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Abstract

An investigation is undertaken into the properties and effects of a preinflationary era during at
least part of which semiclassical gravity was valid. It is argued that if the Universe (or our part of
it) was approximately homogeneous and isotropic during that era, then the Universe was likely to
have been radiation dominated. A simple model in which the Universe contains classical radiation
and a cosmological constant is used to investigate potential effects of such a preinflationary era
on the cosmic microwave background. The power spectrum is computed using the mode functions
of a quantized massless minimally coupled scalar field. Various choices of state for this field are
considered, including adiabatic vacuum states of various orders and the vacuum state that would
naturally occur if the Universe made a sudden transition from being radiation dominated to de
Sitter space. In all cases investigated, there is a suppression of the power spectrum at large angles,
and, when plotted as a function of the momentum parameter, there are always oscillations with

state-dependent amplitudes.



I. INTRODUCTION

In the traditional big bang theory, the Universe began with zero size and an initial
curvature singularity. Of course, what this really means is that classical general relativity
breaks down, and a description of the very early Universe must come from a quantum
theory of gravity. Since it is currently unknown which, if any, of the current quantum
gravity candidates is correct, the beginning of the Universe (if there was one) is unknown.
However, the paradigm today is that early in its history the Universe underwent a period of
inflation. If there was a preinflationary era, then semiclassical gravity may well have been
valid during the latter part of that era. One expects that semiclassical gravity would be
valid in the early Universe once the curvature is well below the Planck scale. This would
be true for spacetime curvatures of the order of 10~* in Planck units which in the early
Universe would correspond to energy scales about 100 times larger than that of the grand
unified theory, GUT, energy scale. For this reason it is interesting to explore the predictions

that semiclassical gravity makes about the Universe prior to inflation.

There is some ambiguity as to the exact form of the semiclassical Einstein equations due to
the unknown sizes of the coefficients of the scalar curvature squared and Ricci squared terms
in the gravitational Lagrangian. Renormalization of the stress-energy tensor for quantum
fields in curved space requires the existence of such terms. Nevertheless, when gravity is
thought of as an effective field theory, one expects that the contributions from such terms
to the semiclassical Einstein equations should be relatively small. If that is the case, and if
the preinflationary Universe, or at least our part of it, was approximately homogeneous and
isotropic, then from the point of view of semiclassical gravity, the Universe began with zero
size as in the classical big bang model. Of course one of the advantages of inflation is that
the part of the Universe we can observe today would have been an extremely small part
of the Universe at the onset of inflation. Thus, if there were significant inhomogeneities on
larger scales, they would be well outside the current horizon. However, here we make the
stronger assumption that any large inhomogeneities were far enough away that the part of
the Universe that contained the part we can see today, and was significantly larger than it,
was approximately homogeneous and isotropic. Then our argument implies that this portion
was radiation dominated at least during the latter part of the preinflationary era. Given our

ignorance of the preinflationary era, it is of interest to consider models of this type.



It was argued in [1] that if the Universe began with zero size, then it is possible to define
an initial vacuum state for a conformally coupled massive scalar field that, at the initial time,
is equivalent to the conformal vacuum state for a conformally coupled massless scalar field.
This was done by replacing the mode equation with a Volterra equation that could be solved
iteratively. At lowest order it was shown that for any other homogeneous and isotropic state,
the stress-energy tensor (7),,) contains terms that have the same form as classical radiation.
This is not surprising since it is known [2] that for a conformally invariant field in any other
homogeneous and isotropic state than the conformal vacuum the stress-energy tensor has
such terms.

In this paper we investigate the properties of this initial vacuum state as well as other
homogeneous and isotropic vacuum states in significantly more detail than was done in [1].
We show that for the vast majority of cases where the Universe begins with zero size in any
other homogeneous and isotropic state, the stress-energy tensor for a massive conformally
coupled scalar field at early times has a term that acts like classical radiation. We use this to
make an argument that it is extremely likely that if the Universe had a period before inflation
in which the semiclassical approximation was valid, then it expanded in approximately the
same way as a radiation-dominated universe during that period. Evidence for a radiation-
dominated preinflationary era has also been found in a model in which the Wheeler-DeWitt
equation is solved in the minisuperspace approximation which includes the Hamiltonian for
the scale factor when a cosmological constant is present along with the Hamiltonian for a
single mode of a massless minimally coupled scalar field [3].

From an observational point of view, the best chance for evidence of a preinflationary
radiation-dominated phase for the Universe would likely come from the cosmic microwave
background, where it has been shown [4] that if inflation did not go on for too long, then
there could be significant deviations from the usual prediction if the state of the quantum
field differs significantly from the Bunch-Davies state [5-8].

With this as motivation we consider a simple model in which the Universe contains
classical radiation and a cosmological constant. At early times the Universe expands like a
radiation-dominated universe and at late times like a de Sitter universe. This model gives
a natural onset to inflation described entirely by the cosmological constant. Since we are
concerned with the effects on the power spectrum of the preinflationary phase, our results

are independent of the reheating phase which occurs in most inflationary models and they



are also compatible with warm inflation models [9] in which there is a gradual transfer of
energy from the inflaton field to the radiation which eliminates the need for a reheating
phase.

In many models of inflation the inflaton field is treated as a classical minimally coupled
scalar field with a potential while quantum fluctuations of the inflaton field are treated
as a quantized massless minimally coupled scalar field. In this paper we are effectively
modeling the classical inflaton field with a cosmological constant. We compute the power
spectrum using the mode functions for a massless minimally coupled scalar field. The effects
of certain types of initial vacuum states for this field on the power spectrum are investigated.
One is the natural vacuum state that occurs in a pure radiation-dominated universe that
suddenly transforms into de Sitter space. The others are adiabatic vacuum states [10-
14] of zeroth, second, and fourth order. There have been several previous calculations of
the power spectrum for various models in which the preinflationary era was homogeneous,
isotropic, and radiation dominated [15-26]. As is discussed in Sec. VI, it appears that in
most previous cases a sudden approximation or something similar to one was used. Two
exceptions are Refs. [21, 22|, where the power spectrum was computed numerically using
zeroth-order adiabatic states. A detailed comparison of our results with theirs is given in
Sec. VI.

In agreement with previous calculations we find that the power spectrum deviates from
that of the Bunch-Davies state because the initial vacuum state differs from the Bunch-
Davies state. In particular the power spectrum is suppressed at large angles. When plotted
in terms of the momentum parameter k there are oscillations for all of the states consid-
ered. The largest oscillations come from the sudden approximation and from zeroth-order
adiabatic states where the adiabatic matching time (discussed in Sec. IV B) occurs near the
onset of inflation. For adiabatic states the oscillations have significantly smaller amplitudes
for earlier matching times and for higher-order adiabatic states.

In Sec. IT we present our argument that if there was a preinflationary phase in which
the semiclassical approximation was valid and if the Universe or our part of it was approxi-
mately homogeneous and isotropic during that phase, then it is likely that it expanded like
a radiation-dominated universe. In Sec. III we discuss the solution to Einstein’s equations
for our specific model, which consists of classical radiation and a cosmological constant. The

different states that we use for the computations of the power spectrum of the massless min-
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imally coupled scalar field are discussed in Sec. IV. A general form for the power spectrum
for our model is derived in Sec. V. Some of our computations of the power spectrum are
presented, discussed, and compared with previous calculations in Sec. VI. A brief summary
of our results is given in Sec. VII. The Appendix contains details of the calculations related

to a possible radiation-dominated preinflationary phase. Throughout we use units such that

h=c=G=1.

II. PREDICTION REGARDING A PREINFLATIONARY ERA

As discussed in the introduction, we consider the possibility that the Universe, or our
part of it, began with zero size in a homogeneous and isotropic state from the point of view
of semiclassical gravity. We further assume that there was a preinflationary era in which
the semiclassical approximation was valid and that during this era interactions between the
quantum fields present did not make the dominant contributions to the stress-energy tensors
of those fields. In this case we present an argument that it is very likely the Universe was
expanding like a radiation-dominated universe during this preinflationary era.

As mentioned in the introduction, in many models of inflation the inflaton field is a
massive minimally coupled scalar field that is treated classically. Quantum fluctuations of
this field during the period of inflation are generally approximated by a quantized massless
minimally coupled scalar field. In such models, the power spectrum is computed from
these fluctuations. This is also our approach here. However, most quantum fields that are

likely to have had a significant impact on the expansion of the Universe in a semiclassical

1

5 and spin 1. In the approximation that interactions are

preinflationary era are of spin
neglected, the massless ones are exactly conformally invariant and the massive ones are
conformally invariant in the limit that their masses go to zero. Thus the effects of the
inflaton field on the expansion during a preinflationary phase are expected to be small.
For conformally invariant fields in a spatially flat homogeneous and isotropic spacetime
the stress-energy tensor (0|7),,|0) is composed of two local tensors that contain higher deriva-

tive terms [27]. If the semiclassical approximation is valid, then it is usually assumed that

these terms are very smalll. If a conformally invariant field in such a spacetime is in a

1 An important exception is Starobinsky inflation [28], which requires that the coefficient of the R? term in
the gravitational Lagrangian be of the order of 10° and that it have a certain sign. We do not consider

Starobinsky inflation in this paper.



homogeneous and isotropic state other than the conformal vacuum state, then there is an
additional term in its stress-energy tensor that has the same form as that of classical radi-
ation [2]. Therefore, if the early Universe consisted only of massless conformally invariant
quantum fields in homogeneous and isotropic states, and if one or more of the fields was not
in the conformal vacuum state, then the Universe would expand like a radiation-dominated
universe provided the higher derivative terms made a small contribution to the stress-energy
tensor.

Of course many of the quantum fields in the early Universe were massive. We model
the spin—% and spin-1 massive fields with conformally coupled massive scalar fields. The
rationale for doing this is that all of these fields are conformally invariant in the massless
limit, and at high enough momenta they are effectively massless.

We also restrict our attention to cases when the Universe begins with zero scale factor. We
do this, as mentioned in the introduction, in the same spirit that classical general relativity
predicts that the Universe began with an initial singularity.

The metric for a spatially flat homogeneous and isotropic universe is
ds® = a*(n) (—dn’ + di®) , (1)

with n the conformal time defined by adn = dt. Scalar fields with arbitrary masses and

curvature couplings £ satisfy the equation
O¢ —m*¢ — R =0, (2)

where the scalar curvature is

(3)

Here primes denote derivatives with respect to n. Expanding the fields in terms of modes

in the usual way gives

¢ = / @k [age™ou(n) + ate TG ()| (4)
With the definitions
Or = % ; (5a)
a
wj = k* +m*a® (5b)



one finds that ¢y is a solution to the equation [27]
1 a//
" 2 _ = i —
k+[wk+6(§ 6) a]l/fk 0 (6)
and satisfies the Wronskian condition
Yy — i =1 (7)
The classical expression for the stress-energy tensor of an arbitrarily coupled scalar field
is [27]
1
T;w = (1 - 2§)au¢au¢ + <2§ - 5) g,uu (gpoap(baa(b + m2¢2> - 2€¢vuvu¢
+ 29, E* RO + EG ¢ (8)

Substituting (4) and (5a) into (8) then yields an unrenormalized energy density [14]:

/ 2
Pu = 47Tia4 /dk k2{|¢;€|2 + wi |@Z)k|2 +6 <§ — é) [% (Whabt + ) — 2_2 |¢k|2}} ()

Specializing to the case of conformal coupling, ¢ = é, it is helpful to define functions

ag(n) and Bi(n) by the simultaneous equations

() = a()e= ) 4 B, (1)) a
Ur(n) m[ (n) + Br(n)e™ ] (10a)
() = /2 [ (e 1 i ()] | (10b)

2

where
Or(n) = /77 dx wi(z) . (11)

The lower limit for this integral is arbitrary. The Wronskian condition (7) becomes
Jo|* — 18> =1 (12)

Substituting (10a) and (10b) into (9), setting £ = ¢ and using (12) yields
1

Pu= g

/ dk k2w, (1+2(8)°) - (13)
0
Subtracting off the adiabatic counterterms [14, 29, 30] one finds

/Oo dk Kwy, |87 m” o - Lp0 4 @p0 (14)
w - —— ——= .
o FIPEL T 9672 gt T 288072 \ 6 ° 0

B 1
22t

Pr
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The second term on the right is a finite renormalization of Gy°, and the last two terms are
the higher derivative terms that are assumed to be small.

The first term on the right in (14) has the same form as the energy density for classical
radiation if wg|Bk|? is independent of time. However, it is actually a function of time, so
its behavior at early times needs to be analyzed. This is done in the Appendix, where it is
shown that if B(n) is nonzero in the limit a(n) — 0, then the initial behavior of the first
term in (14) is that of classical radiation provided that (i) the integral in (14) is finite at
no; (ii) |Be(no)| increases slower than k~! at small k; (iii) the derivative (a?) has a finite
limit as n — 7y; and (iv) fnz |(a*(z))"|dz is finite. If these conditions are satisfied then
the resulting solution to the semiclassical Einstein equations will describe a universe that

expands like a radiation-dominated universe at early times since the second term in (14) is

a finite renormalization of G° and the last terms are assumed to be negligible.

A. A “natural” vacuum state

It is well known that in a dynamical spacetime there is usually no state that one can
unambiguously label as the vacuum state as there is for free free quantum fields in Minkowski
space. However, there can be states which for one reason or another are preferred. One
example is the Bunch-Davies state in pure de Sitter space [5-8]. Another is the class of
states found in [31] for which at a given moment of time the stress-energy tensor for the
quantum field is exactly equal to zero. Here we discuss a different choice for a vacuum state
based on the above analysis of states for a massive conformally coupled scalar field.

The state when Si(no) = 0 for the conformally coupled massive scalar field provides a
natural definition of a vacuum state if the Universe began with zero size since, as shown
above, there is no term in the energy density that acts like classical radiation. One might
guess that a similar state would exist, at least in some cases, for nonconformally coupled
scalar fields. This is correct, but as we next show, in some important cases the state is prob-
lematic for nonconformally coupled scalar fields and potentially problematic for conformally
coupled massive scalar fields.

Returning to (6), it is useful to define an effective mass

a//

M3:m2a2—|—6(§—é>g. (15)
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If initially
efikn

V2k

which is the exact solution for the conformally invariant scalar field in the conformal vacuum

Ve = (16)

state, then one can find a formal solution in terms of a Volterra equation:

= i/ " Ao M2 () sin [k(n — 1) dn(a) (17)

This can be solved by iteration to give

efikn e (_1)11

= + I,(k,n), 18a
n 1 Tn—1
I,(k,n) = / d:cl/ dxg - - / dx, M2(zy) sin [k(n — 21)]
70 10 70
n —ikxn
X M?(z;) sin [k(x;_y — x; ¢ , 18b
{]1_12: (;) sin [k (2 g)]}m (18b)
where the product is equal to 1 for n = 1, a(ng) = 0, and either 1y = —o0 or —oco < 17y < 0.

It can be shown that this converges provided that k= [ dz|M;(2)] is finite [1]. We shall
restrict our attention to those cases in what follows.

The first term in the sum in (18a) can be written as

—ll(k: )= — 1 ™ nd 2k 2 () 4 1 et nd M?(z1) (19)
X 1\~ ) = 21}{;@ o xi€ a\T1 2@]{:@ . LML) -

The second term on the right is positive frequency for all times. The first term in some cases
has a negative frequency component. This was not noticed in [1]. To see this, assume that
there is no divergence in M? or any of its derivatives at 1y. Then successive integrations
by parts can be done. The evaluation of each at the upper limit yields a positive frequency
term. The evaluation at the lower limit yields a negative frequency term. Thus if M? or any
of its derivatives is nonzero at 7, then there is a negative frequency term. Suppose that M?
and its first (n — 1) derivatives are zero at 1y and that the n’th derivative of M? is nonzero
at m9. Then the vacuum state can be of adiabatic order n — 1 only if m # 0 and & = %. The
vacuum state can be of adiabatic order n + 1 only if m = 0 and £ # %. If m #0 and £ # %
then the order of the vacuum state depends on whether it is the n’th derivative of the m?a?
term (giving n — 1) or the other term in (15) (giving n + 1).

From the point of view of pure mathematics, one can think of Eq. (6) as a mode equation

in flat space with a time-dependent potential. If the potential vanishes in the limit 79 = —o0,
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then it turns on very slowly and this leads to an infinite-order initial vacuum state. In the
case that ng is finite, the potential turns on at the time 1. How rapidly it turns on depends
on how rapidly @ — 0. The more rapidly it turns on, the more particle production one would
expect to occur due to the “turn on” and the lower the order of the adiabatic state that the
vacuum state corresponds to. Of course there are cases where the potential is a constant in
the limit 7 — —oo and cases where it (or one of its derivatives) diverges at n = 1y > —oc.

We do not consider these cases here.

An important example where the spacetime begins at 17y = —oo and the vacuum is an

infinite-order adiabatic state is de Sitter space in spatially flat coordinates, where a = _LHW

with H a constant. The vacuum state in this case is the Bunch-Davies state.

An important example where the vacuum state is a finite-order adiabatic state is when
the scale factor can be expanded in the power series a(n) = > ", an(n —n9)" . In general
there are two contributions to M?2. One comes from the m?a? term, which occurs for any
massive field. For it, one finds that if a; # 0, so that the Universe is approximately radiation
dominated at early times, then the vacuum state is at most a first-order adiabatic state. The
second contribution to M? is proportional to %" If a; # 0 then the Volterra solution (18)
does not work unless a; = a3 = 0. In that case, if m = 0 and £ # % the vacuum state is
at most second-order adiabatic if a4 # 0, third-order adiabatic if ay, = 0 and a5 # 0 and so
forth. For the model described in the next section ay = 0 and a; # 0, so the vacuum state

is at most a third-order adiabatic one.

In general it is necessary to have a fourth-order adiabatic state for the stress-energy
tensor to be ultraviolet finite. Thus, at least for the model we consider below, the vacuum
state discussed here is not acceptable for the massless minimally coupled scalar field. For
a conformally coupled massive scalar field it is technically necessary only to have a zeroth-
order adiabatic state, so this vacuum state could work. However, if the spacetime is even
slightly inhomogeneous or anisotropic, then something akin to a fourth-order adiabatic state
would be required to yield a finite stress-energy tensor. Therefore we do not consider this
to be an acceptable vacuum state for a massive field for the model considered below or for
any model of the Universe in which the expansion approaches that of a radiation-dominated

universe at early times but is not exactly equal to that of a radiation-dominated universe.
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III. SIMPLE MODEL WITH A RADIATION-DOMINATED PREINFLATION-
ARY ERA

For the rest of this paper we consider a simple model that has a radiation-dominated
preinflationary era and a late time inflationary era. It consists of classical radiation plus a
positive cosmological constant A. In this case, one of the Friedmann-Lemaitre-Robertson-
Walker equations is ,

a :é+87rcr (20)

at 3 3at”
where ¢, > 0 is a constant. The trace of the Einstein equations gives

6a//

R = e 4A . (21)
We use the following scaled variables:
1
= (87?@) (22a)
X=7""n, (22b)
Kk =9k, (22¢)
2 5 (22d)

Equation (20) can then be written

d
i —Vital. (23)

Integrating (23) and choosing the constant of integration such that «|,—¢ =1 gives

. en(2x]5) (24)

1= VEs(d) dn(ad)

where sn, cn, and dn are the Jacobi elliptic functions in the notation of [32]. The limits of

x defined by al,, = 0 and «a|,_ = oo are given by

1 (1
X0 = Xeo = EK(ﬁ) = 0.927037... , (25)

where K is the complete elliptic integral of the first kind. A plot of a during the preinfla-
tionary era is shown in Fig. 1.
The mode equation (6)written in terms of y is

d2¢,{
dx?

+ (K*+ M) ¢, =0. (26)
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FIG. 1. Rescaled scale factor a(y) over its domain (x, Xoo)-

As discussed in the introduction, in our model we compute the power spectrum using the
modes of a massless minimally coupled scalar field, m = ¢ = 0. For this field substituting
(15) into (26) and using (21) and (22) gives

4>,
dx?

+ (K* —22%) ¢, =0 . (27)

The Wronskian condition in terms of scaled conformal time is

AVi i _
dx " dy -

Ux (28)

At late times x — Xoo, the spacetime is asymptotically de Sitter, and thus the mode
equation (27) approaches the mode equation for pure de Sitter space. In pure de Sitter

space the solution corresponding to the Bunch-Davies state, which we will call v, is

_ | —ir(x—xso) [ _ : }
Ve = 4/ —¢€ l1l—-— . 29
V 2k K(X — Xoo) (29)

It satisfies the Wronskian condition (28). It plus its complex conjugate form a set of linearly

independent solutions to (27) in the limit x — .. For all times it is possible to change
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variables so that the general solution to the exact mode equation (27) is in the form

wn - Cl("f; X)vn + CZ(’{‘; X)U: ) <308‘)
diy,, dv,, dvy;
dd)}( = Cl(’ﬁx)a + c2(K5 X) Dy (30b)

The coefficient functions ¢1(x) and c3(x) are defined by demanding that (30) hold for all v,

and are given by

i,y do,

crsn) = = <wn . ) , (31a)
ooy B dus di

ca(Ryx) = S (% i d vm) - (31b)

As de Sitter space is approached in the limit y — x, ¢1 and ¢y approach constant values.

First-order differential equations for ¢; and ¢y can be obtained by using (30) in (27):

dCl 27,|: 1 2 :| 2 *2

o o 2] (arfue]? + ev?) 32a
dx 7 Lo —X)? 00 (erfonl™+ exv) 2
des 21'[ 1 ) ] ) )

& 2 = 0200 (e? + caluel?) 32b
dx 7 [(Xeo = X)? (] (e ohoel) o2

The explicit form for the Bunch-Davies state (29) can then be substituted to get expressions
where ~ cancels out. The state for the massless minimally coupled scalar field can be

specified by choosing values of ¢; and ¢y at some specific time y,, for all values of .

IV. STATES FOR THE MASSLESS MINIMALLY COUPLED SCALAR FIELD
A. Sudden approximation

The model described above is designed to give a smooth transition from an initially
radiation-dominated universe to de Sitter space, such as would be expected to occur in any
realistic model of inflation with an approximately homogeneous and isotropic preinflation-
ary phase. An even simpler approximation is to suddenly switch from a pure radiation-
dominated universe to a pure de Sitter universe at some particular time. This is called the
sudden approrzimation. It has the advantage that the initial vacuum state for the massless

minimally coupled scalar field is just the conformal vacuum,

wk = eiikn ) (33)

T

because in a pure radiation-dominated universe the scalar curvature is zero.
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The matching can be done by choosing 7, a, and @’ to be continuous across the matching
surface. A complete set of solutions to the mode equation (6) for a given value of k in pure
de Sitter space consists of the mode function for the Bunch-Davies state and its complex
conjugate. Multiplying each of these times a constant and matching the mode functions and
their first derivatives at the sudden transition time 7, fixes the values of the two matching
coefficients.

Our model is not strictly speaking compatible with a pure radiation-dominated universe
because we take R to be a nonzero constant. Similarly, because our model contains radiation,
it is not strictly speaking compatible with pure de Sitter space. Nevertheless it is possible
to use our model to obtain the same results for the power spectrum as one gets from the
sudden approximation. This is useful so that we can directly compare the resulting power
spectrum with those of previous calculations as well as with our results for adiabatic vacuum
states, which are described below.

Because the matching in the real spacetime is just done at a particular value of the time
1 = 1, there is nothing to prevent one from using (22b) and (22c) for some fixed value of
¢\ to change from 7 to x and from k to k. After doing so, the matching equations are
equivalent to (31) evaluated at the matching time y,. However, for x > x; the spacetime is
pure de Sitter space, so instead of being starting values for a numerical integration, in the
sudden approximation ¢; and ¢y are fixed constants.

In terms of the scaled coordinates, (33) becomes

o= [T »

The Bunch-Davies state in these coordinates in pure de Sitter space is given in (29). Sub-
stituting into (31) at x = xs gives
i 1 .
ClS == 1 + — } eflKXOO ,
{ K(Xs = Xoo)  26%(Xs — Xoo)?
1

- _ i(Xoo=2Xs) 35b

(35a)

The sudden approximation is an extreme limit and often results in a state that is not
physically acceptable. As shown below, that is the case here. It is for this reason that it
is useful to consider a model in which the Universe evolves continuously from a radiation-

dominated era to the inflationary era such as the one described in Sec. III. As shown in
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Sec. IT A, we have not found a physically acceptable natural initial vacuum state for the
massless minimally coupled scalar field in this model. In lieu of a natural initial vacuum
state, it is often useful to consider various adiabatic vacuum states, and these are discussed

next.

B. Adiabatic vacuum states

A choice of vacuum state for our model can be made by specifying the values of ¢; and ¢,
in (31) at some time x,, for each value of k. The solutions to the mode equations can then be
obtained at any other time by numerically integrating (32) forward (or backward) in time.
In this section we discuss adiabatic vacuum states. These are exact states for the quantum
field that are specified by using a WKB approximation to provide starting values for the
modes and their first time derivatives at some particular time that we call the matching
time [10-14].

To understand how the WKB expansion works for the scaled coordinates, it is useful to
begin with the original coordinates and the original form of the mode equation (6). For the

massless minimally coupled scalar field, the mode equation can be written in the form
" 1

Note that for the model we are using, R = 4A. Then one makes the change of variable

1
V2Wj,

where 7, is an arbitrary constant. This automatically ensures the Wronskian condition (7),

" " 12
W2:k2—“——(w 3W). (38)

Uy = exp [—i /77 j Wk(n’)dn’] , (37)

with the result that

a oW AW
One starts with zeroth order in terms of derivatives of the metric and then iterates. At each

iteration the new terms contain two more derivatives of the scale factor than the previous

ones. Thus
WO =k (39a)
we — g & (39D)
- 2ka ’
" 2a2a" — 2ad’d" — 2aa’? + aZa™
@ _ @
W K 2ka Sk3a3 (39¢)
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An adiabatic state is an exact state for the quantum field that is obtained by using
the WKB approximation to some order to fix the starting values for the modes at some
particular matching time 7,,. One does this by substituting the expression for W at some
order into (37) and equating with the exact mode function. One does the same for the first
time derivative of (37). For a given order there are many possible adiabatic states, in part
because one obtains different states for different matching times.

For the specific model we are considering and the scaled variables that we are using, one

2 as being of second adiabatic order and each derivative of o then giving an

can think of «
extra adiabatic order. The reason is that, as mentioned above, the scalar curvature R is a
constant for our model and as is seen from Eq. (36) is multiplied by a factor of a* in the

mode equation. Then the WKB approximation in terms of scaled variables is

o= \/% exp [—z’ XTW(x’)dx’} (40)

where ,
1 d*W 3 dW
2= k% —20% — - : 41
Wo=n"—2a [2de2 4W2(dx>] (4D
One easily finds that
WO =g, (42a)
2
W =L (42D)
K
2 2a%+1
W = — % + O‘%g , (42¢)

where we used (23) to eliminate all the derivatives of «.
To do the adiabatic matching at a time Y,,, it is easiest to choose the lower limit of the

integration variable to be x; = x;». Then
W _
wl-@ (Xm) - 2W )
fy

d w\ _ . [HW A dw
@), = e @

One can compute these to a particular adiabatic order by substituting for W. Strictly
speaking, all that is necessary for the derivative of W is to use the previous adiabatic order,
although it is permissible to use the same adiabatic order. The adiabatic state that is
generated will be different in the two cases. The result is then substituted into Eq. (31) to

obtain values for ¢; and ¢y at the time x,,. This fixes the solutions to those equations.
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It is important to note that the WKB approximation breaks down in our model for
k < v2a. Thus for any given matching time Y,, there will be values of x that cannot
reasonably be fixed using adiabatic matching. If one wishes to compute the stress-energy
tensor for the quantum field, then it will be important to find acceptable starting values for
such modes. However, for the purposes of the power spectrum, it is in most cases sufficient
to restrict attention to k£ > v/2 a(x,,) for matching times y,, that occur near the time when
the semiclassical approximation becomes valid in the radiation-dominated preinflationary
phase. Exceptions can occur if the horizon size at the time of the onset of inflation, when

scaled to the current time, is significantly smaller than the horizon size today.

V. POWER SPECTRUM

The standard power spectrum for the field ¢ given in terms of wave number k and

conformal time 7 is [4]
]{?3
Pullkin) = g (o) (44)

Using (5a) and the scaled variables (22) gives

k3 H?
Py(k;x) = 272_%22

e O (45)

where H} = A. Evaluating (45) in the limit x — X using (29) and (30a), one finds

_ 3
 4q2

P(ﬁ(/i) |Cl(/f§ XOO) - C2(H§ XOO)|2 . (46)

The problem of calculating the late time power spectrum therefore reduces to finding
c1(K; Xoo) and ca(K; Xoo). For the model we are considering this can be accomplished by
solving (32).

Models of the early Universe are heavily constrained by observations of the cosmic mi-
crowave background (CMB) as well as measurements of large-scale structure. Variations
in the CMB are described in terms of the parameters C,, which are related to the power

spectrum by [33]

A [ dk ) A7 [ dk o,
Co=— | - Ps(k)ji (knes) = / —Py(k)j7(s ') . (47)
9 0 k 9 0 K

Here j, is a spherical Bessel function, n.g = ’s—f, where r.¢ and ag are the physical size of

the effective horizon and scale factor today, and s = ;’—a; We define a; as the scale factor
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at the start of inflation, when the radiation and cosmological constant contributions to (20)

are equal. Then using Eq. (22d) and H2 = %, we find a; = Hglv_l, and therefore

~E))

This means that s corresponds approximately to the ratio of the size of the horizon at the

start of inflation, scaled to the current time, to the effective horizon today.

VI. RESULTS

Although it is not always obvious exactly how a state for the massless minimally coupled
scalar field was chosen, it seems likely that many previous calculations of the power spec-
trum [15-20, 23, 25| for a radiation-dominated preinflationary phase made use of either the
sudden approximation or something very similar to it. Therefore it is useful to begin with

the power spectrum we obtain for the sudden approximation. Substituting (35) into (46)

one finds
H? H? , ,
P¢> = 47'('2 + 871-2/{4()(00 _ X5)4 {1 + [2:‘1 (Xoo - Xs) — 1} cOoS [2"1(Xoo _ XS)]

= 2k(Xoo — Xs) S0 [26(Xoo — Xs)]} - (49)

This spectrum oscillates and has a peak value about a factor of 1.13 times the Bunch-Davies
constant value, independent of the time of the sudden transition y,. The resulting spectrum
is shown in Fig. 2 for the choice x; = 0. The large oscillations and enhanced values compared
with the power spectrum for the Bunch-Davies state are qualitatively identical with most
previous results in the literature.

For the adiabatic vacuum states we considered, starting values for ¢; and ¢y were calcu-
lated at the matching time ., as discussed above, and then Eqs. (32) were solved numerically
to find their asymptotic values. These asymptotic values were then substituted into (46) to
obtain the power spectrum. Our results for the matching time when o = 0.1 are shown in
Fig. 3. Note that if inflation occurs at the GUT scale, then since o = 1 is the onset of infla-
tion in our model, the energy at the matching time is 10 times larger than the energy at the
onset of inflation. However, the energy at the matching time is still 100 times smaller than
the Planck scale, so this is a conservative estimate of when the semiclassical approximation

first became valid. For comparison purposes, Fig. 4 shows our results for a matching time
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FIG. 2. Power spectrum from a sudden approximation with the transition occurring at xs = 0.
Enhancements in the power spectrum are seen compared to the Bunch-Davies value, represented

by the dotted line.

corresponding to the onset of inflation when o = 1. This is too late to be a natural time
for the matching but provides an important illustration of how much the adiabatic vacuum
states depend on the matching time.

As can be seen from the inset in Fig. 3, where the matching is done at a = 0.1, all
three adiabatic orders shown (zeroth, second, and fourth) have a small amount of oscillatory
behavior, with the amplitudes of the oscillations decreasing as the adiabatic order increases.
Note that in no case is there a noticeable enhancement of the power spectrum above the
standard Bunch-Davies state. In contrast, using a matching time when o = 1, Fiig. 4 shows
that the oscillations in the power spectra are significantly enhanced in comparison with the
earlier matching time for a given adiabatic order.

The one case we are aware of where the power spectrum was computed using adiabatic
states for the specific cosmological model we used was in Ref. [21]. There, the power spectrum

was computed for zeroth-order adiabatic states with various matching times. For relatively
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FIG. 3. Comparison of the power spectra for adiabatic vacuum states of order zero, two, and four,
when the matching is done at a,, = 0.1 (x, = —0.827). Note that all orders show oscillatory
behavior, but this behavior is much smaller at higher orders. Note also that the power spectrum

never noticeably exceeds 1, the Bunch-Davies value.

late matching times, our computations of the power spectrum for zeroth-order adiabatic
vacuum states agree qualitatively with theirs. However, we do find numerical differences
when the matching is done at late times that we cannot explain. We also find a qualitative
difference when the matching is done at early times in that we always see oscillations in the
power spectrum whereas their results show monotonic behavior.

In [22], the power spectrum was computed numerically for a radiation-dominated prein-
flationary phase in the context of slow-roll inflation. The authors assumed a zeroth-order
adiabatic state. It is unclear what matching time they used, but if it was near the onset of
inflation, then our results agree qualitatively with theirs.

Once the power spectrum has been computed, the angular power spectrum can be cal-
culated using (47). Figure 5 shows the resulting spectrum for a fourth-order adiabatic state

and a matching time of & = 0.1. It can be shown that in the limit s — oo the resulting
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FIG. 4. Comparison of the power spectra for adiabatic vacuum states of order zero, two, and four,

when the matching is done at o, =1 (xm = 0).

angular power spectrum is flat and, thus, independent of ¢, but if s is not too large, there
is a suppression of the angular power spectrum for small /. Note that for matching at an
early time such as a = 0.1, any suppression of the ¢ = 2 component is accompanied by a
comparable but smaller suppression of £ = 3 and other small ¢ values. Figure 6 compares
the results for the zeroth- and fourth-order adiabatic states with matching at o = 0.1 with

the sudden approximation for the case s = 0.3.

A. Adiabatic states in de Sitter space

To understand why the oscillations for a given matching time are smaller for larger
adiabatic orders, it is useful to switch to pure de Sitter space where analytic solutions

to the mode equation are known and the power spectrum for any state can be computed
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FIG. 5. Contributions to the angular power spectrum from modes with x > v/2a,, for a fourth-

order adiabatic vacuum state with the adiabatic matching done at a.,, = 0.1. From top to bottom,

the curves are for s = 0.50, 0.30, 0.20, 0.10, and 0.05.

analytically. For simplicity, we will also revert to unscaled variables, so that

B 1
aqs = H77 ;
e~ hn < L )
v = -,
" ok kn)
1 )
o —i [ Wdn
= e
(s ST
W2 k2 % B W// B 3W/2
N aqds 2W 4W?2

We can find ¢; and ¢y directly from Eq. (31), which become

c1 = —i (Yo — Yyop)

Co =1 (Tbkvfg - w;@vk) :
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FIG. 6. Angular power spectrum for the sudden approximation and for the contributions from
modes with £ > v/2a,, to the power spectrum for zeroth- and fourth-order adiabatic vacuum
states. For the sudden approximation the matching is done at s = 1, while for the adiabatic

vacuum states the matching was done at a,, = 0.1. In each case, s = 0.3.

Recall that primes denote derivatives with respect to . The power spectrum is given by

Eq. (46), but ¢; and ¢y are now independent of time

Py =5 lalk) - ca()|” (52)
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The power spectra for an adiabatic matching time 7,, for zeroth-, second-, and fourth-order

adiabatic states are

© H2 H2

2, 2 .
P, =1 + Sk [1 + (Qk N — 1) cos(2kn,,) — 2kn sm(?knm)] , (53a)
H? H?
P2 _ E2n? 11
e v ey Ve L e
— (2K%n0, = 2k, — K°n2, + 1) cos(2kny,) — 2kny, sin(2kn,,)] | (53b)
H2 H2
pWw _ S8 L Gkint — 3k202 41
¢ 472 * 8m2kSn8 (kind — k2n2, +1)3 [ .+ OF T Thn

+ (21202 4 210010 — 880+ 17K — 14Kk 0t + 5E*n2, — 1) cos(2kn,,)

m

+ (2K, — 8kn), + 14k"n;, — 20k, + 8k™n2, — 2kn,,) sin(2kn,,)] . (53c)

For a universe with a preinflationary radiation-dominated era, de Sitter space is approached
in the late time limit. Therefore, the terms in Eq. (53) that provide the leading-order be-
havior in our model are those with the largest power of kn,,. We find that the oscillatory
terms always dominate the nonoscillatory terms. Furthermore, the leading-order oscilla-
tory terms have smaller and smaller contributions at higher order, with zeroth order being
(knym) 2, second order (kn,,)™*, fourth order (kn,,)~%, and so on. That is, oscillatory terms
will contribute the most at zeroth order and then contribute less and less as the order is

increased.

B. Discussion

As can be seen in Figs. 3 and 6, for adiabatic matching at a relatively early time there is
a suppression of the power spectrum at small wave numbers £ compared to the spectrum of
the Bunch-Davies state. In contrast, for a sudden approximation we find an enhancement at
certain values of k, as seen in Figs. 2 and 6. The latter behavior agrees qualitatively with the
results in [16, 19, 23, 25|, where it appears that some type of sudden approximation was used.
The sudden approximation was also used and an enhancement of the power spectrum for
certain values of the momentum parameter was also observed in [15, 17, 18, 20]. However,
our results disagree in detail with theirs. The qualitative differences between the power
spectrum for the sudden approximation and for states with adiabatic matching at an early

time imply that it is necessary to not use a sudden approximation but instead to work in a
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spacetime where there is a smooth transition to the inflationary era and compute the power
spectrum using solutions to the exact mode equation in that spacetime, which in most cases
will be obtained numerically. This point was made in [21], where, as discussed above, the
power spectrum was computed for zeroth-order adiabatic vacuum states at various matching
times for the same model that we consider here.

For large values of x the power spectrum approaches the constant value it has for the
Bunch-Davies state. That in turn, gives an approximately flat spectrum at large ¢, as shown
in Fig. 5. A more realistic model would include not just a simple inflation era, but rather an
evolving scalar field in an appropriate potential, which would presumably result in a tilted
spectrum. This spectrum would then have to be processed through all of the subsequent
stages of cosmology to reproduce the CMB that we observe. We think it is likely that our
findings of the suppression of small ¢ with no enhancement at any ¢ would persist in a more
realistic model of this type.

The suppression of the spectrum at small ¢ could provide one explanation of the anoma-
lously small value of the quadrupole moment of the CMB [34]. In [21], where the same
model that we are using was investigated, this suppression at small values of ¢ was observed.
By examining Fig. 5, we see that any significant suppression of the ¢ = 2 modes comes at
the expense of also suppressing ¢ = 3, which is not observed. It should also be noted that
values which lead to significant suppression of ¢ = 2 have relatively small s values, such as
s =~ 0.3. Recall that s corresponds roughly to the ratio of the size of the horizon at the
start of inflation, scaled to the current time, to the effective horizon today (see (48)). This
means that for s < 1 we cannot explain the homogeneity and flatness of the current Universe
exclusively in terms of inflation; there must be some mechanism which makes the Universe
uniform on scales slightly larger than the horizon size at the start of inflation. However,
because of the existence of an inflationary phase, the flatness of the Universe today does
not require the ultrafine-tuning that would typically be needed without inflation. It would
only take a very modest fine-tuning at the start of inflation to result in an approximately
flat Universe today.

It is worth noting that the trans-Planckian censorship conjecture (TCC) [35] which states
that trans-Planckian modes should never cross the horizon in an expanding universe and
become classical, provides a restriction on the duration of the inflationary phase [36]. In [37]

it was argued that it is possible to modify the TCC in ways that allow trans-Plankian modes
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to cross the horizon. However, with these modifications the TCC still provides a restriction

on the duration of inflation.

VII. SUMMARY AND CONCLUSIONS

In Sec. II it was argued that if there was a preinflationary era in which the semiclassical
approximation in gravity was valid and if the Universe, or our part of it, was approximately
homogeneous and isotropic during that time, then it is very likely the Universe expanded
like a radiation-dominated universe during that era. The argument is based on several
assumptions and a proof that is given in the Appendix. The assumptions are that (i)
the dominant quantum fields should behave like free fields during that epoch; (ii) higher
derivative terms necessary for the renormalization of the stress-energy tensor should be
small since the semiclassical approximation is assumed to be valid; and (iii) massive spin—%
and spin-1 fields can be modeled using massive conformally coupled spin-0 fields. The proof
shows that, to leading order in the limit that the scale factor vanishes, the energy density of
a massive conformally coupled scalar field is of the same form as that of classical radiation
for a very large class of physically acceptable homogeneous and isotropic vacuum states
provided that (a*)" is finite at the initial singularity and [ |[a*(x)]"|dx is also finite.

It was further shown that there is a state for a scalar field with arbitrary curvature
coupling that goes like 1) = (2k)™'/2¢7%*" when the scale factor is small, so long as in
the limit that the scale factor vanishes the effective mass term in the mode equation also
vanishes. This would seem to be a natural initial vacuum state because the mode equation
approaches that of the conformally invariant scalar field in this limit. It was also shown
that this state is an infinite-order adiabatic vacuum state if the scale factor vanishes in
the limit n — —oo, such as happens in pure de Sitter space, where the vacuum state is
the Bunch-Davies state. However, if the scale factor vanishes at a finite value 7y of the
conformal time and one or more of the derivatives of the effective mass term is nonzero at
7o, then this state is only a finite-order adiabatic vacuum state. In particular, if the Universe
expanded like a radiation-dominated universe near n = 1, then for an arbitrarily coupled
massive scalar field the state is at most a first-order adiabatic vacuum state. For a massless
nonconformally coupled scalar field the state can be of adiabatic order two or higher in the

radiation-dominated case depending on the detailed behavior of the scale factor near 7.
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For the specific model considered here it is at most a third-order adiabatic vacuum state.
For the conformally coupled massive scalar field a zeroth-order adiabatic state is enough
to give a finite stress-energy tensor in a homogeneous and isotropic spacetime but only for
exact homogeneity and isotropy. For nonconformally coupled scalar fields, both massive and
massless, a fourth-order adiabatic state is required for the renormalized stress-energy tensor
to be finite. It is important to point out that this does not prevent the solution from being
used for small and intermediate values of the momentum parameter k, but it does prevent

it from being used for arbitrarily large values of k.

In Sec. V we studied the effects of a radiation-dominated preinflationary phase on the
power spectrum that is computed using the massless minimally coupled scalar field. To do
so we used a simple model in which the classical Einstein equations are solved when classical
radiation and a positive cosmological constant are present. The mode equation was solved
for this model for several different states for the quantum field, and the solutions were used

to compute the power spectra for these states.

We found that a sudden approximation in which the metric is exactly that of a radiation-
dominated universe up to a transition time and is exactly that of de Sitter space afterward
gives relatively large oscillations in the power spectrum when it is plotted as a function of
the momentum parameter k. For an early matching time, well before the onset of inflation, a
zeroth-order adiabatic state such as the one mentioned above gives oscillations with a smaller
amplitude, while higher-order adiabatic states at the same matching time give successively
smaller amplitude oscillations. Previous investigations [15-20, 23, 25] in which there is a
radiation-dominated preinflationary phase have found similar results. Those investigations
appear to have made use of either a sudden approximation or zeroth-order adiabatic states.
In some cases there are disagreements with our results that are discussed in Sec. VI B. All of
these calculations, including ours for the better-behaved second- and fourth-order adiabatic
states, predict that if inflation did not go on for too long, then there are potentially observable
differences in the power spectrum from that of the Bunch-Davies state in de Sitter space.
These differences, if observed, would have the potential to give us information about the
initial state of the matter fields in the Universe if there was a preinflationary radiation-

dominated era.

27



ACKNOWLEDGMENTS

We thank Ivan Agullo and Kin-Wang Ng for helpful discussions. This work was supported
in part by the National Science Foundation under Grants No. PHY-1308325, PHY-1505875,
and PHY-1912584 to Wake Forest University.

Appendix A: Proof that the Universe is Radiation Dominated at Early Times

Here we formally prove that in the presence of conformally coupled scalar fields, whether
massless or not, to leading order the energy density will scale as p oc a=* at early times for
almost any scale factor a(n) that vanishes at conformal time 7 (which may be finite or —o0)
and for a large class of physically acceptable homogeneous and isotropic vacuum states. As
can be seen from (14), this will happen if the integral

o) = [ dk Kt 100 (A1)
0
has the property lim,_,,, I(n) = I(no) with 0 < I(n) < co. We begin with the following set
of conditions that must be satisfied for the proof to hold:

| aswinmr <o, (A20)
0
A
| dkklm) < oo, (A20)
0
tim (o) < 0. (A2

<00 . (A2d)

/ " |[a*(@)]"

10

We expect that the condition (A2a) will be satisfied by any homogeneous and isotropic
vacuum state for which the energy density is finite for times n > 79. Condition (A2b) is
satisfied so long as there is at most a weak infrared divergence in ;. Condition (A2c) means
the initial expansion is not too extreme, and (A2d) will be automatically satisfied for any
universe for which (A2¢) applies if [a?(n)]” is always positive or always negative.

To prove that I(n) — I(ny), we will show that for any € > 0, there is a finite time 7 such
that for n < 7, |I(n) — I(no)| < €. This can be done by dividing the integral into parts using

an infrared cutoff A and then writing I(n) as

I(n) = 1(mo) + AL(n) + Alx(n) + Alz(n) , (A3)
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where

A
AL (n) = / dk K2 [wi(n) Bu(n) = k |Be(no) 7] (Ada)
Aly(n) = / "k R (n) [1B(m) P — 1Bl (Adb)
Ann) = [ AR anto) — K Gulm) (Ade)

To place bounds on these quantities we begin by finding inequalities that a4, £, and their
first derivatives satisfy. The inequalities can be obtained using the differential equations
satisfied by oy and fi. By combining (10a) and (10b), and substituting the results in (6)

with £ = %, one finds

1 Yk oo 2, A5
0l = e (A50)
B = Wy e 20k (A5D)

b ka b '

Using these equations it is straightforward to show that

(loul® +18:°) _ wj 2Re (awfie™™) _ o 2onl Bl _ w} (A6)
T T e g e e E T
where the last inequality can be obtained from (|ay| — |8x])% > 0.
Integrating the inequality (A6) from 7y to n yields
AV
k() + 1861 < 24 [l (o) + 18407 (A7)
Multiplying both sides by swx(n) and using (12), gives
1 m2a®(n)] [1
) (5180 ) < [+ 220 || (a9
Thus it is also true that
m2a®(n)] [1
) 18l < b |1+ L [k | (49)
Integrating this over k£ up to any finite limit A gives
N 2 * 2 2 2 1 2
[ aeraminmr < [ ack @ v iem] |3+ amf] . oo
0 0

Note that because of the assumption (A2b), the integral on the right is finite and is a

strictly increasing function of 7. Choosing an arbitrary conformal time 7, restricting to
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times 7 < 11, and choosing A to be small enough allows an arbitrarily small upper bound to

be placed on the integral. Choosing that bound to be %e gives

A
1
0< / dk k*wi(n) ]Bk(n)\z < 56 for n<mn . (A11)
0

Equation (A11) will be true at all early times, including 1 = 7, and it is obviously positive,
so comparing with (A4a) we see that the absolute value of the difference between the integral
in (A11) for n > ny and the integral evaluated at n = 7y must also satisfy the same bound,

SO

’ [ 2| _ 1
AR = | [ dkRam B0F = [ smP| < ge for n<m. (A1)

To make progress on Ay, first note that for (A2a) to be satisfied, |5k (n0)| must fall faster

than k2 at large values of k, and it must not diverge as quickly as k=2 for small values of

k. Tt follows that k2|8 (no)] must have an upper bound for all values of k, which we call B,

so that
B
Br(mo)| < 73 - (A13)
Next (A5b) can be integrated to yield
Br(n) = Br(mo) + ABxk(n) (Alda)
ABk(n) = 1/77 dxwé(z)ak(x)e_wk(z) : (A14b)
2 Jo wi(x)

If the condition (A2a) is satisfied and if Bx(n) is a continuous function of n for all £ > 0,
then, for any A > 0 and all £ > A, there will be an upper bound on the value of |SGx(n)| for
Mo < n < 19, where 1y > 1y. This bound may depend on 7, but it will not depend on k.

Using (12), this means that there exist positive constants Spax and ampay such that

|Br(m| < Brnax » (Al5a)
k()] < amax = /1 + B - (A15b)

Equations (A14b) and (A15b) can be used to place a limit on AfSy:

1ABL(n)| < %/n: dz Z;;:Eg Ozr;ax In [Wklin)} < Ozzax lm}in) B w;n)

where the fact that w; is an increasing function of 1 has been used along with the identity

o ()] <

| )

In(z) < 3(z — ') when = > 1. Thus

|ABk(n)| < (A17)
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Note that ASg(n) vanishes in the limit n — 79, so ABk(n) can be made arbitrarily small by
choosing an early enough time 7y. Thus for any 6 > 0 it is possible to find a time 7y such

that
1)

ke (n)
To find a bound on Aly(n), it is useful to derive a second bound on |ASk(n)|. It is easy

for k>XA, np<n<n. (A18)

[ABk(n)] < <

5
k2

to show that

_ E T w() i —2i03,(z)
AB(n) = 1 /170 d$wz(x)ak(x)dx e . (A19)

Then, integrating by parts and using (A5a) gives

1 [wh _ o _
ABy(n) 1 {w’éEZ;ak(n)e—mk(n) _ kligt))ak(no)e—mek(m)

- 3/: dx { [w}é(:z;) — zwg(m)} ay(x)e 206 4 w}fg(x) @c(fﬂ)} : (A20)

wi(z)  wp(z) 2w ()

Using (5b) one finds that

Autn) = 2 [ ezt~ LEL

_@ n . { [CLQ(SB)] ak(x)e—%@k(m) B 7nz2 [aZ(x)] [6ak(x)e—2i9k(m) _ ﬁk(‘r)} } . (A21)

8 Ju wi(x) wi(x)

o210k (770):|

There might be some concern that e 2?() is ill defined in the case 17y = —oo, but in
this case it is always true that [a®(19)]’ = 0, so this ambiguity is irrelevant. Note that
condition (A2c) must be satisfied for (A21) to be a well-defined expression.

We now place a limit on ASy(n) using (A21), (Al5a), (A15b) and the fact that wy > k >

n

A0k < gz { )]+ )] + [ o[l }

70
4

" 9, \1/2
—I—m (60tmax + ﬁmax)/ dz [a®(z)] " . (A22)

10
Note that the conditions (A2c¢) and (A2d) ensure that the first three terms are finite, and,

therefore, there exists a positive constant C} such that

m? K

g Clmax { [a*(n)]" + [a*(m0)] —i—/ dx |[a2(:c)]”|} <Cp for my<n<ny. (A23)
o

Since [a?(x)]’ is finite as n — 7y its square must be integrable over any finite range. Thus if

7o is finite the last term in (A22) is also finite. If ny = —oo, first note that it must be true
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that [ [a*(2)]'dw = a®(n) is finite, so [a®(n)] must fall off faster than [n|~' as n — —oo,
and, hence, [a?(n)]'? falls off faster than |n|~2 and is also integrable. Therefore in either case

the final term in (A22) is integrable, and there exists some positive constant Cy such that
4

32)\?
Substituting (A23) and (A24) into (A22), and noting that for k£ > X and n < na, wr(n)/k <
wx(n2)/A one finds that

0
(6amax + @max)/ dx [0&2(37)}/2 <Cy for n<mny. (A24)

10

C, + C
|ABk(n)| < 1k3 2 for n<my, k> A, (A25)
and therefore
|ALk(n)] < D for n< k> A\ (A26a)
k" kQWk(n) n 2, )

D= @ ; < wx(12) (A26D)

Combining the two limits (A18) and (A26a) gives

1 5 D

|ABk(n)] < wk(n)mm(k k2) for n<m, k>M\. (A27)

It is possible to put a bound on |Aly(n)| in (A4b) by choosing § to be small enough so
that 0A < D, and using the bounds in (A13) and (A27) along with the fact that wy > k.
The result is:

[AL(n)| =

/A " @k Rewu(n) {2Re [Bu(n0) MG ()] + 128 ()2}

o0 2B 5§ D 1 5 D\?
2 .
</)\ dk k ﬁmm (k k2>—|—km1n(k E)

The last integral can be computed by dividing it into the integrals |, /\D % dk + /, ;C; s Ak with

(A28)

the result that

D
|ALy(n)| < (2Bd + §*) In (5

Then since § can be made as small as desired by choosing 7, appropriately, we can use the

) +2BJ + %52 : (A29)

same bound as in (A12)

1
|ALy(n)] < 3¢ for n<mne. (A30)

Finally, we can put a limit on A3, given by (A4c) by using w? < (k + m;?Q)Q which
implies that wy — k < m%a®/2k, together with (A13), so that

m2a?(n)B®> m2B?
anl< [ ael T T (A31)
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We can make this small by simply making a(n) small, so we have

1
|ALz(n)] < 3¢ for n<ns. (A32)

If we then define 7 = min(n,72,73) and use (A12), (A30) and (A32) in (A3) we find
[1(n) = I(m)| < e for 5 <7 (A33)

Since this can be achieved for any € > 0, we conclude that

i £() = I00) = [ kK ()l (A34)

n—"mn0 0
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