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Abstract

The Fourier transform of the density-density correlation function in a Bose-Einstein condensate

(BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles

and their partners. It can be expressed in terms of (“**aSy ©"*al’), where ©**ag<" is the annihilation

operator for the Hawking particle and Out&iu‘g is the corresponding one for the partner. This
basic quantity is calculated for three different models for the BEC flow. It is shown that in each
model the inclusion of the effective potential in the mode equations makes a significant difference.
Furthermore, particle production induced by this effective potential in the interior of the black hole
is studied for each model and shown to be nonthermal. An interesting peak that is related to the

particle production and is present in some models is discussed.
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I. INTRODUCTION

Hawking’s 1974 prediction[l] that black holes evaporate has not been directly veri-
fied, largely because a black hole of mass M would emit radiation at a temperature
Ty ~ % x 10~7K. Some hope remains for a detection from black holes nearing the end of
the evaporation process, but “primordial” black holes, which formed in the early universe,
have not been detected and there is no evidence for radiation from them|2].

It was shown in [3] that a fluid flowing from a subsonic into a supersonic region, and
thus having an acoustic horizon, should also emit a thermal spectrum of phonons via the
Hawking effect and therefore serve as an analog black hole. Even in analog systems the
temperature of the emission is usually very low. Bose-Einstein condensates (BECs) have
been particularly useful as analog black holes because they are suited for testing low energy
phenomena as they can be cooled to 107"K[4]. These systems can be effectively trapped
in a one-dimensional (1D) flow, creating an analog spacetime with 1+1 dimensions. Direct
detection of the produced phonons is still problematic; therefore, other signatures of the
Hawking process are the focus of current quantum field theory in curved space predictions
and analog black hole experiments.

The most notable prediction associated with the Hawking effect in analog systems to date
has been a peak in the correlation function for the density in a 1+1D BEC analog black hole.
This prediction was originally made using quantum field theory in curved space for a simple
model with a constant flow velocity and a varying sound speed[5]. It was subsequently
verified by a quantum mechanics calculation[6, 7] and a more sophisticated quantum field
theory in curved space calculation[§].

Experiments using a 1+1D BEC analog black hole in 2016[9] and 2019[10] found very
good qualitative agreement with the prediction of the peak in the density-density correlation
function. These experiments have position-dependent sound speeds and flow velocities in
an effectively one-dimensional system. The density for all points in each experimental run
is imaged at one lab time. The experiment is repeated several thousands of times to build
an ensemble average for the density-density correlation function. The peak predicted by the
constant flow velocity model is clearly evident in the experimental results.

An attempt was made to model the 2016 experiment in [11]. The model uses a step

function potential to obtain an analytic solution to the Gross-Pitaevskii equation which



governs the background condensate. Several quantities were calculated including the density-
density correlation function. An approximation was used in the calculation for the density-
density correlation function that involved setting an effective potential that appears in the
phonon mode equation to zero. When the cross section of the resulting density-density
correlation function was compared to the experimental result, there was nearly a factor of 2
difference in the full width half maximum of the peak and ~ 50% difference for the height
of the peak.

In order to determine the temperature of the analog black hole the experimenters de-
composed the peak found in the density-density correlation function via a Fourier transform
to show the correlation spectrum for the Hawking particle and its partner[10]. In [12] a
theoretical quantity, which we call the Hawking-partner (HP) correlator, was shown to be
related to this Fourier transform. In [10] the spectrum of the HP correlator was calculated
using an approximation in which the effective potential in the phonon mode equation was
ignored. In this case, the HP correlator only depends on the frequency of the modes and
the surface gravity, and hence the temperature of the analog black hole. A comparison was
made with the experimental result. A disagreement of 1% was found for the temperature
of the analog black hole. The authors estimated an experimental error in this quantity of
5%. The effects of nonlinear dispersion on this correlator were investigated in [13], but this
calculation did not include an effective potential in the phonon mode equation.

In this paper, we will work with three different models for a 1+1D BEC analog black
hole. We calculate the resulting HP correlator and two quantities related to the population
of phonons traveling upstream and downstream in the frame of the fluid in the interior of
the acoustic black hole, and we find that there is a significant contribution from the effective
potential for each model to all of these quantities.

The first model, previously discussed in [7, 14], has an effective potential consisting of a
delta function in the interior and a delta function in the exterior of the BEC analog black
hole. This model is simple enough so that analytic results were obtained. We compare to
the case with no potential and thus no scattering or particle production and find significant
differences.

We then review the profile used in [6, 8], which has a varying speed of sound and a
constant flow velocity. The effective potential is included in the mode equation and we find

that the HP correlator, again, is significantly altered by its inclusion.



The third model we look at is often called the waterfall model [7, 11, 15, 16]. It has
been used to model the 2016 experiment in [11]. Here the term waterfall refers to an
analytic solution to the Gross-Pitaevskii equation for a BEC analog black hole in which the
condensate is flowing over a step function potential. In this model, the sound speed, flow
velocity and background density all vary along the flow direction. In this case, we also find
that the HP correlator is significantly altered due to the scattering and particle production
caused by the inclusion of the effective potential.

We then discuss a new peak found in [14] related to the population of phonons propa-
gating upstream and downstream in the frame of the fluid inside the horizon, for each of
these models. We will refer to these as the interior upstream phonon number(UPN) and the
interior downstream phonon number (DPN). This peak was found to occur when the mag-
nitude of the effective potential is larger in the interior than in the exterior. The peak was
noted previously for the two-delta function potential in [14] when the interior potential is
chosen to be larger than the exterior. The second profile, which has a constant flow velocity
and an effective potential whose magnitude is similar in the interior and exterior regions,
exhibits no such peak. The last model we investigate is the waterfall model which displays
a relatively large peak in quantities related to the population of phonons in the interior.

In Sec. II, we discuss the theoretical background for a 1+1D BEC analog black hole. We
then derive the HP correlator based on the creation and annihilation operators for a Hawking
phonon and its partner for the two-delta function potential model. We also compute the HP
correlator when the effective potential is ignored. In Sec. III, first the constant flow velocity
model is reviewed and our results for the HP correlator are given. Then the waterfall model
is reviewed and our results for the HP correlator for it are shown. In Sec. IV, we discuss the
overall effect of the potential in each case on the appearance of the peak which is related to

particle production in the interior. In Sec. V, we discuss our results.



II. BACKGROUND

The field equation for the phonon operator él, if the flow velocity, ¢, sound speed, ¢, and
density, n, change on scales larger than the healing length! ¢ = %, with m the mass of an
atom, is (see e.g. [17])

[—(aT+ﬁ-ﬁ)l2(aT+6-a)+ﬁ 6]91:0. (2.1)
mc
The coordinates T" and ¥ relate to the lab frame. Equation (2.1) is equivalent to the Klein-

Gordon equation for a massless scalar field in a curved spacetime with line element of the

form

ds? = % [—(c)dT? + (d — §dT) - (d& — 5dT)] (2.2)

We consider flows that are stationary and effectively one-dimensional and we define a 1+1D

field operator, #®, such that

. me(x) 4
0, = | ——26? 2.3

where [, is a length, defined by the transverse confinement of the BEC. For analog black
holes the condensate is flowing from a subsonic region ¢ > |v] (z > 0, region r) into a
supersonic region with ¢ < |t (z < 0, region 1). For the models considered in this paper the
flows are directed from z = oo to x = —o0, s0 U = —vg(x)z, with vy > 0. The condensates
we consider also have the property that they either have or approach a constant flow velocity,
sound speed, and density as x — +oo. In the analog spacetime this translates to a region

that is asymptotically flat. Using the variable transformations

R N LU N
=1 [ e R / Wy Tl Y

with @ and b arbitrary constants,? the equation for 0 is

(—02 + 02 + Vig) 0P = 0, (2.5)

L' The healing length sets the scale of dispersion.
2 Tt is useful to fix the constants a and b so that v =t 4+ z* is continuous across the horizon.



with the effective potential
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Note that vy and n are related by the continuity equation nvg = const. The asymptotically

dx 4 \dr)  23ndx®  2nda?  Andx dx

constant flows we are considering ensure that the effective potential vanishes in the limit
x — %o00. It also vanishes on the horizon, x = 0. The wave equation (2.5) can be written in

the form (O® + V)0 = 0 where 0 is the d’Alambertian for the two-dimensional metric

2 2
d 2 — [C(I) — UO(ZE) ] —dt2 d *2 27

s @ ( + dz*?), (2.7)

and V = c¢(c* — v2) Vg Tt is useful to define the ingoing and outgoing null coordinates

v=t+z* and u =t — z*, and the Kruskal null coordinates

—RU RV

and V=", (2.8)

K K

U:qte

Here the — and + refer to the exterior and interior regions, respectively, of the analog

spacetime and the surface gravity, k, is defined as

o (e dw
 \dz dx

In order to proceed, we need to define two quantum states for the field. These can be

(2.9)

hor

described by complete sets of modes that are positive frequency on certain surfaces. We
start with the Boulware state which is defined by solutions to the mode equation (2.5) that
are positive frequency with respect to ¢t on I_ and the past horizon H_ in the region outside
the future horizon. Inside the future horizon they are positive frequency with respect to the

time coordinate x* on the past horizon. The Penrose diagram in Fig. 1 helps illustrate the



behaviors of these modes in the analog spacetime. On the past horizon, they take the form

—iwu eiwu
npeext __ and npint __

o VAarw e A

(2.10)

In what follows, we use the superscript “ext” to denote modes that are positive frequency
on a surface in the exterior region and “int” to denote modes that are positive frequency
on a surface in the interior region. The subscript H or I denotes whether that surface is
a horizon or null infinity. The superscript “in” denotes the in modes and the superscript

“out” denotes the out modes. The modes on /_ have the form

—iwv
e

ingext __

1

. 2.11
4w ( )

Since these modes form a complete orthonormal set, the field can be expanded in terms of
them as

¢E(2) :/ dw [in&z{t(in Iei;(t) +in di}r}t(in gt) +in &?ct(in ?Xt) + HC:| ) (212)
0

inpext inaint

Here ™ma$st, a'nt, and ™a$*

are annihilation operators and the Boulware vacuum is the state
annihilated by these operators.

The Boulware state does not correctly describe the state of the quantum field when the
black hole is created dynamically. In this case, at late times, the state of the quantum field

is well approximated by the Unruh state [18]. The Unruh state consists of modes that are

positive frequency with respect to the Kruskal time coordinate on the past horizon so that

% efinU
fn = T (2.13)

and modes that are positive frequency with respect to ¢ on /_ shown in Eq. (2.11). These
two sets of modes form a complete orthonormal set and the field can then be expanded in

terms of them as
60 = [ dn [ 15+l £+ [ do [P (o) et ()] (249)
0 0

The Unruh |U) state is state annihilated by all the annihilation operators entering the

decomposition given in (2.14). Here a,,, is an annihilation operator for the f/ modes. The
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FIG. 1: Penrose diagram for an analog spacetime corresponding to a BEC flowing from right to
left. The in mode basis is schematically illustrated in blue in the [ and r regions of an analog black
hole. The out mode basis is schematically illustrated in red.

mode equation in Kruskal coordinates is not separable; thus, it is preferable to work with
the modes that specify the Boulware state. The relation between the two sets of annihilation

operators is given by the following Bogoliubov transformations
. oo
st / dog [0S iy + 825540 ]
0
. . o0 . .
ingint — / dwre [ e + B4l ] (2.15)
0

For a late time observer, what we would think of as the natural out vacuum state consists

of a complete set of modes that are positive frequency with respect to t or z*, on I, , where



I refers to the entire surface of future null infinity. In the exterior region on I, the

upstream modes take the form
e—iwu
out rext — ) (216)

P Vamrw
int

In the interior region, the upstream modes on the surface .,/ are

out rint — (217)

up )

and the interior downstream modes on s/ ft are

out pint e—iwv
= ) 2.18
P 4w ( )

The three surfaces that comprise I, and the out state are illustrated in Fig. 1. The field

can be expanded in terms of these modes as well

up up up up

&(2) :/ dw [outdext (out ext) + outdint (out int) =+ outdglst <0ut 1nt) + H. C:| (219)
0

°utg’s are the associated annihilation operators.

where the

In general one can use scattering theory to relate the modes in the in states to those in
the out states. An exterior in mode initially propagates downstream away from past null
infinity and is partially reflected upstream toward I$** with a reflection coefficient of R$*".
The transmitted portion continues to travel downstream into the interior of the analog black
hole where it undergoes particle production.? After the particle production occurs, the part
of the mode that travels upstream toward .,/'" has a total scattering coefficient of R},
while the portion of the mode that continues to travel toward ds[ft has a total scattering

coefficient 7. The other modes have similar behaviors and one can write the in modes on

I, in terms of the out modes as follows:

mfext Rext out ext + Tlnt outflnt + Rlnt Olltfmt"‘7 (220&)
n ;Ixt Text out ext + Tlnt outflnt Rmt out 111r}1)t*’ (220b)
n glt — Rlnt outflnt* + Tmt out 111rpl)t (2200)

3 The scattering in the interior region is anomalous and this leads to particle production; see [14].



Note that the tilde denotes a coefficient which does not involve any scattering in the exterior
region. One can now formulate the scattering matrix and using scattering theory we can
then calculate the expressions for the annihilation operators for the out state in terms of

those for the Unruh state,

~

00
outAext (¢ out ext> _/ dwK [dw;(( Z):w)Text + CALT ( Z)I(;:J)Text}
0

+aF R (2.21a)
out&iurg _ ( &(2)’ out li:;)t) _ / > dwic [dwx < 51; met 5Z’§fw Rmt*)
0
il (B T+ ot R )| gt RR L (2.21h)
o = 5, i) = [ o (o T+ A )
0
+&LK (62};;:?111; X agl}‘c(lent*>:| _'_in&?xtTIint . (2.21¢)

The Bogoliubov coefficients relating these annihilation operators are given by 4

o= L [ () (e

“k@ o\l wi ’
1 WK

ext _ _— 2.22b
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w1 ( F( ) -

~~

2.22a)
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2.22¢)

27K K

A. The Hawking-partner correlator

The main peak which was found in the density-density correlation function for the exper-
imental results [9, 10] is composed of modes which are traveling upstream toward I,. The
main contribution to these modes can be understood as arising from a Hawking particle
in the exterior and its partner in the interior. The peak was Fourier decomposed to show

the resulting correlation spectrum in [10]. It was shown in [12] that this correlation can be

4 These have been calculated in Ref. [8], but the expressions there are missing a factor of KEW

10



described by the quantity SF |{( **ag)( *utaint)) {2, where S is defined as the zero temper-

ature static structure factor in Ref. [9](see also [12]). For relatively low momenta, which we
will consider in our calculations, it is a good approximation to replace SZ with Aw? where

A is a constant that we will set to one.> For the other factor, we find

M 2

|<U|( out Aext out /‘lnt ‘U>| — (TextTlnt + TextRlnt* ) + R?xtRiInt* ’ (223)

27rw

where we have written the general expression in terms of scattering coefficients. We call
(U eaest)(o*aint)|U)| the HP correlator.
In the case where there is no effective potential and thus no scattering, Tlm Tt =1,

R = Rin* = 0, and Eq. (2.23) reduces to

W

cr (2.24)

2w

‘<U| outAext)( outAlnt |U>‘ ‘ o
er —1

In this case the upstream modes which are thermally populated on the past horizon, simply
travel toward I,. This expression only depends on the surface gravity and thus the Hawking
temperature, Ty = 5-. However, if the effective potential is included, the resultant quantities
are also dependent on the details of the sound speed and velocity profiles away from the

horizon.

B. Interior upstream and downstream phonon numbers

In [14], a new feature was found that is related to the interior DPN, n'* and the UPN,
mt UPN refers to the number of phonons which are traveling upstream in the frame of the
ﬂuld in the interior, being dragged away from the horizon in the lab frame and arriving at
I, while DPN refers to phonons which are moving downstream and arriving at I . The
DPN and UPN expressed in terms of the creation and annihilation operators for the out

modes are

mt <U’0utA1ntT outAlnt |U> and nglst — <U‘outAmtT Out/\ll’lt ‘U> (225)

® This approximation for Sy can be derived using results in [19].
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int

o ? using the definition for the annihilation operator in Eq. (2.21b), one finds

Solving for }n

2) 2 . (2.26)

2

int|2 _ 1 Tint + Rint* e + ‘Rint*

Nl =\ 2= 1 H g € T
e r —

In the case where Vog = 0, Tii* = 1, and R}™ = Rirt* = (),
. 1 2
er —1
Thus, there is a thermal distribution of phonons.
For the DPN, one finds
2

int |2 _ 1 Tint Rint* v 2 2 28
‘"ds == H tliges (2.28)

Tt is associated with a mode in the exterior that is positive frequency on H_ and is partially
scattered into the interior. Thus, in the absence of a potential T = 0 and R¥* = 0, there

is no particle production for these modes in the interior of the analog black hole.

ITII. HP CORRELATOR WITH AN EFFECTIVE POTENTIAL

We now apply this general formalism to the three models previously mentioned.

A. Two-delta function potential

The first model we consider was discussed in [14] where V.g was approximated by two
Dirac delta functions, one in region r and one in region [. We refer to this model as the

two-delta function potential model. The effective potential is

Vintd (2™ — 2%, x <0,
Vi — 00 ( ¢) (3.1)
VextO(z* —zf,), x>0.
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We review the resulting solution for the " f$** modes for the entire spacetime. In the exterior,

it is given by

—twt
. (A . * - *
in pext —iWwx ext iwx * * .
e = [e + R7e ], r>axe, =0,
Varw
e—iwt -
—_ T}sxtefzwx , l’* < l’*

/_471'0) ext

~0, (3.2)

where R and T' will refer to scattering coefficients throughout. In the interior,

—iwt

in pex € xt  —iwx™ * *
o= —47erIete e o<z, =0,
efiwt ) - ) -
= [T7" e ™" + R™e™™ ], a*>af, =0. (3.3)
The asymptotic form of the f&* mode as x — +o0 is
nrext eith —iwz* ext iwx™®
7o ——= [e7 + R (3.4)
Varw
and for x — —oo it has the form
npint 6_th Tint —twx* Rint wr™ 3.5
I e d———— |: 1 € -+ 7 € :| . ( . )

vVAarw

Similarly, the modes which originate on the exterior past horizon have the following

asymptotic form for x — +o0:

—iwt

R, (3.6)
vVamrw
The form for + — —o0 is
. e~ wt . - . -
in Ie?(t N [ }I}te—zwx + T}}ltezwz ] . (37)

Varw

Finally, the modes which originate on the past horizon in the interior have the form for
T — —00, A
n pint e'! mint  —iwx* pint _iwx*
B = |Thte Ry (3.8)

vVAarw

The transmission and reflection coefficients have been computed in [14]. They are found

13



by enforcing continuity of the radial mode functions at the locations of the delta function
potentials and imposing the usual jump conditions on the first derivatives of the radial
mode functions at those locations. The jump conditions are obtained by integrating the
mode equation (2.5) around the delta function potential over an interval [—e, €] in the limit

€ — 0. The resulting scattering coefficients are

2iw
Vex X 1
7 = 5=, Tyt = —Vext
- 1 1 2w
‘/ext
1 Vext
xt t __ iw
R§ T 2w 1 ) Ri}( - 172‘3?’“ )
V;ext "
Rint _ V;Ht Text Tint _ (1 mt) Rext
I - 220.) I ? H — 2w
Mnt X i
T]mt — (1 . QZw) Te t ’ Rlnt — 21;:5 Rext
i Vi t Din Vi
Ty =1-2, Rint = Ve (3.9)
Using these scattering coefficients in Eq. (2.23) gives
|<U’ outAext outAmt ‘U>|
W . 2
_ er 21w — Ving B Vint Vext =) Ving (3.10)
1\ 20w — Ve 4w? + V2 Vet + 5 '

In the two-delta function potential model, the HP correlator is finite as w — 0 whereas
in the case without scattering it diverges in this limit. This can be seen in the quantity
w? [(U](Cags) (aint) | U >‘ which is plotted in Fig. 2 for both the two-delta function po-

tential and the case with no scattering. The ratio of the two cases is also shown.

14
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FIG. 2: The square of the product of the Hawking-partner correlator and the frequency for the
two-delta function potential model (blue dotted) and the case with Vg = 0 (orange dashed) is

shown in the left panel. Here |(°™a& °¥altt)| is the Hawking-partner correlator. In the right
panel, the ratio of the two curves on the left is shown.
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B. Constant flow velocity model

We next consider a model which has been studied from both the condensed matter per-
spective [7] and the quantum field theory in curved space perspective [8] and shows good
agreement between the two. The profile has a varying sound speed, but the flow velocity is
held constant, and thus due to mass continuity, the density is also constant. Such a profile is
theoretically possible if an external potential is adjusted to keep the density constant while
the coupling constant, g, which is related to the s-wave scattering length, is varied via a
Feshbach resonance[19] allowing the speed of sound, ¢ = \/% to vary.

The sound speed profile used in [6, 8] is®

1 2 b
C(.?Z') = \/C?nt + _(ngt - Ci2nt) |:1 + _tan_l (x i ):| )
2 T o

1
b= avtan | T (- g )] (3.11)

Cext — Cint

where b is defined so that the horizon occurs at x = 0. This sound speed approaches a
constant, ¢;,; in the interior, as * — —oo and in the exterior approaches the constant cey
as x — oo. The flow velocity is ¥ = —vgz, where vg > 0 is constant. The term o, is related
to the width of the profile. We use ¢y = 1/2, cexy = 1, v = 3/4, and o, = 8 which are the
values used for some of the numerical calculations in [§].

The scattering coefficients are calculated numerically for each value of w and then used
in Eq. (2.23). Unlike the two-delta function potential case, the reflection coefficient in
the exterior does not approach one for low frequencies; thus, the HP correlator is infrared
divergent as it is when the effective potential is ignored.

The results are shown in Fig. 3 where the quantity w? [(**ag 0“&3}9}2 is plotted both
when Vg is included in the calculation and when V.g = 0. The inclusion of the effective
potential increases the value of the HP correlator throughout the frequency range of the
plot. A ratio of the two cases is also shown. In the low frequency regime, the HP correlator
is observed to be approximately 8% larger than its value when V.g = 0. This inevitably will

affect the main peak.

6 In [6] this profile was used with b = 0.
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FIG. 3: The square of the product of the Hawking-partner correlator and the frequency for the
constant flow velocity model (blue dots) and the case with Vg = 0 (orange squares) is shown in the
left panel. Here ’<°“t&ﬁ’}§t Outdiﬁ;“ﬂ is the Hawking-partner correlator. In the right panel the ratio of
the two curves on the left is shown.

C. The waterfall model

A model, which more closely resembles the experiments of [9] and [10], but which still has
some significant differences, has been studied in [11]. This model, often called the waterfall
model, is based on an analytic solution to the Gross-Pitaevskii equation when an external

step function potential is applied. The resulting density profile can be written as

n(z) = n_[M_+ (1— M_)/(cosh(c(z + 0)))?] x<2 T (3.12)

where we have shifted the profile by 7y =~ 9.6 x 10~7 so that the horizon is at # = 0. The sub-
script — indicates the asymptotic value as x — —oo. The Mach number M (z) = ¢(x) /vo(x)
is used to characterize the flow, and its asymptotic value M_ = c¢_/vg_ gives insight into
the strength of the “waterfall”. The width of the profile is modified by o = (v/M_ —1)/¢
with £ the healing length. In this profile the flow velocity, sound speed, and density all vary

along the flow. The flow velocity is ¥ = —vy(2)&, with vo(x) > 0. It is simple to show that

the continuity equation leads to vy o< = (see e.g. [20]).

The entire solution can be defined by a particular choice for ¢ and v_. Here we use
values that loosely match the experiment described in [9] with v_ = 1.02 x 1073 and ¢_ =
0.24 x 1073, The resulting density, sound speed, and flow velocity are plotted in Fig. 4.

The result for the HP correlator is shown in Fig. 5, where the quantity

17
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FIG. 4: Various profiles are shown for the waterfall model with Mach number M_ = 4.1. The
solid (blue) curve corresponds to the density n(x) multiplied by the factor 2.7 x 10~!!; the dashed
(orange) curve corresponds to the sound speed c¢(z), and the dotted (green) curve corresponds to
the flow speed |v(z)|.

w? |<°ut&ff;t OUtdL‘g>|2 is plotted for V,g # 0 and for Vog = 0. There is a significant differ-
ence between these two cases throughout most of the frequency range of the plot. The
ratio of the two cases is also shown, and there is an approximately 10% increase in the low
frequency values of the HP correlator when the effective potential is included in the calcu-
lation. This low frequency regime is especially important when considering the main peak

in the density-density correlation function as both the width and magnitude of the peak are

heavily dependent on the low frequency modes.
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FIG. 5: The square of the product of the Hawking-partner correlator and the frequency for the
waterfall model (blue dots) and the case with Vg = 0 (orange squares) is shown in the left panel.
Here |(*"a&Xt o¥aint)| is the Hawking-partner correlator. In the right panel, the ratio of the two
curves on the left is shown.
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IV. PARTICLE PRODUCTION IN THE INTERIOR

The numbers of upstream and downstream phonons in the interior of a BEC analog
black hole were computed in [14] for the two-delta function potential model. We review
these results and then calculate quantities related to the interior UPN and DPN for the

other two models.

In Sec. IIB we have shown that if Vg = 0 the spectrum of |wniunlf 2 is based on a thermal

distribution as seen in Eq.(2.27) and |wn|?> = 0. For the two-delta function potential it
was shown in [14] that njj is nonzero and that both ni} and nj are nonthermal in the left
and right panels, respectively, of Fig. 6. In both plots, the spectrum for these quantities
when Vg = 0 is shown. Recalling that for Vg = 0, ]wnﬁg\z has a thermal spectrum, it is
clear that the spectrum when V. # 0 is nonthermal.

Also visible in Fig. 6 is a peak. It was found in [14] that this peak occurs when the

magnitude of Vg is larger in the interior than it is in the exterior.

DY Iy Ry
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FIG. 6: In the left panel the quantity ‘C’ w nﬁg ? is shown for the two-delta function potential

model (blue dotted) and for the case where there is no potential (orange dashed). In the right
panel the quantity ‘C w nglst ? is shown for the two-delta function potential model(blue dotted)
and for the case where there is no potential (orange dashed). For the two-delta function potential

model Vipy = —£/100 and Vexy = 2k/3. C'is a scaling factor whose value is chosen, where possible,
for each curve so that C w [ni%| =1 or C w |n¥| =1 for w = 1075.

up

For the first model, the delta-function effective potential was introduced in an ad hoc way
and the asymmetry in the overall potential profile is thus not related to the sound speed or
flow velocity of the model. In the other two models, the effective potential is derived from

the profiles for the sound speed and flow velocity according to (2.6).

The constant flow velocity model has a speed of sound profile which, for the constants
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used in the calculations of the HP correlator in Sec.III B, leads to a nearly antisymmetric
effective potential (shown in Fig. 7). In this case, the magnitude of the effective potential
in the exterior region is only slightly larger than its magnitude in the interior region. The
resulting quantities |ummt|2 and |cmmt|2 plotted in Fig. 7, do not show a peak and instead

are qualitatively similar to ‘w nmt in the case where Vg = 0.
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FIG. 7: Upper: plot of the effective potential for the constant flow velocity model. Left: the
quantity ‘w nﬁ?j % Vs w is shown for the constant flow velocity profile (blue dots) and for the case

where there is no potential (orange squares). Right: the quantity ‘w nmt ® vs w is shown for

the constant flow velocity profile (blue dots) and for the case where there is no potential (orange
squares).

For the waterfall model, the nature of the profiles for ¢(z), v(x), and n(z) results in the
magnitude of the interior effective potential being much larger than the exterior effective
potential, as can be seen in Fig. 8. This results in a distinctive peak in the plot of \wnmt 2
while the plot of |wn'Tf|? is dominated by the peak as seen in the lower right panel of Fig. 8.
In the two-delta function potential and waterfall models, one finds for [wn}¥|* and |wnjy|?

what appears to be a peak superimposed on a distribution which is almost thermal. The

structure of [wnit|* and Jwniy|?

for the waterfall model can still be described as a peak
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FIG. 8: Plot of the effective potential for the waterfall model in the interior (upper left) and exterior
(upper right) of the analog black hole. The vertical axes of the upper-right and upper-left plots
have different scales since the magnitude of the effective potential in the interior is significantly
larger than it is in the exterior. Bottom left: the quantity |wni|? vs w/k is shown for the waterfall
model (blue dots) and for the case where there is no effective potential (orange squares). Bottom

right: the quantity |wni*|> vs w/k is shown for the waterfall model (blue dots) and for the case
with no effective potential (orange squares).

superimposed on a thermal distribution, but unlike the two-delta function potential, the
peak found in |wni*|* has a much higher magnitude when compared with the asymptotically

constant low frequency region. We also find that in the waterfall model the peaks in both

int|2

|wnup int |2

and |wni¥|* appear at higher frequencies in the distribution than was found for the

peaks in the two-delta function potential model.
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V. CONCLUSIONS

We have studied the HP correlator, (2.23), and the interior upstream and downstream
phonon numbers, (2.26) and (2.28) for a BEC analog black hole. The mode equation for
phonons in the hydrodynamic limit is a wave equation with a potential that depends on the
density, flow velocity, and sound speed. In some previous studies, this potential was neglected
for simplicity. We have shown that the inclusion of this effective potential has a significant
impact on the HP correlator and the interior numbers of upstream and downstream phonons
in each of the models we have investigated

Three different models were considered. The HP correlator was calculated by solving
the mode equation with the effective potential, Vg, for each model and then comparing the
result with the case with no effective potential. The first model has an effective potential
consisting of two delta functions, one in the exterior and one in the interior. The behavior
of the HP correlator for the two-delta function potential model is quite different from the
case where Veg = 0 as the low frequency HP correlator is finite for the two-delta function
potential model, whereas it is infrared divergent if Vg = 0.

A second model has a constant flow velocity, but a varying sound speed. In this case the
HP correlator is qualitatively similar to the Vg = 0 case. However, at low frequencies, they
differ by as much as 8%.

The third model, called the waterfall model, is a solution to the Gross-Pitaevskii equation
for the background density if a step function potential is applied. The resulting profile has a
varying sound speed and flow velocity. The HP correlator for this model differs significantly
from the case when Vg = 0. In the low frequency regime, in particular, the HP correlator for
the waterfall model is increased by approximately 10% compared to the case when Vg = 0.

We have also calculated the interior UPN and DPN at future null infinity for the constant
flow velocity model and the waterfall model and have also reviewed the results for the two-
delta function potential model in [14]. In the two-delta function potential model, one finds a

int’Q

int |2
up

peak in both |wn|* and |wnl¥|* when the potential is adjusted so that the interior effective
potential is larger than the exterior. The waterfall model, by its nature, has an interior
effective potential which is much larger in magnitude when compared to the exterior and
thus has an easily visible peak in both quantities related to the UPN and DPN. The case

with a constant flow velocity does not have a larger effective potential in the interior and
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no such peak is found in |wn!X|* or |wnl:

The same particle production that leads to the peak related to the interior UPN and
DPN appears to have a small impact on the HP correlator for the waterfall model. This is
only visible when looking at the ratio of the curve with Vig # 0 to the curve with Vg = 0
in Fig. 5. This impact is small enough that we do not expect to see its effect in the current
experimental results[9, 10].

In [12], it was shown that there is a relationship between the HP correlator and the
Fourier transform of the density-density correlation function when one point is inside and
one point is outside the horizon. A similar relationship was found in [12] between the
Fourier transform of the density-density correlation function when both points are inside

int’Q

int ’2
up :

the horizon and the quantities |wn and |wnlY|*. Given the prominence of the peak in the
theoretical calculation for the waterfall model one could hope to see it in the experimental
data. Unfortunately, for the experimental configuration in [9], this does not seem to be the

case [21].
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