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Abstract

A method is given to compute the stress-energy tensor for a massless minimally coupled scalar
field in a spacetime where a black hole forms from the collapse of a spherically symmetric null
shell in four dimensions. Part of the method involves matching the modes for the in vacuum
state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting
from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum
state, the corresponding expression when the field is in the Unruh state and adding to this the
renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work

in the two-dimensional case where the results are known.
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I. INTRODUCTION

The stress-energy tensor of a quantized field is an extremely useful tool for studying
quantum effects in curved space because it takes both particle production and vacuum
polarization into account. It can be computed in a background spacetime to obtain the
energy density, pressure, etc. for a quantum field in that spacetime. It can also be used in
the context of semiclassical gravity to compute the backreaction of the quantum field on the

spacetime geometry.

For black holes in four-dimensional, 4D, spacetimes, the full stress-energy tensor must
be computed numerically. This is a difficult task that has to date only been done without
other approximations for the cases of static spherically symmetric black holes [1-15] and
the stationary Kerr metric [16, 17]. However, because of the difficulty involved, to our
knowledge, no one has numerically computed the full stress-energy tensor for a quantized
field in a 4D spacetime in which a black hole forms from collapse. This is important because
there can be a significant difference between the stress-energy tensor for a quantum field in
a 2D versus a 4D spacetime such as that found for a massless minimally coupled scalar field

in an extreme Reissner-Nordstrom spacetime [9, 18].

In this paper we present a method to compute the renormalized stress-energy tensor,
(in|Typin), for a massless minimally coupled scalar field in the case that a black hole forms
from the collapse of a spherically symmetric null shell. This model has been previously used
to derive the Hawking effect [19, 20], investigate how the stress-energy tensor is affected by
the production of a pair of particles due to the Hawking effect [21], study some details of
how the spectrum and number of produced particles changes in time during and after the
collapse [22, 23], and in 2D to compute the stress-energy tensor for a massless minimally
coupled scalar field [20, 24]. While this is not a realistic model for collapse because the shell
begins with an infinite size, this is probably the simplest model to work with that involves
collapse in 4D to form a black hole. Thus it is a reasonable first choice for the full numerical
computation of the stress-energy tensor of a quantized field in a 4D spacetime in which a
black hole forms from collapse. Further, since the Hawking effect is independent of how the
black hole forms [25], and since it is expected that the stress-energy tensor at late times
will also be independent of the formation process, studying how the stress-energy tensor

evolves in time and approaches its late time behavior can provide insight into what is likely



to happen in a more realistic model.

The method we have developed works in the region outside both the null shell and the
event horizon. In the region outside the shell, Birkhoft’s theorem ensures that the metric
is that for Schwarzschild spacetime (2.2). In the region inside the shell the space is flat.
Thus in both regions the mode equation for the quantum field is separable and inside the
shell its solutions are known analytically. This allows for a numerical computation of the
stress-energy tensor for the field in which only ordinary differential equations need to be
solved numerically.

For the collapsing null shell model, the initial vacuum state of the quantum field is well
defined and the main complication that occurs is due to the propagation of the modes across
the null shell surface. The crux of our method involves the expansions of the in modes in
terms of a complete set of solutions to the mode equation in the region outside the shell.

The stress-energy tensor for the quantum field is obtained by expanding the quantum
field in terms of a complete set of modes. This expansion is substituted into the formula
for the stress-energy tensor of the corresponding classical field and the expectation value
is computed. If the field is in the in vacuum state then the result is an expression which
involves sums and integrals over the mode functions for the in state and their derivatives.
After the renormalization counterterms are subtracted off, the resulting stress-energy tensor
is finite and can be computed. This is straightforward inside the null shell since the mode
functions are known analytically and for the in state, the result is that the stress-energy
tensor is equal to zero.

Outside the null shell and the event horizon the in modes do not assume a simple form
in 4D. One approach to computing them would be to use the analytically known values for
the modes inside the shell and on past null infinity to provide initial data for a numerical
integration of the mode equation in the region exterior to the shell. However, outside the
shell the in modes will not factorize into a product of a function that depends only on time
and a function that depends only on the radial coordinate r. Thus the part of the mode
equation that depends on both r and ¢ must be solved numerically.

We have developed an alternative method which involves expanding each of the in modes
in terms of a complete set of modes in Schwarzschild spacetime. The radial parts of these
modes and the matching parameters must be computed numerically. The mode matching

has been tested in the 2D case where there is no effective potential in the mode equation. It



has also been partially tested for spherically symmetric modes in 4D both when the effective

potential is modeled as a delta function and when the exact effective potential is used.

One advantage of the first method is that there are no matching parameters. A dis-
advantage is that one must solve a partial differential equation directly using numerical
techniques. Conversely the chief advantage of the method developed here is that one only
needs to numerically solve the radial mode equation, which is an ordinary differential equa-
tion. A second advantage is that the properties of the solutions to this equation are well
understood. One disadvantage of our method is that the formulas for the matching param-
eters involve certain integrals that must be computed numerically. A second disadvantage
is that the computation of the stress-energy tensor involves the numerical computation of
triple integrals rather than single integrals over various products of the mode functions and
their derivatives. It is not obvious to us which approach is more efficient. However, since
no full numerical computation of the stress-energy tensor has been previously done for a
quantized scalar field in a 4D spacetime where a black hole forms from collapse, we think
the most important thing is to develop one viable method to do the calculation and that is

what we present here.

When the expansions for the in modes are substituted into the formula for the unrenor-
malized stress-energy tensor one finds a combination of sums and integrals over various com-
binations of the modes and their derivatives. Renormalization of the stress-energy tensor can
be accomplished by subtracting the corresponding expression that occurs in Schwarzschild
spacetime for the Unruh state [26], adding that expression back and subtracting the renor-
malization counterterms. The result is the sum of two finite tensors. The first is the dif-
ference between the expressions for the unrenormalized stress-energy tensors in the in state
and the Unruh state. The second is the renormalized stress-energy tensor for the Unruh
state. The latter has been numerically computed for the masslesss minimally coupled scalar
field in [13, 14]. Thus one can simply add that result to the difference between the two
stress-energy tensors to obtain the full renormalized stress-energy tensor for the scalar field
in the in state in the collapsing null shell spacetime. This type of renormalization scheme
has been used to compute the stress-energy tensors in Schwarzschild spacetime in the Un-
ruh state for the conformally coupled massless scalar field [5, 27] and for the massless spin
1 field [5]. It has also been used to compute a late time approximation to (73,) for the case

of a massive minimally coupled scalar field in a spacetime consisting of a massive thin shell
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that is initially static and then collapses to form a black hole [28].

We have tested our method by numerically computing the difference between the stress-
energy tensor for the in state in the collapsing null shell spacetime and the stress-energy
tensor for the Unruh state in 2D. The results are compared with an analytic expression for
the difference obtained from previous analytic calculations of the stress-energy tensor for
the Unruh state [29] and the in vacuum state for the collapsing null shell spacetime [20, 24].

Our results are in agreement with those calculations.

In Sec. II we introduce the collapsing null shell model and then discuss the modes for
a massless minimally coupled scalar field in the null shell spacetime. A description of the
method of computing the stress-energy tensor is given in Sec. III. Various mode functions
in Schwarzschild spacetime that are used in the computation of the stress-energy tensor are
discussed in Sec. IV. In Sec. V general expressions for the matching coefficients in the
4D case are derived followed by examples where the matching method is tested. Formulas
needed for the computation of the stress-energy tensor in the 4D case are derived in the
first part of Sec. VI. In the second part, the difference between the stress-energy tensor
in the in vacuum state and the Unruh state is numerically computed for the 2D case and
compared with the difference obtained from previous analytic calculations. Section VII
contains a summary of our results. The appendixes contain some details of a proof and
some derivations that are used in the 2D examples in Secs. V and VI. Throughout the

paper, we use the sign conventions of [30] and units are chosen such that h =c=G = 1.

II. MASSLESS MINIMALLY COUPLED SCALAR FIELD IN A SPACETIME
WITH A COLLAPSING NULL SHELL

A. Collapsing null shell model

We consider a model in which a spherically symmetric black hole forms from the collapse
of a null shell. Our analysis of the spactime follows that in [20]. The metric inside the shell

is the flat space metric

ds® = —dt* + dr* + r*dQ* (2.1)



and, by Birkhoff’s theorem, the metric outside the shell is the Schwarzschild metric

ds* = — (1 — ¥) dt? + (1 — g) B dr® + r?dQ?* . (2.2)
The two metrics need to be matched along the trajectory of the null shell. An obvious way
to do this is to let the angular coordinates be continuous across the shell along with the
radial coordinate r that is related to the area of a two-sphere. Then the time coordinate is
not continuous across the shell trajectory which is why we distinguish in the above metrics
between the time coordinate ¢ inside the shell and the time coordinate ¢, outside the shell.

The actual matching is easier in terms of radial null coordinates which can be defined

inside the shell as

u=t—r, (2.3a)
v="t+r, (2.3b)
and outside the shell as
Us =1ts — Ty, (2.4a)
v="1s+ 71, (2.4b)
where
Ty =1+ 2M log (T ;A%[M) ; (2.5)

is the usual tortoise coordinate in Schwarzschild spacetime. It is easiest to let v be continuous
across the shell trajectory which is denoted as v = vy. The outgoing radial null coordinate
is then discontinuous across the shell trajectory which is why it is denoted as u inside the

shell and u, outside. The relationship between u and u is [20, 21]

Vg —u
s=u—4M1 , 2.6
s = Og( 4M) (26)
with
vg = vy —4M . (2.7)

Note that the value of the flat space coordinate u on the event horizon is vy as can be seen

from Fig. 1. Inverting, one finds that [22]

u=vg —4AMW [exp (UHM&U‘Q)} : (2.8)

with W the Lambert W function. A Penrose diagram for the resulting spacetime is sketched

in Fig. 1.



FIG. 1. Penrose diagram for a spacetime in which a null shell collapses to form a spherically
symmetric black hole. The vertical line on the left corresponds to the surface » = 0 which is also
the surface where u = v. The trajectory of the shell (dashed blue curve) is v = vg. The horizon,
H™, is the dotted red curve. Inside the shell trajectory it corresponds to the surface u = vy and

outside the shell trajectory it corresponds to ugs = oo.

B. Massless minimally coupled scalar field

The type of quantum field we consider is a massless minimally coupled scalar field which

in a general spacetime satisfies the wave equation
Hop=0. (2.9)

In the null shell spacetime the field can be expanded in terms of a complete set of modes

such that

00 L 00
b=, /0 o [astm fotm + @l o] (2.10)

=0 m=—{

with @y, an annihilation operator. The modes are solutions to (2.9) which have the form

Yim(0, 9)
r

fwgm = N wwg(T, 7“) y (211)

with N a normalization constant and 7 = ¢ inside the shell trajectory and 7 = t, outside.
Inside the shell trajectory the equation for 1, is

_ 82¢we + awaé . €<£+ 1)
ot? or? 72

Q/)wf =0 ) (212)



while outside the shell the equation is

O, P (1 - 2]\/[) (2M G 1)) . (2.13)

ot? or? r r3 r2

The in vacuum state is defined by requiring that on .~
Wl = (2.14)

The modes must also be regular on the surface » = 0 inside the shell trajectory which implies
that ¢, = 0 there.

The normalization constant NNV is fixed using the scalar product which is defined by the

relation

(i fa) = —i / 05w f, ()0, f3 (1)) (2.15)

Here n* is a future-directed unit vector orthogonal to the spacelike (or null) hypersurface 3
and dY is the volume element in . The hypersurface ¥ is taken to be a Cauchy surface.
To normalize the in modes it is easiest to use past null infinity, .# ~, as the Cauchy surface.

If the orthonormal condition

(fwﬁma fw’f’m’) = 5€,K’5m,m’5(w - w/) ) (216)

is imposed then it is straightforward to show that

1

N = . 2.17
VAarw ( )
For the modes in the in state in the region inside the null shell trajectory
Yl = e x(r) - (2.18)
Substituting this into (2.12) gives
d*x 2 Ul+1)

e =Y T T Xt - (2.19)

The solution for which ™, vanishes at r = 0 is
Y = Cpe ™ wrj(wr) (2.20)

where (), is a normalization constant and j, is a spherical Bessel function. The condi-
tion (2.14) on .#~ fixes the value of Cy. For example, for ¢ = 0, it is easy to show that
Cy = —2i and

Pl = e — e (2.21)



In the region outside of the null shell trajectory v = vy, the in modes still have the
boundary condition (2.14). However, their other boundary condition is that 9% and its
first derivatives must be continuous across v = vy. The fact that the time coordinates are
different on either side of this surface makes it impossible to have a solution of the form

in

X% (r) outside the null shell trajectory. However, it is possible to write ¢ in

Lijlé — e—iwts
terms of a complete set of mode functions of the form v, = e !y ,4(r) outside the null

shell trajectory as is shown in Sec. V.

III. METHOD TO COMPUTE THE STRESS-ENERGY TENSOR

The stress-energy tensor for the quantized massless minimally coupled scalar field, (Tg;),
is to be computed for the in vacuum state in the region outside the null shell and outside
the event horizon. The stress-energy tensor for the classical field is

1
Tab = 8a®8b<b — igabgc‘i@c(l)ad(b . (31)

To compute (in|Ty|in), one can substitute (2.10) into (3.1), use the complete set of modes for

in

the in vacuum state f;,,,

and compute the expectation value. There are two things which

in
wlm

make this difficult. One is computing the modes in the region outside the shell and the
other is renormalizing the stress-energy tensor. Our method to compute the stress-energy
tensor provides one way to overcome these difficulties.

First, we renormalize by subtracting from the unrenormalized expression for the stress-
energy tensor for the in vacuum state, the unrenormalized stress-energy tensor for the Unruh
state. Since the renormalization counterterms are local and thus do not depend on the state
of the quantum field, this quantity will be finite. Then we add back the unrenormalized

stress-energy tensor for the Unruh state and then subtract from it the renormalization

counter terms. Schematically one can write

<in|Tab|in>ren - A<Tab> + <U|Tab‘U>ren y
A<Ta > = <in‘Tab’in>unren - <U|Tab’U>unren . (32)
The quantity (U|Tup|U)ren has been numerically computed for a massless minimally coupled

scalar field in Schwarzschild spacetime [13, 14]. Thus what remains is to compute the

difference between the unrenormalized expressions. To do that it is necessary to discuss



the computation of the mode functions for the quantum field that are relevant for the in
and Unruh states. It is worth pointing out that the computation of (U|T,|U)ren done
in [13, 14] was done for pure Schwarzschild spacetime outside the event horizon. However
the computation we wish to do for (in|7|in)e, is for the null shell spacetime outside both
the shell and the horizon. The reason that there is no problem is that the renormalization
counterterms are local and so are the same in this part of the null shell spacetime as they

are in pure Schwarzschild spacetime.

Analytic expressions for the mode functions in the in vacuum state, f inside the shell
are given in (2.20). However, it is not easy to continue these to the region outside the
shell because the time coordinate ¢ and the right moving radial null coordinate u are not
continuous across the shell. However, the known solutions inside the null shell along with
their behavior on .#~ can be used to fix the initial data on a Cauchy surface in the null
shell spacetime. The Cauchy surface we consider here, consists of the part of .#~ with
vy < v < oo along with the trajectory of the null shell. This initial data could be used for a
numerical calculation of the partial differential equation satisfied by f ~outside the shell.

Alternatively, one can expand [ in terms of a complete set of modes in the region outside

the shell and use the data on the Cauchy surface to determine the matching coefficients.

Here we take a variation of the latter approach by noting that the spacetime geometry
outside the shell is the Schwarzschild geometry. Because of this, it is possible to do the
matching in the corresponding part of Schwarzschild spacetime. The advantage of this is
that the matching can be to a complete set of modes in the region outside the horizon in
Schwarzschild spacetime. These modes are well understood and straightforward to work with
numerically. The disadvantage is that the relevant part of the Cauchy surface in the null shell
spacetime discussed above does not form a Cauchy surface in the Schwarzschild spacetime.
This can be remedied by adding a segment along the future horizon with —oo < v < wvy.
The result is a Cauchy surface for the part of Schwarzschild spacetime that is outside of the
past and future horizons. It is illustrated in Fig. 2. It is worth noting that the part of the
Cauchy surface on the future horizon is not causally connected with the region outside the
future horizon and outside the surface v = vy. The corresponding region in the null shell
spacetime is the region where we want to compute the stress-energy tensor. Thus any initial
data can be used for the mode function f ~on that surface so long as f% is continuous

at the point where the future horizon intersects the part of the Cauchy surface with v = vy.
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FIG. 2. Penrose diagram for Schwarzschild spacetime showing the Cauchy surface used for matching
the in modes in the null shell spacetime to a complete set of modes in Schwarzschild spacetime in
the region outside the past and future horizons. The Cauchy surface is denoted by the dashed red

curve.

IV. COMPLETE SETS OF MODE FUNCTIONS IN SCHWARZSCHILD SPACE-
TIME

In this paper we work with four complete sets of mode functions for the part of
Schwarzschild spacetime that is outside both the past and future horizons. The frequencies

of all of the modes that we consider are taken to be non-negative.

A. Modes used for the in state

To expand the modes for the in state in terms of a complete set of modes in Schwarzschild
spacetime we find it most convenient to choose the complete set of modes that consists of
the union of modes that are positive frequency on the future horizon H* and zero on future
null infinity, #*, (labeled by fZ') and modes that are positive frequency on .#* and zero

on H* (labeled by fZ'). Both sets of modes are of the general form

Ve = € P x(r) (4.1)

with 0 < w < co. Substituting into (2.13) gives the radial mode equation for Schwarzschild

% o {WQ - (1 - 2M> (2M G 1))] " @)

r r3 r2

spacetime
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These modes are normalized on the Cauchy surface consisting of H™ and #* with the
result (2.17).

It is useful to consider a different complete set of mode functions of the form (4.1) which
are defined by two linearly independent solutions to the radial mode equation (4.2) with the

properties

Xz = e, =00, (4.3a)
T — e T = 00 . (4.3b)

Near the event horizon they have the behaviors [31]

X% — Er(w)e™™ + Fr(w)e ™™ | T = —00 , (4.4a)

X7 — Ep(w)e™™ + Fp(w)e ™™ | re — —00, (4.4b)

where Er, E;, Fgr, and F;, are scattering parameters that can be determined numerically.!
They satisfy the relation FrF; — EFr = 1.

For the modes f%'  on the future horizon 1, = e~ while 1), = 0 on .#*. The

radial mode function which has these properties is

1

+ oo
Xfe = F—LXL . (4-5)

This is easily verified by evaluating the resulting mode function %I;{; on Ht and #*. To

see how this works consider the behavior near .#+:

1 )
1/15; — —e Y =0, v — 00 . (4.6)
Fy

Here we have used a positive integrating factor € to explicitly show that this mode function
vanishes on £+ where v = co.

For the modes f7,, on H*, 47, = 0 while on #*, ¢7," — e~™"s. The radial mode

wlm

function which results in these properties is

F
X2 = X% - —FRxf : (4.7)
L

1 The subscripts r and [ in [31] have been changed here to R and L respectively.
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B. Complete sets of modes used to define the Unruh state

Before discussing the modes that can be used to define the Unruh state, it is useful to
consider a complete set of mode functions that are positive frequency on either the past
horizon H~ and vanish on .#~ (denoted by f& ) or which vanish on H~ and are positive

frequency on .#~ (denoted by f7 ). For the modes f ~ on H- = e~Wus while

wbm? wf

" =0 on #~. The radial mode function which has these properties is [31]

o _ XR
= —. 4.8
Xwe ER ( )
For the modes f7, , on H-, ¢7, = 0 while on £, ¢, — e . The radial mode

functions which has these properties is [31]

- [e'e) E [e'e)
Xor =X© — _ELXR - (4.9)
R

These modes are normalized on the Cauchy surface consisting of H~ and #~ with the
result (2.17).
The Unruh state in Schwarzschild spacetime consists of a complete set of modes consisting

of the modes f7, and the modes (denoted by f¥ ) that on H~ have the form

wEm

Uhee = e KV (4.10)

with

(4.11)

Here k = (4M )_1 is the surface gravity of the black hole and 0 < wg < oco. These modes
vanish on .#~ and can be normalized on the Cauchy surface that is the union between H~

and .~ with the result that?
Yom

They can be expanded in terms of the f., ~modes. The result is given in (5.16) and (5.17).

wém

Since the method used to compute the stress-energy tensor involves subtracting the un-

renormalized stress-energy tensor for the Unruh state it is useful to write the modes associ-

ated with this state, f2  and f7 in terms of ' and f7 . The result is
= El (Fr £l + Fm) (1.130)
om = (fwem ~ B fim) - (4.13b)
2 Here we use the entire surface H~ which extends from U = —oc0 to U = +cc.
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V. MATCHING COEFFICIENTS
A. General formulas

In this section general formulas are derived for the matching coefficients used in an
expansion of the modes of a massless minimally coupled scalar field for the in vacuum state
in the collapsing null shell spacetime in terms of a complete set of modes in Schwarzschild
spacetime in the region outside the past and future horizons. These can be used in the
computation of the stress-energy tensor, (in|T,|in), for the scalar field in the part of the
collapsing null shell spacetime that is outside of the shell and outside of the event horizon.

The expansion of the in mode functions has the form

oo
g+ g+
me o Z Z fO [Awfmw’f'm’f "0'm! +Bwlmw’€’m’(f 10t )*
0m/=—¢
+ +
Af@mw/f’ /f w''m’ Bfémw’é’ (f 0'm /)* (51)

The matching coefficients are found using the scalar product in (2.15) and the orthonormality

of the modes ") with respect to this scalar product. The result is
St HT S+ HT)
An(uémw/f’n)l/ = ( wém?f(’é’ / ) (523“)
J*,H*’ in J*,H*’ %
Bf.)fmw’ﬁ”n)z’ = _( wlm (fag’é’m’ )) ) : (52b)

For the Cauchy surface we consider, (2.15) reduces to integrals of the form

/du/erzﬁu, /dv/er28 (5.3)

On the hypersurfaces where these integrals are computed, the following properties for spher-

ical harmonics can be used:

/ Y (60, 85 (0, 8) = S0, (5.4a)
/ A i (0, 6) Vi (0, 8) = (=1)" 000 (5.4b)
As a result we can write
A — GG AL (5.5a)
B it = (=1)"600m, m/Bw‘f/Z " (5.5b)

14



and

in ngm e dw , .
s = AZD s + BL W) + ALy + B, (5.6)
rvar Jo V!

From this expression one can see that if, at small w’, the matching coefficients go like

Vo
then there is an infrared divergence in the integral and it is not obvious how to deal with it.
For this reason, we use integrations by parts in some of the computations of the matching
coefficients below to avoid this difficulty. For Schwarzschild spacetime in 4D, our results
when substituted into (5.6) do not give infrared divergences.

The contribution to the matching coefficients from the three segments of the Cauchy

surface in Fig. 2 are

AT _ <A((¢+,H+)> n (AE;Z;,Hﬂ) i (AE;Z;,H*')) : (5.7a)
H+ v0 I

ww'l ww'l

+ g+ o + it N
(Ab(;i,l’H )>H+ = 4#\/_/ dv n( u-vH,v)(‘?v[z/)(’,]; A (g = 00,0)]*,  (5.7b)

(4) = -— F J R T A CAORS A A
(A7), == [ v vt = —oe, I = —o0 )" (5.7

and
B = (BU) o+ (BLT) (BT (5.50)
(B2™)),. = F [ it = om0l = e0) . (5b)
(BU), = e vt )l (. ). (5.8
(BE"7) = 47“/_/ dv )0y = —o0,v) . (5.84)

It is important to note that the integrals in (5.7b) and (5.8b) are computed with the

integrands evaluated on H*. Since ¢, = 0 on H*

(az), = (BZ), =0 (5.9)

On H, wff; = e~ The part of the Cauchy surface in Schwarzschild spacetime which is on
H™ has no counterpart in the collapsing null shell spacetime and, as discussed in SEc. III, is

causally disconnected from the region outside the collapsing null shell and outside the event
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horizon. Thus the only restriction on the mode functions %, for this surface is continuity

at v = vg. The simplest mode function to use on this surface is then

in in

oo(u=vg,v) =Y (u="vg,vp) . (5.10)

With this choice it turns out to be useful to write the contribution to the matching coefficients

from HT in the form

i N
AHJ: ) _ in wivg " - n 5.11a
( ww'l o+ 4W\/m¢w€(UH7v0)e o ww — Z€¢ Z(UHaU0> ) ( )

; 1 ,—iw'vg
BHt ) — _# in —iw’vy L g € in 511b
< wa'l ) o 477@1%6(@}[’@0)6 + o \/ ww + Z.E%m(’UH, UO) ) ( )

where for each integral an integration by parts has been done and an integrating factor
0 < € < 1 has been included to make the integrals converge.

The integrals in (5.7¢) and (5.8c) are computed with the integrands evaluated on the
surface v = vy. In this case ¥, is given by (2.20) while analytic expressions for wfj’HJr are

only known for the limits u, — +o00. For all intermediate values of u, these modes must be

computed numerically.

The integrals in (5.7d) and (5.8d) are computed with the integrands evaluated on the
surface .# . In this case 9% is given by (2.14). From (4.5) and (4.7) one can deduce that
on .#~

1 )
HY — W
wwé - FL 9
F :
s+ R —jwv
= —— ) 5.12
1%@ FL € ( )

To avoid infrared divergences in (5.6) it is useful to subtract and then add back the quan-

tity e~ from 9% in (5.7c) and (5.8c). Then after integrations by parts the contributions
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from the surface v = vy can be written as

AH"’/) _ i in Vi, U eiw’vo + i efi(wfw/)vo
( “O) v 47?\/ww’wwg( H, vo) Arvww' Ff (W', 0)
1 vH : .
b [ du [0 )] 92 () o). (5.132)
BHJ: ) _ i in Vg, U e—iw’vo . ¢ e—i(w-l—w’)vo
( ) 47r\/ww’¢w£( H, %) A/ ww' Fr(w' £)
1 vH :
o (0,0 (u, v0)] B (us(w), vo) (5.13b)
<Af+/ ) _ i Fp (w 6) —z(w—w’)vo
WWI V0 47{'\/ F (CL) g)
B, v0) — €010, 0, *(us(u),v0) . (5.13¢)

27?\/
(B/+ ) _ i FR(‘U 76) efi(erw Jvo
o Ay ww' Fr (w’ 6)

27r\/_

i (u,v9) — 7] 9,107y (ug(u),v0) . (5.13d)

The modes on .~ take on the simple forms (2.14) and (5.12). This makes it possible to
evaluate the integrals for the contributions to the matching parameters from that surface.

After integrating by parts, we find

7 i W' zw —w)vg - 14
s drvw W' Fj (W, 6) QWV;FEW Ow' —w+ie’ (5.14a)

(B), = — RSN N SRS
we'l I= _47'( ww’FL(w’7f) 27 wFL(w’,E w’ —l-w—ZG’ .

i FRw( o I \/g Fip(w', () e -
2V w Ff (W l) W —w + i€

(

(W', 0)
i Jw Fr(W,?)
% EFL((A)/,K)

(
S 4/ ww! Fz(w’,f

1 FR<W/,€
I- Ay ww! Fr(w', ¢

vo
—i(wtw’)vg
zw+w V0 +

) -
)
3 . (5.14d)

e
W+ w— e
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Combining these results together, the general formulas for the matching coefficients are

+27r\jm /_OO du [8"1”5(“7“0)] Wl (u ( ), v0) (5.15a)
; —iw'v . o)
Bﬁ;l - % %/(i/ + Z'Oew‘i‘?f(vH’Uo) B %\/g}?ﬂi/’g) j/ T ; e
_QW\;'W/ " du (0,02 (u, v)] VI (ug(w), vo) | (5.15b)
A‘]J:l _ w/ Fiw',0) e —i(w—w")vo

27r w Fr (o, E)w — w + i€

27r\/_/ Yo, v0) — €] 0y (us(u), vo) (5.15¢)

pn FR(w 5) —i(w+w")vg
el 27r w FL(w, )W 4w — i€

zm/_/ [0, v0) — e ] D (us(u), o) - (5.15d)

B. Expansions of modes for the Unruh state

As discussed in Sec. III, our method for renormalizing the stress-energy tensor involves
subtracting the unrenormalized stress-energy tensor for the Unruh modes. Recall these
modes include the set of modes f¥  that are positive frequency on the past horizon with
respect to the Kruskal time coordinate along with the set of modes f7, that on .#~ have
e = e Y. Before subtracting the contribution from the f7, modes we first write them

in terms of £, and using (4.13b).

wﬁm

For the contributions of the modes we first write down the Bogolubov transformation

wﬁm

ful)im :/ dw/ [afw’ffﬁgm—i— ’Zf ’Zm . (516)
0

The coefficients can be obtained using the scalar product (2.15) with a Cauchy surface
consisting of the union of past null infinity and the past horizon in Schwarzschild spacetime.
Integrating over the angular coordinates one finds that the Bogolubov coefficients can be

written in the form (5.5) with « replacing A and f§ replacing B. Integrating the remaining
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integrals over u, by parts one finds that?

1 o o0 , o
O‘wa/e =5 w—(4M)1+14M“’ / dU e KUK ()~ 1-idMe
K —0o0
L Ju anr D(6 —idMw)
_ — (4M 1+idMw : 5 17
21V wi (4M) (—iwg + €)M’ (5.17a)
K 1 W’ 1—id Mo’ 0 —iwUgk idMe
wrw'l = % E(4M) dUK@ (_UK)
1 ' v D(8 434 M
i<4M)1714Mw (6 +14Mw) (5.17b)

~ o Vowk (—lwg + €)M’
Here 0 and € are integrating factors with 0 < § < 1 and 0 < € < 1. Note that the Bogolubov
coefficients are independent of the value of ¢. This is because the effective potential vanishes
on H~ which is the surface where the integrals are being computed. Then we use (4.13) to

. 7+ |t
express the modes fﬁm’j in terms of the modes ffj‘fm =),

C. 2D example

In this section we will illustrate the matching for the case of a 2D spacetime which has a

perfectly reflecting mirror at » = 0. The metric inside the shell is the flat space metric
ds® = —dt* + dr?* (5.18)

and the metric outside the shell is the Schwarzschild metric

oM oM\ !

The Penrose diagram is the same as in the 4D case as is the definition of the radial null
coordinates u, u,, and v and the relation between u and wu,.

The general form of the mode functions is

Y
Jo = N7 (5.20)

There is no scattering for the massless minimally coupled scalar field modes in 2D so

Ep=F, =1, E,=Fz=0. (5.21)

3 This calculation was originally done in [32] but note that there is a mistake in the results. The expressions

in that paper are missing a factor of (4M )ii“’/.

19



Inside the shell the in modes are
P = e i (5.22)

In the region outside the shell the spacetime is the 2D version of Schwarzschild spacetime

and the modes are

Yl =gl = e (5.23a)
I =g = e (5.23b)

The expansion for the in modes is similar to the 4D case except there are no parameters

¢ and m related to the spherical harmonics. Thus
fr = [ A B G AL BIUSY) . G2
0
The matching coefficients are given by substituting (5.21), (5.22), and (5.23) into (5.15). It
is then easy to show that

[BH+ fH+ } AH+ fH+

w!'——w’

[Bf* Fo } — AT (5.25)

w!——w’

where the quantities on the right-hand side are to be evaluated at w’ < 0. As a result
fin — / do! [AILFH AL (5.26)

Because wff does not depend on u, the integral in (5.15a) is trivial to evaluate and one

finds that
Af:/ _ 7 w e~ Hw—w)vo N L ﬂ etw'—w)vo | (5.27)

or w' — e 2rV ww' —w + e
To see what the contribution to ffu“ is from the £ modes, first substitute (5.27) into

the first two terms of (5.24) along with (5.20) and (5.22) with the result

( 11’1) _ ie_iwvo oo dw/ eiwl(UO—U) . 1 + 1
@/ H* 2rvVaATw J_oo w —1e W —w-+ie

e—iwvg 0 — 1w
= Vo —V)+ ——
4w (v ) vVAarTw

20
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We next consider the contribution of the " modes. The matching coefficient in (5.15¢)

1 Jw (" oo () AU

A]J: - _/ du e~ W piw us(u) S

et 2V w J_ o we e du
R P AT T AM

Changing variables to * = vy — u and performing an integration by parts gives

18

; 1+idMw’ )
Ajt — L wwle—i(w—w')v}[ (4M) i / dr ei(w—w’)x—ex x—i4Mw’—1+(5
w2 (W —w)+€Jy
— L /o —i(w—w vy AM 1+idMw’ F((S _ Z4Mw/) 530
2 wwe ( ) [Z(w/ _ w) + €]l—i4Mw’ : ( : )

Note that two integrating factors have been used with 0 < e < 1 and 0 < § < 1.
To find the contribution to f from the £ modes, first substitute (5.30) into (5.26)
with the result

. Z4M\/C_t.) . - _ . / F(5 — 24Mw’)
in W iw’ (v Us) 4Mw
(fw )J+ = i Jin e / dw' e vn (4M) fi(o )+ L (5.31)

Note that the denominator has an essential singularity in the upper half «’ plane while the

Gamma function has simple poles in the lower half plane at

6
uz—ig, (5.32)
and
Ldz—ﬁ%, n=1,2... (5.33)

In the complex plane at large |w’| Sterling’s approximation gives
F(—Z4Mu}/) ~ \/ﬁei4Mw/€(7i4Mw’fl/2) log(—i4Mw') . (534)

Using the usual change of variables ' = Re®, with R > 0, it is straightforward to show
that the dominant contribution to the integrand of (5.31) in the large R limit comes from

AMRsin0log R a1 therefore one must close in the lower half plane. This means

the factor e
there is no contribution from the essential singularity but there is a contribution from each
pole of the Gamma function. At these poles it is straightforward to show that

: (=" _
I —idMw) — o0 — i) n=012,... (5.35)
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Then

VAT n!

Because the general solutions to the 2D mode equation in Schwarzschild spacetime are of

(1), = 2 e s C s o (U)o

the form v = g(us) + h(v) with g and h arbitrary functions, the exact solution for the in
modes is

) e—iwu(us) e—iwvH (UH —u )
n = =~ explidMw W |exp | ——22 , 5.37
) == =~ ot o (M )| | o

where (2.8) has been used and W(z) is the Lambert W function. To make a comparison
between (5.36) and (5.37), one needs to write the latter in terms of a series. This has been
done in [33]. An alternative derivation is given in Appendix A. The result is

e =y At + Ay (5.38)

n=0

Taking ¢ = —4iMw and z = exp (“=") in (5.38), one can see that (5.37) and (5.36) are

equivalent.

D. Delta function potential

In this section, we apply our matching method to the case where the potential term
in (4.2) is replaced by
V =X(r.), (5.39)

with A a positive real constant. This can serve as a model for the original potential which
has a single peak and vanishes at the horizon and infinity. The resulting mode equation can
be solved analytically and the solutions are simple enough that the matching coefficients
can be computed analytically. Some of these matching coefficients will be used to partially
reconstruct the mode functions f% in the case that ¢ = 0.

For / = 0 in 4D the in modes inside the null shell take on the particularly simple
form (2.21). In the region outside the shell the mode functions in the complete set with
¢ = 0 have the general form

f(H+ J+) @/)(H+ j+ w(H+ J+) —iw'ts (H* j+)

) p =e ! 5.40
00 r\/4_ 0 Xw'o ( )
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The radial parts of the modes satisfy the following equation

&x

T3 T (W= (r))x =0. (5.41)

In the region where r, > 0, two linearly independent solutions are

Xy = e (5.42a)
X =e (5.42b)
For r, < 0, xg and x can be expressed in the following way
X%o = EReiwm + FReiin* , (543&)
XT = Epe™™ + Fre ™™ . (5.43b)
Imposing the continuity of the mode function and discontinuity of its first derivative in the

usual way at the spacelike curve r, = 0, the following analytic expressions are found for the

scattering coefficients

Ep=1 % , (5.44a)
)

Fp=—5-. | (5.44b)

E,=F= % , (5.44c¢)

FL=FE,=1- % . (5.44d)

Then the mode functions that we are using for the matching can be obtained from (4.5)

and (4.7) with the result

2 /
Ho = 0(—r,) e 4 —2 e | 1 0(r,) d e (5.45a)
° -3 -3
/ A
Wiy = (=1 e 4 0(r, 2 e s 5.45D
0 ( )(w,_?,\) ( ) (w,_?)\) ( )

To verify that the matching coefficients can be used to reconstruct the original mode
functions for the case ¢ = 0 it is useful to break them up into contributions that come
from the term proportional to e~ in (2.21) and the term proportional to —e~**. In what

follows we compute the matching coefficients for both terms but then focus only on those
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that come from the term proportional to e=™v. Substituting (5.45), and (5.44) into (5.15)

one finds the matching coefficients

Alo = (Alo)e + (Aol

ww'0 T ww’0 ww’0/u
i w/ ezw vo i w/ o' ei(w’fw)vo
P LA — e v 5.46
(o) oV ww — u—:e + (w + “\) (W —w+ie)’ ( a)

; ; iw'vg
14HJr ? w e —zwvH d —iwu W' iw’vg
( ww’O) o\ . - ue T‘*) €
2rV w w' — e W'+ %

i\
w+7

Al = (A% + (Aol

ww'0 = ww'0)v ww'0/u
. 7 z)\ —i(w—w’)vo
A7, LY ¢ 5.47
( wwo) 271' (w +M) (w’—w+ie) ’ ( a)
1 [ d o '
(A‘{;O _ / du u —uuu zw "us(u) 9(7"*) + 0(—r*)w/i 2] . (547b)
2

Note that the relations (5.25) are satisfied by these matching coefficients so the relation (5.26)
also holds. Thus

in > + H+ +
(f0)w :/ dw’ [(Afw@) f 00 T (Afwfo) s /oo} . (5.48)
Substituting (5.46a), (5.47a), and (5.45) into (5.48) gives after some algebra
mn }/00
(foo0)e = [0(=r )+ 0(r) L]
rvarw
. ‘ 00 A jiw' (vo—us) w’ (vo—v) 1 1w’ (vo—v)
L= —ieWO/ d | —2° e~ T _
21 o (W —ie) (W —8)  (W—ie) (v+2)W—w-tic)
= 0(vy — us)e P [e 3 (vo—us) _ 1} + vy — v)e v
O(v — A ,
+ ('U 1;\0) |:Z_€—zwv0€—;‘(v—vo) + we—zwv:| 7 (549&)
(w+3) L2
. ) 3] 1 iw' (vo—v) iw’ (vo—v) @eiw/(vo—us)
2m e (W —ie) (W —2) W -—wtie (W —w+tic) (w+2)
= 0(vg — v)e’i“woe’%(”o’”) + (v — vg)e” ™
i
—0(us — vg) —2—— [—e‘iwvoe_%(““_vw + e‘iwus} ) 5.49b
( 0) (w + %) ( )

It is easy to verify that (5.49) gives the correct values for (fi,), on the future horizon for

v < g, on the null shell surface v = vy, and on past null infinity for v > vy.

24



E. Partial analytic results for the matching coefficients in 4D for /=0

Because of the simple form of the in modes for ¢ = 0 inside the null shell (2.21), it is
possible to compute the matching coefficients for the e~ part analytically. To do so we

begin by substituting (2.21) into (5.15) with the result

: iw’vg . / i(w'—w)vo
AH+ o ? w € —iwvg —iwvy ? W 1 €
ww'0 — T 5 (6 —€ ) + 5o\ x(, 1 / :
ww' — i€ 21V w Fj(w',0) w' —w + i€

| \/7/ du e P (ug(u), vo) | (5.50a)

—zw V0

e P o1 et
BH o wvg wvg) _ " -
ww'0 — (6 € ) / / y
2V w W+ ie 27V w Fr(w,0) w' +w — i€

V_/‘dmﬂw¢mw4)m) (5.50b)

pn F* w 0) —i(w—w')vo

Ao = = 27T F*( ’O)w—w—i—ze
" e 0,0 (), vo) (5.50¢)
Brt L gFR w ,0) e~ Hwtw)vo
w0 = 90V w Fr (W, 0) o' + w — e
. 1w, /”H E—— u¢jg (us(u),vg) - (5.50d)

Note that the integrals have to be computed numerically because the mode functions
in Schwarzschild spacetime must be computed numerically. However, because of the simple
form that 9% takes it is possible to separate the matching coefficients into separate matching
coefficients for the part that goes like e inside the null shell and the part that goes
like e=™* there. The matching coefficients for e=** do not depend on the integrals. In

what follows we focus on these matching coefficients. Examination of (5.50) gives for these
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coefficients

w7 2V w w—ie | 2nV w Fi(W,0)w —w+ie
, (5.51a)
BH* i W' 6—i(w/+w)v0 i W' 1 e—i(w—i—w’)vo
( ww/l>v 2V w wtie  2nV w F (W, 0)w 4w — i€
, (5.51b)
I (e, 0) el
AZL) = ooy 2 5.51
( wa'l 27V w Ff(w',0) w —w + i€ (5:51c)
(B2 -~ W' Fy(w',0) ettt (5.51d)
'l 21V w Fp(w',0) o' + w — ie '

These matching coefficients can be used to reconstruct the part of the mode function
which goes like e~ inside the shell by substituting the expressions into (5.1). To check
them we shall compute the resulting integral on H*. Recall that we are working in the exact
Schwarzschild spacetime rather than the null shell spacetime when we do the matching. The
same applies to the reconstruction. Thus the results for the reconstruction for which v > vy
also apply to the null shell spacetime, but the results for v < vy do not apply to the null
shell spacetime.

Recall that the modes f* vanish on H+.

; Yoo
S L G Sy A
Wobo), = 7+ 52
. oo i(vo—v)w’ —i(vo—v)w’
] ; (& €
I = e [ gy _ , 5.52
! or " /0 “ [ w' — i€ W'+ 1€ (5.52a)
i ) 00 1 e—iw’(v—vo) 1 eiw’(v—vo)
I, = —e% duw’ — . (5.52b
27 9n¢ /0 “ {Fz(w’,O)w’—w+z’e Fr(w,0)w +w —ie ( )

If in the second term of I; a change of variables is made so that w’ — —w’ then one finds

that

i ‘ 00 ei(vo—v) ! )
h:m_ww/'mu__—:wmw%—w, (5.53)

2m oo w' — e
with @ the step function. It is thus clear that the initial data on H' for —oco < v < vy does
not affect the mode functions on the part of the future horizon for which vy < v < oo.

It can be shown from the properties of the scattering coefficients given in [31], that

Fr(w') = Fj(—=«'). Using this identity and changing the variable of integration in the
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second integral in the same way as was done for [;, one obtains

—iw'v o (w'—w)

Yooe v I Y S e

= d .
rvA4mTw r2my4rw Fw,0)w —w + ie

To compute this integral using complex integration techniques one must know the singu-

(fabo)o 0(vy — v) + (5.54)

larity structure of F* which is difficult since this scattering coefficient must be computed
numerically. However, one can at least test whether it has one or more singularities in the
complex plane by assuming it does not and computing the integral. We will call the result
1% because there is no guarantee that this method will give the correct answer. The result
of such an integration is

—iwv

(& €

Vire Fi(o, 0 ")

Here complex integration has been performed using a contour in the lower half of the complex

—iwvQ

fteSt = 6(’00 — U) +

plane. It is obvious that at v = v, the continuity condition for (), is not satisfied so

frest £ (fm)), which implies that has one or more singularities in the complex plane.

Fi (@) w’

Alternatively one can work with I, in the form (5.52b), use the relation (W' Fw 4 ie)™! =
Fimd(w' Fw) + (W Fw)~!, and compute the principle value parts of the integral numerically
for v > vy. This has been done and the result is shown in Fig. 3. It is clear from the plots

in this figure that on the future horizon (f%,), is continuous at v = vj.

0.0p

=0.1[

=031

FIG. 3. The real (left) and the imaginary (right) parts of 4/ 4% (f1%), on the future horizon have
been plotted. In both plots, Mw = 0.02 and 33 = 3. The plots clearly show that ( eiu%o)v is

continuous at v = vg.
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VI. STRESS-ENERGY TENSOR
A. Method in 4D

For the massless minimally coupled scalar field the classical stress-energy tensor in a
general curved spacetime is given in (3.1) and a renormalization expression for (Tp;) is given
in (3.2). To compute (T,) using (3.2) it is useful to begin with the points split and to write

the stress-energy tensor in terms of derivatives of the Hadamard Green’s function

GW(x,2') = ({6(2), o(a)}) - (6.1)

We adopt the notation

AGW(z,2") = (in[{¢(x), ¢(«') }in) — (U[{¢(x), ¢(«") }U) , (6.2)

with |in) representing the in vacuum state and |U) the Unruh state. The corresponding

difference in the stress-energy tensors is then

1 / / U
ATy) = 7 lim [ (g5AGY, + ' AGLL) = gu g™ AGL, | - (6.3)

' —x

Here the quantity gg parallel transports a vector from x’ to x and is called the bivector of

parallel transport [34]. To leading order when the point separation is small
g =gy =10, (6.4)

The subleading orders all vanish in the limit ' — z. Since there are no ultraviolet diver-
gences in the quantity A(7,;) one can use (6.4) in (6.3) with the result

1
ATw) = 1 [lim (2GS, +AGY, ) = gu g™ lim AGY, | . (6.5)

' —x

where a slight abuse of notation has been used for the implied sum over d and d’ in the last
term. It is important to note that this expression is valid in both two and four dimensions.
Expanding the field in terms of modes as in (2.10) one finds for the in modes that
9] l

Oinl{6(x), () }oim) =5 3 / e [ (@) () (@) (@))°] . (6.6)

£=0 m=—¢
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The Unruh state in Schwarzschild spacetime consists of modes that are positive frequency
with respect to the usual time coordinate on .#~ along with modes that are positive fre-

quency with respect to the Kruskal time coordinate on H~ so that

(U o(x), o(2)}U) = Z Z {/ Awic [fosetm (@) (Flreom (@) + Fletm (@) (foseom ()]

b [ D @)+ o )| (6)

The next step is to find expansions for these two-point functions in terms of the complete
set of modes f(#"H") that we are using. For (0in|{¢(z), #(z')}|0in) one can substitute (5.1)

into (6.6). This results in integrals of the form

[<A oo f“) . <B<H* 7o)} 69

where the subscripts on the matching coefficients and mode functions have been suppressed.
For (U[{¢(z),¢(z")}|U) one can first substitute (5.16) and (5.17) into (6.7) to obtain an

(H=,.77)

expression in terms of f , . Then (4.13) can be used to obtain an expression for

(U{o(x), ¢(2")}|U) that depends only on f(j+ HY)

B. 2D Example

In this section the method discussed above is tested by using it to computing the stress-
energy tensor for the scalar field in the corresponding 2D spacetime where the answer is
known. The computation will be done in the region v > vy outside the null shell and outside

the horizon. From (5.28) it is clear that for v > vy the contribution from the f% " modes to

fOiJn is

(fizn)H+ = = f5+ . (6.9)
Thus

fn / Qo [AZS 15+ BIO(ETY (6.10)
0

with Aﬂ, given in (5.30). Using the relation I'(z) = @ one obtains the form used for

the numerical computations

1
S or

I'(l—iMuw)
[i(w — w') + ¢l -iAMe’

Aw]‘; _ (4M)14Mw —i(w—w vy (6.11)
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Then, using the relations (5.25) one finds

I'(1+i4Muw’)
[—i(w 4 w') 4 €]t FiaMw’

Bnﬁ_i w

7 Vo (4M)714Mw’67i(w+w’)v1.1

(6.12)

In what follows the superscript .#* on the matching coefficients A and B will be suppressed.
Next, with the aim of finding the components of the stress-energy tensor using (6.5), we

construct the Hadamard form of Green’s function which in 2D is

G (2, 2') = / " do [fM@) 0 (@) + S (@) f )] (6.13)

Substituting (6.10) into (6.13) gives

G (z,7") = /OOO dw { [ff* (x) + /OOO dwr (A, £L (%) + Buy ff*(a:)ﬂ
d
[0+ [ o A £+ B2 )

<[ @ [ e £ @ B @]} 69

P [ den (A5 @) + B @]
0

Expanding the integrand of the integral over w results in three types of expressions: an
integral consisting of products of the modes f ", which we call G4, another integral which
includes cross products between the modes f7 " and I " which we call Gp, and finally an
integral consisting of products of the modes f " which we called G¢ .

To renormalize we follow a procedure equivalent to that outlined in Sec. VI A. We begin
by subtracting off the integrals with the integrand evaluated in the large w limit. When
we add them back, we get contributions that are identical to those obtained for the Unruh
state. We are not quite subtracting off the Unruh modes because the large w solutions have
a dependence on vy. However, when the subtracted terms are added back and the integral
over w is computed, then factors of §(w; —wsy) and §(w; +w2) are obtained. Note that terms
proportional to d(w; + ws) vanish. For the ones that do not vanish, once one integrates over
say wo, the dependence on vy vanishes.

In Appendix B it is shown that when this method is applied to GM(x,2'), the AG 4
term vanishes. It is also shown that, while the AGp term does not vanish, it does not

contribute to the stress-energy tensor. As a result, the only term that contributes to A(T,)
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is AG¢(z,2") which has the form

AGo(w,a) t/dm/ dan{ (£ @)1 + 12 @)L @ADL
+ 2 @) @ >+f <fu“*wﬂAb
U@L ) + 121 @Al

UL @)L @) + fw*(%h2@%Ah}, (6.15)
with

Al = /0 dw { Apun A, — O(Auin AL ) (6.16a)

AL = /0 dw { Ar By, — O(Au B2} (6.16b)

Al = /0 dw { B, AL, — O(Buw AL ) (6.16¢)

Al = /0 dw { Buur B, — O(Buw Bi) b - (6.16d)

Here O indicates the asymptotic behavior of the matching coefficients for w > w; o.
The integrals in (6.16) can be computed analytically. Substituting the explicit expression
for A from (6.11) into (6.16a) gives

1 ) .
Al = ————(4M) M) eivn@=)P(] — 40w )T(1 + idMw,)AK, ,  (6.17a)

47TQw/w1w2
AM. 4M A w
AK, = lim (—3)" 91 (g)7 e d . .
! A1—I>Iolo( Z) (Z) { |:/0 w (w —w + 2'61)1714Mw1 (w — Wy — Z‘62)1+14Mw2

A 1
—/ dww””M("“”)} —/ dww1+i4M(“1”2)} : (6.17b)
1 0

First we compute the indefinite integrals and evaluate them at the limits. Since ¢; and e

go to O at the end of the calculation, it is acceptable to add terms containing them to the

exponents. The first indefinite integral is

w

A
AK Y= idMwq —14Mwo / d . : . :
1 ( ) (Z> ; w<w — W + 7:61)1—14M(w1—151)(w — Wy — i€2)l+z4M(w2+zez)

AM (w1 —ie) ( —idM (watie) TN

W — Wo —i62>

— ()M ()it | (w— wi +i€y)
4M(W1 — Wy — iel — 7;62> ;
= _Z'<_7:)i4Mw1 (i)fMM“’? (A — wy ) M@ (A — () ~i4Mew
AM (wy — w2) — i€y — i€
_ (_wl)i4Mw1<_w2)—i4Mw2 :|

4M(w1 — Wy — i€1 - i€2)

(6.18)
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Note that after evaluating the integral at the limits, €; and e, are set to zero in the exponents
because they have no effect there. Also, each term is a combination of a principle value and

a term proportional to §(w; — wsy), thus

A —w )i4Mw1(A _ w2>7i4Mw2 T
AJG,, = M) | (A = wr §(wy —
Lw=e i IV (@ — ) + M (w1 — wo)
idMwy, —idMwo
—27 M (w1 +w2) Wy Wo _ ﬂ- (5 — 6.19
e [2 (o —wy) ;=) (6-15)

Here we adopt the notation that the principle value of a term such as ﬁ is written as %

The second and third integrals in (6.17b) are

A
Ay = = (e i) [ it e
1

627rM(w1 +wa)

_ AUM(wi—w2) 1 6.19b
M (o =) | I (6.19D)

1
Ao = (i) eyt [ g
0

0 ) 627rM(w1 +w2) Z‘e27rM(w1+w2)
_ _627rM(w1+w2) / dze[z4M(w1—w2)+e]z _ —
— oo Z4M(W1 — WQ) + € 4M(UJ1 — CUQ) — %€
iGQﬂ‘M(W1+w2) o1t T
_ — e2mM(witwz) T 50, 6.19
Mo —wy) ¢ 0 e (6.19¢)

where in the integral for AK;. the change of variable z = logw has been made and an

integrating factor € has been inserted. Combining these results, one finds

iAMw,  —idM
Wiy e T

AK — —27TM(0J1+0J2) .
1= CAM(w) — ) AM

dMwi, —idMwa
_ e Mwitwe) Y1 W 6.20
e AM (w1 — wy — ic) (6:200)

Substituting (6.20a) into (6.17a) gives

(5(&)1 — WQ)

Al = ————(4M) M rmwa) givm@=w) P (1 4 M) T(1 + idM
L= wle( ) € (1 —idMw)I'(1 + idMws)
4dMwy, —i4Mws

% =27 M (w1 +w2) Wi Wa . 6.20b
€ AM (wy — wy — i€) ( )

Note that this is a finite contribution to AG. because of the factor of e=2mM(wi+w2)

Next consider A4 which is the other term with nonvanishing delta functions.

1 , .
Al = ————(4M) "M r—w2) gmvnl@i=w2) (] 4 4 Mw )T(1 — idMws)AKy , (6.21a)

A2, fiiws
AM AM A w
AKy = lim (—) "7 ()72 d . A
4 AI_{I;O( Z) (l) { {/0 W(w+w1+,L-€1)1+z4Mw1<w+w2_2'62)1—14ng

A 1
—/ dww_l_“M(wl_w?)} —/ dww_l_i4M(w1_w2)} . (6.21b)
1 0
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The integrals in AK, can be computed analytically with the result

A
AK Y= =27 M (w14w2) / d . ' w ' '
4 e ; w (W + wy + teq ) 1AM (witien) (o 4 @y — Gey) 1 —14M (W2 —ico)
_ 6*27TM(W1+0.)2) Z (A + wl)—i4MW1 (A + w2>’i4Mw2 B w;i4MW1w;4Mw2
4M W1 — Wo + ’i(El -+ 62) w1 — Wo + i(El + 62)
A—i4M(w1 —wg) 1
AK . = =27 M (wi4w2) |
° ¢ —Z4M(U)1 — OJQ) + —Z4M(W1 — wQ)
M) [ [—i4M () —w3)+e] e PrMlrtes)
AKC:—*” w1Tw2 d —1 wi—wz2)+elz
! ‘ /_oo e —idM (w1 — wy) + €
6—27rM(w1+w2) 6—27rM(w1+w2) o T
= —t = i — e M) () ) L (6.22
"AM(wy — ) +ie | AM(wy —wy) a0 —wa) - (622)

Both terms in AKy, can be written in terms of their principle values added to a term

proportional to §(w; — ws). Combining these terms, the following expression for AKy is

obtained
—tdMw1, i4Mws
AKy = ¢ 2Mrten) | 9 W T s
4 ¢ 4M((,U1 —CL)Q) 4M (wl WZ)
—tdMw1, i4Mws
_ i 2mM(witw2) Wi Wy 06.23
e 4AM (wy — woy + i€) (6.232)
Finally
Al = —————(4M) "M @r—w2) g=ivn@i=w2) (] 4 44 Mw, )T(1 — i4Mw,)
472, fwioy
—idMwi, i4Mw
o 2rMute) W1 Wy P (6.23b)

AM (wy — wa + i€)

Note that if we let wy <> wy in the expression (6.20b) for Al;, then we get Al in (6.23b).
It is also true that if this switch is made in the entire contribution to the two-point function
from AI; then that is equal to the contribution from Al. Finally, the total contribution
from A, can be shown to be the complex conjugate of the total contribution from AlI;.

Thus both contributions are real. Next consider Al,

1 . .
Aly = ———— (4M) M @rte2) giom @it (1 — 4 M) )T(1 — idMwy) AKs |, (6.24a)

A2, friws
w

A
AK — i _ \dMwy (\idMws / d : :
2= 0T o T = wn i) IV (0 iy — )

A 1
—/ dww‘HMM(“ﬁw)} —/ dww_1+i4M(w1+w2)} , (6.24b)
1 0
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where the integrals in AK5 can be computed analytically

A
. . w
AKy, = (—i)4Me(; ’4Mw2/ dw . . . .
2 ( ) ( ) 0 (w —w + ,1:61)1714M(W17161)(w + wy — 2‘62)1714M(w27m2)

(A _ wl)i4MUJ1 (A _'_ w2>i4Mw2
[wi 4+ way — (€1 + €)]

— _ﬁ(_i)ﬂlMu)l (i)z‘4Mw2 {

(_wl)i4Mw1w;4sz }
(w1 +wa —i(er + €2)]
_L 9 M (w1 —wn) (A _ wl)z4Mw1 (A + w2)z4Mw2

AM [wi + wa —i(e1 + €2)]
. idMwq, i4Mwo
U _onM(wi+ws) ! Wo
+—e¢ - , 6.25a
AM w1 + we — (€1 + €2)] (0:25)
i Ai4M(w1+w2) i 1
AK - 2TI'M(UJ17L02) _ 27TM(W1*W2)— 625b
%= aMe o1 twy  AMS WL+ ws (6:25D)
- ) 0 AL (01 402) ] 627rM(w1*w2)
AKC:— M (w1 —wo d 7 witwa)telz
2e =€ /_Oo =€ iAM (wi + wo) + €
g2 wi—e) T (s +un) (6.25¢)
= = w1+ wsa) . .290C

UM (w1 ) —ie  AM(wy +ws)  AM

Given that §(w; 4+ wq) = 0 since the frequencies are all non-negative, one can set ¢ = €5 = 0.

Then
4 M w1 wi4MWQ

AKy = je Mete)@L @ 6.26a
2 AM (wy + w2) ( )
and
Aly = ————— (4M )M rtw) gvn@ite) (1 — jd Mw)T(1 — idM
2 47T2\/m< ) € ( ¢ wl) ( ¢ w2)
dMwq, i4Mwo
=27 M (w1 +w2) Wy W
Xe —_ 6.26b
AM (wy + w2) ( )

Comparing Al in (6.16b) and Al; in (6.16¢), one can immediately see that their con-
tributions to the two-point function, (6.15), are the complex conjugate of each other if one

also takes w; <> we in the contribution from Al

Ajg - (A[2>*

= L (4 HM e pmivn @) D(1 4 M, T(1 4 i4 M)

472, Jwiws
—14Mwq w—i4Mw2

=27 M (w1 +w2) Y1 2 6.27
¢ AM (wy + ws) (0:27)
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Substituting (6.20b), (6.23b), (6.26b), and (6.27) into (6.15) one finds

AGC ZL‘ JJ %{ 3 Oo dW1 dw? e—QﬂM(w1+w2)
87 Jo 0 Wa
X |:671W1U3+2w2u§ -+ €*Zw1u +1w2u8] (4MW16%)4iMWI F(l — 4ZMW1)F(1 + 42Mw2)
(4 Mwse it )4iMws AM (wy — wy — g€)

’UH . ’UH .
[efzwlus iwaul, i e*lwlu zw2u5i| (4Mw1€m )41Mw1 (4MW2€W)4ZMUJ2

T'(1 — 4iMw)T(1 — 4iMw,) }
AM (wy + we) '

(6.28)

There are infrared divergences in this expression. However, it is easy to see that the deriva-
tives in the general formula for the stress-energy tensor (3.1) bring down factors of w; and
wo which remove these infrared divergences. Recalling that AG¢ is the only contribution
o (Ty) from AGW | it is straightforward to show using (6.5), (C3), (C5), (C6), and (6.28)

that

2M .. 1
A<Et> = _(1 - —) lim Z(AGC 4 T AGC ;t;r’)

T ' —x

=R L /OO dwy /OO dwy e 2 M (Witws)
813 Jo 0

X {ei(wz—m)us (4MW16%)MMW1 F(l - 4iMw1)F(1 + 4iMw2)
(4 Mwyeht )1iMw: AM (wy — wa — i€)
_i_efi(wngwl)us (4MW16% )4iMw1 (4MW2€ZT€I )41‘ng
(1 — 4iMw)T(1 — 4iMws) }}
4M(w1 + (,UQ) '

(6.29)

The integral over wy of the first term inside the curly bracket can be written in the form

AlTy) :/Ooode _ flen) :/Ooo dws {M—I—iﬂé(wl —OJQ):|

W1 — Wy — 1€ W1 — Ws
w1 —€ 0o
= lim [/ dng +/ deM] +imf(wy) , (6.30)
e—0t 0 W1 — Wo wite Wi — Wy

where the definition of the Cauchy principal value integral has been explicitly used.
Thus, extracting the explicit form of the f(ws) from (6.29) and substituting it into (6.30)
yields

¢ > = =27 M (w1 4w (w2 —w1)u
A<Ttt>:m{@/o deon [/0 duwsy e~ I M(@rtws) pilwa—wi)us

(4Mw164M )4zMw1 (1 —4iMw)T(1 + 42'Mw2)} } 1 /oo " o—4mMuw
1
0

(4Mu}264M )diMews 4M (wy — wo)
(1 — 4iMw))D(1 + 4iMwy) . (6.31)
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The stress-energy tensor for a massless minimally coupled scalar field in the 2D collapsing
null shell spacetime has been previously computed analytically using a different method [20,
24] and the stress-energy tensor for the Unruh state has also been computed analytically [20,

29]. For the difference one finds

1 SM 24 M? 1
AT} = 241 {(u — )3 N (u— 00)4} - T687M?2
A<T1uv> = A<TUU> =0 ’
A(Ty) = ATy) + 20T ) + A(Ty)
1 SM 24 M? 1
_ _ , 32
247 {(u — )3 N (u— U0)4:| 7687 M? (6:32)

Both terms in (6.31) have been computed numerically. In the first integral, the numerical
computation has been performed by the symmetric removal of the neighborhood with radius
€ about the singular points of the integrand, w; = wy. The integral of the second term in
(6.30) has been computed using a more straightforward numerical method. Our results for
A(Ty) in (6.30) are shown in Fig. 4. Although it is not possible to detect this from the plot,
our numerical results agree with the analytical results in [24] [20] to more than ten digits.

It is worth mentioning that in 2D, once A(Ty) is numerically computed, A(7},) and

A(T}.) can be easily determined from the relations (B7) and (C7).

VII. SUMMARY

We have presented a method of numerically computing the stress-energy tensor for a
massless minimally coupled scalar field in the case when a black hole is formed from the
collapse of a spherically symmetric null shell in four dimensions. There are two primary
parts to the method. The first is to expand the mode functions in the natural in vacuum
state in terms of a complete set of mode functions in the part of Schwarzschild spacetime
that is outside of the event horizon of the black hole. Expressions have been found for the
matching coefficients that involve integrals of these mode functions over the trajectory of
the null shell.

The second part of the method involves subtracting the unrenormalized expression for the
stress-energy tensor in the Unruh state from the expression for the unrenormalized stress-
energy tensor in the in vacuum state. Since the ultraviolet divergences in the stress-energy

tensor are independent of the state, this difference is finite. Then one can add to this the
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FIG. 4. The quantity 10*M2A(T}y) is plotted for the massless minimally coupled scalar field in
the region exterior to the null shell and to the event horizon. The dots correspond to the results

of the numerical computations. The solid curve represents the analytic results in (6.32).

renormalized expression for the stress-energy tensor in the Unruh state that has already
been computed [13, 14] and the result is the full renormalized stress-energy tensor for the
1n vacuum state.

We have tested the first part of the method by analytically computing the matching
coefficients in the 2D case and reconstructing the mode functions for the in vacuum state.
We have also analytically computed the matching coefficients in 4D for the spherically
symmetric mode functions (those with ¢ = 0) in the in vacuum state for a simple model in
which the effective potential in the mode equation is proportional to a Dirac delta function.
In this case it was possible to analytically compute the part of the mode function in the in
vacuum state that is proportional to e~™" inside the null shell and to verify that it gives
the known result on the matching surface. Finally, for the actual case of a collapsing null
shell in 4D, we have analytically computed parts of the matching coefficients and used those

parts to numerically compute part of one of the in modes on the future horizon and shown
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that it has the correct value at the point where the future horizon intersects the null shell
trajectory.

The second part of the method has been tested by numerically computing in 2D the
difference between the stress-energy tensor in the in vacuum state for the collapsing null
shell spacetime and the Unruh state for Schwarzschild spacetime. The result is in excellent
agreement with an analytic expression for the difference obtained from prior calculations of
the stress-energy tensor in these two states [20, 24, 29].

These tests provide substantial evidence that the method will work and that it will be
possible to numerically compute the exact renormalized stress-energy tensor for a massless
minimally coupled scalar field in a 4D spacetime in which a black hole forms from the

collapse of a spherically symmetric null shell. Work on that computation is in progress.
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Appendix A: Lagrange Inversion Theorem applied to the Lambert W function

In [33] the relation
[e.9] n—1
DY et " e (A1)

s n!
is derived for any complex constant c. An alternative derivation is given here. It is based
on the Lagrange inversion theorem [35]. In [36] different forms for the Lagrange inversion
theorem are given, one of which we use here. To state the form that is most useful to us we
use the notation in [36] that if f(z) is expanded in a Laurent series then [2"]f(x) denotes

the coefficient of 2™ in that series. Then a statement of the theorem is as follows: Suppose
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f is a function of x and there is a relation of the following form:

f(x) = zR(f(x)) , (A2)

where R(t) is a power series in t. Suppose further that ¢(t) is also a Laurent series in t.
Then for any nonzero integer n, ¢(f(x)) can be expressed in terms of a unique power series

in x with coefficients

% W = %[t”_lkb’(t)R(t)” : (A3)

("o (f) =

=0
where the interpretation of the far right-hand side is that one first expands the function
%?R(t) in powers of ¢, then chooses the coefficient of the term proportional to "' in that
series and divides that coefficient by n.

To use this to obtain a power series for the function e=“"(*) note that the Lambert W

function satisfies the relation

W(z)=ze V@ =z Z (_M;ﬂ : (A4)

Thus we can choose the function R(t) in (A2) to be R(t) = e~*. We also choose ¢(t) = e~ .
Then

e = (1) 1) B )

= e = (e )]
= (=)= (et )" (A5)

Equation (A1) follows immediately from this.

Appendix B: Contributions to the stress-energy tensor

The calculations in this appendix are done entirely for the Schwarzschild geometry. There-
fore for simplicity we use t and u to denote the usual time coordinate and the right moving
radial null coordinate in Schwarzschild spacetime.

In Sec. VI B it is mentioned that for the null shell spacetime in 2D the Hadamard Green’s
function in (6.14) can be broken into three parts. One of these, which we call G(Al)(x,x/),
includes f#" and its complex conjugate and is given by the expression

GO (z,2') = /oo dw{ff*(x)ff* (') + FH () pHT *(x)} . (B1)

0
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For the Unruh state the corresponding contribution to G (x,z’) is exactly the same so
AGEj)(a:,a:’) = 0.
A second part, Gg) (z,2'), has terms involving products of f# " and its complex conjugate

with £ and its complex conjugate such that
6w = [ { [ [A s @10 + Bt @11 @)
[ o [ 21 @) B S22 0)]
w [ e [ @ @) + B @ @)
o [ [An @ @)+ B @] 82

There is no contribution to G (z,2’) which has terms of this form if the field is in the
Unruh state, so there is no subtraction term and AGg)(a:, x') = Gg)@, x').

While Gg)(x, z') contributes to the two-point function, we next show that its contribu-
tion to the stress-energy tensor is zero. Substituting (5.20) into (B2) and using (5.23a)
and (5.23b) , one readily finds that

1 00 A o
[Gg) (I’ l’l):| = dw { / de \/W_CL)Q (A:]wg —zwv+zw2u B:w2 —zwv—zwzu )
0

tit! 47r
oo
+/ dwl \/w_wl (Awwl eiwv’fiwlu o wa1 eiwv’+iw1u>
Ooo
_|_/ dw2 \/OJ_WQ (A:ILUQ —zwv’-i—iwzu B:M2 —zwv’—inU)
0

+/ duwy VvV Wi (Awmeiwv_iMUI - wa16iwv+iw1U/)} ’ (BB)
0

(o), = g [, e { | o v e et
+ /00 dwy /W1 (= Ay, €078 4 B, e T
0
[ i VT (AL B
* /OO de \/w_("j1 (_Awwleiwviiww/ + meeiwwriww’)} ) (B4)
0

From (6.5) one finds

1 2M
A(Et) = Z lim AG;t;t’ + (1 _ _>2AG;T;T’]

' —x T

(B5)
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By substituting (B3) and (B4) into (B5), it is easy to see that the contribution to (7) is
zero.

Next consider the contribution of Gg)(x, x') to (T,,). Using (6.5) it is not hard to show

that
1 . AG;t;t/
AT} = dim [ 26 o)
Together with (B5), one obtains
A(T,
A(T,,) = (Tia) (B7)
(1-2)
Thus Gg) (x,2") does not contribute to (T..) either.
Finally, we consider the contribution of Gg)(x, 2') to (T},). From (6.5) one finds
1
A(Ty,) = 7 lim [AG;W + AGW] . (BS)
z'—x

Taking the derivative of (B2) with respect to t and 7, one finds

1 o0 o0 o
—21\4>/ dw {/ dCUQ /w_w2 ( A:ng —sz—HwQu + B:w2 —zwv—zwgu)
0 0

styr! 47'('(
)
+/ dwl \/m (Awwl eiwv’fiwlu - wa1 eiwv’Jriwlu)
Om . .
+/ de \/W_M(AZW —zwv’—l—zwzu B:w2 —zwv’—zwzu)
0

b [ oy VBB (= A 4 B | (B9)
0

[Sexd]

and taking the derivative of (B2) with respect to ¢’ and r gives
(1) / _ 1 = > * —zwv+iw2u * —zwv—iwzu’
Gp'(x,2") = —2M dw dws v/wwo (Awm - B¢ )
i Ar(1—=57) Jo 0

+/ dwl \/W_Ct)l (_Awwl eiwv’fiwlu + wa1 eiwv’+iw1u>
0

+/ d(JJg \/OJ_CUQ ( A;(:wz —zwv " +iwou + B:w2 —zwv’—iwgu)
0

+ / dwy /@1 (Aus, €07 — By, eMWW’)} : (B10)
0

It is clear that [Gg)(x, x’ )] =— [Gg)(x, x )] and therefore that their contribution to
ithr ;
(T3,) is zero.
The third part of GM(x,2") we call G(Cl)(a:,:c’). Its contribution to A(T}) is given in

Sec. VIB.
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Appendix C: Relation between two components of A(T,;)

The calculations in this appendix are done entirely for the Schwarzschild geometry. There-
fore for simplicity we use t and u to denote the usual time coordinate and the right moving
radial null coordinate in Schwarzschild spacetime.

In this appendix a relation is derived between two components of A(T,;) in (6.5) for
the 2D collapsing null shell spacetime. As shown in Appendix B only AG¢(z,z’) in (6.15)
contributes to A(Ty;). The explicit form for AG.(x,2’) is

1 o o o0
AGe(z,2') = E/ dw/ dwy dws
[A* 'ngu + B*

wwz ww?2

1 : ,
Aww —lw1U wa W1U
—{ [ ™" 4 B
71‘02“/] + {Awun eiiwlw + wa1 eiUJIUI]

[A* zwzu + B*

—zwgu]
wwz Ww2

—subtraction terms} , (C1)

where the subtraction terms have exactly the same form except that the matching coefficients

are replaced by the Bogolubov coefficients (5.17) for the Unruh state. Then

et
aT7t

/ 1 1 - 00 > . —iwiu . w1l
[AGC(x,a:)} = E(l——Q—M/ dw/ dwl/o dw%/wle{[@Awwle W — B, Y
[

[ZA* zwgu —iB* 7@&)2’[1,/] +

N ! - !
. —iwiu . w1
wwg wwsy _ZAwwl € + Zwal € ]

[ ZA* szu-{—ZB*

—zwz u]
ww?a wa

—subtraction terms} . (C2)

A similar calculation for [AGc(l‘, x’ )} gives the opposite sign for each term in square

tem!
,t,’f’

brackets and a replacement of r with 7/ in the overall factor of (1 — 22)~!. Thus

lim [AGC@,;I;')} = lim [AGC(x,x')} . (C3)
P it alow tr
Next consider
[AGC(x,x')} = / dw/ dwl/ dwg~/wiws wle [ i Ay, €M 4 i By, €M)
. x[iA],,e el —iB}, e —2) LA e Y 4B, e ]
x[iAL, " — iB,,e "]
—subtraction terms} . (C4)
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A similar computation for [AG0<£L‘, @ )} gives the relation

T

[AGC(L a:’)] = ! 57 [AGC(x, IL‘/)} : (C5)

s (]_ — %)( — 7) st/

Also a comparison of (C2) and (C4) shows that

AGe(z,z')
[AGC(x,x')] :—[ ! Lt’. (C6)

st/ 1— 2M
r

Finally by substituting (C5) into (B5) and substituting (C3) and (C6) into (B8) one can see
that

A(Ty)

1 _ 2M -
T

A<Trt> = -

(C7)
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