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Abstract

A method is given to compute the stress-energy tensor for a massless minimally coupled scalar

field in a spacetime where a black hole forms from the collapse of a spherically symmetric null

shell in four dimensions. Part of the method involves matching the modes for the in vacuum

state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting

from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum

state, the corresponding expression when the field is in the Unruh state and adding to this the

renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work

in the two-dimensional case where the results are known.
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I. INTRODUCTION

The stress-energy tensor of a quantized field is an extremely useful tool for studying

quantum effects in curved space because it takes both particle production and vacuum

polarization into account. It can be computed in a background spacetime to obtain the

energy density, pressure, etc. for a quantum field in that spacetime. It can also be used in

the context of semiclassical gravity to compute the backreaction of the quantum field on the

spacetime geometry.

For black holes in four-dimensional, 4D, spacetimes, the full stress-energy tensor must

be computed numerically. This is a difficult task that has to date only been done without

other approximations for the cases of static spherically symmetric black holes [1–15] and

the stationary Kerr metric [16, 17]. However, because of the difficulty involved, to our

knowledge, no one has numerically computed the full stress-energy tensor for a quantized

field in a 4D spacetime in which a black hole forms from collapse. This is important because

there can be a significant difference between the stress-energy tensor for a quantum field in

a 2D versus a 4D spacetime such as that found for a massless minimally coupled scalar field

in an extreme Reissner-Nordstrom spacetime [9, 18].

In this paper we present a method to compute the renormalized stress-energy tensor,

〈in|Tab|in〉, for a massless minimally coupled scalar field in the case that a black hole forms

from the collapse of a spherically symmetric null shell. This model has been previously used

to derive the Hawking effect [19, 20], investigate how the stress-energy tensor is affected by

the production of a pair of particles due to the Hawking effect [21], study some details of

how the spectrum and number of produced particles changes in time during and after the

collapse [22, 23], and in 2D to compute the stress-energy tensor for a massless minimally

coupled scalar field [20, 24]. While this is not a realistic model for collapse because the shell

begins with an infinite size, this is probably the simplest model to work with that involves

collapse in 4D to form a black hole. Thus it is a reasonable first choice for the full numerical

computation of the stress-energy tensor of a quantized field in a 4D spacetime in which a

black hole forms from collapse. Further, since the Hawking effect is independent of how the

black hole forms [25], and since it is expected that the stress-energy tensor at late times

will also be independent of the formation process, studying how the stress-energy tensor

evolves in time and approaches its late time behavior can provide insight into what is likely
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to happen in a more realistic model.

The method we have developed works in the region outside both the null shell and the

event horizon. In the region outside the shell, Birkhoff’s theorem ensures that the metric

is that for Schwarzschild spacetime (2.2). In the region inside the shell the space is flat.

Thus in both regions the mode equation for the quantum field is separable and inside the

shell its solutions are known analytically. This allows for a numerical computation of the

stress-energy tensor for the field in which only ordinary differential equations need to be

solved numerically.

For the collapsing null shell model, the initial vacuum state of the quantum field is well

defined and the main complication that occurs is due to the propagation of the modes across

the null shell surface. The crux of our method involves the expansions of the in modes in

terms of a complete set of solutions to the mode equation in the region outside the shell.

The stress-energy tensor for the quantum field is obtained by expanding the quantum

field in terms of a complete set of modes. This expansion is substituted into the formula

for the stress-energy tensor of the corresponding classical field and the expectation value

is computed. If the field is in the in vacuum state then the result is an expression which

involves sums and integrals over the mode functions for the in state and their derivatives.

After the renormalization counterterms are subtracted off, the resulting stress-energy tensor

is finite and can be computed. This is straightforward inside the null shell since the mode

functions are known analytically and for the in state, the result is that the stress-energy

tensor is equal to zero.

Outside the null shell and the event horizon the in modes do not assume a simple form

in 4D. One approach to computing them would be to use the analytically known values for

the modes inside the shell and on past null infinity to provide initial data for a numerical

integration of the mode equation in the region exterior to the shell. However, outside the

shell the in modes will not factorize into a product of a function that depends only on time

and a function that depends only on the radial coordinate r. Thus the part of the mode

equation that depends on both r and t must be solved numerically.

We have developed an alternative method which involves expanding each of the in modes

in terms of a complete set of modes in Schwarzschild spacetime. The radial parts of these

modes and the matching parameters must be computed numerically. The mode matching

has been tested in the 2D case where there is no effective potential in the mode equation. It
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has also been partially tested for spherically symmetric modes in 4D both when the effective

potential is modeled as a delta function and when the exact effective potential is used.

One advantage of the first method is that there are no matching parameters. A dis-

advantage is that one must solve a partial differential equation directly using numerical

techniques. Conversely the chief advantage of the method developed here is that one only

needs to numerically solve the radial mode equation, which is an ordinary differential equa-

tion. A second advantage is that the properties of the solutions to this equation are well

understood. One disadvantage of our method is that the formulas for the matching param-

eters involve certain integrals that must be computed numerically. A second disadvantage

is that the computation of the stress-energy tensor involves the numerical computation of

triple integrals rather than single integrals over various products of the mode functions and

their derivatives. It is not obvious to us which approach is more efficient. However, since

no full numerical computation of the stress-energy tensor has been previously done for a

quantized scalar field in a 4D spacetime where a black hole forms from collapse, we think

the most important thing is to develop one viable method to do the calculation and that is

what we present here.

When the expansions for the in modes are substituted into the formula for the unrenor-

malized stress-energy tensor one finds a combination of sums and integrals over various com-

binations of the modes and their derivatives. Renormalization of the stress-energy tensor can

be accomplished by subtracting the corresponding expression that occurs in Schwarzschild

spacetime for the Unruh state [26], adding that expression back and subtracting the renor-

malization counterterms. The result is the sum of two finite tensors. The first is the dif-

ference between the expressions for the unrenormalized stress-energy tensors in the in state

and the Unruh state. The second is the renormalized stress-energy tensor for the Unruh

state. The latter has been numerically computed for the masslesss minimally coupled scalar

field in [13, 14]. Thus one can simply add that result to the difference between the two

stress-energy tensors to obtain the full renormalized stress-energy tensor for the scalar field

in the in state in the collapsing null shell spacetime. This type of renormalization scheme

has been used to compute the stress-energy tensors in Schwarzschild spacetime in the Un-

ruh state for the conformally coupled massless scalar field [5, 27] and for the massless spin

1 field [5]. It has also been used to compute a late time approximation to 〈Ttr〉 for the case

of a massive minimally coupled scalar field in a spacetime consisting of a massive thin shell
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that is initially static and then collapses to form a black hole [28].

We have tested our method by numerically computing the difference between the stress-

energy tensor for the in state in the collapsing null shell spacetime and the stress-energy

tensor for the Unruh state in 2D. The results are compared with an analytic expression for

the difference obtained from previous analytic calculations of the stress-energy tensor for

the Unruh state [29] and the in vacuum state for the collapsing null shell spacetime [20, 24].

Our results are in agreement with those calculations.

In Sec. II we introduce the collapsing null shell model and then discuss the modes for

a massless minimally coupled scalar field in the null shell spacetime. A description of the

method of computing the stress-energy tensor is given in Sec. III. Various mode functions

in Schwarzschild spacetime that are used in the computation of the stress-energy tensor are

discussed in Sec. IV. In Sec. V general expressions for the matching coefficients in the

4D case are derived followed by examples where the matching method is tested. Formulas

needed for the computation of the stress-energy tensor in the 4D case are derived in the

first part of Sec. VI. In the second part, the difference between the stress-energy tensor

in the in vacuum state and the Unruh state is numerically computed for the 2D case and

compared with the difference obtained from previous analytic calculations. Section VII

contains a summary of our results. The appendixes contain some details of a proof and

some derivations that are used in the 2D examples in Secs. V and VI. Throughout the

paper, we use the sign conventions of [30] and units are chosen such that ~ = c = G = 1.

II. MASSLESS MINIMALLY COUPLED SCALAR FIELD IN A SPACETIME

WITH A COLLAPSING NULL SHELL

A. Collapsing null shell model

We consider a model in which a spherically symmetric black hole forms from the collapse

of a null shell. Our analysis of the spactime follows that in [20]. The metric inside the shell

is the flat space metric

ds2 = −dt2 + dr2 + r2dΩ2 , (2.1)
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and, by Birkhoff’s theorem, the metric outside the shell is the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2s +

(
1− 2M

r

)−1

dr2 + r2dΩ2 . (2.2)

The two metrics need to be matched along the trajectory of the null shell. An obvious way

to do this is to let the angular coordinates be continuous across the shell along with the

radial coordinate r that is related to the area of a two-sphere. Then the time coordinate is

not continuous across the shell trajectory which is why we distinguish in the above metrics

between the time coordinate t inside the shell and the time coordinate ts outside the shell.

The actual matching is easier in terms of radial null coordinates which can be defined

inside the shell as

u = t− r , (2.3a)

v = t+ r , (2.3b)

and outside the shell as

us = ts − r∗ , (2.4a)

v = ts + r∗ , (2.4b)

where

r∗ = r + 2M log

(
r − 2M

2M

)
, (2.5)

is the usual tortoise coordinate in Schwarzschild spacetime. It is easiest to let v be continuous

across the shell trajectory which is denoted as v = v0. The outgoing radial null coordinate

is then discontinuous across the shell trajectory which is why it is denoted as u inside the

shell and us outside. The relationship between u and us is [20, 21]

us = u− 4M log

(
vH − u

4M

)
, (2.6)

with

vH ≡ v0 − 4M . (2.7)

Note that the value of the flat space coordinate u on the event horizon is vH as can be seen

from Fig. 1. Inverting, one finds that [22]

u = vH − 4MW

[
exp

(
vH − us

4M

)]
, (2.8)

with W the Lambert W function. A Penrose diagram for the resulting spacetime is sketched

in Fig. 1.
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v= v0

v= vH

H+

I −

I +

FIG. 1. Penrose diagram for a spacetime in which a null shell collapses to form a spherically

symmetric black hole. The vertical line on the left corresponds to the surface r = 0 which is also

the surface where u = v. The trajectory of the shell (dashed blue curve) is v = v0. The horizon,

H+, is the dotted red curve. Inside the shell trajectory it corresponds to the surface u = vH and

outside the shell trajectory it corresponds to us =∞.

B. Massless minimally coupled scalar field

The type of quantum field we consider is a massless minimally coupled scalar field which

in a general spacetime satisfies the wave equation

�φ = 0 . (2.9)

In the null shell spacetime the field can be expanded in terms of a complete set of modes

such that

φ =
∞∑
`=0

∑̀
m=−`

∫ ∞
0

dω [aω`mfω`m + a†ω`mf
∗
ω`m] , (2.10)

with aω`m an annihilation operator. The modes are solutions to (2.9) which have the form

fω`m = N
Y`,m(θ, φ)

r
ψω`(τ, r) , (2.11)

with N a normalization constant and τ = t inside the shell trajectory and τ = ts outside.

Inside the shell trajectory the equation for ψω` is

− ∂2ψω`
∂t2

+
∂2ψω`
∂r2

− `(`+ 1)

r2
ψω` = 0 , (2.12)
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while outside the shell the equation is

− ∂2ψω`
∂t2s

+
∂2χω`
∂r2
∗
−
(

1− 2M

r

)(
2M

r3
+
`(`+ 1)

r2

)
ψω` = 0 . (2.13)

The in vacuum state is defined by requiring that on I −

ψin
ω` = e−iωv . (2.14)

The modes must also be regular on the surface r = 0 inside the shell trajectory which implies

that ψin
ω` = 0 there.

The normalization constant N is fixed using the scalar product which is defined by the

relation

(f1, f2) = −i
∫

Σ

dΣnµ[f1(x)
↔
∂µf

∗
2 (x)] . (2.15)

Here nµ is a future-directed unit vector orthogonal to the spacelike (or null) hypersurface Σ

and dΣ is the volume element in Σ. The hypersurface Σ is taken to be a Cauchy surface.

To normalize the in modes it is easiest to use past null infinity, I −, as the Cauchy surface.

If the orthonormal condition

(fω`m, fω′`′m′) = δ`,`′δm,m′δ(ω − ω′) , (2.16)

is imposed then it is straightforward to show that

N =
1√
4πω

. (2.17)

For the modes in the in state in the region inside the null shell trajectory

ψin
ω` = e−iωtχin

ω`(r) . (2.18)

Substituting this into (2.12) gives

d2χin
ω`

dr2
= −

[
ω2 − `(`+ 1)

r2

]
χω` . (2.19)

The solution for which ψin
ω` vanishes at r = 0 is

ψin
ω` = C` e

−iωt ωrj`(ωr) , (2.20)

where C` is a normalization constant and j` is a spherical Bessel function. The condi-

tion (2.14) on I − fixes the value of C`. For example, for ` = 0, it is easy to show that

C0 = −2i and

ψin
ω0 = e−iωv − e−iωu . (2.21)
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In the region outside of the null shell trajectory v = v0, the in modes still have the

boundary condition (2.14). However, their other boundary condition is that ψin
ω` and its

first derivatives must be continuous across v = v0. The fact that the time coordinates are

different on either side of this surface makes it impossible to have a solution of the form

ψin
ω` = e−iωtsχin

ω`(r) outside the null shell trajectory. However, it is possible to write ψin
ω` in

terms of a complete set of mode functions of the form ψω` = e−iωtsχω`(r) outside the null

shell trajectory as is shown in Sec. V.

III. METHOD TO COMPUTE THE STRESS-ENERGY TENSOR

The stress-energy tensor for the quantized massless minimally coupled scalar field, 〈Tab〉,
is to be computed for the in vacuum state in the region outside the null shell and outside

the event horizon. The stress-energy tensor for the classical field is

Tab = ∂aΦ∂bΦ−
1

2
gabg

cd∂cΦ∂dΦ . (3.1)

To compute 〈in|Tab|in〉, one can substitute (2.10) into (3.1), use the complete set of modes for

the in vacuum state f in
ω`m, and compute the expectation value. There are two things which

make this difficult. One is computing the modes f in
ω`m in the region outside the shell and the

other is renormalizing the stress-energy tensor. Our method to compute the stress-energy

tensor provides one way to overcome these difficulties.

First, we renormalize by subtracting from the unrenormalized expression for the stress-

energy tensor for the in vacuum state, the unrenormalized stress-energy tensor for the Unruh

state. Since the renormalization counterterms are local and thus do not depend on the state

of the quantum field, this quantity will be finite. Then we add back the unrenormalized

stress-energy tensor for the Unruh state and then subtract from it the renormalization

counter terms. Schematically one can write

〈in|Tab|in〉ren = ∆〈Tab〉+ 〈U |Tab|U〉ren ,

∆〈Tab〉 = 〈in|Tab|in〉unren − 〈U |Tab|U〉unren . (3.2)

The quantity 〈U |Tab|U〉ren has been numerically computed for a massless minimally coupled

scalar field in Schwarzschild spacetime [13, 14]. Thus what remains is to compute the

difference between the unrenormalized expressions. To do that it is necessary to discuss
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the computation of the mode functions for the quantum field that are relevant for the in

and Unruh states. It is worth pointing out that the computation of 〈U |Tab|U〉ren done

in [13, 14] was done for pure Schwarzschild spacetime outside the event horizon. However

the computation we wish to do for 〈in|Tab|in〉ren is for the null shell spacetime outside both

the shell and the horizon. The reason that there is no problem is that the renormalization

counterterms are local and so are the same in this part of the null shell spacetime as they

are in pure Schwarzschild spacetime.

Analytic expressions for the mode functions in the in vacuum state, f in
ω`m inside the shell

are given in (2.20). However, it is not easy to continue these to the region outside the

shell because the time coordinate t and the right moving radial null coordinate u are not

continuous across the shell. However, the known solutions inside the null shell along with

their behavior on I − can be used to fix the initial data on a Cauchy surface in the null

shell spacetime. The Cauchy surface we consider here, consists of the part of I − with

v0 ≤ v <∞ along with the trajectory of the null shell. This initial data could be used for a

numerical calculation of the partial differential equation satisfied by f in
ω`m outside the shell.

Alternatively, one can expand f in
ω`m in terms of a complete set of modes in the region outside

the shell and use the data on the Cauchy surface to determine the matching coefficients.

Here we take a variation of the latter approach by noting that the spacetime geometry

outside the shell is the Schwarzschild geometry. Because of this, it is possible to do the

matching in the corresponding part of Schwarzschild spacetime. The advantage of this is

that the matching can be to a complete set of modes in the region outside the horizon in

Schwarzschild spacetime. These modes are well understood and straightforward to work with

numerically. The disadvantage is that the relevant part of the Cauchy surface in the null shell

spacetime discussed above does not form a Cauchy surface in the Schwarzschild spacetime.

This can be remedied by adding a segment along the future horizon with −∞ < v ≤ v0.

The result is a Cauchy surface for the part of Schwarzschild spacetime that is outside of the

past and future horizons. It is illustrated in Fig. 2. It is worth noting that the part of the

Cauchy surface on the future horizon is not causally connected with the region outside the

future horizon and outside the surface v = v0. The corresponding region in the null shell

spacetime is the region where we want to compute the stress-energy tensor. Thus any initial

data can be used for the mode function f in
ω`m on that surface so long as f in

ω`m is continuous

at the point where the future horizon intersects the part of the Cauchy surface with v = v0.
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III

III

IV

i+

i−

i0

H
+ J +

J−H −

r = 0

r = 0

v = v0

FIG. 2. Penrose diagram for Schwarzschild spacetime showing the Cauchy surface used for matching

the in modes in the null shell spacetime to a complete set of modes in Schwarzschild spacetime in

the region outside the past and future horizons. The Cauchy surface is denoted by the dashed red

curve.

IV. COMPLETE SETS OF MODE FUNCTIONS IN SCHWARZSCHILD SPACE-

TIME

In this paper we work with four complete sets of mode functions for the part of

Schwarzschild spacetime that is outside both the past and future horizons. The frequencies

of all of the modes that we consider are taken to be non-negative.

A. Modes used for the in state

To expand the modes for the in state in terms of a complete set of modes in Schwarzschild

spacetime we find it most convenient to choose the complete set of modes that consists of

the union of modes that are positive frequency on the future horizon H+ and zero on future

null infinity, I +, (labeled by fH
+

ω`m) and modes that are positive frequency on I + and zero

on H+ (labeled by fI +

ω`m). Both sets of modes are of the general form

ψω` = e−iωtsχω`(r) , (4.1)

with 0 ≤ ω <∞. Substituting into (2.13) gives the radial mode equation for Schwarzschild

spacetime
d2χω`
dr2
∗

= −
[
ω2 −

(
1− 2M

r

)(
2M

r3
+
`(`+ 1)

r2

)]
χω` . (4.2)
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These modes are normalized on the Cauchy surface consisting of H+ and I + with the

result (2.17).

It is useful to consider a different complete set of mode functions of the form (4.1) which

are defined by two linearly independent solutions to the radial mode equation (4.2) with the

properties

χ∞R → eiωr∗ , r∗ →∞ , (4.3a)

χ∞L → e−iωr∗ , r∗ →∞ . (4.3b)

Near the event horizon they have the behaviors [31]

χ∞R → ER(ω)eiωr∗ + FR(ω)e−iωr∗ , r∗ → −∞ , (4.4a)

χ∞L → EL(ω)eiωr∗ + FL(ω)e−iωr∗ , r∗ → −∞ , (4.4b)

where ER, EL, FR, and FL are scattering parameters that can be determined numerically.1

They satisfy the relation ERFL − ELFR = 1.

For the modes fH
+

ω`m, on the future horizon ψH
+

ω ` = e−iωv while ψH
+

ω ` = 0 on I +. The

radial mode function which has these properties is

χH
+

ω` =
1

FL
χ∞L . (4.5)

This is easily verified by evaluating the resulting mode function ψH
+

ω` on H+ and I +. To

see how this works consider the behavior near I +:

ψH
+

ω` →
1

FL
e−iωv−εv → 0 , v →∞ . (4.6)

Here we have used a positive integrating factor ε to explicitly show that this mode function

vanishes on I + where v =∞.

For the modes fI +

ω`m, on H+, ψI +

ω` = 0 while on I +, ψI +

ω` → e−iωus . The radial mode

function which results in these properties is

χI +

ω` = χ∞R −
FR
FL

χ∞L . (4.7)

1 The subscripts r and l in [31] have been changed here to R and L respectively.
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B. Complete sets of modes used to define the Unruh state

Before discussing the modes that can be used to define the Unruh state, it is useful to

consider a complete set of mode functions that are positive frequency on either the past

horizon H− and vanish on I − (denoted by fH
−

ω`m ) or which vanish on H− and are positive

frequency on I − (denoted by fI−

ω`m). For the modes fH
−

ω`m, on H−, ψH
−

ω ` = e−iωus while

ψH
−

ω ` = 0 on I −. The radial mode function which has these properties is [31]

χH
−

ω` =
χ∞R
ER

. (4.8)

For the modes fI−

ω`m, on H−, ψI−

ω` = 0 while on I −, ψI−

ω` → e−iωv. The radial mode

functions which has these properties is [31]

χI−

ω` = χ∞L −
EL
ER

χ∞R . (4.9)

These modes are normalized on the Cauchy surface consisting of H− and I − with the

result (2.17).

The Unruh state in Schwarzschild spacetime consists of a complete set of modes consisting

of the modes fI−

ω`m and the modes (denoted by fKω`m) that on H− have the form

ψKωK` = e−iωKU , (4.10)

with

U = −e
−κu

κ
. (4.11)

Here κ = (4M)−1 is the surface gravity of the black hole and 0 ≤ ωK < ∞. These modes

vanish on I − and can be normalized on the Cauchy surface that is the union between H−

and I − with the result that2

fKω`m =
Y`m√

4πωK r
ψKω` . (4.12)

They can be expanded in terms of the fH
−

ω`m modes. The result is given in (5.16) and (5.17).

Since the method used to compute the stress-energy tensor involves subtracting the un-

renormalized stress-energy tensor for the Unruh state it is useful to write the modes associ-

ated with this state, fH
−

ω`m and fI−

ω`m in terms of fH
+

ω`m and fI +

ω`m. The result is

fH
−

ω`m =
1

ER
(FR f

H+

ω`m + fI +

ω`m) , (4.13a)

fI−

ω`m =
1

ER
(fH

+

ω`m − EL fI +

ω`m) . (4.13b)

2 Here we use the entire surface H− which extends from U = −∞ to U = +∞.
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V. MATCHING COEFFICIENTS

A. General formulas

In this section general formulas are derived for the matching coefficients used in an

expansion of the modes of a massless minimally coupled scalar field for the in vacuum state

in the collapsing null shell spacetime in terms of a complete set of modes in Schwarzschild

spacetime in the region outside the past and future horizons. These can be used in the

computation of the stress-energy tensor, 〈in|Tab|in〉, for the scalar field in the part of the

collapsing null shell spacetime that is outside of the shell and outside of the event horizon.

The expansion of the in mode functions has the form

f inω`m =
∞∑
`′=0

`′∑
m′=−`′

∫∞
0
dω′
[
AI +

ω`mω′`′m′f
I +

ω′`′m′ +BI +

ωlmω′`′m′(f
I +

ω′`′m′)
∗

+ AH
+

ω`mω′`′m′f
H+

ω′`′m′ +BH+

ω`mω′`′m′(f
H+

ω′`′m′)
∗
]
. (5.1)

The matching coefficients are found using the scalar product in (2.15) and the orthonormality

of the modes f (I +, H+) with respect to this scalar product. The result is

A
(I +,H+)
ω`mω′`′m′ = (f in

ω`m, f
(I +,H+)
ω′`′m′ ) , (5.2a)

B
(I +,H+)
ω`mω′`′m′ = −(f in

ω`m, (f
(I +,H+)
ω′`′m′ )∗) . (5.2b)

For the Cauchy surface we consider, (2.15) reduces to integrals of the form∫
du

∫
dΩr2

↔
∂u ,

∫
dv

∫
dΩr2

↔
∂v . (5.3)

On the hypersurfaces where these integrals are computed, the following properties for spher-

ical harmonics can be used:∫
dΩYlm(θ, φ)Y ∗l′m′(θ, φ) = δl,l′δm,m′ , (5.4a)∫
dΩYlm(θ, φ)Yl′m′(θ, φ) = (−1)mδl,l′δm,−m′ . (5.4b)

As a result we can write

A
(I +,H+)
ωlmω′l′m′ = δl,l′δm,m′A

(I +,H+)
ωω′` , (5.5a)

B
(I +,H+)
ωlmω′l′m′ = (−1)mδl,l′δm,−m′B

(I +,H+)
ωω′` , (5.5b)
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and

f inω`m =
Y`m

r
√

4π

∫ ∞
0

dω′√
ω′

[
AI +

ωω′`ψ
I +

ω′` +BI +

ωω′`(ψ
I +

ω′` )∗ + AH
+

ωω′`ψ
H+

ω′` +BH+

ωω′`(ψ
H+

ω′` )∗
]
. (5.6)

From this expression one can see that if, at small ω′, the matching coefficients go like 1√
ω′

then there is an infrared divergence in the integral and it is not obvious how to deal with it.

For this reason, we use integrations by parts in some of the computations of the matching

coefficients below to avoid this difficulty. For Schwarzschild spacetime in 4D, our results

when substituted into (5.6) do not give infrared divergences.

The contribution to the matching coefficients from the three segments of the Cauchy

surface in Fig. 2 are

A
(I +,H+)
ωω′l =

(
A

(I +,H+)
ωω′l

)
H+

+
(
A

(I +,H+)
ωω′l

)
v0

+
(
A

(I +,H+)
ωω′l

)
I−

, (5.7a)(
A

(I +,H+)
ωω′l

)
H+

= − i

4π
√
ωω′

∫ v0

−∞
dv ψinωl(u = vH , v)

↔
∂v[ψ

(I +,H+)
ω′l (us =∞, v)]∗ , (5.7b)(

A
(I +,H+)
ωω′l

)
v0

= − i

4π
√
ωω′

∫ vH

−∞
du ψinωl(u, v0)

↔
∂u[ψ

(I +,H+)
ω′l (us(u), v0)]∗ , (5.7c)(

A
(I +,H+)
ωω′l

)
I−

= − i

4π
√
ωω′

∫ ∞
v0

dv ψinωl(u = −∞, v)
↔
∂v[ψ

(I +,H+)
ω′l (us = −∞, v)]∗ ,(5.7d)

and

B
(I +,H+)
ωω′l =

(
B

(I +,H+)
ωω′l

)
H+

+
(
B

(I +,H+)
ωω′l

)
v0

+
(
B

(I +,H+)
ωω′l

)
I−

, (5.8a)(
B

(I +,H+)
ωω′l

)
H+

=
i

4π
√
ωω′

∫ v0

−∞
dv ψinωl(u = vH , v)

↔
∂vψ

(I +,H+)
ω′l (us =∞, v) , (5.8b)(

B
(I +,H+)
ωω′l

)
v0

=
i

4π
√
ωω′

∫ vH

−∞
du ψinωl(u, v0)

↔
∂uψ

(I +,H+)
ω′l (us(u), v0) , (5.8c)(

B
(I +,H+)
ωω′l

)
I−

=
i

4π
√
ωω′

∫ ∞
v0

dv ψinωl(u = −∞, v)
↔
∂vψ

(I +,H+)
ω′l (us = −∞, v) . (5.8d)

It is important to note that the integrals in (5.7b) and (5.8b) are computed with the

integrands evaluated on H+. Since ψI +

ω′l = 0 on H+

(
AI +

ωω′l

)
H+

=
(
BI +

ωω′l

)
H+

= 0 . (5.9)

On H+, ψH
+

ω` = e−iωv. The part of the Cauchy surface in Schwarzschild spacetime which is on

H+ has no counterpart in the collapsing null shell spacetime and, as discussed in SEc. III, is

causally disconnected from the region outside the collapsing null shell and outside the event
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horizon. Thus the only restriction on the mode functions ψin
ω` for this surface is continuity

at v = v0. The simplest mode function to use on this surface is then

ψin
ω`(u = vH , v) = ψin

ω`(u = vH , v0) . (5.10)

With this choice it turns out to be useful to write the contribution to the matching coefficients

from H+ in the form

(
AH

+

ωω′l

)
H+

=
i

4π
√
ωω′

ψin
ω`(vH , v0)eiω

′v0 − i

2π

√
ω′

ω

eiω
′v0

ω′ − iεψ
in
ω`(vH , v0) , (5.11a)(

BH+

ωω′l

)
H+

= − i

4π
√
ωω′

ψin
ω`(vH , v0)e−iω

′v0 +
i

2π

√
ω′

ω

e−iω
′v0

ω′ + iε
ψin
ω`(vH , v0) , (5.11b)

where for each integral an integration by parts has been done and an integrating factor

0 < ε� 1 has been included to make the integrals converge.

The integrals in (5.7c) and (5.8c) are computed with the integrands evaluated on the

surface v = v0. In this case ψin
ω` is given by (2.20) while analytic expressions for ψI +,H+

ω` are

only known for the limits us → ±∞. For all intermediate values of us these modes must be

computed numerically.

The integrals in (5.7d) and (5.8d) are computed with the integrands evaluated on the

surface I −. In this case ψin
ω` is given by (2.14). From (4.5) and (4.7) one can deduce that

on I −

ψH
+

ω` =
1

FL
e−iωv ,

ψI +

ω` = −FR
FL

e−iωv . (5.12)

To avoid infrared divergences in (5.6) it is useful to subtract and then add back the quan-

tity e−iωv0 from ψin
ω` in (5.7c) and (5.8c). Then after integrations by parts the contributions
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from the surface v = v0 can be written as

(
AH

+

ωω′l

)
v0

= − i

4π
√
ωω′

ψin
ω`(vH , v0)eiω

′v0 +
i

4π
√
ωω′ F ∗L(ω′, `)

e−i(ω−ω
′)v0

+
i

2π
√
ωω′

∫ vH

−∞
du
[
∂uψ

in
ω`(u, v0)

]
ψH

+∗
ω′` (us(u), v0) , (5.13a)(

BH+

ωω′l

)
v0

=
i

4π
√
ωω′

ψin
ω`(vH , v0)e−iω

′v0 − i

4π
√
ωω′ FL(ω′, `)

e−i(ω+ω′)v0

− i

2π
√
ωω′

∫ vH

−∞
du
[
∂uψ

in
ω`(u, v0)

]
ψH

+

ω′` (us(u), v0) , (5.13b)(
AI +

ωω′l

)
v0

= − i

4π
√
ωω′

F ∗R(ω′, `)

F ∗L(ω′, `)
e−i(ω−ω

′)v0

− i

2π
√
ωω′

∫ vH

−∞
du [ψin

ω`(u, v0)− e−iωv0 ]∂uψI +∗
ω′` (us(u), v0) , (5.13c)(

BI +

ωω′l

)
v0

=
i

4π
√
ωω′

FR(ω′, `)

FL(ω′, `)
e−i(ω+ω′)v0

+
i

2π
√
ωω′

∫ vH

−∞
du
[
ψin
ω`(u, v0)− e−iωv0

]
∂uψ

I +

ω′` (us(u), v0) . (5.13d)

The modes on I − take on the simple forms (2.14) and (5.12). This makes it possible to

evaluate the integrals for the contributions to the matching parameters from that surface.

After integrating by parts, we find

(
AH

+

ωω′l

)
I−

= − i

4π
√
ωω′ F ∗L(ω′, `)

e−i(ω−ω
′)v0 +

i

2π

√
ω′

ω

1

F ∗L(ω′, `)

ei(ω
′−ω)v0

ω′ − ω + iε
, (5.14a)

(
BH+

ωω′l

)
I−

=
i

4π
√
ωω′ FL(ω′, `)

e−i(ω+ω′)v0 − i

2π

√
ω′

ω

1

FL(ω′, `)

e−i(ω+ω′)v0

ω′ + ω − iε , (5.14b)

(
AI +

ωω′l

)
I−

= − i

4π
√
ωω′

F ∗R(ω′, `)

F ∗L(ω′, `)
e−i(ω−ω

′)v0 − i

2π

√
ω′

ω

F ∗R(ω′, `)

F ∗L(ω′, `)

e−i(ω−ω
′)v0

ω′ − ω + iε
, (5.14c)(

BI +

ωω′l

)
I−

= − i

4π
√
ωω′

FR(ω′, `)

FL(ω′, `)
e−i(ω+ω′)v0 +

i

2π

√
ω′

ω

FR(ω′, `)

FL(ω′, `)

e−i(ω+ω′)v0

ω′ + ω − iε . (5.14d)
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Combining these results together, the general formulas for the matching coefficients are

AH
+

ωω′l = − i

2π

√
ω′

ω

eiω
′v0

ω′ − iεψ
in
ω`(vH , v0) +

i

2π

√
ω′

ω

1

F ∗L(ω′, `)

ei(ω
′−ω)v0

ω′ − ω + iε

+
i

2π
√
ωω′

∫ vH

−∞
du
[
∂uψ

in
ω`(u, v0)

]
ψH

+∗
ω′` (us(u), v0) , (5.15a)

BH+

ωω′l =
i

2π

√
ω′

ω

e−iω
′v0

ω′ + iε
ψin
ω`(vH , v0)− i

2π

√
ω′

ω

1

FL(ω′, `)

e−i(ω+ω′)v0

ω′ + ω − iε

− i

2π
√
ωω′

∫ vH

−∞
du
[
∂uψ

in
ω`(u, v0)

]
ψH

+

ω′` (us(u), v0) , (5.15b)

AI +

ωω′l = − i

2π

√
ω′

ω

F ∗R(ω′, `)

F ∗L(ω′, `)

e−i(ω−ω
′)v0

ω′ − ω + iε

− i

2π
√
ωω′

∫ vH

−∞
du
[
ψin
ω`(u, v0)− e−iωv0

]
∂uψ

I +∗
ω′` (us(u), v0) , (5.15c)

BI +

ωω′l =
i

2π

√
ω′

ω

FR(ω′, `)

FL(ω′, `)

e−i(ω+ω′)v0

ω′ + ω − iε

+
i

2π
√
ωω′

∫ vH

−∞
du
[
ψin
ω`(u, v0)− e−iωv0

]
∂uψ

I +

ω′` (us(u), v0) . (5.15d)

B. Expansions of modes for the Unruh state

As discussed in Sec. III, our method for renormalizing the stress-energy tensor involves

subtracting the unrenormalized stress-energy tensor for the Unruh modes. Recall these

modes include the set of modes fKω`m that are positive frequency on the past horizon with

respect to the Kruskal time coordinate along with the set of modes fI−

ω`m that on I − have

ψω` = e−iωv. Before subtracting the contribution from the fI−

ω`m modes we first write them

in terms of fI +

ω`m and fH
+

ω`m using (4.13b).

For the contributions of the fKω`m modes we first write down the Bogolubov transformation

fKω`m =

∫ ∞
0

dω′
[
αKωω′`f

H−

ω′`m + βKωω′`f
H−∗
ω′`m

]
. (5.16)

The coefficients can be obtained using the scalar product (2.15) with a Cauchy surface

consisting of the union of past null infinity and the past horizon in Schwarzschild spacetime.

Integrating over the angular coordinates one finds that the Bogolubov coefficients can be

written in the form (5.5) with α replacing A and β replacing B. Integrating the remaining
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integrals over us by parts one finds that3

αKωKω′` =
1

2π

√
ω′

ωK
(4M)1+i4Mω′

∫ 0

−∞
dUKe

−iωKUK (−UK)−1−i4Mω′

=
1

2π

√
ω′

ωK
(4M)1+i4Mω′ Γ(δ − i4Mω)

(−iωK + ε)−i4Mω′
, (5.17a)

βKωKω′` =
1

2π

√
ω′

ωK
(4M)1−i4Mω′

∫ 0

−∞
dUKe

−iωKUK (−UK)−1+i4Mω′

=
1

2π

√
ω′

ωK
(4M)1−i4Mω′ Γ(δ + i4Mω)

(−iωK + ε)i4Mω′
. (5.17b)

Here δ and ε are integrating factors with 0 < δ � 1 and 0 < ε� 1. Note that the Bogolubov

coefficients are independent of the value of `. This is because the effective potential vanishes

on H− which is the surface where the integrals are being computed. Then we use (4.13) to

express the modes fH
−,I−

ω`m in terms of the modes f
(I +H+)
ω`m .

C. 2D example

In this section we will illustrate the matching for the case of a 2D spacetime which has a

perfectly reflecting mirror at r = 0. The metric inside the shell is the flat space metric

ds2 = −dt2 + dr2 , (5.18)

and the metric outside the shell is the Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2s +

(
1− 2M

r

)−1

dr2 . (5.19)

The Penrose diagram is the same as in the 4D case as is the definition of the radial null

coordinates u, us, and v and the relation between u and us.

The general form of the mode functions is

fω =
ψω√
4πω

. (5.20)

There is no scattering for the massless minimally coupled scalar field modes in 2D so

ER = FL = 1 , EL = FR = 0 . (5.21)

3 This calculation was originally done in [32] but note that there is a mistake in the results. The expressions

in that paper are missing a factor of (4M)±iω
′
.
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Inside the shell the in modes are

ψin
ω = e−iωv − e−iωu . (5.22)

In the region outside the shell the spacetime is the 2D version of Schwarzschild spacetime

and the modes are

ψI +

ω = ψH
−

ω = e−iωus , (5.23a)

ψH
+

ω = ψI−

ω = e−iωv . (5.23b)

The expansion for the in modes is similar to the 4D case except there are no parameters

` and m related to the spherical harmonics. Thus

f inω =

∫ ∞
0

dω′
[
AH

+

ωω′f
H+

ω′ +BH+

ωω′ (f
H+

ω′ )∗ + AI +

ωω′f
I +

ω′ +BI +

ωω′ (f
I +

ω′ )∗
]
. (5.24)

The matching coefficients are given by substituting (5.21), (5.22), and (5.23) into (5.15). It

is then easy to show that [
BH+

ω,ω′f
H+ ∗
ω′

]
ω′→−ω′

= AH
+

ω,ω′f
H+

ω′ ,[
BI +

ω,ω′f
I + ∗
ω′

]
ω′→−ω′

= AI +

ω,ω′f
I +

ω′ , (5.25)

where the quantities on the right-hand side are to be evaluated at ω′ < 0. As a result

f inω =

∫ ∞
−∞

dω′
[
AH

+

ωω′f
H+

ω′ + AI +

ωω′f
I +

ω′

]
. (5.26)

Because ψH
+

ω′ does not depend on u, the integral in (5.15a) is trivial to evaluate and one

finds that

AH
+

ωω′ = − i

2π

√
ω′

ω

e−i(ω−ω
′)v0

ω′ − iε +
i

2π

√
ω′

ω

ei(ω
′−ω)v0

ω′ − ω + iε
. (5.27)

To see what the contribution to f in
ω is from the fH

+

ω modes, first substitute (5.27) into

the first two terms of (5.24) along with (5.20) and (5.22) with the result

(
f in
ω

)
H+ =

ie−iωv0

2π
√

4πω

∫ ∞
−∞

dω′
[
eiω
′(v0−v)

(
− 1

ω′ − iε +
1

ω′ − ω + iε

)]
=
e−iωv0√

4πω
θ(v0 − v) +

e−iωv√
4πω

θ(v − v0) . (5.28)
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We next consider the contribution of the fI +
modes. The matching coefficient in (5.15c)

is

AI +

ωω′ = − 1

2π

√
ω′

ω

∫ vH

−∞
du e−iωueiω

′us(u)dus
du

= − 1

2π

√
ω′

ω

∫ vH

−∞
du e−i(ω−ω

′)u

(
vH − u

4M

)−i4Mω′ [
1 +

4M

vh − u

]
. (5.29)

Changing variables to x = vH − u and performing an integration by parts gives

AI +

ωω′ =
i

2π

√
ωω′e−i(ω−ω

′)vH
(4M)1+i4Mω′

i(ω′ − ω) + ε

∫ ∞
0

dx ei(ω−ω
′)x−εx x−i4Mω′−1+δ

=
i

2π

√
ωω′e−i(ω−ω

′)vH (4M)1+i4Mω′ Γ(δ − i4Mω′)

[i(ω′ − ω) + ε]1−i4Mω′
. (5.30)

Note that two integrating factors have been used with 0 < ε� 1 and 0 < δ � 1.

To find the contribution to f in
ω from the fI +

ω modes, first substitute (5.30) into (5.26)

with the result(
f in
ω

)
I + =

i4M
√
ω

2π
√

4π
e−iωvH

∫ ∞
−∞

dω′eiω
′(vH−us)(4M)i4Mω′ Γ(δ − i4Mω′)

[i(ω′ − ω) + ε]1−i4Mω′
. (5.31)

Note that the denominator has an essential singularity in the upper half ω′ plane while the

Gamma function has simple poles in the lower half plane at

ω′ = − iδ

4M
, (5.32)

and

ω′ = − in

4M
, n = 1, 2, . . . (5.33)

In the complex plane at large |ω′| Sterling’s approximation gives

Γ(−i4Mω′) ≈
√

2πei4Mω′e(−i4Mω′−1/2) log(−i4Mω′) . (5.34)

Using the usual change of variables ω′ = Reiθ, with R > 0, it is straightforward to show

that the dominant contribution to the integrand of (5.31) in the large R limit comes from

the factor e4MR sin θ logR and therefore one must close in the lower half plane. This means

there is no contribution from the essential singularity but there is a contribution from each

pole of the Gamma function. At these poles it is straightforward to show that

Γ(δ − i4Mω)→ (−1)n

n!(n− i4Mω)
, n = 0, 1, 2, . . . (5.35)
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Then

(
f in
ω

)
I + =

4Mi
√
ω√

4π
e−iωvH

∞∑
n=0

(−1)n

n!
(n− i4Mω)n−1

[
exp

(
(vH − us)

4M

)]n
. (5.36)

Because the general solutions to the 2D mode equation in Schwarzschild spacetime are of

the form ψ = g(us) + h(v) with g and h arbitrary functions, the exact solution for the in

modes is

(
f in
ω

)
I + = −e

−iωu(us)

√
4πω

= −e
−iωvH
√

4πω
exp

{
i4Mω W

[
exp

(
(vH − us)

4M

)]}
, (5.37)

where (2.8) has been used and W (z) is the Lambert W function. To make a comparison

between (5.36) and (5.37), one needs to write the latter in terms of a series. This has been

done in [33]. An alternative derivation is given in Appendix A. The result is

e−cW (z) =
∞∑
n=0

c(n+ c)n−1

(n)!
(−z)n . (5.38)

Taking c = −4iMω and z = exp
(
vH−us

4M

)
in (5.38), one can see that (5.37) and (5.36) are

equivalent.

D. Delta function potential

In this section, we apply our matching method to the case where the potential term

in (4.2) is replaced by

V = λδ(r∗) , (5.39)

with λ a positive real constant. This can serve as a model for the original potential which

has a single peak and vanishes at the horizon and infinity. The resulting mode equation can

be solved analytically and the solutions are simple enough that the matching coefficients

can be computed analytically. Some of these matching coefficients will be used to partially

reconstruct the mode functions f in
ω` in the case that ` = 0.

For ` = 0 in 4D the in modes inside the null shell take on the particularly simple

form (2.21). In the region outside the shell the mode functions in the complete set with

` = 0 have the general form

f
(H+,I +)
ω′00 =

Y00

r
√

4πω′
ψ

(H+,I +)
ω′0 , ψ

(H+,I +)
ω′0 = e−iω

′tsχ
(H+,I +)
ω′0 . (5.40)
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The radial parts of the modes satisfy the following equation

d2χ

dr2
∗

+ (ω2 − λδ(r∗))χ = 0 . (5.41)

In the region where r∗ > 0, two linearly independent solutions are

χ∞R = eiωr∗ , (5.42a)

χ∞L = e−iωr∗ . (5.42b)

For r∗ < 0, χR and χL can be expressed in the following way

χ∞R = ERe
iωr∗ + FRe

−iωr∗ , (5.43a)

χ∞L = ELe
iωr∗ + FLe

−iωr∗ . (5.43b)

Imposing the continuity of the mode function and discontinuity of its first derivative in the

usual way at the spacelike curve r∗ = 0, the following analytic expressions are found for the

scattering coefficients

ER = 1 +
iλ

2ω
, (5.44a)

FR = − iλ
2ω

, (5.44b)

EL = F ∗R =
iλ

2ω
, (5.44c)

FL = E∗R = 1− iλ

2ω
. (5.44d)

Then the mode functions that we are using for the matching can be obtained from (4.5)

and (4.7) with the result

ψH
+

ω′0 = θ(−r∗)
[
e−iω

′v +
iλ
2(

ω′ − iλ
2

)e−iω′us]+ θ(r∗)
ω′(

ω′ − iλ
2

)e−iω′v , (5.45a)

ψI +

ω′0 = θ(−r∗)
ω′(

ω′ − iλ
2

)e−iω′us + θ(r∗)

[
iλ
2(

ω′ − iλ
2

)e−iω′v + e−iω
′us

]
. (5.45b)

To verify that the matching coefficients can be used to reconstruct the original mode

functions for the case ` = 0 it is useful to break them up into contributions that come

from the term proportional to e−iωv in (2.21) and the term proportional to −e−iωu. In what

follows we compute the matching coefficients for both terms but then focus only on those
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that come from the term proportional to e−iωv. Substituting (5.45), and (5.44) into (5.15)

one finds the matching coefficients

AH
+

ωω′0 = (AH
+

ωω′0)v + (AH
+

ωω′0)u ,

(AH
+

ωω′0)v = − i

2π

√
ω′

ω

eiω
′v0

ω′ − iεe
−iωv0 +

i

2π

√
ω′

ω

ω′(
ω′ + iλ

2

) ei(ω
′−ω)v0

(ω′ − ω + iε)
, (5.46a)

(AH
+

ωω′0)u =
i

2π

√
ω′

ω

eiω
′v0

ω′ − iεe
−iωvH − 1

2π

√
ω

ω′

∫ vH

−∞
du e−iωu

[
θ(r∗)

ω′

ω′ + iλ
2

eiω
′v0

+ θ(−r∗)
(
eiω
′v0 −

iλ
2

ω′ + iλ
2

eiω
′us(u)

)]
, (5.46b)

AI +

ωω′0 = (AI +

ωω′0)v + (AI +

ωω′0)u ,

(AI +

ωω′0)v = − i

2π

√
ω′

ω

iλ
2

(ω′ + iλ
2

)

e−i(ω−ω
′)v0

(ω′ − ω + iε)
, (5.47a)

(AI +

ωω′0)u = − 1

2π

√
ω′

ω

∫ vH

−∞
du
dus(u)

du
e−iωueiω

′us(u)

[
θ(r∗) + θ(−r∗)

ω′

ω′ + iλ
2

]
. (5.47b)

Note that the relations (5.25) are satisfied by these matching coefficients so the relation (5.26)

also holds. Thus

(f inω00)v =

∫ ∞
−∞

dω′
[
(AH

+

ωω′0)vf
H+

ω′00 + (AI +

ωω′0)vf
I +

ω′00

]
. (5.48)

Substituting (5.46a), (5.47a), and (5.45) into (5.48) gives after some algebra

(f inω00)v =
Y00

r
√

4πω
[θ(−r∗)I1 + θ(r∗)I2] ,

I1 = − i

2π
e−iωv0

∫ ∞
−∞

dω′

[
iλ
2
eiω
′(v0−us)

(ω′ − iε)
(
ω′ − iλ

2

) +
eiω
′(v0−v)

(ω′ − iε) −
ω′eiω

′(v0−v)(
ω′ + iλ

2

)
(ω′ − ω + iε)

]
= θ(v0 − us)e−iωv0

[
e−

λ
2

(v0−us) − 1
]

+ θ(v0 − v)e−iωv0

+
θ(v − v0)(
ω + iλ

2

) [ iλ
2
e−iωv0e−

λ
2

(v−v0) + ωe−iωv
]
, (5.49a)

I2 = − i

2π
e−iωv0

∫ ∞
−∞

dω′

[
ω′eiω

′(v0−v)

(ω′ − iε)
(
ω′ − iλ

2

) − eiω
′(v0−v)

ω′ − ω + iε
+

iλ
2
eiω
′(v0−us)

(ω′ − ω + iε)
(
ω′ + iλ

2

)]
= θ(v0 − v)e−iωv0e−

λ
2

(v0−v) + θ(v − v0)e−iωv

−θ(us − v0)
iλ
2(

ω + iλ
2

) [−e−iωv0e−λ2 (us−v0) + e−iωus
]
. (5.49b)

It is easy to verify that (5.49) gives the correct values for (f inω00)v on the future horizon for

v ≤ v0, on the null shell surface v = v0, and on past null infinity for v ≥ v0.
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E. Partial analytic results for the matching coefficients in 4D for ` = 0

Because of the simple form of the in modes for ` = 0 inside the null shell (2.21), it is

possible to compute the matching coefficients for the e−iωv part analytically. To do so we

begin by substituting (2.21) into (5.15) with the result

AH
+

ωω′0 = − i

2π

√
ω′

ω

eiω
′v0

ω′ − iε(e
−iωv0 − e−iωvH ) +

i

2π

√
ω′

ω

1

F ∗L(ω′, 0)

ei(ω
′−ω)v0

ω′ − ω + iε

− 1

2π

√
ω

ω′

∫ vH

−∞
du e−iωuψH

+∗
ω′0 (us(u), v0) , (5.50a)

BH+

ωω′0 =
i

2π

√
ω′

ω

e−iω
′v0

ω′ + iε
(e−iωv0 − e−iωvH )− i

2π

√
ω′

ω

1

FL(ω′, 0)

e−i(ω+ω′)v0

ω′ + ω − iε

+
1

2π

√
ω

ω′

∫ vH

−∞
du e−iωuψH

+

ω′0 (us(u), v0) , (5.50b)

AI +

ωω′0 = − i

2π

√
ω′

ω

F ∗R(ω′, 0)

F ∗L(ω′, 0)

e−i(ω−ω
′)v0

ω′ − ω + iε

+
i

2π

1√
ωω′

∫ vH

−∞
du e−iωu∂uψ

I +∗
ω′0 (us(u), v0) , (5.50c)

BI +

ωω′0 =
i

2π

√
ω′

ω

FR(ω′, 0)

FL(ω′, 0)

e−i(ω+ω′)v0

ω′ + ω − iε

− i

2π

1√
ωω′

∫ vH

−∞
du e−iωu∂uψ

I +

ω′0 (us(u), v0) . (5.50d)

Note that the integrals have to be computed numerically because the mode functions

in Schwarzschild spacetime must be computed numerically. However, because of the simple

form that ψin
ω0 takes it is possible to separate the matching coefficients into separate matching

coefficients for the part that goes like e−iωv inside the null shell and the part that goes

like e−iωu there. The matching coefficients for e−iωv do not depend on the integrals. In

what follows we focus on these matching coefficients. Examination of (5.50) gives for these
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coefficients (
AH

+

ωω′0

)
v

= − i

2π

√
ω′

ω

ei(ω
′−ω)v0

ω′ − iε +
i

2π

√
ω′

ω

1

F ∗L(ω′, 0)

ei(ω
′−ω)v0

ω′ − ω + iε

, (5.51a)(
BH+

ωω′l

)
v

=
i

2π

√
ω′

ω

e−i(ω
′+ω)v0

ω′ + iε
− i

2π

√
ω′

ω

1

FL(ω′, 0)

e−i(ω+ω′)v0

ω′ + ω − iε
, (5.51b)(

AI +

ωω′l

)
v

= − i

2π

√
ω′

ω

F ∗R(ω′, 0)

F ∗L(ω′, 0)

e−i(ω−ω
′)v0

ω′ − ω + iε
, (5.51c)(

BI +

ωω′l

)
v

=
i

2π

√
ω′

ω

FR(ω′, 0)

FL(ω′, 0)

e−i(ω+ω′)v0

ω′ + ω − iε . (5.51d)

These matching coefficients can be used to reconstruct the part of the mode function

which goes like e−iωv inside the shell by substituting the expressions into (5.1). To check

them we shall compute the resulting integral on H+. Recall that we are working in the exact

Schwarzschild spacetime rather than the null shell spacetime when we do the matching. The

same applies to the reconstruction. Thus the results for the reconstruction for which v ≥ v0

also apply to the null shell spacetime, but the results for v < v0 do not apply to the null

shell spacetime.

Recall that the modes fI +
vanish on H+.

(
f in
ω00

)
v

=
Y00

r
√

4πω
(I1 + I2) ,

I1 = − i

2π
e−iωv0

∫ ∞
0

dω′
[
ei(v0−v)ω′

ω′ − iε −
e−i(v0−v)ω′

ω′ + iε

]
, (5.52a)

I2 =
i

2π
e−iωv0

∫ ∞
0

dω′
[

1

F ∗L(ω′, 0)

e−iω
′(v−v0)

ω′ − ω + iε
− 1

FL(ω′, 0)

eiω
′(v−v0)

ω′ + ω − iε

]
. (5.52b)

If in the second term of I1 a change of variables is made so that ω′ → −ω′ then one finds

that

I1 = − i

2π
e−iωv0

∫ ∞
−∞

dω′
ei(v0−v)ω′

ω′ − iε = e−iωv0 θ(v0 − v) , (5.53)

with θ the step function. It is thus clear that the initial data on H+ for −∞ < v < v0 does

not affect the mode functions on the part of the future horizon for which v0 < v <∞.

It can be shown from the properties of the scattering coefficients given in [31], that

FL(ω′) = F ∗L(−ω′). Using this identity and changing the variable of integration in the
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second integral in the same way as was done for I1, one obtains

(f inω00)v =
Y00e

−iωv0

r
√

4πω
θ(v0 − v) +

iY00

r2π
√

4πω

∫ ∞
−∞

dω′
e−iω

′v

F ∗L(ω′, 0)

eiv0(ω′−ω)

ω′ − ω + iε
. (5.54)

To compute this integral using complex integration techniques one must know the singu-

larity structure of 1
F ∗L

which is difficult since this scattering coefficient must be computed

numerically. However, one can at least test whether it has one or more singularities in the

complex plane by assuming it does not and computing the integral. We will call the result

f test because there is no guarantee that this method will give the correct answer. The result

of such an integration is

f test =
e−iωv0√

4πω
θ(v0 − v) +

e−iωv

F ∗L(ω, 0)
√

4πω
θ(v − v0) .

Here complex integration has been performed using a contour in the lower half of the complex

plane. It is obvious that at v = v0, the continuity condition for (f inω00)v is not satisfied so

f test 6= (f inω00)v which implies that 1
F ∗L(ω′)

has one or more singularities in the complex plane.

Alternatively one can work with I2 in the form (5.52b), use the relation (ω′∓ω± iε)−1 =

∓iπδ(ω′∓ω)+(ω′∓w)−1, and compute the principle value parts of the integral numerically

for v > v0. This has been done and the result is shown in Fig. 3. It is clear from the plots

in this figure that on the future horizon (f in
ω00)v is continuous at v = v0.
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FIG. 3. The real (left) and the imaginary (right) parts of
√

4π
M (f in

ω00)v on the future horizon have

been plotted. In both plots, Mω = 0.02 and v0
M = 3. The plots clearly show that (f in

ω00)v is

continuous at v = v0.
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VI. STRESS-ENERGY TENSOR

A. Method in 4D

For the massless minimally coupled scalar field the classical stress-energy tensor in a

general curved spacetime is given in (3.1) and a renormalization expression for 〈Tab〉 is given

in (3.2). To compute 〈Tab〉 using (3.2) it is useful to begin with the points split and to write

the stress-energy tensor in terms of derivatives of the Hadamard Green’s function

G(1)(x, x′) = 〈{φ(x), φ(x′)}〉 . (6.1)

We adopt the notation

∆G(1)(x, x′) = 〈in|{φ(x), φ(x′)}|in〉 − 〈U |{φ(x), φ(x′)}|U〉 , (6.2)

with |in〉 representing the in vacuum state and |U〉 the Unruh state. The corresponding

difference in the stress-energy tensors is then

∆〈Tab〉 =
1

4
lim
x′→x

[(
gc
′

a ∆G
(1)
;c′;b + gc

′

b ∆G
(1)
;a;c′

)
− gab g

cd′∆G
(1)
;c;d′

]
. (6.3)

Here the quantity gb
′
a parallel transports a vector from x′ to x and is called the bivector of

parallel transport [34]. To leading order when the point separation is small

gb
′

a = gba = δba . (6.4)

The subleading orders all vanish in the limit x′ → x. Since there are no ultraviolet diver-

gences in the quantity ∆〈Tab〉 one can use (6.4) in (6.3) with the result

∆〈Tab〉 =
1

4

[
lim
x′→x

(
∆G

(1)
;a′;b + ∆G

(1)
;a;b′

)
− gab gcd lim

x′→x
∆G

(1)
;c;d′

]
, (6.5)

where a slight abuse of notation has been used for the implied sum over d and d′ in the last

term. It is important to note that this expression is valid in both two and four dimensions.

Expanding the field in terms of modes as in (2.10) one finds for the in modes that

〈0 in|{φ(x), φ(x′)}|0 in〉 =
∞∑
`=0

∑̀
m=−`

∫ ∞
0

dω [f in
ω`m(x)(f in

ω`m(x′))∗+f in
ω`m(x′)(f in

ω`m(x))∗] . (6.6)
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The Unruh state in Schwarzschild spacetime consists of modes that are positive frequency

with respect to the usual time coordinate on I − along with modes that are positive fre-

quency with respect to the Kruskal time coordinate on H− so that

〈U |{φ(x), φ(x′)}|U〉 =
∞∑
`=0

∑̀
m=−`

{∫ ∞
0

dωK [fKωK`m(x)(fKωK`m(x′))∗ + fKωK`m(x′)(fKωK`m(x))∗]

+

∫ ∞
0

dω [fI−

ω`m(x)(fI−

ω`m(x′))∗ + fI−

ω`m(x′)(fI−

ω`m(x))∗]

}
. (6.7)

The next step is to find expansions for these two-point functions in terms of the complete

set of modes f (I +,H+) that we are using. For 〈0 in|{φ(x), φ(x′)}|0 in〉 one can substitute (5.1)

into (6.6). This results in integrals of the form

∞∑
`=0

∑̀
m=−`

∫ ∞
0

dω

∫ ∞
0

dω1

∫ ∞
0

dω2

{[
A(H+,I +)f (H+,I +) +B(H+,I +)(f (H+,I +))∗

]
×
[
(A(H+,I +))∗(f (H+,I +))∗ + (B(H+,I +))∗f (H+,I +)

]}
, (6.8)

where the subscripts on the matching coefficients and mode functions have been suppressed.

For 〈U |{φ(x), φ(x′)}|U〉 one can first substitute (5.16) and (5.17) into (6.7) to obtain an

expression in terms of f
(H−,I−)
ω`m . Then (4.13) can be used to obtain an expression for

〈U |{φ(x), φ(x′)}|U〉 that depends only on f
(I +,H+)
ω`m .

B. 2D Example

In this section the method discussed above is tested by using it to computing the stress-

energy tensor for the scalar field in the corresponding 2D spacetime where the answer is

known. The computation will be done in the region v > v0 outside the null shell and outside

the horizon. From (5.28) it is clear that for v > v0 the contribution from the fH
+

ω′ modes to

f in
ω is (

f in
ω

)
H+ =

e−iωv√
4πω

= fH
+

ω . (6.9)

Thus

f in
ω = fH

+

ω +

∫ ∞
0

dω [AI +

ωω′f
I +

ω′ +BI +

ωω′ (f
I +

ω′ )∗] , (6.10)

with AI +

ωω′ given in (5.30). Using the relation Γ(x) = Γ(1+x)
x

one obtains the form used for

the numerical computations

AI +

ωω′ = − 1

2π

√
ω

ω′
(4M)i4Mω′e−i(ω−ω

′)vH
Γ(1− i4Mω′)

[−i(ω − ω′) + ε]1−i4Mω′
. (6.11)
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Then, using the relations (5.25) one finds

BI +

ωω′ =
1

2π

√
ω

ω′
(4M)−i4Mω′e−i(ω+ω′)vH

Γ(1 + i4Mω′)

[−i(ω + ω′) + ε]1+i4Mω′
. (6.12)

In what follows the superscript I + on the matching coefficients A and B will be suppressed.

Next, with the aim of finding the components of the stress-energy tensor using (6.5), we

construct the Hadamard form of Green’s function which in 2D is

G(1)(x, x′) =

∫ ∞
0

dω [f inω (x)f in ∗ω (x′) + f in ∗ω (x)f inω (x′)] . (6.13)

Substituting (6.10) into (6.13) gives

G(1)(x, x′) =

∫ ∞
0

dω
{[
fH

+

ω (x) +

∫ ∞
0

dω1 [Aωω1f
I +

ω1
(x) + Bωω1f

I +∗
ω1

(x)]
]

×
[
fH

+∗
ω (x′) +

∫ ∞
0

dω2 [[A∗ωω2
fI + ∗
ω2

(x′) + B∗ωω2
fI +

ω2
(x′)]

]
+
[
fH

+

ω (x′) +

∫ ∞
0

dω1 [Aωω1f
I +

ω1
(x′) + Bωω1f

I +∗
ω1

(x′)]
]

×
[
fH

+∗
ω (x) +

∫ ∞
0

dω2 [A∗ωω2
fI +∗
ω2

(x) + B∗ωω2
fI +

ω2
(x)]

]}
. (6.14)

Expanding the integrand of the integral over ω results in three types of expressions: an

integral consisting of products of the modes fH
+

ω , which we call GA, another integral which

includes cross products between the modes fH
+

ω and fI +

ω , which we call GB, and finally an

integral consisting of products of the modes fI +

ω , which we called GC .

To renormalize we follow a procedure equivalent to that outlined in Sec. VI A. We begin

by subtracting off the integrals with the integrand evaluated in the large ω limit. When

we add them back, we get contributions that are identical to those obtained for the Unruh

state. We are not quite subtracting off the Unruh modes because the large ω solutions have

a dependence on vH . However, when the subtracted terms are added back and the integral

over ω is computed, then factors of δ(ω1−ω2) and δ(ω1 +ω2) are obtained. Note that terms

proportional to δ(ω1 +ω2) vanish. For the ones that do not vanish, once one integrates over

say ω2, the dependence on vH vanishes.

In Appendix B it is shown that when this method is applied to G(1)(x, x′), the ∆GA

term vanishes. It is also shown that, while the ∆GB term does not vanish, it does not

contribute to the stress-energy tensor. As a result, the only term that contributes to ∆〈Tab〉
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is ∆GC(x, x′) which has the form

∆GC(x, x′) =

∫ ∞
0

dω1

∫ ∞
0

dω2

{
[fI +

ω1
(x)fI + ∗

ω2
(x′) + fI +

ω1
(x′)fI + ∗

ω2
(x)]∆I1

+ [fI +

ω1
(x)fI +

ω2
(x′) + fI +

ω1
(x′)fI +

ω2
(x)]∆I2

+ [fI + ∗
ω1

(x)fI + ∗
ω2

(x′) + fI + ∗
ω1

(x′)fI + ∗
ω2

(x)]∆I3

+ [fI + ∗
ω1

(x)fI +

ω2
(x′) + fI + ∗

ω1
(x′)fI +

ω2
(x)]∆I4

}
, (6.15)

with

∆I1 =

∫ ∞
0

dω
{
Aωω1A

∗
ωω2
−O(Aωω1A

∗
ωω2

)
}
, (6.16a)

∆I2 =

∫ ∞
0

dω
{
Aωω1B

∗
ωω2
−O(Aωω1B

∗
ωω2

)
}
, (6.16b)

∆I3 =

∫ ∞
0

dω
{
Bωω1A

∗
ωω2
−O(Bωω1A

∗
ωω2

)
}
, (6.16c)

∆I4 =

∫ ∞
0

dω
{
Bωω1B

∗
ωω2
−O(Bωω1B

∗
ωω2

)
}
. (6.16d)

Here O indicates the asymptotic behavior of the matching coefficients for ω � ω1,2.

The integrals in (6.16) can be computed analytically. Substituting the explicit expression

for A from (6.11) into (6.16a) gives

∆I1 =
1

4π2
√
ω1ω2

(4M)i4M(ω1−ω2)eivH(ω1−ω2)Γ(1− i4Mω1)Γ(1 + i4Mω2)∆K1 , (6.17a)

∆K1 = lim
Λ→∞

(−i)i4Mω1(i)−i4Mω2

{[∫ Λ

0

dω
ω

(ω − ω1 + iε1)1−i4Mω1(ω − ω2 − iε2)1+i4Mω2

−
∫ Λ

1

dω ω−1+i4M(ω1−ω2)

]
−
∫ 1

0

dω ω−1+i4M(ω1−ω2)

}
. (6.17b)

First we compute the indefinite integrals and evaluate them at the limits. Since ε1 and ε2

go to O+ at the end of the calculation, it is acceptable to add terms containing them to the

exponents. The first indefinite integral is

∆K1a = (−i)i4Mω1(i)−i4Mω2

∫ Λ

0

dω
ω

(ω − ω1 + iε1)1−i4M(ω1−iε1)(ω − ω2 − iε2)1+i4M(ω2+iε2)

= (−i)i4Mω1(i)−i4Mω2

[
−i(ω − ω1 + iε1)i4M(ω1−iε1)(ω − ω2 − iε2)−i4M(ω2+iε2)

4M(ω1 − ω2 − iε1 − iε2)

]Λ

0

= −i(−i)i4Mω1(i)−i4Mω2

[
(Λ− ω1)i4Mω1(Λ− ω2)−i4Mω2

4M(ω1 − ω2)− iε1 − iε2

− (−ω1)i4Mω1(−ω2)−i4Mω2

4M(ω1 − ω2 − iε1 − iε2)

]
. (6.18)
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Note that after evaluating the integral at the limits, ε1 and ε2 are set to zero in the exponents

because they have no effect there. Also, each term is a combination of a principle value and

a term proportional to δ(ω1 − ω2), thus

∆K1a = e2πM(ω1+ω2)

[
−i(Λ− ω1)i4Mω1(Λ− ω2)−i4Mω2

4M(ω1 − ω2)
+

π

4M
δ(ω1 − ω2)

]
+e−2πM(ω1+ω2)

[
i
ωi4Mω1

1 ω−i4Mω2
2

4M(ω1 − ω2)
− π

4M
δ(ω1 − ω2)

]
. (6.19a)

Here we adopt the notation that the principle value of a term such as 1
a±iε is written as 1

a
.

The second and third integrals in (6.17b) are

∆K1b = −(−i)i4Mω1(i)−i4Mω2

∫ Λ

1

dωω−1+i4M(ω1−ω2)

= i
e2πM(ω1+ω2)

4M(ω1 − ω2)

[
Λi4M(ω1−ω2) − 1

]
, (6.19b)

∆K1c = −(−i)i4Mω1(i)−i4Mω2

∫ 1

0

dω ω−1+i4M(ω1−ω2)

= −e2πM(ω1+ω2)

∫ 0

−∞
dze[i4M(ω1−ω2)+ε]z = − e2πM(ω1+ω2)

i4M(ω1 − ω2) + ε
=

ie2πM(ω1+ω2)

4M(ω1 − ω2)− iε

=
ie2πM(ω1+ω2)

4M(ω1 − ω2)
− e2πM(ω1+ω2) π

4M
δ(ω1 − ω2) , (6.19c)

where in the integral for ∆K1c the change of variable z = logω has been made and an

integrating factor ε has been inserted. Combining these results, one finds

∆K1 = e−2πM(ω1+ω2)

[
i
ωi4Mω1

1 ω−i4Mω2
2

4M(ω1 − ω2)
− π

4M
δ(ω1 − ω2)

]
= ie−2πM(ω1+ω2) ωi4Mω1

1 ω−i4Mω2
2

4M(ω1 − ω2 − iε)
. (6.20a)

Substituting (6.20a) into (6.17a) gives

∆I1 =
i

4π2
√
ω1ω2

(4M)i4M(ω1−ω2)eivH(ω1−ω2)Γ(1− i4Mω1)Γ(1 + i4Mω2)

× e−2πM(ω1+ω2) ωi4Mω1
1 ω−i4Mω2

2

4M(ω1 − ω2 − iε)
. (6.20b)

Note that this is a finite contribution to ∆Gc because of the factor of e−2πM(ω1+ω2).

Next consider ∆I4 which is the other term with nonvanishing delta functions.

∆I4 =
1

4π2
√
ω1ω2

(4M)−i4M(ω1−ω2)e−ivH(ω1−ω2)Γ(1 + i4Mω1)Γ(1− i4Mω2)∆K4 , (6.21a)

∆K4 = lim
Λ→∞

(−i)−i4Mω1(i)i4Mω2

{[∫ Λ

0

dω
ω

(ω + ω1 + iε1)1+i4Mω1(ω + ω2 − iε2)1−i4Mω2

−
∫ Λ

1

dω ω−1−i4M(ω1−ω2)

]
−
∫ 1

0

dω ω−1−i4M(ω1−ω2)

}
. (6.21b)
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The integrals in ∆K4 can be computed analytically with the result

∆K4a = e−2πM(ω1+ω2)

∫ Λ

0

dω
ω

(ω + ω1 + iε1)1+i4M(ω1+iε1)(ω + ω2 − iε2)1−i4M(ω2−iε2)

= e−2πM(ω1+ω2) i

4M

[
(Λ + ω1)−i4Mω1(Λ + ω2)i4Mω2

ω1 − ω2 + i(ε1 + ε2)
− ω−i4Mω1

1 ωi4Mω2
2

ω1 − ω2 + i(ε1 + ε2)

]
,

∆K4b = e−2πM(ω1+ω2)

[
− Λ−i4M(ω1−ω2)

−i4M(ω1 − ω2)
+

1

−i4M(ω1 − ω2)

]
,

∆K4c = −e−2πM(ω1+ω2)

∫ 0

−∞
dz e[−i4M(ω1−ω2)+ε]z = − e−2πM(ω1+ω2)

−i4M(ω1 − ω2) + ε

= −i e−2πM(ω1+ω2)

4M(ω1 − ω2) + iε
= −i e

−2πM(ω1+ω2)

4M(ω1 − ω2)
− e−2πM(ω1+ω2) π

4M
δ(ω1 − ω2) . (6.22)

Both terms in ∆K4a can be written in terms of their principle values added to a term

proportional to δ(ω1 − ω2). Combining these terms, the following expression for ∆K4 is

obtained

∆K4 = e−2πM(ω1+ω2)

[
−iω

−i4Mω1
1 ωi4Mω2

2

4M(ω1 − ω2)
− π

4M
δ(ω1 − ω2)

]
= −ie−2πM(ω1+ω2) ω−i4Mω1

1 ωi4Mω2
2

4M(ω1 − ω2 + iε)
. (6.23a)

Finally

∆I4 = − i

4π2
√
ω1ω2

(4M)−i4M(ω1−ω2)e−ivH(ω1−ω2)Γ(1 + i4Mω1)Γ(1− i4Mω2)

× e−2πM(ω1+ω2) ω−i4Mω1
1 ωi4Mω2

2

4M(ω1 − ω2 + iε)
. (6.23b)

Note that if we let ω1 ↔ ω2 in the expression (6.20b) for ∆I1, then we get ∆I4 in (6.23b).

It is also true that if this switch is made in the entire contribution to the two-point function

from ∆I1 then that is equal to the contribution from ∆I4. Finally, the total contribution

from ∆I4 can be shown to be the complex conjugate of the total contribution from ∆I1.

Thus both contributions are real. Next consider ∆I2

∆I2 = − 1

4π2
√
ω1ω2

(4M)i4M(ω1+ω2)eivH(ω1+ω2)Γ(1− i4Mω1)Γ(1− i4Mω2)∆K2 , (6.24a)

∆K2 = lim
Λ→∞

(−i)i4Mω1(i)i4Mω2

{[∫ Λ

0

dω
ω

(ω − ω1 + iε1)1−i4Mω1(ω + ω2 − iε2)1−i4Mω2

−
∫ Λ

1

dω ω−1+i4M(ω1+ω2)

]
−
∫ 1

0

dω ω−1+i4M(ω1+ω2)

}
, (6.24b)
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where the integrals in ∆K2 can be computed analytically

∆K2a = (−i)i4Mω1(i)i4Mω2

∫ Λ

0

dω
ω

(ω − ω1 + iε1)1−i4M(ω1−iε1)(ω + ω2 − iε2)1−i4M(ω2−iε2)

= − i

4M
(−i)i4Mω1(i)i4Mω2

{
(Λ− ω1)i4Mω1(Λ + ω2)i4Mω2

[ω1 + ω2 − i(ε1 + ε2)]

− (−ω1)i4Mω1ωi4Mω2
2

[ω1 + ω2 − i(ε1 + ε2)]

}
= − i

4M
e2πM(ω1−ω2) (Λ− ω1)i4Mω1(Λ + ω2)i4Mω2

[ω1 + ω2 − i(ε1 + ε2)]

+
i

4M
e−2πM(ω1+ω2) ωi4Mω1

1 ωi4Mω2
2

[ω1 + ω2 − i(ε1 + ε2)]
, (6.25a)

∆K2b =
i

4M
e2πM(ω1−ω2) Λi4M(ω1+ω2)

ω1 + ω2

− i

4M
e2πM(ω1−ω2) 1

ω1 + ω2

, (6.25b)

∆K2c = −e2πM(ω1−ω2)

∫ 0

−∞
dz e[i4M(ω1+ω2)+ε]z = − e2πM(ω1−ω2)

i4M(ω1 + ω2) + ε

= i
e2πM(ω1−ω2)

4M(ω1 + ω2)− iε = i
e2πM(ω1−ω2)

4M(ω1 + ω2)
− π

4M
δ(ω1 + ω2) . (6.25c)

Given that δ(ω1 +ω2) = 0 since the frequencies are all non-negative, one can set ε1 = ε2 = 0.

Then

∆K2 = ie−2πM(ω1+ω2)ω
i4Mω1
1 ωi4Mω2

2

4M(ω1 + ω2)
, (6.26a)

and

∆I2 = − i

4π2
√
ω1ω2

(4M)i4M(ω1+ω2)eivH(ω1+ω2)Γ(1− i4Mω1)Γ(1− i4Mω2)

×e−2πM(ω1+ω2)ω
i4Mω1
1 ωi4Mω2

2

4M(ω1 + ω2)
. (6.26b)

Comparing ∆I2 in (6.16b) and ∆I3 in (6.16c), one can immediately see that their con-

tributions to the two-point function, (6.15), are the complex conjugate of each other if one

also takes ω1 ↔ ω2 in the contribution from ∆I2

∆I3 = (∆I2)∗

=
i

4π2
√
ω1ω2

(4M)−i4M(ω1+ω2)e−ivH(ω1+ω2)Γ(1 + i4Mω1)Γ(1 + i4Mω2)

×e−2πM(ω1+ω2)ω
−i4Mω1
1 ω−i4Mω2

2

4M(ω1 + ω2)
. (6.27)
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Substituting (6.20b), (6.23b), (6.26b), and (6.27) into (6.15) one finds

∆GC(x, x′) = R

{
i

8π3

∫ ∞
0

dω1

ω1

∫ ∞
0

dω2

ω2

e−2πM(ω1+ω2)

×
{[
e−iω1us+iω2u′s + e−iω1u′s+iω2us

](4Mω1e
vH
4M )4iMω1

(4Mω2e
vH
4M )4iMω2

Γ(1− 4iMω1)Γ(1 + 4iMω2)

4M(ω1 − ω2 − iε)
−
[
e−iω1us−iω2u′s + e−iω1u′s−iω2us

]
(4Mω1e

vH
4M )4iMω1(4Mω2e

vH
4M )4iMω2

×Γ(1− 4iMω1)Γ(1− 4iMω2)

4M(ω1 + ω2)

}}
. (6.28)

There are infrared divergences in this expression. However, it is easy to see that the deriva-

tives in the general formula for the stress-energy tensor (3.1) bring down factors of ω1 and

ω2 which remove these infrared divergences. Recalling that ∆GC is the only contribution

to 〈Tab〉 from ∆G(1), it is straightforward to show using (6.5), (C3), (C5), (C6), and (6.28)

that

∆〈Ttt〉 = −(1− 2M

r
) lim
x′→x

1

4
(∆GC ;t′;r + ∆GC ;t;r′)

= R

{
i

8π3

∫ ∞
0

dω1

∫ ∞
0

dω2 e
−2πM(ω1+ω2)

×
{
ei(ω2−ω1)us

(4Mω1e
vH
4M )4iMω1

(4Mω2e
vH
4M )4iMω2

Γ(1− 4iMω1)Γ(1 + 4iMω2)

4M(ω1 − ω2 − iε)
+e−i(ω2+ω1)us(4Mω1e

vH
4M )4iMω1(4Mω2e

vH
4M )4iMω2

×Γ(1− 4iMω1)Γ(1− 4iMω2)

4M(ω1 + ω2)

}}
. (6.29)

The integral over ω2 of the first term inside the curly bracket can be written in the form

∆〈Ttt〉1 =

∫ ∞
0

dω2
f(ω2)

ω1 − ω2 − iε
=

∫ ∞
0

dω2

[
f(ω2)

ω1 − ω2

+ iπδ(ω1 − ω2)

]
= lim

ε→0+

[∫ ω1−ε

0

dω2
f(ω2)

ω1 − ω2

+

∫ ∞
ω1+ε

dω2
f(ω2)

ω1 − ω2

]
+ iπf(ω1) , (6.30)

where the definition of the Cauchy principal value integral has been explicitly used.

Thus, extracting the explicit form of the f(ω2) from (6.29) and substituting it into (6.30)

yields

∆〈Ttt〉 = R

{
i

8π3

∫ ∞
0

dω1

[ ∫ ∞
0

dω2 e
−2πM(ω1+ω2)ei(ω2−ω1)us

×(4Mω1e
vH
4M )4iMω1

(4Mω2e
vH
4M )4iMω2

Γ(1− 4iMω1)Γ(1 + 4iMω2)

4M(ω1 − ω2)

]}
− 1

8π2

∫ ∞
0

dω1
e−4πMω1

4M

×Γ(1− 4iMω1)Γ(1 + 4iMω1) . (6.31)
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The stress-energy tensor for a massless minimally coupled scalar field in the 2D collapsing

null shell spacetime has been previously computed analytically using a different method [20,

24] and the stress-energy tensor for the Unruh state has also been computed analytically [20,

29]. For the difference one finds

∆〈Tuu〉 = − 1

24π

[
8M

(u− v0)3
+

24M2

(u− v0)4

]
− 1

768πM2
,

∆〈Tuv〉 = ∆〈Tvv〉 = 0 ,

∆〈Ttt〉 = ∆〈Tuu〉+ 2∆〈Tuv〉+ ∆〈Tvv〉

= − 1

24π

[
8M

(u− v0)3
+

24M2

(u− v0)4

]
− 1

768πM2
. (6.32)

Both terms in (6.31) have been computed numerically. In the first integral, the numerical

computation has been performed by the symmetric removal of the neighborhood with radius

ε about the singular points of the integrand, ω1 = ω2. The integral of the second term in

(6.30) has been computed using a more straightforward numerical method. Our results for

∆〈Ttt〉 in (6.30) are shown in Fig. 4. Although it is not possible to detect this from the plot,

our numerical results agree with the analytical results in [24] [20] to more than ten digits.

It is worth mentioning that in 2D, once ∆〈Ttt〉 is numerically computed, ∆〈Trr〉 and

∆〈Ttr〉 can be easily determined from the relations (B7) and (C7).

VII. SUMMARY

We have presented a method of numerically computing the stress-energy tensor for a

massless minimally coupled scalar field in the case when a black hole is formed from the

collapse of a spherically symmetric null shell in four dimensions. There are two primary

parts to the method. The first is to expand the mode functions in the natural in vacuum

state in terms of a complete set of mode functions in the part of Schwarzschild spacetime

that is outside of the event horizon of the black hole. Expressions have been found for the

matching coefficients that involve integrals of these mode functions over the trajectory of

the null shell.

The second part of the method involves subtracting the unrenormalized expression for the

stress-energy tensor in the Unruh state from the expression for the unrenormalized stress-

energy tensor in the in vacuum state. Since the ultraviolet divergences in the stress-energy

tensor are independent of the state, this difference is finite. Then one can add to this the
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FIG. 4. The quantity 104M2∆〈Ttt〉 is plotted for the massless minimally coupled scalar field in

the region exterior to the null shell and to the event horizon. The dots correspond to the results

of the numerical computations. The solid curve represents the analytic results in (6.32).

renormalized expression for the stress-energy tensor in the Unruh state that has already

been computed [13, 14] and the result is the full renormalized stress-energy tensor for the

in vacuum state.

We have tested the first part of the method by analytically computing the matching

coefficients in the 2D case and reconstructing the mode functions for the in vacuum state.

We have also analytically computed the matching coefficients in 4D for the spherically

symmetric mode functions (those with ` = 0) in the in vacuum state for a simple model in

which the effective potential in the mode equation is proportional to a Dirac delta function.

In this case it was possible to analytically compute the part of the mode function in the in

vacuum state that is proportional to e−iωv inside the null shell and to verify that it gives

the known result on the matching surface. Finally, for the actual case of a collapsing null

shell in 4D, we have analytically computed parts of the matching coefficients and used those

parts to numerically compute part of one of the in modes on the future horizon and shown
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that it has the correct value at the point where the future horizon intersects the null shell

trajectory.

The second part of the method has been tested by numerically computing in 2D the

difference between the stress-energy tensor in the in vacuum state for the collapsing null

shell spacetime and the Unruh state for Schwarzschild spacetime. The result is in excellent

agreement with an analytic expression for the difference obtained from prior calculations of

the stress-energy tensor in these two states [20, 24, 29].

These tests provide substantial evidence that the method will work and that it will be

possible to numerically compute the exact renormalized stress-energy tensor for a massless

minimally coupled scalar field in a 4D spacetime in which a black hole forms from the

collapse of a spherically symmetric null shell. Work on that computation is in progress.
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Appendix A: Lagrange Inversion Theorem applied to the Lambert W function

In [33] the relation

e−cW (x) =
∞∑
n=0

c(n+ c)n−1

n!
(−x)n . (A1)

is derived for any complex constant c. An alternative derivation is given here. It is based

on the Lagrange inversion theorem [35]. In [36] different forms for the Lagrange inversion

theorem are given, one of which we use here. To state the form that is most useful to us we

use the notation in [36] that if f(x) is expanded in a Laurent series then [xn]f(x) denotes

the coefficient of xn in that series. Then a statement of the theorem is as follows: Suppose
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f is a function of x and there is a relation of the following form:

f(x) = xR(f(x)) , (A2)

where R(t) is a power series in t. Suppose further that φ(t) is also a Laurent series in t.

Then for any nonzero integer n, φ(f(x)) can be expressed in terms of a unique power series

in x with coefficients

[xn]φ(f) ≡ 1

n!

dnφ(f(x))

dxn

∣∣∣∣
x=0

=
1

n
[tn−1]φ′(t)R(t)n , (A3)

where the interpretation of the far right-hand side is that one first expands the function

dφ(t)
dt
R(t) in powers of t, then chooses the coefficient of the term proportional to tn−1 in that

series and divides that coefficient by n.

To use this to obtain a power series for the function e−cW (x), note that the Lambert W

function satisfies the relation

W (x) = xe−W (x) = x
∞∑
n=0

(−W (x))n

n!
. (A4)

Thus we can choose the function R(t) in (A2) to be R(t) = e−t. We also choose φ(t) = e−ct.

Then

[xn]e−cW (x) =
1

n
[tn−1]φ′(t)Rn(t)

= − c
n

[tn−1]e−(c+n)t = − c

n!
[−(c+ n)]n−1

= (−1)n
c

n!
(c+ n)n−1 . (A5)

Equation (A1) follows immediately from this.

Appendix B: Contributions to the stress-energy tensor

The calculations in this appendix are done entirely for the Schwarzschild geometry. There-

fore for simplicity we use t and u to denote the usual time coordinate and the right moving

radial null coordinate in Schwarzschild spacetime.

In Sec. VI B it is mentioned that for the null shell spacetime in 2D the Hadamard Green’s

function in (6.14) can be broken into three parts. One of these, which we call G
(1)
A (x, x′),

includes fH
+

and its complex conjugate and is given by the expression

G
(1)
A (x, x′) =

∫ ∞
0

dω
{
fH

+

ω (x)fH
+ ∗

ω (x′) + fH
+

ω (x′)fH
+ ∗

ω (x)
}
. (B1)
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For the Unruh state the corresponding contribution to G(1)(x, x′) is exactly the same so

∆G
(1)
A (x, x′) = 0.

A second part, G
(1)
B (x, x′), has terms involving products of fH

+
and its complex conjugate

with fI +
and its complex conjugate such that

G
(1)
B (x, x′) =

∫ ∞
0

dω
{∫ ∞

0

dω2

[
A∗ωω2

fH
+

ω (x)fI + ∗
ω2

(x′) + B∗ωω2
fH

+

ω (x)fI +

ω2
(x′)
]

+

∫ ∞
0

dω1

[
Aωω1f

H+ ∗
ω (x′)fI +

ω1
(x) + Bωω1f

H+ ∗
ω (x′)fI + ∗

ω1
(x)
]

+

∫ ∞
0

dω2

[
A∗ωω2

fH
+

ω (x′)fI + ∗
ω2

(x) + B∗ωω2
fH

+

ω (x′)fI +

ω2
(x)
]

+

∫ ∞
0

dω1

[
Aωω1f

H+ ∗
ω (x)fI +

ω1
(x′) + Bωω1f

H+ ∗
ω (x)fI + ∗

ω1
(x′)
]}

. (B2)

There is no contribution to G(1)(x, x′) which has terms of this form if the field is in the

Unruh state, so there is no subtraction term and ∆G
(1)
B (x, x′) = G

(1)
B (x, x′).

While G
(1)
B (x, x′) contributes to the two-point function, we next show that its contribu-

tion to the stress-energy tensor is zero. Substituting (5.20) into (B2) and using (5.23a)

and (5.23b) , one readily finds that[
G

(1)
B (x, x′)

]
;t;t′

=
1

4π

∫ ∞
0

dω
{∫ ∞

0

dω2

√
ωω2 (A∗ωω2

e−iωv+iω2u′ − B∗ωω2
e−iωv−iω2u′)

+

∫ ∞
0

dω1

√
ωω1 (Aωω1e

iωv′−iω1u − Bωω1e
iωv′+iω1u)

+

∫ ∞
0

dω2

√
ωω2 (A∗ωω2

e−iωv
′+iω2u − B∗ωω2

e−iωv
′−iω2u)

+

∫ ∞
0

dω1

√
ωω1 (Aωω1e

iωv−iω1u′ − Bωω1e
iωv+iω1u′)

}
, (B3)

[
G

(1)
B (x, x′)

]
;r;r′

=
1

4π(1− 2M
r

)2

∫ ∞
0

dω
{∫ ∞

0

dω2

√
ωω2 (−A∗ωω2

e−iωv+iω2u′ +B∗ωω2
e−iωv−iω2u′)

+

∫ ∞
0

dω1

√
ωω1 (−Aωω1e

iωv′−iω1u +Bωω1e
iωv′+iω1u)

+

∫ ∞
0

dω2

√
ωω2 (−A∗ωω2

e−iωv
′+iω2u +B∗ωω2

e−iωv
′−iω2u)

+

∫ ∞
0

dω1

√
ωω1 (−Aωω1e

iωv−iω1u′ +Bωω1e
iωv+iω1u′)

}
. (B4)

From (6.5) one finds

∆〈Ttt〉 =
1

4
lim
x′→x

[
∆G;t;t′ + (1− 2M

r
)2∆G;r;r′

]
. (B5)
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By substituting (B3) and (B4) into (B5), it is easy to see that the contribution to 〈Ttt〉 is

zero.

Next consider the contribution of G
(1)
B (x, x′) to 〈Trr〉. Using (6.5) it is not hard to show

that

∆〈Trr〉 =
1

4
lim
x′→x

[ ∆G;t;t′

(1− 2M
r

)2
+ ∆G;rr′

]
. (B6)

Together with (B5), one obtains

∆〈Trr〉 =
∆〈Ttt〉(

1− 2M
r

)2 . (B7)

Thus G
(1)
B (x, x′) does not contribute to 〈Trr〉 either.

Finally, we consider the contribution of G
(1)
B (x, x′) to 〈Ttr〉. From (6.5) one finds

∆〈Ttr〉 =
1

4
lim
x′→x

[
∆G;t′;r + ∆G;t;r′

]
. (B8)

Taking the derivative of (B2) with respect to t and r′, one finds[
G

(1)
B (x, x′)

]
;t;r′

=
1

4π(1− 2M
r′

)

∫ ∞
0

dω
{∫ ∞

0

dω2

√
ωω2 (−A∗ωω2

e−iωv+iω2u′ +B∗ωω2
e−iωv−iω2u′)

+

∫ ∞
0

dω1

√
ωω1 (Aωω1e

iωv′−iω1u − Bωω1e
iωv′+iω1u)

+

∫ ∞
0

dω2

√
ωω2 (A∗ωω2

e−iωv
′+iω2u − B∗ωω2

e−iωv
′−iω2u)

+

∫ ∞
0

dω1

√
ωω1 (−Aωω1e

iωv−iω1u′ +Bωω1e
iωv+iω1u′)

}
. (B9)

and taking the derivative of (B2) with respect to t′ and r gives[
G

(1)
B (x, x′)

]
;t′;r

=
1

4π(1− 2M
r′

)

∫ ∞
0

dω
{∫ ∞

0

dω2

√
ωω2 (A∗ωω2

e−iωv+iω2u′ − B∗ωω2
e−iωv−iω2u′)

+

∫ ∞
0

dω1

√
ωω1 (−Aωω1e

iωv′−iω1u +Bωω1e
iωv′+iω1u)

+

∫ ∞
0

dω2

√
ωω2 (−A∗ωω2

e−iωv
′+iω2u +B∗ωω2

e−iωv
′−iω2u)

+

∫ ∞
0

dω1

√
ωω1 (Aωω1e

iωv−iω1u′ − Bωω1e
iωv+iω1u′)

}
. (B10)

It is clear that
[
G

(1)
B (x, x′)

]
;t′;r

= −
[
G

(1)
B (x, x′)

]
;t;r′

and therefore that their contribution to

〈Ttr〉 is zero.

The third part of G(1)(x, x′) we call G
(1)
C (x, x′). Its contribution to ∆〈Ttt〉 is given in

Sec. VI B.
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Appendix C: Relation between two components of ∆〈Tab〉

The calculations in this appendix are done entirely for the Schwarzschild geometry. There-

fore for simplicity we use t and u to denote the usual time coordinate and the right moving

radial null coordinate in Schwarzschild spacetime.

In this appendix a relation is derived between two components of ∆〈Tab〉 in (6.5) for

the 2D collapsing null shell spacetime. As shown in Appendix B only ∆GC(x, x′) in (6.15)

contributes to ∆〈Tab〉. The explicit form for ∆Gc(x, x
′) is

∆GC(x, x′) =
1

4π

∫ ∞
0

dω

∫ ∞
0

dω1

∫ ∞
0

dω2
1√
ω1ω2

{
[Aωω1e

−iω1u +Bωω1e
iω1u]

×[A∗ωω2
eiω2u′ +B∗ωω2

e−iω2u′ ] + [Aωω1e
−iω1u′ +Bωω1e

iω1u′ ]

×[A∗ωω2
eiω2u +B∗ωω2

e−iω2u]

−subtraction terms
}
, (C1)

where the subtraction terms have exactly the same form except that the matching coefficients

are replaced by the Bogolubov coefficients (5.17) for the Unruh state. Then[
∆GC(x, x′)

]
;r;t′

=
1

4π

1

(1− 2M
r

)

∫ ∞
0

dω

∫ ∞
0

dω1

∫ ∞
0

dω2

√
ω1ω2

{
[iAωω1e

−iω1u − iBωω1e
iω1u]

×[iA∗ωω2
eiω2u′ − iB∗ωω2

e−iω2u′ ] + [−iAωω1e
−iω1u′ + iBωω1e

iω1u′ ]

×[−iA∗ωω2
eiω2u + iB∗ωω2

e−iω2u]

−subtraction terms
}
. (C2)

A similar calculation for
[
∆GC(x, x′)

]
;t;r′

gives the opposite sign for each term in square

brackets and a replacement of r with r′ in the overall factor of (1− 2M
r

)−1. Thus

lim
x′→x

[
∆GC(x, x′)

]
;r;t′

= lim
x′→x

[
∆GC(x, x′)

]
;t;r′

. (C3)

Next consider[
∆GC(x, x′)

]
;t;t′

=
1

4π

∫ ∞
0

dω

∫ ∞
0

dω1

∫ ∞
0

dω2

√
ω1ω2

{
[−iAωω1e

−iω1u + iBωω1e
iω1u]

×[iA∗ωω2
eiω2u′ − iB∗ωω2

e−iω2u′ ] + [−iAωω1e
−iω1u′ + iBωω1e

iω1u′ ]

×[iA∗ωω2
eiω2u − iB∗ωω2

e−iω2u]

−subtraction terms
}
. (C4)
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A similar computation for
[
∆GC(x, x′)

]
;r;r′

gives the relation

[
∆GC(x, x′)

]
;r;r′

=
1

(1− 2M
r

)(1− 2M
r′

)

[
∆GC(x, x′)

]
;t;t′

. (C5)

Also a comparison of (C2) and (C4) shows that

[
∆GC(x, x′)

]
;r;t′

= −

[
∆GC(x, x′)

]
;t;t′

1− 2M
r

. (C6)

Finally by substituting (C5) into (B5) and substituting (C3) and (C6) into (B8) one can see

that

∆〈Trt〉 = − ∆〈Ttt〉
1− 2M

r

. (C7)
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