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ABSTRACT. Pathological examination has been done manually by visual in-
spection of hematoxylin and eosin (H&E)-stained images. However, this pro-
cess is labor intensive, prone to large variations, and lacking reproducibility in
the diagnosis of a tumor. We aim to develop an automatic workflow to extract
different cell nuclei found in cancerous tumors portrayed in digital renderings of
the H&E-stained images. For a given image, we propose a semantic pixel-wise
segmentation technique using dilated convolutions. The architecture of our
dilated convolutional network (DCN) is based on SegNet, a deep convolutional
encoder-decoder architecture. For the encoder, all the max pooling layers in
the SegNet are removed and the convolutional layers are replaced by dilated
convolution layers with increased dilation factors to preserve image resolution.
For the decoder, all max unpooling layers are removed and the convolutional
layers are replaced by dilated convolution layers with decreased dilation factors
to remove gridding artifacts. We show that dilated convolutions are superior
in extracting information from textured images. We test our DCN network on
both synthetic data sets and a public available data set of H&E-stained images
and achieve better results than the state of the art.
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1. Introduction. When diagnosing and treating patients of cancer, the cellular
distribution of tumors is of great interest. Such an analysis can be accomplished
using hematoxylin and eosin (H&E)-stained images of cellular tissue extracted via
biopsy. Currently, pathological examination has been performed manually by visual
inspection of these images. However, this process is labor intensive, prone to large
variations, and lacking reproducibility in the diagnosis of a tumor. As a result, it
is desired to design automated processes to study different aspects of the cellular
distribution. In particular, image segmentation (classifying each pixel as cell nuclei
or background) is a crucial first step in enabling the visual study of the disease.

We aim to develop an automatic workflow to detect cell nuclei in cancerous
tumors portrayed in digital renderings of the H&E-stained images. Given a H&E-
stained image, our goal is to create a binary label describing which pixels are part
of cell nuclei (denoted “object” pixels) and which are not (denoted “background”
pixels). Convolutional Neural Network (CNN) [10, 8, 18] has been recently demon-
strated to be particularly effective in image recognition and classification. Advanced
CNN methods such as the Fully Convolutional Neural Network (FCN) [17], U-Net
[16] and Segnet [1], which are trained from end-to-end and pixel-to-pixel, have been
very successful in semantic segmentation. At the same time, there are also devel-
opments in efficient implementations of traditional variational image segmentation
models [11, 5].

Both global image context and spatial accuracy are very important in cell nuclei
segmentation. In CNNs, multi-scale contextual information is acquired by successive
pooling and subsampling layers which reduce the image resolution until a global
prediction is obtained [8, 18]. To recover the lost resolution, repeated deconvolutions
or unpooling are usually performed to obtain the full-resolution dense prediction
[13, 17, 16, 1]. Dilated Convolutions [19, 2] is a promising technique to obtain large
context information without the loss of resolution. We design a dilated convolutional
neural network for cell nuclei segmentation based on the architecture of SegNet.

Our contributions are three-fold. First, we study the pros and cons of dilated con-
volutions, and suggest how to use them in applications to improve the performance.
We also propose a method to implement dilated convolutions with dilation factor
2™ through efficient conventional convolutions. Second, we design a dilated convo-
lutional neural network for cell nuclei segmentation, which achieves better results
than the state of the art. Lastly, the proposed workflow is efficient enough to run on
a personal laptop. This work is the first step towards using mathematical models
to generate diagnostic inferences and providing clinically actionable knowledge to
physicians and patients.

The rest of the paper is organized as follows. We discuss the related work in
Section 2. We then detail the proposed approach in Section 3. Practical issues such
as color normalization, data augmentation, network training, evaluation metrics are
discussed in Section 4. The experiments on synthetic data and real H&E-stained
images are conducted in Section 5. Finally, conclusions are given in Section 6.

2. Related works. Traditional convolutional networks have fully connected layers
which make hard to manage different input sizes. Fully convolutional networks
proposed by Long et al. [17] replaced the fully connected layers with convolutional
ones to output spatial maps instead of classification scores. Then those maps are
upsampled using deconvolutions to produce dense predictions. FCN shows how
to train CNNs end-to-end to make dense predictions for semantic segmentation.
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FIGURE 1. 3 x 3 convolution kernels with different dilation factors
1, 2 and 3 respectively. Red dots indicate nonzero values.

However, the architecture of FCN has a large number of trainable parameters in
the encoder network, which makes it hard to train and memory intensive when it
comes to testing time.

To overcome the problems caused by deconvolution, Noh et al. [13] proposed
a semantic segmentation algorithm (DeconvNet) by learning a deep deconvolution
network. Independently, Badrinarayanan et al. [1] proposed SegNet, a deep con-
volutional encoder-decoder architecture for semantic pixel-wise segmentation. The
SegNet consists of an encoder network and a corresponding decoder network, fol-
lowed by a final pixelwise classification layer. In the encoder network, a mix of
convolutional and pooling layers is used to combine and summarize the data ob-
tained from the RGB coordinates. In the decoder network, a mix of upsampling
and convolutions is performed to map the low resolution encoder feature maps to
the same resolution feature maps as the input for pixel-wise classification. The
max pooling indices at the corresponding encoder layer are recalled to perform the
non-linear upsampling, which improves boundary delineation and reduces the num-
ber of parameters. The last decoder is connected to a softmax classifier to obtain
a pixelwise classification map. SegNet is efficient both in terms of memory and
computational time during inference.

3. Proposed method. One of the critical components of our design is the dilated
convolutional layers [19]. A 2-dimensional dilated convolution can be defined as
following:

M N
(1) y(m,n)=ZZm(m+r-i,n+r-j)w(i,j)

i=1 j=1
where y(m,n) is the output of dilated convolution, x(m,n) is the input, w(i, j) is
the filter with size M x N, and r is the dilation factor. If r = 1, a dilated convolution
turns into a conventional convolution. Figure 1 show 3 x 3 convolution kernels with
different dilation factors.

In dilated convolutions, the alignment of the kernel weights is expanded by the
dilation factor. By increasing this factor, the weights are placed more sparse around
a pixel, which enlarges the kernel size. Hence, by monotonously increasing the
dilation factors through layers, the receptive field (the region in the input space
which contributes to feature extraction) can be effectively expanded while preserving
the resolution. This means that global information can be exchanged between
layers without the loss of resolution. The use of dilated convolutions can cause
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gridding artifacts [3]. This is because when the dilation factor is greater than 1, the
neighboring pixels in the output has non-overlapping receptive fields. The gridding
artifacts can be removed using dilated convolution layers with decreased dilation
factors [3].

For a given image, we propose a semantic pixel-wise segmentation technique using
dilated convolutions. The architecture of our network is based on SegNet, a deep
convolutional encoder-decoder architecture. For the encoder, all the max pooling
layers in the SegNet are removed and the convolutional layers are replaced by dilated
convolution layers with increased dilation factors to preserve image resolution. For
the decoder, all max unpooling layers are removed and the convolutional layers
are replaced by dilated convolution layers with decreased dilation factors to remove
gridding artifacts. We choose all dilation factors as 2" to balance the computation
load and the size of the receptive fields. The whole process is like enlarging the
view gradually first and then gradually focusing on to the point of interest. We
remove all max pooling layers because the performance of the networks with and
without max pooling layers are similar, yet there is more computational work with
max pooling layers. In histopathology images, the percentage of regions occupied
by cell nuclei is much less than the background regions. For the training data set
we use, the percentage of cell nuclei regions is 23%. To balance the classes, inverse
frequency weighting is used in the classification layer [4]. Table 1 shows the detailed
network architecture of a SegNet and our dilated convolutional network (DCN).

Our DCN has 34 layers, each convolution layer (except the first and last one)
has 3 x 3 x 64 x 64 weights and 64 bias values. Each batch normalization layer
has 128 learnable parameters. Hence the total number of learnable parameters is
335,554. The corresponding SegNet (SegNet with encoding depth 3) has 45 layers,
373,638 learnable parameters. We consider U-Net with 64 output channels for first
encoder. U-Net has an architecture that the number of output channels for each
convolutional layer in the encoder is doubled going forward and and the number of
output channels for each convolutional layer in the decoder is halved. U-Net with
encoding depth 3 (U-Net3) has 46 layers, 7,697,410 learnable parameters, U-Net
with encoding depth 4 (U-Net4) has 58 layers, 31,031,810 learnable parameters.
Compared to U-Net, our DCN which has much less learnable parameters (335,554
vs 7,697,410 for U-Net3) is less likely to overfit the data. Another advantage of our
DCN is the efficiency during inference. Our DCN is trained with image patches of
fixed size, however, the trained DCN can be applied to images of any sizes, which
makes the testing easy and efficient. U-Net has extra links between further-away
layers, hence the testing image must have the same size as the training images. To
preserve the resolution, our DCN keeps the original size of the input image at each
layer, hence the memory usage and computational load are higher than SegNet.

The run time of dilated convolution layers in Matlab deep learning tool box are
much longer than the run time of the conventional convolution layers. To overcome
this drawback, we design a method to convert dilated convolutions to conventional
convolutions. This method works for all dilated convolutions with a dilation factor
of 2. Assume matrix A is the input matrix, we can reorder the entries of A to get
a matrix B, so that in B, all odd rows of A are before the even rows of A, and all
odd columns of A are before the even columns of A. We call this procedure “matrix
splitting” and the reverse operation “matrix merging”. After matrix splitting, a
dilated convolution on A with a dilation factor 2 is equivalent to a conventional
convolution on B. Figure 2 shows matrix A and its reordering B. It also shows
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FIGURE 2. A matrix A and its reordering B. It also shows a dilated
convolution on A and its corresponding convolution on B.

FIGURE 3. Source image (left), Target image (middle) and Nor-
malized image by Reinhard method (Right).

a dilated convolution on A and its corresponding convolution on B. The third
column of Table 1 shows how to use this observation to implement our DCN to
train it efficiently. However, the testing time is longer, half of the test time is for
matrix splitting and merging. This shows there are rooms of improvements for
implementing dilated convolutions in neural network models.

4. Learning DCN.

4.1. Reinhard color normalization. One of the challenges of nuclei segmenta-
tion is the color variation in histopathology images due to the difference in H&E
reagents, staining process, and sensor response. Reinhard color normalization [15]
is a method of color normalization where the mean and standard deviation of each
channel of the image are matched to that of the target by means of a set of linear
transforms in Lab colorspace. All images are color normalized by Reinhard method
using the Stain Normalisation Toolbox for Matlab [6] before training and testing.
Figure 3 shows an example of Reinhard color normalization.

4.2. Data augmentation. Data augmentation is a regularization technique which
can be used to create artificial training data. It is one of the many popular meth-
ods to prevent overfitting of the model and generally we get better performance
after data augmentation. During training, reflections about x-axis are randomly

INVERSE PROBLEMS AND IMAGING VoruME X, No. X (20xx), X—XX



6 R. KHATRI, B. CAsERIA, Y. Lou, G. X1A0 AND Y. CAO

performed on training data. In addition, random translations along x-axis and y-
axis (within +10 pixels) are also performed. Augmentation done this way will not
increase the total number of training images at each iteration, which makes the
training process more efficient.

4.3. DCN training. We implement our method using Matlab deep learning tool-
box [12]. Original tissue images and corresponding labeled ground-truth segmenta-
tion masks are partitioned into 128 x 128 x 3 non-overlapping image patches. Each
patch is normalized to have zero mean. The extracted patches are partitioned ran-
domly into two sets, 80% of the patches are for training and 20% are for validation.
To train the network, we try both the stochastic gradient descent with momentum
(SGDM) optimizer [14] and the Adam optimization algorithm [7]. The momentum
value used for SGDM is 0.9. A fixed learning rate of 0.001 is used. Lo regularization
with a factor of 0.0005 is used for the weights to the loss function to reduce overfit-
ting. The maximum number of epochs for training is set to be 30, and a mini-batch
with 4 observations at each iteration was used. The training data and validation
data are shuffled before each training epoch. During training, the network is tested
against the validation data every epoch. Our method is efficient enough to run on
a personal laptop.

4.4. Evaluation metrics. We used five metrics to quantitatively measure the seg-
mentation results.
For qualitative analysis, the measures are defined as follows:

e GlobalAccuracy: the percentage of correctly classified pixels among all image
pixels, regardless of whether the pixel is a ground truth nuclei pixel or a
background pixel.

e MeanAccuracy: the percentage of correctly identified pixels for each class,
averaged over the two classes in the image, nuclei or background.

e MeanlIoU: Intersection over union (IoU), also known as the Jaccard similarity
coefficient. For each class, IoUscore = ﬁ, where TP is the number
of true positives, i.e. the number of pixels that are ground truth pixels among
the detected, FP is the number of false positives, i.e. the number of pixels
that are not ground truth pixels among the detected, FN is number of false
negatives, i.e. the number of ground truth pixels that have not been detected.
MeanloU is the average IoU score of all classes in the image.

o WeightedloU: Average IoU of all classes in the image, weighted by the number
of pixels in each class.

e MeanBFScore: For each class, BF (Boundary F1) contour matching score is
defined by BF = 5=5-2LE _— MeanBFScore is the average BF score of each

. _ 2TP+FP+FN "
class in the image.

5. Experiments.

5.1. Test on synthetic data sets. We generate two data sets of random triangles.
Each contains 200 training images and 100 test images of size 64 x 64. Each triangle
in the first data set has an uniform foreground and an uniform background. Each
triangle in the second data set has a textured foreground and a textured background.
Figure 4 shows some sample training images in the first data set. Figure 5 shows
some sample training images in the second data set.

Our DCN is created according to the architecture showed in Table 1, with the
input size as 64 x 64. All networks are trained using the SGDM optimizer with
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FIGURE 4. Sample training images in the triangle data set with a
uniform foreground and a uniform background.

FIGURE 5. Sample training images in the triangle data set with a
textured foreground and a textured background.

the same parameters as described in Section 4.3, except that U-Net3 and U-Net4
are trained with a smaller learning rate of 0.0001. Figure 6 and Figure 7 show
the segmentation results on the triangle data sets. Table 2 shows the quantitative
metrics of the segmentation results. Here we compare the performance of SegNet, U-
Net3, U-Net4 and our DCN. For the triangle data set with an uniform foreground
and an uniform background, our method and U-Net4 have similar performance.
Both methods achieve better results than SegNet and U-Net3. For the triangle
data set with a textured foreground and a textured background, our method is
much better than SegNet and U-Net. The main problem of U-Net in this situation
is overfitting. The accuracy of training set is very high, however, the performance on
the test set is much worse. This is partially because U-Net has a lot more learnable
parameters than SegNet and our DCN.
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FIGURE 6. Test images (1st row) with corresponding segmenta-
tions using SegNet (2nd row), U-Net3 (3rd row), U-Net4 (4th row)
and our dilated convolutional network (5th row).

5.2. Test on real H&E-stained pathology images.

5.2.1. Dataset. We also test the proposed method on a publicly available dataset
of real H&E-stained pathology images [9]. The dataset consists of pathologically
labeled images with annotated boundaries of each cell. The data set was generated
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FIGURE 7. Test images (1st row) with corresponding segmenta-
tions using SegNet (2nd row), U-Net3 (3rd row), U-Net4 (4th row)
and our dilated convolutional network (5th row).

using the H&E-stained tissue sample images captured at 40x magnification from
The Cancer Genomic Atlas (TCGA), one image per patient. This data set contains
6 images of the tissue samples from each of the following types of cancer patients:
lung, breast, kidney, prostate. We tested our methods on those images. Training
data consists of 16 images (4 lung, 4 prostate, 4 breast & 4 kidney cancer) and test
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FIGURE 8. Sample normalized image patches and corresponding
manual segmentations from the dataset.

data consists of 8 images, 2 from each categories. For the training purpose we have
split images into patches of size 128 x 128 x 3. Figure 8 shows several normalized
patches and corresponding manual segmentations from the data set.

5.2.2. DCN testing. All networks are trained using the Adam optimization algo-
rithm with the same parameters as described in Section 4.3. Figure 9 show the
segmentation results on several patches along with the ground truth. Compared
to SegNet and U-Net, our method provides better segmentation around the cell
boundaries. Table 3 shows the quantitative metrics of the segmentation results.
Our method achieves better results than SegNet and U-Net in general. Table 4
shows the training and testing time of SegNet, U-Net3, and our DCN using the
H&E-stained image data set. The tests are performed on a Windows 10 personal
laptop with 2.8 GHz Intel(R) Core (TM) i7, 16GB RAM, and one GeForce GTX
1050 graph card. Since U-Net cannot handle input images with different sizes, the
testing time of U-Net includes time to divide test images into patches and to stitch
image patches to the original sizes.

6. Conclusions. We developed a cell nuclei segmentation method using dilated
convolutional neural network. We also propose a method to implement it efficiently.
Experiments show that the proposed method achieves a higher level of accuracy
than the state-of-the-art. In particular, the proposed method works better in de-
tecting cell boundaries, shows superior performance on textured images. Future
work involves further using the segmentation results to analyze the morphological
properties of the tumor cells and predict further progress of the cancer.
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SegNet

Our DCN

Our DCN
(for efficient training)

128x128x3 Input
(or 64x64 Input)

128x128x3 Input
(or 64x64 Input)

128x128x3 Input
(or 64x64) Input

64 3x3 Conv
Normalization & RELU
ReLU

64 3x3 Conv
Normalization & RELU
Max Pooling

64 3x3 Conv, D=1
Normalization & RELU
ReLU

64 3x3 Conv, D=1
Normalization & RELU

64 3x3 Conv
Normalization & RELU
ReLU

64 3x3 Conv
Normalization & RELU
Matrix Splitting

64 3x3 Conv 64 3x3 Conv, D=2 64 3x3 Conv

Encoder || Normalization & RELU | Normalization & RELU | Normalization & RELU
64 3x3 Conv 64 3x3 Conv, D=2 64 3x3 Conv
Normalization & RELU | Normalization & RELU | Normalization & RELU
Max Pooling Matrix Splitting
64 3x3 Conv 64 3x3 Conv, D=4 64 3x3 Conv
Batch Normalization Batch Normalization Batch Normalization
ReLU ReLU ReLU
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Batch Normalization Batch Normalization Batch Normalization
ReLU ReLU ReLU
Max Pooling
Max Unpooling
64 3x3 Conv 64 3x3 Conv, D=4 64 3x3 Conv
Normalization & RELU | Normalization & RELU | Normalization & RELU

Matrix Merging

64 3x3 Conv 64 3x3 Conv, D=2 64 3x3 Conv
Normalization & RELU | Normalization & RELU | Normalization & RELU
Max Unpooling Matrix Merging
64 3x3 Conv 64 3x3 Conv, D=1 64 3x3 Conv

Decoder || Normalization & RELU | Normalization & RELU | Normalization & RELU
64 3x3 Conv 64 3x3 Conv, D=1 64 3x3 Conv

Normalization & RELU
Max Unpooling

Normalization & RELU

Normalization & RELU

64 3x3 Conv

Normalization & RELU

2 3x3 Conv 2 1x1 Conv 2 1x1 Conv
Normalization & RELU

Softmax Softmax Softmax

Pixel Classification

Pixel Classification

Pixel Classification

TABLE 1. Comparison of the network architectures of the Seg-
Net and our Dilated Convolutional network, where “Conv” means
“Convolutions” and D is the dilation factor. Third column shows
how to use matrix splitting and merging procedures to implement
dilated convolutions through efficient conventional convolutions.
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Triangle Global Mean Mean | Weighted | Mean
Dataset | Accuracy | Accuracy | IoU IoU BFScore
SegNet | Uniform | 0.9325 0.9508 0.7829 0.8882 0.4172
U-Net3 | Uniform | 0.9694 0.9531 0.8784 0.9438 0.6572
U-Net4 | Uniform | 0.9974 0.9953 | 0.9884 | 0.9949 | 0.9488
Our DCN | Uniform | 0.9952 0.9941 0.9786 0.9906 0.8946
SegNet | Textured | 0.8764 0.9280 0.6818 0.8139 0.3605
U-Net3 | Textured | 0.8119 0.8614 0.5855 0.7359 0.2157
U-Net4 | Textured | 0.7250 0.8148 0.4945 0.6391 0.2000
Our DCN | Textured | 0.9658 0.9741 | 0.8728 | 0.9386 0.4638

TABLE 2. Quantitative metrics of the segmentation results on tri-

angle data sets. Best values are displayed in bold.

Image Global Mean Mean | Weighted | Mean
Set Accuracy | Accuracy IoU ToU BFScore
SegNet Lung 0.8819 0.8975 0.7324 0.8074 0.9204
U-Net3 Lung 0.8917 0.9013 0.7475 0.8190 0.9266
U-Net4 Lung 0.8929 0.8966 0.7484 0.8193 0.9343
Our DCN | Lung 0.9045 0.9033 | 0.7690 | 0.8355 | 0.9448
SegNet Breast 0.8691 0.8990 0.7002 0.7917 0.8900
U-Net3 Breast 0.8829 0.9051 0.7183 0.8124 0.8743
U-Net4 Breast 0.8775 0.8977 0.7086 0.8057 0.8700
Our DCN | Breast 0.9047 0.9123 | 0.7538 | 0.8415 0.9210
SegNet Kidney 0.9122 0.9249 0.7290 0.8634 0.9425
U-Net3 Kidney 0.9133 0.9281 | 0.7259 0.8639 0.9218
U-Net4 Kidney 0.8993 0.9145 0.7013 0.8462 0.9306
Our DCN | Kidney | 0.9329 0.9277 | 0.7725 | 0.8911 | 0.9634
SegNet | Prostate | 0.8956 0.9142 0.7533 0.8271 0.9105
U-Net3 | Prostate | 0.8949 0.9041 0.7496 0.8255 0.9047
U-Net4 | Prostate | 0.8961 0.9032 0.7510 0.8271 0.9090
Our DCN | Prostate | 0.9211 0.9163 | 0.7962 | 0.8632 | 0.9336
SegNet Overall 0.8897 0.9000 0.7383 0.8184 0.9159
U-Net3 Overall 0.8957 0.8976 0.7467 0.8264 0.9069
U-Net4 Overall 0.8914 0.8905 0.7380 0.8201 0.9110
Our DCN | Overall | 0.9158 0.9039 | 0.7815 | 0.8548 | 0.9407

TABLE 3. Quantitative metrics of the segmentation results on the
H&E-stained image data set. Best values are displayed in bold.

SegNet U-Net3 Our DCN | Our DCN (efficient)
Training Time | 15 min 14 sec | 18 min 36 sec | 26 min 47 sec 19 min 45 sec
Testing Time 7.6 sec 37.7 sec 10.1 sec 19.9 sec

TABLE 4. Comparison of the training and testing time of SegNet,

U-Net3

and our DCN.
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