(00). Further for any = > y,

|T1[¢, ¢)(2) — T1[o, ¢l (y)]

—; * A1(z—s) B v A1 (y—s)
_d1(>\12>\11){ /ooe G1(¢, ¢)(s)ds /Oo6 Y7 G (9, 0)(8)ds

+/‘A”IS<Q>U —/,@ﬂWWMQ@@%
x y

R SR £y Ao _ 7 enws
Sdl(h2_m){‘/_ooe G1(9, 0)(s)ds /_Ooe VTG0, 0)(s)ds
/ " =Gy (6, ) (5)ds — / T MGy (6, 0) (5)ds }

Y X
1 y
:dl(/\12—>\11){’/_ €_>\118G1(¢’ 90)(5) [ehw —e’\lly / )\11(90 s) ¢ )( )

_l’_

+ OO —Ai2s(y o, A2y _ >\122 ds + eM2(y—s) G1(o, }
| e [e . L 1(6,0)(s)ds
1 * Ai(z—s) A2(y—s }
Sd1(/\12—)\11){ ‘ Gul# i /y TGS, ) (o)ds
2pr1(00) _
<00m y). (4.19)

For x <y, an argument similar to that used to show (4.19), we have

2pr1(0)

[T2(o. el(@) = Tilé Al0)] < T

Yy — ).
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Therefore for z,y € R,

_ _2pri(0) |
T1[9, ¢l (x) = Ti[o, ¢l (y)| < dl(Alz—A11)| yl-
Similarly for any z,y € R,
ITal6, ¢)(e) - Tl ) (0)] < 2221y,

T da(A22 — A21)
Hence for any z,y € R,

| T[®](x) — T[®)(y)| < Cslz —yl.

where

2pr1(00) 2pra(00) }
C‘ = a. 5 .
8 = max { di(A2 — A1) d2(Aa2 — A1)

Thus T is a completely continuous operator on I'. Therefore, by virtue of Schauder’s fixed point
theorem, there exists ® = (¢, ¢) € I' such that T® = ®. Obviously,

(06, 9(6)) < (8(6),#(8)) < (8(6),P(€)), VEER,
and (¢(00), p(00)) = (u*,v*), (¢(00),(00)) = (u*,v*). Hence
(¢(00), p(00)) = (u*, v").
The proof is complete. O
Proof of Theorem 2.5. By virtue of Lemma 4.2, we only need to prove
(¢(—00), p(—00)) = (0,0).

It follows from 0 < (&) < ro(o0) for all £ € R that

o(§) =T1[, ¢](§)

1 ¢ 0o
- @ @ e 11(§—s) +/ 6)\12(55):|G ’ $)ds
di(A12 — A11) [/oo e 1(9,0)(s)

; ¢ A11(€—s) oo A12(€—s) A
<t | L+ [T e |ca 2

where

G(9)(&) = 9(&)[p+71(8) — d(§)], VE €R.

An argument similar to that used to show (4.4), we can get ¢(—oo) = 0. Further, similarly we

can find ¢(—o0) = 0. The proof is complete. O
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