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In 1995 Kim famously proved the Ramsey bound R(3, t) ≥ ct2/ log t by constructing an
n-vertex graph that is triangle-free and has independence number at most C

√
n logn. We

extend this celebrated result, which is best possible up to the value of the constants, by
approximately decomposing the complete graph Kn into a packing of such nearly optimal
Ramsey R(3, t) graphs.

More precisely, for any ε > 0 we find an edge-disjoint collection (Gi)i of n-vertex
graphs Gi ⊆Kn such that (a) each Gi is triangle-free and has independence number at
most Cε

√
n logn, and (b) the union of all the Gi contains at least (1− ε)

(
n
2

)
edges. Our

algorithmic proof proceeds by sequentially choosing the graphs Gi via a semi-random (i.e.,
Rödl nibble type) variation of the triangle-free process.

As an application, we prove a conjecture in Ramsey theory by Fox, Grinshpun, Liebe-
nau, Person, and Szabó (concerning a Ramsey-type parameter introduced by Burr, Erdős,
and Lovász in 1976). Namely, denoting by sr(H) the smallest minimum degree of r-
Ramsey minimal graphs for H, we close the existing logarithmic gap for H = K3 and
establish that sr(K3)=Θ(r2 logr).

1. Introduction

The 1947 paper of Erdős [10] on the diagonal Ramsey number R(t, t) is often
considered the start of the probabilistic method, where R(s, t) is defined as
the smallest integer n ∈ N such that every red-blue colouring of the edges
of the complete n-vertex graph Kn contains either a red Ks or a blue Kt.
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In general, the estimation of R(s, t) and other Ramsey-type parameters is
known to be notoriously difficult.

One of the celebrated results in Ramsey theory is R(3, t) =Θ(t2/ log t),
and this special case has repeatedly served as a testbed for the development
of new tools and techniques in probabilistic combinatorics. Indeed, comple-
menting the basic bound R(3, t)=O(t2) of Erdős and Szekeres [14], in 1961
Erdős [11] used a sophisticated random greedy alteration argument to prove
R(3, t)=Ω(t2/(log t)2). This lower bound was subsequently reproved (or only
slightly improved) using the Lovász Local Lemma [31], a basic analysis of
the triangle-free process1 [13], large deviation inequalities [21], and differen-
tial equations [32]. Furthermore, in 1980 Ajtai, Komlós, and Szemerédi [1,2]
invented the influential semi-random method (nowadays also called Rödl
nibble approach) to prove the upper bound R(3, t) = O(t2/ log t). But it
was not until 1995, when Kim [20] famously proved the matching lower
bound R(3, t) = Ω(t2/ log t) by analyzing a semi-random variation of the
triangle-free process2 (combining several of the aforementioned ideas with
martingale concentration); for this major breakthrough he also received the
Fulkerson Prize in 1997. But the story does not end here: advancing the dif-
ferential equation method, in 2008 Bohman [5] reproved R(3, t)=Ω(t2/ log t)
by analyzing the triangle-free process itself (and his analysis was recently
further improved in [7,15]).

In this paper we refine the powerful techniques developed for R(3, t) =
Θ(t2/ log t) to determine the order of magnitude of another Ramsey-type
parameter introduced in 1976 by Burr, Erdős, and Lovász [8], proving a
conjecture of Fox, Grinshpun, Liebenau, Person, and Szabó [16] (in partic-
ular, analogous to Kim’s R(3, t)-result, we again remove the last redundant
logarithmic factor from existing bounds).

1.1. Main result: packing of nearly optimal Ramsey R(3, t) graphs

Kim and Bohman both proved the Ramsey bound R(3, t) =Ω(t2/ log t) by
showing the existence of a triangle-free graph G ⊆ Kn on n vertices with
independence number α(G) =O(

√
n logn), which is best possible up to the

value of the implicit constants. Our first theorem naturally extends their

1 The triangle-free process (proposed by Bollobás and Erdős) proceeds as follows: start-
ing with an empty n-vertex graph, in each step a single edge is added, chosen uniformly
at random from all non-edges that do not create a triangle (if added to the graph).

2 Kim’s semi-random variation proceeds similar to the triangle-free process: it intuitively
adds a large number of carefully chosen random-like edges in each step (instead of just a
single edge); see Section 2 for more details.
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celebrated results, by approximately decomposing the complete graph Kn

into a packing of such nearly optimal Ramsey R(3, t) graphs.

Theorem 1. For any ε>0 there exist n0,C,D>0 such that, for all n≥n0,
there is an edge-disjoint collection (Gi)i∈I of |I| = dD

√
n/ logne triangle-

free graphs Gi ⊆ Kn on n vertices with maxi∈I α(Gi) ≤ C
√
n logn and∑

i∈I e(Gi)≥(1−ε)
(
n
2

)
.

Our algorithmic proof proceeds by sequentially choosing the |I| =
Θ(
√
n/ logn) edge-disjoint triangle-free subgraphs Gi ⊆ Kn \

⋃
0≤j<iGj

with α(Gi) = O(
√
n logn) via a semi-random variation of the triangle-free

process akin to Kim [20] (see Sections 1.3 and 2 for the details). In par-
ticular, we do not only show existence of the (Gi)i∈I , but also obtain a
polynomial-time randomized algorithm which constructs these subgraphs.

Theorem 1 improves a construction of Fox et al. [16, Lemma 4.2],
who used the basic Lovász Local Lemma based R(3, t)-approach to
sequentially choose Θ(

√
n/ logn) edge-disjoint triangle-free subgraphs

with α(Gi) = O(
√
n logn). It is natural to suspect that applying a more

sophisticated R(3, t)-approach in each iteration ought to give an improved
packing (with smaller independence number than the LLL approach), and
here the usage of the triangle-free process was proposed by Fox et al. [16,
Section 5] as early as 2013 [22,26]. One conceptual difficulty of this approach
is to control various error terms over many iterations of the triangle-free pro-
cess (so that these always stay small enough to carry out the next iteration),
which in turn is the main technical reason why for Theorem 1 we instead
iterate a semi-random variation.

It would be interesting to know if Theorem 1 also holds with ε=0, i.e., if
one can completely decompose Kn into nearly optimal R(3, t) graphs. Per-
haps rashly, we conjecture that this is indeed possible (it might be insightful
to first prove a variant of Theorem 1 where the constant C does not depend
on ε).

1.2. Application in Ramsey theory: sr(K3) has order of
magnitude r2 logr

Turning to our main application, we say that a graph G is r-Ramsey for
H, denoted by G → (H)r, if any r-colouring of the edges of G contains
a monochromatic copy of H. Most fundamental questions and results in
Ramsey theory can be formulated in terms of various parameters of the
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class

Mr(H) :=
{
G : G→ (H)r and G′ 9 (H)r for all G′ ( G

}
of graphs which are r-Ramsey minimal for H. For example, Ramsey’s the-
orem [28] states that |Mr(H)|> 0 for all graphs H, which for cliques was
strengthened to |Mr(Kt)|=∞ by Rödl and Siggers [29]. Furthermore, the
archetypal problem of estimating various Ramsey-type parameters also cor-
responds to the study of certain extremal parameters ofMr(H), since, e.g.,
R(t) = R(t, t) := minG∈M2(Kt) v(G) is the famous diagonal Ramsey num-
ber [14,10,9], Rr(t)=R(t, . . . , t) :=minG∈Mr(Kt) v(G) is the r-coloured Ram-

sey number [9], and R̂r(H) :=minG∈Mr(H) e(G) is the widely-studied r-size-
Ramsey number of H (see, e.g., [12,4,30,9]).

In 1976 Burr, Erdős, and Lovász [8] initiated the systematic study of other
extremal parameters of Mr(H), including the smallest minimum degree of
all r-Ramsey minimal graphs for H, denoted by

sr(H) := min
G∈Mr(H)

δ(G).

As usual, the clique-case H =Kt is of particular interest, where r(t−2)<
sr(Kt) < Rr(t) is easy to see (cf. [17,33]). Perhaps surprisingly, for r=2
colours Burr et al. [8] were able to prove s2(Kt) = (t− 1)2, showing that
the simple exponential upper bound R2(t) = R(t) = 2Θ(t) is far from the
truth. For r ≥ 2 colours the behaviour of sr(Kt) was recently investigated
in detail by Fox et al. [16]: they proved super-quadratic bounds of form
sr(Kt) = r2 · polylog r for fixed t ≥ 3, and also determined sr(K3) up to
a logarithmic factor (by sharpening their general estimates). In particular,
they showed cr2 logr≤sr(K3)≤Cr2(logr)2, and conjectured that their lower
bound gives the correct order of magnitude, see [16, Conjecture 5.4].

Our second theorem proves the aforementioned conjecture of Fox, Grin-
shpun, Liebenau, Person, and Szabó for sr(K3), i.e., we close the logarithmic
gap and establish sr(K3)=Θ(r2 logr).

Theorem 2. There exists C>0 such that sr(K3)≤Cr2 logr for all r≥2.

Corollary 3. We have sr(K3)=Θ(r2 logr) for r≥2.

Using a reformulation of sr(K3) from [16], Theorem 2 follows easily
from our main packing result. Indeed, applying Theorem 1 with ε = 1/2,
say, it is routine to see that there is a constant A > 0 such that the
following holds for each r ≥ 2: there exists a collection of edge-disjoint
triangle-free graphs G1, . . . ,Gr ⊆ KNr on Nr := bAr2 logrc vertices with
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independence number α(Gi) < Nr/r (as Nr ≥ n0, D
√
Nr/ logNr ≥ r and

C
√
Nr logNr <Nr/r all hold for A=A(n0,C,D) large enough). By Theo-

rem 1.5 and Lemma 4.1 in [16] (with n=Nr and k = 2) this immediately
implies sr(K3)≤Nr, establishing Theorem 2.

Note that the above deduction of Theorem 2 did not use
∑

i∈I e(Gi)≥
(1−ε)

(
n
2

)
, i.e., that the nearly optimal R(3, t) graphs (Gi)i∈I approximately

decompose the edge-set of Kn. It would be interesting to find applications
(e.g., in Ramsey theory or extremal combinatorics) where this natural pack-
ing property is useful.

1.3. Main tool: pseudo-random triangle-free subgraphs

The R(3, t)-proofs of Kim and Bohman both in fact construct a triangle-
free graph G ⊆ Kn with pseudo-random properties (see also [32,38,7,15]).
Our third theorem extends their intriguing results to host graphs H ⊆Kn

which are far from complete, by showing that one can again construct a
triangle-free subgraph G⊆H with pseudo-random properties. Here the crux
is that Theorem 4 holds under very weak assumptions,3 that G resembles a
random subgraph of H with edge-probability ρ=Θ(

√
(logn)/n), and that

the edge-estimate (1) implies α(G) = O(
√
n logn) for many well-behaved

host graphs H⊆Kn.

Theorem 4. There exist β0,D0>0 such that, for all γ,δ∈ (0,1], β∈ (0,β0)
and C ≥ D0/(δ

2
√
βγ), the following holds for all n ≥ n0(γ,δ,β,C), with

ρ :=
√
β(logn)/n. For any n-vertex graph H, there exists a triangle-free

subgraph G⊆H on the same vertex-set such that

(1) eG(A,B) = (1± δ)ρeH(A,B)

for all disjoint vertex-sets A,B ⊆ V (H) with |A| = |B| = dC
√
n logne and

eH(A,B)≥γ|A||B|.

Our proof uses a semi-random variant of the triangle-free process to con-
struct G ⊆ H, extending and simplifying Kim’s R(3, t)-approach for the
complete case H=Kn (see Sections 2–3 and Theorem 9 for the details). In
particular, besides handling the difficulties arising due to incomplete host

3 Note that Theorem 4 does not require the host graph H to be approximately degree
or codegree regular. Furthermore, even if G ⊆ H was a random subgraph with edge-
probability ρ, then by standard calculations we would only expect the edge-estimate (1)
to hold for vertex-sets A,B ⊆ V (H) where the number of edges eH(A,B) is reasonably
large (see Remark 11 for the details, which also indicates that the constant C in Theorem 4
has the correct dependence on γ,δ,β).
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graphs H⊆Kn (by, e.g., exploiting a ‘stabilization mechanism’ to keep vari-
ous parameters under control), the major technical difference lies in the way
we analyze the properties of all large vertex-sets (by, e.g., focusing on bi-
partite subgraphs, applying a concentration inequality of Warnke [37], and
showing concentration in (1) instead of just eG(A,B) ≥ 1). Together with
some streamlining of Kim’s arguments (by, e.g., using fewer variables, ap-
plying convenient bounded differences inequalities, and some changes to the
semi-random construction), this leads to a shorter and hopefully more ac-
cessible proof even in the complete case H =Kn. As a by-product, we also
obtain a randomized polynomial-time algorithm which constructs G ⊆ H
(see Remark 10).

Theorem 4 will be the main tool for establishing our main packing result
Theorem 1. Let us briefly sketch the argument (deferring the details to
Section 1.5). The idea is to sequentially choose the triangle-free subgraphs
Gi⊆Hi :=Kn \

⋃
0≤j<iGj via Theorem 4 with δ ∈ (0,1), using the pseudo-

random edge-estimate (1) to inductively control the number of remaining
edges (between large sets) in Hi as

(2) eHi(A,B) = (1− (1± δ)ρ)i · |A||B|

for all disjoint A,B⊆V (H) of size s :=dC
√
n logne, stopping when the right

hand side of (2) drops below ε|A||B| after I=Θ(log(1/ε)/ρ)=Θ(
√
n/ logn)

steps. A double counting argument will then show that the leftover graph HI

contains at most ε
(
n
2

)
edges, so that

∑
0≤i<I e(Gi)=e(Kn \HI)≥(1−ε)

(
n
2

)
.

Furthermore, eGi(A,B) = (1 ± δ)ρeHi(A,B) > 0 implies α(Gi) < 2s =
O(
√
n logn), completing this rough proof sketch of Theorem 1 (assuming

Theorem 4).

We believe that variants of Theorems 1 and 4 also hold for many
other forbidden graphs (using semi-random variants of the H-free pro-
cess [25,6,34,35,27]); we hope to return to this topic in a future work.

1.4. Organization of the paper

The remainder of this paper is organized as follows. In Section 1.5 we use
Theorem 4 to state and prove some extensions of our main packing re-
sult Theorem 1. In Section 2 we introduce a semi-random variation of the
triangle-free process and state our main result for this Rödl nibble type con-
struction (that implies our main tool Theorem 4, see Section 2.4), which is
then subsequently proved in Section 3.
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1.5. Further results

Our methods allow us to extend Theorem 1 to R(3, t)-packings of graphs
which are far from complete. Our fourth theorem shows that if H⊆Kn only
satisfies certain uniformity conditions on its edge distribution (that resemble
a weak form of pseudo-randomness, see (3) below), then we can still approxi-
mately decompose H into a packing of nearly optimal Ramsey R(3, t) graphs
(again by an efficient randomized algorithm).

Theorem 5. For all ε,ξ,C0 > 0 there exist n0,C1,D > 0 such that the
following holds for all n≥n0. If H is an n-vertex graph satisfying

(3) min
disjoint A,B ⊆ V (H):
|A|=|B|=dC0

√
n logne

eH(A,B)

|A||B|
≥ ξ,

then there is an edge-disjoint collection (Gi)i∈I of |I| = dD
√
n/ logne

triangle-free subgraphs Gi ⊆ H with V (Gi) = V (H), maxi∈I α(Gi) ≤
C1
√
n logn and

∑
i∈I e(Gi)≥(1−ε)e(H).

Note that the case H =Kn and ξ=C0 = 1 implies Theorem 1. Further-
more, the case H=Gn,p, ξ=p/2 and C0 =1 routinely implies the following
sparse analogue of Theorem 1 for binomial random graphs Gn,p.

Corollary 6. For any p ∈ (0,1] and ε > 0 there exist C,D > 0 such that,
with probability at least 1−o(1), the following event holds: there exists an
edge-disjoint collection (Gi)i∈I of |I| = dD

√
n/ logne triangle-free graphs

Gi ⊆ Gn,p on n vertices with maxi∈I α(Gi) ≤ C
√
n logn and

∑
i∈I e(Gi) =

(1±ε)p
(
n
2

)
.

We conjecture that Corollary 6 (with |I| = dDp
√
n/ logne and con-

stants C,D > 0 depending only on ε) holds for much sparser random
graphs Gn,p with edge-probabilities of form p=p(n)≥n−1/2+o(1), say.4

We conclude the introduction with the short proof of Theorem 5, which
proceeds by sequentially choosing the graphs Gi⊆H \

⋃
0≤j<iGj via Theo-

rem 4 (generalizing the argument sketched in Section 1.3). The reader mainly
interested in the proof of Theorem 4 may perhaps wish to skip straight to
Section 2.

4 The range of p = p(n) in this conjecture is essentially best possible, since it is well-
known that typically α(Gn,p)�

√
n logn for p�

√
(logn)/n. Furthermore, although we

have not checked all details, it seems that our proofs can be modified to verify the con-
jecture for p≥n−δ, where δ > 0 is some small constant; so the main question is whether
p≥n−1/2+o(1) suffices.
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Proof of Theorem 5 (assuming Theorem 4). We may assume ε < 1
(as decreasing ε gives a stronger conclusion). For concreteness, set δ :=1/4,
γ :=ε2ξ, β :=β0/2 and C :=max{C0,D0/(δ

2
√
βγ)}, where β0,D0 are defined

as in Theorem 4. Let C1 := 3C, s := dC
√
n logne, ρ :=

√
β(logn)/n, and

I :=dlog(1/ε)/(ρ(1−δ))e.
Define H0 :=H. Let S denote the set of all pairs (A,B) of disjoint vertex-

sets A,B ⊆ V (H) with |A| = |B| = s. Combining a ‘handshaking lemma’
like double counting argument with the assumed lower bound (3), writing
t :=dC0

√
n logne it follows that

(4)
eH0(A,B)

|A||B|
=

∑
Ã⊆A,B̃⊆B : |Ã|=|B̃|=t eH(Ã, B̃)

s2 ·
(
s−1
t−1
)(
s−1
t−1
) ≥

(
s
t

)(
s
t

)
· ξt2

s2
(
s−1
t−1
)(
s−1
t−1
) = ξ

for all (A,B)∈S.
The plan is to sequentially choose the graphs (Gi)0≤i<I with Gi⊆Hi such

that, setting Hi+1 :=Hi\Gi (which ensures that all the Gi are edge-disjoint),
for all 0≤ i≤I we inductively have

(5)
eHi(A,B)

eH0(A,B)
∈
[
(1− (1 + δ)ρ)i , (1− (1− δ)ρ)i

]
for all (A,B) ∈ S.

Turning to the details, note that inequality (5) holds trivially for i = 0.
Given Hi with 0≤ i≤ I−1 satisfying (5), by combining the definition of I
with (1+2δ)/(1−δ)=2 and (4) it follows for n≥n0(β) that, say,

(6)
eHi(A,B)

|A||B|
≥ e−(1+2δ)ρ(I−1) · eH0(A,B)

|A||B|
≥ ε2 ·ξ = γ for all (A,B) ∈ S.

Using Theorem 4, for n ≥ n0(ε,ξ,δ,β,C) we can thus find a triangle-free
subgraph Gi⊆Hi with eGi(A,B) = (1±δ)ρeHi(A,B)> 0 for all (A,B)∈S.
Hence α(Gi) < 2s ≤ 3C

√
n logn, say. Furthermore, noting eHi+1(A,B) =

eHi(A,B)−eGi(A,B), it is immediate that Hi+1=Hi \Gi maintains (5).
Finally, for the number of edges of

⋃
0≤i<IGi = H0 \HI , by (5) and

definition of I it follows that

(7) eH0\HI (A,B) ≥
(
1− e−(1−δ)ρI

)
· eH0(A,B) ≥ (1− ε)eH0(A,B)

for all (A,B)∈S. Using a double counting argument similar to (4), in view
of (7) and H0=H we infer

e(H0 \HI) =

∑
(A,B)∈S eH0\HI (A,B)

2
(
n−2
s−1
)(
n−2−(s−1)

s−1
)



PACKING NEARLY OPTIMAL RAMSEY R(3, t) GRAPHS 71

≥ (1− ε) ·
∑

(A,B)∈S eH(A,B)

2
(
n−2
s−1
)(
n−2−(s−1)

s−1
)

= (1− ε)e(H),

completing the proof of
∑

0≤i<I e(Gi)=e(H0 \HI)≥(1−ε)e(H).

2. The nibble: semi-random triangle-free process

The remainder of this paper is devoted to the proof of our main tool The-
orem 4. Given an n-vertex graph H with vertex-set V = V (H) and edge-
set E(H), inspired by Kim [20] our strategy is to incrementally construct
the triangle-free edge-set of G ⊆ H using a semi-random variation of the
triangle-free process (adding large chunks of random-like edges in each step;
see also Footnotes 2–3 on page 2). One key difference to [20,5] is that our
approach only uses edges from the host graph H (and not the complete
graph Kn). In particular, deferring the details to Section 2.1, the rough plan
of our Rödl nibble type construction is to step-by-step build up a ‘random’
set of edges Ei⊆E(H) and a triangle-free subset Ti⊆Ei; we also keep track
of a set
(8)
Oi⊆{e∈E(H)\Ei : e does not form a triangle with any two edges of Ei}

of ‘open’ edges that can still be added. The idea of each step is to choose a
small number of random edges Γi+1⊆Oi so that only a few new triangles are
created in Ei+1=Ei∪Γi+1. This allows us to find an edge-subset Γ ′i+1⊆Γi+1,

with |Γ ′i+1|≈|Γi+1|, such that Ti+1=Ti∪Γ ′i+1 remains triangle-free.5 After

(9) I :=
⌈
nβ
⌉

such alteration-method based steps, we eventually obtain a triangle-free
graph G = (V,TI) ⊆ H, which intuitively ought to be ‘random enough’ to
resemble (many features of) a random subgraph of H.

5 For the construction of Ti+1 it might seem overly complicated to define Oi with re-
spect to Ei (and not Ti). However, this slightly wasteful definition actually simplifies the
analysis: e.g., for the purpose of tracking various auxiliary variables, it intuitively is eas-
ier to understand the effect of adding the random edges Γi+1 (rather than some subset
Γ ′i+1⊆Γi+1). Using an inclusion in (8) might also seem overly complicated, but it again
simplifies the analysis: by removing some extra edges it actually becomes easier to prove
concentration (see the ‘stabilization mechanism’ discussion around (21) and Lemma 19).
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2.1. Details of the nibble construction

Turning to the details of the nibble construction, consistent with (8) we start
with

O0 := E(H) and E0 := T0 := Γ0 := ∅.(10)

In step i+1≥1 we then set

(11) Ei+1 := Ei ∪ Γi+1,

where each edge e∈Oi is included in Γi+1, independently, with probability

(12) p := σ/
√
n.

(The definition of the deterministic parameter σ� 1 is deferred to (35) in
Section 2.3.) Note that Ti∪Γi+1 is not necessarily triangle-free, since two or
three edges of a triangle could enter via Γi+1⊆Oi (one edge is not enough
by (8) and Ti ⊆Ei), i.e., via the following set of ‘bad’ pairs and triples of
Γi+1-edges:

(13)
Bi+1 :=

{
{wu,wv} ⊆ Γi+1 : uv ∈ Ti, |{u, v, w}| = 3

}
∪
{
{uv, vw,wu} ⊆ Γi+1 : |{u, v, w}| = 3

}
,

where we write xy= {x,y} for brevity. To avoid triangles in Ti+1 by alter-
ation, we thus take Di+1 to be a maximal collection of pairwise edge-disjoint
elements of Bi+1 (say the first one in lexicographic order to resolve ties; any
other deterministic choice also works, see Remark 7 and Section 3.5), and
then set6

(14) Ti+1 := Ti ∪
(
Γi+1 \ E(Di+1)

)
,

where we write E(Di+1) :=
⋃
α∈Di+1

α for the set of edges in the pairs and
triples ofDi+1. Note that Ti+1 is indeed triangle-free by maximality ofDi+1⊆
Bi+1. Defining

(15) Yuv(i) := {uw ∈ Oi : vw ∈ Ei} ∪ {vw ∈ Oi : uw ∈ Ei},

we now turn to the open edge-set Oi+1⊆Oi\Γi+1: by (8) the set C
(1)
i+1∪C

(2)
i+1⊆

Oi of newly ‘closed’ edges (that form a triangle with some two edges of Ei+1)
is given by

C
(1)
i+1 := {f ∈ Oi : Yf (i) ∩ Γi+1 6= ∅},(16)

6 The standard alteration approach of removing one edge from each element of Bi+1

seems harder to analyze: e.g., removing the edges of a maximal edge-disjoint collec-
tion Di+1⊆Bi+1 greatly facilitates the technical calculations in Section 3.5.
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C
(2)
i+1 := {uv ∈ Oi : there is w s.t. uw ∈ Γi+1, vw ∈ Γi+1}.(17)

Mimicking a technical idea of Alon, Kim, and Spencer [3], we intuitively
increase the set of closed edges (via the random set Si+1 below) in order to
add a ‘stabilization mechanism’ to our construction,7 and define

Ci+1 := C
(1)
i+1 ∪ Si+1,(18)

Oi+1 := Oi \
(
Γi+1 ∪ Ci+1 ∪ C(2)

i+1

)
,(19)

where each edge e∈Oi is included in Si+1, independently, with ‘stabilization’
probability

(20) p̂e,i := 1− (1− p)max {2qi(πi+
√
σ)
√
n−|Ye(i)|,0}.

(The definition of the deterministic parameters qi,πi is deferred to (36)–(37)
in Section 2.3.) Roughly put, the main point of the technical definitions of
Si+1 and p̂e,i will be that all the conditional probabilities

(21)
P(e 6∈ Ci+1 | Oi, Ei) = P(e 6∈ C(1)

i+1 | Oi, Ei) · (1− p̂e,i)
= (1− p)max {2qi(πi+

√
σ)
√
n,|Ye(i)|}

can inductively be made equal and thus independent of the history (by
only maintaining a weak upper bound on maxe |Ye(i)|; see (45), (62) and
Lemma 19), which in turn helps to keep various error terms under control.

Remark 7. Note that each step of our nibble construction requires only
randomized polynomial time (since we can easily find a maximal edge-
disjoint collection Di+1⊆Bi+1 by a deterministic greedy algorithm).

2.2. Pseudo-random intuition: trajectory equations

In this informal section we give a heuristic explanation of the differential
equation that predicts the behaviour of (Oi,Ei) for 0≤ i≤ I ≈nβ. Inspired
by [32,20], our main non-rigorous ansatz is that the edge-sets (Oi,Ei) should

7 Kim uses a different stabilization mechanism in [20, Section 5.1]: instead of introducing
the random sets Sj , he deterministically modifies the underlying graphs in each step (by
temporarily adding some extra edges and vertices), mimicking an earlier ‘regularization’
idea from [19]. We find our randomized approach more elegant, and easier to implement
algorithmically.
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resemble properties of a random subgraph of H with two types of edges,
where

(22) P(e ∈ Oi) ≈ qi and P(e ∈ Ei) ≈ πi/
√
n

are approximately independent. We now derive properties of qi,πi that are
consistent with this ansatz. For example, combining Ei+1 =Ei∪Γi+1 with
the random construction of Γi+1⊆Oi, we expect to have
(23)
P(e ∈ Ei+1)−P(e ∈ Ei) = P(e ∈ Γi+1 | e ∈ Oi)P(e ∈ Oi) ≈ p · qi = σqi/

√
n,

which together with (22) and E0=∅ suggests that

(24) πi+1 − πi ≈ σqi and π0 ≈ 0.

Furthermore, with lots of hand-waving, by (19) we intuitively have Oi\Oi+1=

Γi+1∪Ci+1∪C(2)
i+1≈Ci+1 (since each closed edge in C

(2)
i+1 requires the presence

of at least two random edges from Γi+1 ⊆Oi). As (22) suggests E |Ye(i)|.
2qiπi

√
n, by the stabilization mechanism (21) and p=σ/

√
n we thus loosely

expect that

P(e ∈ Oi+1 | Oi, Ei) ≈ P(e 6∈ Ci+1 | Oi, Ei) = (1−p)2qi(πi+
√
σ)
√
n ≈ 1−2σqiπi

for e∈Oi, where we bluntly ignored the
√
σ-term in the exponent. Similar

to (23), using (22) we thus ought to have

(25) qi+1− qi ≈ P(e ∈ Oi+1)−P(e ∈ Oi) ≈ −2σqiπi ·P(e ∈ Oi) ≈ −2σq2i πi.

To extract the behaviour of πI from (24) and (25), we further assume that
πi≈Ψ(iσ) holds for some smooth function Ψ(x), where σ�1 is tiny. Using
Taylor series, in view of (24) and O0=E(H) this suggests that

(26) qi ≈ Ψ ′(iσ) and q0 ≈ 1.

Together with (25) and the initial values from (24) and (26), this leads to
the second order differential equation Ψ ′′(x)=−2Ψ ′(x)2Ψ(x) with Ψ ′(0)=1
and Ψ(0)=0, which in turn reduces to the simple ODE

(27) Ψ ′(x) = e−Ψ
2(x) and Ψ(0) = 0.

Noting the implicit solution x =
∫ Ψ(x)
0 et

2
dt, it is now easy to derive

that Ψ(x) ≈
√

logx as x → ∞ (see, e.g., the proof of (57) in Ap-
pendix A). Since I≈nβ is sufficiently large compared to σ (which will be of
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form σ=(logn)−Θ(1), see (35) in Section 2.3), this makes it plausible that

(28) πI ≈ Ψ(Iσ) ≈
√

log(Iσ) ≈
√
β log n.

Finally, since by construction we expect |Ei+1 \Ei| ≈ |Ti+1 \Ti| to hold
for all 0≤ i < I, the edge-sets EI and TI ought to share many properties.
Together with (22) and (28) this intuitively suggests

(29) P(e ∈ TI) ≈ P(e ∈ EI) ≈
√
β(log n)/n,

making the pseudo-random edge-estimate (1) plausible for G=(V,TI) with
TI⊆EI⊆E(H).

2.3. Definitions and parameters

In this section we formally define several variables and parameters used in
our analysis of the nibble construction. We start with two standard notions
from graph theory: for any edge-subset S⊆

(
V
2

)
we write

S(A,B) := {ab ∈ S : a ∈ A, b ∈ B},(30)

NS(v) := {w ∈ V : vw ∈ S},(31)

where A,B⊆V are vertex-disjoint. For all pairs of distinct vertices u,v∈V
we then define

Xuv(i) := NOi(u) ∩NOi(v),(32)

Zuv(i) := NEi(u) ∩NEi(v),(33)

where |Xuv(i)| and |Zuv(i)| intuitively correspond to an ‘open codegree’ and
the usual codegree, respectively (note that |Yuv(i)| defined in (15) corre-
sponds to a ‘mixed codegree’).

Guided by Section 2.2, we define Ψ(x) as the unique solution to the
differential equation

(34) Ψ ′(x) = e−Ψ
2(x) and Ψ(0) = 0,

as suggested by (27). With the heuristics (22) in mind, we then introduce
the parameters

σ := (log n)−2,(35)

qi := Ψ ′(iσ) = e−Ψ
2(iσ),(36)

πi := σ +
i−1∑
j=0

σqj = πi−1 + σqi−1 {i≥1},(37)
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making (24) and (26) rigorous (starting with π0 = σ > 0 leads to cleaner
formulae later on). With foresight, for i≤ I we also introduce the ‘relative
error’ parameter

(38) τi := 1− δπi
2πI

= τi−1 −
δσqi−1

2πI
{i≥1},

which slowly degrades from τ0=1−o(δ) to τI =1−δ/2.
With an eye on Theorem 4, for concreteness we introduce the absolute

constants8

(39) D0 := 108 and β0 := 1/14,

as well as the set-sizes (with s0�s) and idealized edge-probability

(40) s :=
⌈
C
√
n log n

⌉
, s0 :=

⌊
σ4q2Is

⌋
, and ρ :=

√
β(log n)/n,

and, recalling O0=E(H), the collection of ‘relevant’ pairs of large vertex-sets

(41)
Ss,γ := {(A,B) : disjoint A,B ⊆ V with |A| = |B| = s

and |O0(A,B)| ≥ γ|A||B|}.

2.4. Main nibble result: pseudo-random properties

In this section we state our main nibble result Theorem 9, which implies our
main tool Theorem 4 and establishes various pseudo-random properties of
(Oi,Ei,Ti,Γi)0≤i≤I . The following event is of core interest:

(42) TI :=
{
|TI(A,B)| = (1± δ)ρ|O0(A,B)| for all (A,B) ∈ Ss,γ

}
.

Indeed, it implies the conclusion of Theorem 4 with G = (V,TI) since the
edge-set TI⊆EI⊆E(H)=O0 is triangle-free. To get a handle on TI , in view
of Section 2.1 it is natural that we also require some control over the other
edge-sets (Ei,Oi,Γi)0≤i≤I . To this end we introduce the ‘good’ events

(43) Xi := Ni ∩ Pi ∩Q+
i ∩Qi and X≤i :=

⋂
0≤j≤i

Xj ,

where the following auxiliary events encapsulate various pseudo-random
properties:

Ni :=
{
|NOi(v)| ≤ qin and |NΓi(v)| ≤ 2σqi−1

√
n for all v ∈ V

}
,(44)

8 To make this paper easier to read, we have made no attempt to optimize the constants
D0,β0 in (39).
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Pi :=
{
|Xuv(i)| ≤ q2i n, |Yuv(i)| ≤ 2qiπi

√
n, and

|Zuv(i)| ≤ i(log n)9 for all u, v ∈ V with u 6= v
}
,

(45)

Q+
i :=

{
|Oi(A,B)| ≤ qi|A||B| for all disjoint A,B ⊆ V with |A|, |B| ≥ s0

}
,

(46)

Qi :=
{
τiqi|O0(A,B)| ≤ |Oi(A,B)| ≤ qi|O0(A,B)| for all (A,B) ∈ Ss,γ

}
.

(47)

In words, the above events give bounds for degree-like variables (Ni),
codegree-like variables (Pi), and the number of open edges (Q+

i and Qi).
A subtle but important point is that Ni, Pi and Q+

i only guarantee one-
sided concentration, i.e., ensure upper bounds but no matching lower bounds
(which can fail badly, for example, |Yuv(i)|=0 holds when uv∈Ei). Merely
Qi guarantees two-sided concentration, which is harder to prove, but crucial
for establishing the edge-estimate from TI (see the heuristic below Theo-
rem 9).

With τi≈1 and O0=E(H)⊆E(Kn) in mind, most of the bounds in (42)
and (44)–(47) can easily be guessed by the pseudo-random heuristics (22)
and (29) from Section 2.2 (the |NΓi(v)|-bound is one exception: based on
E |NΓi(v)|=p·E |NOi−1(v)|, it contains an extra factor of 2 to avoid additive
error terms; another exception is the |Zuv(i)|-bound: it relaxes the prediction
E |Zuv(i)|.π2i =O(logn) for technical reasons).

Inspecting (44)–(47) in the special case i = 0, it is not difficult to see
that the good event X0 = X≤0 always holds (by combining q0 = 1 ≥ τ0
and σ,q−1,π0≥0 with E0=T0=Γ0=∅).

Remark 8. The event X0 holds deterministically for any n-vertex host
graph H.

Our main nibble result (which is at the heart of this paper) states that,
under fairly natural constraints, the pseudo-random events TI and X≤I both
hold with very high probability. Recall that I≈nβ, and that all pairs (A,B)∈
Ss,γ of vertex-sets satisfy |O0(A,B)|≥γs2 and |A|= |B|=s≈C

√
n logn.

Theorem 9 (Main nibble result). For all γ,δ∈(0,1], β∈(0,β0) and C≥
D0/(δ

2
√
βγ) the following holds for n≥n0(γ,δ,β,C): we have P(TI∩X≤I)≥

1−n−ω(1) for any n-vertex host graph H.

Proof of Theorem 4. If the event TI holds, then the triangle-free
graph G := (V,TI) has the claimed properties by (42), V = V (H) and
TI⊆EI⊆E(H)=O0, so Theorem 9 completes the proof.
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Remark 10. In view of I=O(nβ0) and Remark 7, the nibble thus yields a
randomized polynomial time algorithm (with error probability ≤n−ω(1)) for
constructing the triangle-free G⊆H from Theorem 4.

Remark 11. The heuristic edge-estimate (29) suggests that in Theo-
rem 9 the dependence of the constant C on δ,β,γ is qualitatively best
possible, since it would also naturally arise if G = (V,TI) ⊆ H was
a random subgraph with edge-probability ρ ≈

√
β(logn)/n. Indeed, for

all (A,B) ∈ Ss,γ the expected number of edges between A and B would
then be at least λA,B :=E |TI(A,B)|= ρ|O0(A,B)| ≥ ρ ·γs2≥

√
βγC ·s logn,

and the probability that the event TI from (42) fails would there-
fore be (using a union bound and standard Chernoff bounds) at most∑

(A,B)∈Ss,γ e
−Θ(δ2λA,B) ≤ n2s−Ω(δ2

√
βγCs) = o(1) for C = Ω(1/(δ2

√
βγ))

large enough.

We defer the proof of Theorem 9 to Section 3, and now just outline a
brief heuristic argument that illustrates how the event X≤I ⊆

⋂
0≤i≤IQi is

instrumental for establishing the edge-estimate from TI (which seems infor-
mative). Similar to (29), in view of Section 2.1 we expect that in each step
only few edges are removed due to the creation of triangles, which intuitively
suggests

|Ti+1(A,B) \ Ti| ≈ |Ei+1(A,B) \ Ei|.

Combining the construction of Ei+1 \Ei=Γi+1⊆Oi with the event Qi and
τi≈1, we also expect that

|Ei+1(A,B) \ Ei| = |Γi+1(A,B)| ≈ p · |Oi(A,B)| ≈ p · qi|O0(A,B)|.

Recalling p=σ/
√
n and ρ=

√
β(logn)/n, using the definition (37) of πI and

the approximation πI≈
√
β logn from (28) it now becomes plausible that

|TI(A,B)| =
∑

0≤i<I
|Ti+1(A,B) \ Ti|

≈
∑

0≤i<I σqi√
n

· |O0(A,B)|

≈ πI√
n
· |O0(A,B)|

≈ ρ|O0(A,B)|,

as suggested by TI (Section 3.5 contains a rigorous version of this heuristic
argument).
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2.5. Tools and auxiliary estimates

In this preparatory section we gather, for later reference, some results that
will be used throughout the proof of Theorem 9 (mostly probabilistic and
combinatorial tools, and ending with some auxiliary estimates). On a first
reading the reader may perhaps wish to skip straight to Section 3.

We start with a convenient version of the bounded differences inequal-
ity [23,24,36] for Bernoulli variables. Note that the upper tail estimate (48)
for decreasing functions does not have an extra Ct term in the exponent
like (49). Remarks 13–14 are well-known, see, e.g., [24, Theorem 2.3, 3.8,
and 3.9] or [36, Corollary 1.4]. Inequality (48) can be deduced from the ar-
guments in [23, Lemma 7.14], but this monotone version does not seem to
be widely known; in Appendix A we thus include a simple proof for com-
pleteness.

Theorem 12. Let (ξα)α∈I be a finite family of independent random vari-
ables with ξα ∈ {0,1}. Let f : {0,1}|I| → R be a function, and assume
that there exist numbers (cα)α∈I such that the following holds for all
z = (zα)α∈I ∈ {0,1}|I| and z′ = (z′α)α∈I ∈ {0,1}|I|: |f(z)− f(z′)| ≤ cβ if
zα = z′α for all α 6= β. Define X := f

(
(ξα)α∈I

)
and λ :=

∑
α∈I c

2
αP(ξα = 1).

Then, for all t≥0,

(48) P(X ≥ EX + t) ≤ exp

(
− t

2

2λ

)
if the function f is decreasing (i.e., that f(z)≤ f(z′) whenever zα≥ z′α for
all α∈I).

Remark 13. Define C := maxα∈I cα. If we drop the assumption that f is
decreasing, then

(49) P(X ≤ EX − t) ≤ exp

(
− t2

2(λ+ Ct)

)
.

Remark 14. In the special case X =
∑

α∈I ξα we have C = cα = 1 and
λ=EX. Standard Chernoff bounds (or applying (48)-(49) to the decreasing
function −X) then show that in this case P(X≤EX−t) and P(X≥EX+t)
are at most the right hand side of (48) and (49), respectively.

For random variables with a special combinatorial form (based on the
occurrence of events with ‘limited overlaps’) we shall use the following
Chernoff-type upper tail inequality, which is a convenient corollary of a more
general result by Warnke [37, Theorem 9]. Note that the exponent of (50)
scales with 1/C.



80 HE GUO, LUTZ WARNKE

Theorem 15. Let (ξi)i∈S be a finite family of independent random
variables with ξi ∈ {0,1}. Let (Yα)α∈I be a finite family of variables
Yα := {ξi=1 for all i∈α} with

∑
α∈I EYα≤µ. Define ZC :=max

∑
α∈J Yα, where

the maximum is taken over all J ⊆I with maxβ∈J |{α∈J : α∩β 6=∅}|≤C.
Then, for all C,t>0,

(50) P(ZC ≥ µ+ t) ≤ min

{(
eµ

µ+ t

)(µ+t)/C

, exp

(
− t2

2C(µ+ t)

)}
.

The following simple combinatorial lemma formalizes the intuition that
we expect

∑
i |Ui|=O(|U |) whenever the subsets Ui⊆U are nearly disjoint

(i.e., have small pairwise intersections).

Lemma 16. Suppose that (Ui)i∈I is a family of subsets Ui⊆U with |Ui|≥
z>0 and |Ui∩Uj |≤y for all i 6=j. Then z≥

√
4|U |y implies |I|≤2|U |/z and∑

i∈I |Ui|≤2|U |.

Proof. Aiming at a contradiction, suppose that |I|>2|U |/z. Then there is
J ⊆I with |J |=b2|U |/zc+1. Observe that, for any i∈J ,

(51)
∑

j∈J : i6=j
|Uj ∩ Ui| ≤ (|J | − 1)y ≤ 2|U |y/z ≤ z/2 ≤ |Ui|/2.

So we obtain a contradiction by noting that
(52)

|U | ≥

∣∣∣∣∣⋃
i∈J

Ui

∣∣∣∣∣ ≥∑
i∈J

|Ui| − ∑
j∈J : i6=j

|Uj ∩ Ui|

 ≥∑
i∈J
|Ui|/2 ≥ |J |z/2 > |U |.

With |I| ≤ 2|U |/z in hand, after replacing J with I, note that (51)
and the first three inequalities of (52) remain valid, completing the proof of∑

i∈I |Ui|≤2|U |.

Our final auxiliary result contains a number of convenient estimates in-
volving the parameters qi,πi,σ,I defined in Section 2.3 and (9). Roughly
put, (55)–(57) state that qi≈qi+1, 1−2σqiπi≈qi+1/qi and πI≈

√
log(Iσ), as

predicted by (25) and (28). The technical estimates (53)–(54) can safely be
ignored on a first reading. The proof of Lemma 17 is based on elementary cal-
culus and thus deferred to Appendix A (it also establishes qi≥qI =n−β+o(1),
which together with I≈nβ and (54) motivates our choice of β0=1/14).



PACKING NEARLY OPTIMAL RAMSEY R(3, t) GRAPHS 81

Lemma 17. If β∈(0,β0), then there exists τ,n0>0 such that, for all n≥n0
and 0≤ i≤I,

max
{

max
j∈{0,1,2}

{
qiπ

j
i

}
,
√
σπi

}
≤ 1,(53)

min
{

min
j∈[4]

{
qji
√
n
}
, q2i
√
n/I, q3i

4
√
n/
√
I
}
≥ nτ ,(54)

0 ≤ qi − qi+1 ≤ 4σ ·min{qi, qi+1, qiπi},(55) ∣∣(1− 2σqiπi)− qi+1/qi
∣∣ ≤ 8σ2qi,(56) ∣∣πI −√log(Iσ)
∣∣ ≤ 2.(57)

As a simple application, for 0 ≤ i ≤ I we now bound the stabilization
probability p̂e,i defined in (20). Since (54) implies qi

√
σ
√
n�1, by applying

(1−p)r≥1−pr=1−σr/
√
n (valid for r≥1) we infer

(58) p̂e,i ≤ 1− (1− p)2qi(πi+
√
σ)
√
n ≤ 2σqi(πi +

√
σ) ≤ qi,

where we used
√
σπi≤1 and σ�1 (see (53) and (35)) for the last inequality.

3. Analyzing the nibble

In this section we prove our main nibble result Theorem 9 (which in turn
implies our main tool Theorem 4, see Section 2.4) as a corollary of the
following auxiliary lemma.

Lemma 18. Under the assumptions of Theorem 9, for n≥n0(γ,δ,β,C) we
have

P(¬Xi+1 | X≤i) ≤ n−ω(1) for all 0 ≤ i ≤ I − 1,(59)

P(¬TI ∩ X≤I) ≤ n−ω(1).(60)

Proof of Theorem 9. Recalling I ≤ dnβ0e = nO(1) and X≤i =
⋂

0≤j≤iXj ,

note that P(¬X0) = 0 (see Remark 8) and (59) readily imply P(¬X≤I) ≤
n−ω(1), which together with (60) completes the proof.

The remainder of this section is devoted to the proof of Lemma 18: the
proof of (59) with ¬Xi+1 =¬Ni+1∪¬Pi+1∪¬Q+

i+1∪¬Qi+1 is spread across
Sections 3.2–3.4, and the proof of (60) is given in Section 3.5.
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3.1. Preliminaries: setup and conventions

To avoid clutter, up to (and including) Section 3.4 we shall suppress the
conditioning in the notation: we will write P(·) and E(·) as shorthand
for P(· | Fi) and E(· | Fi), where (Fi)0≤i≤I denotes the natural filtration
associated with (Oi,Ei,Ti,Γi,Si)0≤i≤I , as usual. We will also tacitly as-
sume that the Fi-measurable event X≤i holds. Conditional on Fi, note that
by construction of the random edge-sets Γi+1 and Si+1, the (conditional)
probability space formally consists of the 2|Oi| independent Bernoulli ran-
dom variables ( {e∈Γi+1}, {e∈Si+1})e∈Oi , with P(e ∈ Γi+1) = p = σ/

√
n and

P(e∈Si+1)= p̂e,i≤qi, see (58).

Using the above setup and conventions, we shall repeatedly consider ran-
dom variables of form

(61) X = f
((
{e∈Γi+1}, {e∈Si+1}

)
e∈Oi

)
.

To get a handle on the (conditional) expectation EX we will often use
Oi+1 ⊆ Oi \Ci+1 together with the following key lemma, which hinges on
the stabilization mechanism to equalize all (conditional) probabilities P(e 6∈
Ci+1), see (62) below. (The extra

√
σ term in (20) ensures that P(e 6∈Ci+1)<

qi+1/qi holds with plenty of elbow room, which is convenient for avoiding
ugly error terms in the upper bounds of (44)–(47).)

Lemma 19. We have P(e 6∈Ci+1)−qi+1/qi∈ [−3σ3/2qi,−σ3/2qi] for all e∈Oi.

Proof. For any e∈Oi, since |Ye(i)|≤2qiπi
√
n by X≤i⊆Pi, by definition of

Ci+1=C
(1)
i+1∪Si+1 we have

(62)
P(e 6∈ Ci+1) = P(e 6∈ C(1)

i+1) · P(e 6∈ Si+1) = (1− p)|Ye(i)| · (1− p̂e,i)
= (1− p)2qi(πi+

√
σ)
√
n.

It is well-known (and easy to check) that 1− rx≤ (1−x)r ≤ 1− rx+
(
r
2

)
x2

for all x ∈ [0,1] and r ≥ 2. Using
√
np = σ� 1 and max{qi, qiπi, qiπ2i } ≤ 1

(see (53)), it follows that∣∣∣P(e 6∈ Ci+1)−
[
1−2σqi(πi+

√
σ)
]∣∣∣ ≤ 2σ2q2i (πi+

√
σ)2 = O(σ2qi) = o(σ3/2qi).

This completes the proof since 1−2σqiπi=qi+1/qi+o(σ3/2qi) by (56).
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To deduce concentration properties of such random variables X we shall
frequently rely on the bounded differences inequality (Theorem 12). In those
cases we will bound the associated parameter λ via

(63) λ =
∑
e∈Oi

c2e P(e ∈ Γi+1) +
∑
e∈Oi

ĉ2e P(e ∈ Si+1) ≤ p
∑
e∈Oi

c2e + qi
∑
e∈Oi

ĉ2e,

where the edge-effect ce is an upper bound on how much X can change if we
modify the indicator {e∈Γi+1} (alter whether e is in Γi+1 or not), and the
stabilization-effect ĉe is an upper bound on how much X can change if we
modify the indicator {e∈Si+1} (alter whether e is in Si+1 or not). Moreover,
the following simple observation will later allow us to control the above
sum (63) of these effects.

Lemma 20. If X≤i holds, then
∑

e∈Oi |Ye(i)∩J |≤2qiπi
√
n·|J | for any edge-

subset J⊆
(
V
2

)
.

Proof. For any e∈Oi, note that f ∈Ye(i) implies e∈Yf (i). As Yf (i)⊆Oi,
we infer∑

e∈Oi

|Ye(i) ∩ J | =
∑
f∈J

∑
e∈Oi

{f∈Ye(i)} ≤
∑
f∈J

∑
e∈Oi

{e∈Yf (i)} =
∑
f∈J
|Yf (i)|.

This completes the proof since X≤i⊆Pi implies |Yf (i)|≤2qiπi
√
n.

3.2. Event Ni+1: degree-like variables |NOi+1(v)| and |NΓi+1(v)|

Recall that the event Ni+1 defined in (44) concerns degree-like variables,
ensuring that |NOi+1(v)|≤ qi+1n and |NΓi+1(v)|≤ 2σqi

√
n for all vertices v;

see (31) for the definition of NS(v).

Lemma 21. We have P(¬Ni+1)≤n−ω(1).

Proof. We start with |NOi+1(v)|. Note that Oi+1⊆Oi \Ci+1 implies

(64) |NOi+1(v)| ≤
∑

w∈NOi (v)
{vw 6∈Ci+1} =: X.

Since X≤i⊆Ni implies |NOi(v)|≤qin, using Lemma 19 we obtain
(65)

EX =
∑

w∈NOi (v)

P(vw 6∈ Ci+1) ≤ |NOi(v)|·(qi+1/qi−σ3/2qi) ≤ qi+1n−σ3/2q2i n.

Gearing up to apply Theorem 12 to X, we now bound the associated param-
eter λ≤p

∑
e∈Oi c

2
e+qi

∑
e∈Oi ĉ

2
e from (63). Set Xv :={v}×NOi(v)⊆Oi, and
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recall that Ci+1=C
(1)
i+1∪Si+1, where C

(1)
i+1 depends only on Γi+1 and thus is

independent of Si+1. The edge-effect ce (an upper bound on how much X
changes if we alter whether e∈Γi+1 or e 6∈Γi+1) is thus at most the number

of changes to C
(1)
i+1∩Xv = {vw∈Xv : Yvw(i)∩Γi+1 6=∅}. Since e∈ Yvw(i) im-

plies vw∈Ye(i) when vw∈Xv, we infer ce≤ |Ye(i)∩Xv| ≤ |Ye(i)| ≤ 2qiπi
√
n

by X≤i⊆Pi. Using Lemma 20, |Xv|= |NOi(v)|≤qin, and qiπ
2
i ≤1 (see (53)),

it follows that

(66)

p
∑
e∈Oi

c2e ≤ p · 2qiπi
√
n ·
∑
e∈Oi

|Ye(i) ∩ Xv|

≤ σ/
√
n · (2qiπi

√
n)2 · |Xv|

≤ 4σq3i π
2
i n

3/2 ≤ 4σq2i n
3/2.

By our above discussion, the stabilization-effect ĉe (an upper bound on how
much X changes if we alter whether e ∈ Si+1 or e 6∈ Si+1) is at most the
number of changes to Si+1∩Xv. Hence ĉe≤ {e∈Xv}, so that

qi
∑
e∈Oi

ĉ2e ≤ qi · |Xv| ≤ q2i n� σq2i n
3/2.

Noting that X is a decreasing function of the edge-indicators

( {e∈Γi+1}, {e∈Si+1})e∈Oi ,

using Theorem 12 together with the λ-bound (63) and q2i n
1/2≥nτ (see (54))

it follows that

P(|NOi+1(v)| ≥ qi+1n) ≤ P(X ≥ EX + σ3/2q2i n)

≤ exp

(
− σ3q4i n

2

2 · 5σq2i n3/2

)
≤ n−ω(1).

Taking a union bound over all vertices v completes the proof for the
|NOi+1(v)| variables.

Finally, note that |NΓi+1(v)| is a sum of independent Bernoulli random
variables with

E |NΓi+1(v)| = |NOi(v)| · p ≤ qin · σ/
√
n = σqi

√
n =: µ,

where we used X≤i⊆Ni to bound |NOi(v)|≤qin. Applying standard Chernoff
bounds (see, e.g., Remark 14), using qi

√
n ≥ nτ (see (54)) it is routine to
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deduce that µ� logn and

P(|NΓi+1(v)| ≥ 2σqi
√
n) = P(|NΓi+1(v)| ≥ 2µ)

≤ exp

(
− µ2

2 · 2µ

)
= exp

(
−µ

4

)
≤ n−ω(1).

Taking a union bound over all vertices v completes the proof for the
|NΓi+1(v)| variables.

3.3. Event Pi+1: codegree-like variables |Xuv(i+1)|, |Yuv(i+1)|
and |Zuv(i+1)|

Recall that the event Pi+1 defined in (45) concerns codegree-like variables,
ensuring that |Xuv(i+1)|≤q2i+1n, |Yuv(i+1)|≤2qi+1πi+1

√
n, and |Zuv(i+1)|≤

(i+1)(logn)9 for all pairs uv of vertices.

Lemma 22. We have P(¬Pi+1)≤n−ω(1).

Proof. We start with |Xuv(i+1)|. Recalling Oi+1⊆Oi \Ci+1, note that by
construction

(67) |Xuv(i+ 1)| ≤
∑

w∈Xuv(i)
{uw 6∈Ci+1 and vw 6∈Ci+1} =: X.

To estimate EX, note that the event f 6∈ C(1)
i+1 = {f ∈Oi : Yf (i)∩Γi+1 6=∅}

is determined by the values of the independent indicator variables
( {e∈Γi+1})e∈Yf (i). In view of the reasoning (62) for the value of P(e 6∈Ci+1),

it follows by construction of Ci+1=C
(1)
i+1∪Si+1 that

(68)
P(uw 6∈ Ci+1 and vw 6∈ Ci+1)

= P(uw 6∈ Ci+1)P(vw 6∈ Ci+1) · (1− p)−|Yuw(i)∩Yvw(i)|.

Since X≤i⊆Pi implies |Yuw(i)∩Yvw(i)|≤ |Zuv(i)|≤ I(logn)9 and |Xuv(i)|≤
q2i n, by combining (68) with Lemma 19 it follows that

(69) EX ≤ |Xuv(i)| ·(qi+1/qi−σ3/2qi)2 ·(1−p)−I(logn)
9 ≤ q2i+1n−σ3/2q3i n,

where for the last inequality we used pI(logn)9 � σ3/2q3i � 1 (since

q3i
√
n/I ≥ nτ by (54)) and σ3q4i � σ3/2q3i ∼ σ3/2qi+1q

2
i (see (53)–

(55)). With an eye on Theorem 12, we now bound the parameter
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λ≤p
∑

e∈Oi c
2
e+qi

∑
e∈Oi ĉ

2
e from (63). Set Xuv :={u,v}×Xuv(i)⊆Oi. Anal-

ogous to the proof of Lemma 21 for |NOi+1(v)|, here we have edge-effect
ce ≤ |Ye(i)∩Xuv| ≤ |Ye(i)| ≤ 2qiπi

√
n and stabilization-effect ĉe ≤ {e∈Xuv}.

Similar to (66), using Lemma 20, |Xuv|= 2 · |Xuv(i)| ≤ 2q2i n and qiπ
2
i ≤ 1 it

follows that

(70) p
∑
e∈Oi

c2e ≤ σ/
√
n · (2qiπi

√
n)2 · |Xuv| ≤ 8σq4i π

2
i n

3/2 ≤ 8σq3i n
3/2.

Furthermore, qi
∑
ĉ2e ≤ qi|Xuv| ≤ 2q3i n� σq3i n

3/2. Noting that X is a de-
creasing function of the edge-indicators ( {e∈Γi+1}, {e∈Si+1})e∈Oi , using The-

orem 12 and q3i n
1/2≥nτ (see (54)) it follows that

P(|Xuv(i+ 1)| ≥ q2i+1n) ≤ P(X ≥ EX + σ3/2q3i n)

≤ exp

(
− σ3q6i n

2

2 · 9σq3i n3/2

)
≤ n−ω(1).

Taking a union bound over all pairs of vertices u,v completes the proof for
the |Xuv(i+1)| variables.

Turning to the more involved |Yuv(i+1)| variables, note that by construc-
tion
(71)

|Yuv(i+ 1)| ≤
∑

w∈Xuv(i)
{uw∈Γi+1 or vw∈Γi+1} +

∑
f∈Yuv(i)

{f 6∈Ci+1} =: Y +
uv + Y ∗uv.

(To clarify: Y +
uv and Y ∗uv are defined by the first and second sum in (71),

respectively.) Using Lemma 19 together with σq2i = σqiqi+1 + o(σ3/2q2i πi)
(see (55)) and πiqi+1 = qi+1πi+1− σqiqi+1 (as πi+1 = πi + σqi by (37)), it
follows that

(72)

E(Y +
uv + Y ∗uv) ≤ |Xuv(i)| · 2p+ |Yuv(i)| · (qi+1/qi − σ3/2qi)

≤ 2σq2i
√
n+ 2πi

√
n(qi+1 − σ3/2q2i )

≤ 2qi+1πi+1

√
n− σ3/2q2i πi

√
n.

We now estimate Y +
uv and Y ∗uv separately. Noting EY +

uv ≤ 2σq2i
√
n and

σ2q2i πi
√
n= o(σq2i

√
n) (see (53)), using standard Chernoff bounds together
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with π2i ≥π20 =σ2 and q2i
√
n≥nτ (see (54)) it follows that

(73)

P(Y +
uv ≥ EY +

uv + σ2q2i πi
√
n) ≤ exp

(
−
(
σ2q2i πi

√
n
)2

4 · 2σq2i
√
n

)

≤ exp

(
−σ

5q2i
√
n

8

)
≤ n−ω(1).

For Y ∗uv we shall apply Theorem 12, and we thus now bound λ ≤
p
∑

e∈Oi c
2
e + qi

∑
e∈Oi ĉ

2
e from (63). As usual, we have edge-effect ce ≤

|Ye(i)∩ Yuv(i)| ≤ |Ye(i)| ≤ 2qiπi
√
n and stabilization-effect ĉe ≤ {e∈Yuv(i)}.

Here we can significantly improve the simple worst case estimate ce≤|Ye(i)|
when e 6= uv. Indeed, if e = w1w2 does not intersect uv, then ce ≤ 4 since
Ye(i)∩ Yuv(i) ⊆ {u,v}× {w1,w2}, say. Furthermore, if e = w1w2 intersects
uv in one vertex, say u = w1, then ce ≤ maxf |Zf (i)| ≤ I(logn)9 since
Ye(i)∩ Yuv(i) ⊆ {u}× [NEi(w2)∩NEi(v)]. To sum up, for e 6= uv we have
ce≤max{4, I(logn)9}≤σ−5I, say. Similar to (66) and (70), using Lemma 20
and |Yuv(i)|≤2qiπi

√
n it follows that

p
∑
e∈Oi

c2e ≤ σ/
√
n·
(

(2qiπi
√
n)2 + σ−5I · 2qiπi

√
n · |Yuv(i)|

)
≤ 8σ−4q2i π

2
i I
√
n.

Furthermore, using πi ≥ σ and I ≥ 1 we obtain qi
∑

e∈Oi ĉ
2
e ≤ qi|Yuv(i)| ≤

2q2i πi
√
n� σ−4q2i π

2
i I
√
n. Noting that Y ∗uv is decreasing, using Theorem 12

and q2i
√
n/I≥nτ (see (54)) it follows that

(74) P(Y ∗uv ≥ EY ∗uv + σ2q2i πi
√
n) ≤ exp

(
− σ4q4i π

2
i n

2 · 9σ−4q2i π2i I
√
n

)
≤ n−ω(1).

Combining the probability estimates (73) and (74) with inequalities (71)–
(72) and σ2�σ3/2, now a union bound argument (to account for all pairs
of vertices u,v) completes the proof for the |Yuv(i+1)| variables.

Finally, for |Zuv(i+1)| note that the one-step difference

(75)

∆Z := |Zuv(i+ 1)| − |Zuv(i)|
=

∑
w∈Xuv(i)

{uw∈Γi+1 and vw∈Γi+1} +
∑

f∈Yuv(i)
{f∈Γi+1}

is a sum of independent Bernoulli random variables with

(76) E(∆Z) = |Xuv(i)| · p2 + |Yuv(i)| · p ≤ σ2q2i + 2σqiπi ≤ 3σ � 1,

where we used |Xuv(i)|≤q2i n and |Yuv(i)|≤2qiπi
√
n for the first inequality,

and max{q2i , qiπi} ≤ 1 (see (53)) and σ � 1 for the last two inequalities.
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Inspecting (75), note that X≤i ⊆ Pi implies |Zuv(i+ 1)| ≤ ∆Z + i(logn)9.
Applying standard Chernoff bounds, using E(∆Z) � 1 it readily follows
that, say,

P
(
|Zuv(i+ 1)| ≥ (i+ 1)(log n)9

)
≤ P

(
∆Z ≥ (log n)9

)
≤ n−ω(1).

Taking a union bound over all pairs of vertices u,v completes the proof for
the |Zuv(i+1)| variables.

Remark 23. If desired, it would not be difficult to establish the better
upper bound |Zuv(i)|≤ (logn)2, say (using the stochastic domination argu-
ments leading to (95) in Section 3.5; in view (75)–(76) the main point is that,
for 0≤ i≤I, the event X≤i implies

∑
0≤j≤i(|Xuv(j)|p2+|Yuv(j)|p)=O(logn)).

This in turn could, e.g., be used to increase the constant β0 slightly (as we
could then remove I=dnβe from constraint (54)).

3.4. Event Q+
i+1∩Qi+1: number |Oi+1(A,B)| of open edges

between large sets

Recall that the events Q+
i+1,Qi+1 defined in (46)–(47) concern the open

edge-set Oi+1 ⊆E(H) =O0, ensuring that |Oi+1(A,B)| ≤ qi+1|A||B| for all
disjoint A,B⊆V with |A|, |B|≥s0, and τi+1qi+1|O0(A,B)|≤ |Oi+1(A,B)|≤
qi+1|O0(A,B)| for all (A,B) ∈ Ss,γ ; see (40)–(41) for the definition of s0
and Ss,γ .

Turning to |Oi+1(A,B)|, note that one edge e ∈ Γi+1 can add up

to |Ye(i) ∩ Oi(A,B)| ≤
∑

w∈e |NEi(w) ∩ (A ∪ B)| edges to C
(1)
i+1(A,B) ⊆

Oi(A,B) \Oi+1(A,B), which can potentially lead to large edge-effects ce.
To sidestep such technical difficulties, we now introduce the following aux-
iliary variables for vertex-sets A,B⊆ V with |A|= |B| (to avoid clutter we
suppress the dependence on A,B,i in parts of our notation):

z := σ4q2i |A|,
W1 := {w ∈ V : |NEi(w) ∩ (A ∪B)| ≥ z},
W2 := {w ∈ V : |NΓi+1(w) ∩ (A ∪B)| ≥ z},
Ĉ

(1)
i+1 := {uv ∈ Oi : there is w 6∈W1 s.t.

|{uw, vw} ∩ Γi+1| = |{uw, vw} ∩ Ei| = 1},
Ĉ

(2)
i+1 := {uv ∈ Oi : there is w 6∈W2 s.t. uw ∈ Γi+1, vw ∈ Γi+1},

Ĉi+1 := Ĉ
(1)
i+1 ∪ Si+1.
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Note that Ĉ
(j)
i+1 ⊆ C

(j)
i+1 for j ∈ {1,2}, and that Ĉi+1 ⊆ Ci+1. Furthermore,

recalling qi ≥ qI (see (55)), using inequality (54) it is routine to check
that s0�1 holds, that |A|≥s0 implies z�1, and moreover that

(77) min
|A|≥s0

z/
√
|A|I ≥ σ4q2i

√
s0/
√
I � σ6q3I

4
√
n/
√
I � nτ/2.

Lemma 24. We have P(¬Q+
i+1)≤n−ω(1).

Proof. Mimicking the double counting argument from (4), it follows that
the special case |A| = |B| of Q+

i+1 implies the event Q+
i+1 in full. Hence

¬Q+
i+1 implies that |Oi+1(A,B)| ≤ qi+1|A||B| fails for some disjoint vertex-

sets A,B⊆V with |A|= |B|≥s0, and we shall below estimate the probability
of this special case.

Recalling Ĉi+1⊆Ci+1, noting Oi+1⊆Oi \Ci+1⊆Oi \ Ĉi+1 we obtain

(78) |Oi+1(A,B)| ≤ |Oi(A,B) \ Ĉi+1| =
∑

f∈Oi(A,B)

{f 6∈Ĉi+1} =: X.

To estimate EX, recall that C
(1)
i+1 = {f ∈Oi : Yf (i)∩Γi+1 6=∅}. Note that

if the event Qf := {(f×W1)∩Γi+1=∅} holds, then f /∈ Ĉ
(1)
i+1 im-

plies f /∈ C
(1)
i+1, so that f /∈ Ĉi+1 implies f /∈ Ci+1 = C

(1)
i+1 ∪ Si+1.

Since f /∈ C
(1)
i+1 and Qf are both monotone decreasing functions of the

edge-indicators ( {e∈Γi+1}, {e∈Si+1})e∈Oi , using Harris’s inequality [18] and

P(Qf )≥(1−p)2|W1| it follows that

P(f /∈ Ci+1) ≥ P(f /∈ Ĉi+1 and Qf )

≥ P(f /∈ Ĉi+1)P(Qf )

≥ P(f /∈ Ĉi+1) · (1− p)2|W1|.

Note that X≤i and i < I imply |NEi(u)∩NEi(v)|= |Zuv(i)| ≤ I(logn)9 =: y

when u 6=v, and that (77) implies z�
√
|A∪B|y. Using the definition of W1

and Lemma 16 (with I = W1, U = A∪B and Uw = NEi(w)∩U), we infer
|W1| ≤ 2|A∪B|/z = 4/(σ4q2i ) ≤ qiσ

√
n by (54), say. Similar to (69), using

Lemma 19, |Oi(A,B)|≤qi|A||B|, p|W1|≤qiσ2�1 and qiqi+1∼q2i (see (55))
it is routine to deduce that

(79)
EX ≤ |Oi(A,B)| · (qi+1/qi − σ3/2qi) · (1− p)−2|W1|

≤ |A||B| · (qi+1 − σ3/2q2i /2).

Gearing up to apply Theorem 12, we now bound λ≤p
∑

e∈Oi c
2
e+qi

∑
e∈Oi ĉ

2
e.

Noting Ĉi+1⊆Ci+1, as usual we have edge-effect ce≤|Ye(i)∩Oi(A,B)| and
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stabilization-effect ĉe ≤ {e∈Oi(A,B)}. Here the definition of Ĉi+1 allows us
to improve the simple worst case estimate ce ≤ |Ye(i)|. Indeed, inspecting
the corresponding argument for |NOi+1(v)| from Lemma 21, we see that
the edge-effect ce (an upper bound on how much X changes if we alter
whether e∈Γi+1 or e 6∈Γi+1) is at most the number of changes to

(80)

Ĉ
(1)
i+1 ∩Oi(A,B) =

{
uv ∈ Oi(A,B) : there is w 6∈W1 s.t.

either uw ∈ Γi+1, vw ∈ Ei
or vw ∈ Γi+1, uw ∈ Ei

}
.

Since any w 6∈W1 has at most z neighbours in A∪B via Ei-edges, we infer
that ce≤2z (the factor of two takes into account that each vertex of e could
potentially play the role of w in (80) above). Similar to (66) and (70), using
Lemma 20, σπi≤

√
σ�1 (see (53)), and |Oi(A,B)|≤qi|A||B| it follows that

p
∑
e∈Oi

c2e ≤ σ/
√
n · 2z · 2qiπi

√
n · |Oi(A,B)| � zqi|Oi(A,B)| ≤ zq2i |A||B|.

Furthermore, using z≥ 1 we obtain qi
∑
ĉ2e ≤ qi|Oi(A,B)| ≤ zqi|Oi(A,B)| ≤

zq2i |A||B|. Noting that X is decreasing, using Theorem 12 and the λ-
bound (63) it follows that

(81)

P(|Oi+1(A,B)| ≥ qi+1|A||B|) ≤ P(X ≥ EX + σ3/2q2i |A||B|/2)

≤ exp

(
−
(
σ3/2q2i |A||B|/2

)2
2 · 2zq2i |A||B|

)

= exp

(
−σ

3q2i |A||B|
16z

)
≤ n−ω(|B|),

where for the last inequality we used z= σ4q2i |A| and σ−1� logn. Finally,
taking a union bound over all disjoint vertex-sets A,B⊆V with |A|= |B|≥s0
completes the proof (as discussed).

For the ‘relative error’ τi used in the event Qi, see (38), we now record
the following convenient bounds:

(82) 1 ≥ τi ≥ τI = 1− δ/2 ≥ 1/2 for all 0 ≤ i ≤ I.

Lemma 25. We have P(¬Qi+1∩Ni+1∩Pi+1)≤n−ω(1).

The proof strategy is to estimate the different contributions to Oi+1 =

Oi \ (Γi+1 ∪Ci+1 ∪C(2)
i+1) separately (here Q+

i will be crucial for bounding
some of the large edge-effects ignored in Lemma 24).
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Claim 26. Let QA,B be the event that the following bounds hold:

X1 :=
∣∣Oi(A,B) \ Ĉi+1

∣∣
∈
[
|Oi(A,B)| · (qi+1/qi − 4σ3/2qi), |Oi(A,B)| · qi+1/qi

]
,

X2 :=
∣∣Oi(A,B) ∩ Ĉ(2)

i+1

∣∣ ≤ |Oi(A,B)| · 2σ2qi,
X3 := |Oi(A,B) ∩ Γi+1| ≤ |Oi(A,B)| · 2σ2qi,
X4 :=

∣∣Oi(A,B) ∩ (Ci+1 ∪ C(2)
i+1) \ (Ĉi+1 ∪ Ĉ(2)

i+1)
∣∣ ≤ 36σq2i

√
n|A|.

Then P(¬QA,B∩Ni+1∩Pi+1)≤n−ω(s) for all vertex-sets (A,B)∈Ss,γ .

Before giving the proof, we first show that Claim 26 implies Lemma 25.
Using a union bound argument (to account for the |Ss,γ | ≤ n2s vertex-
sets (A,B) ∈ Ss,γ), it is enough to show that QA,B ∩ X≤i implies
τi+1qi+1|O0(A,B)| ≤ |Oi+1(A,B)| ≤ qi+1|O0(A,B)|. By definition of
Oi+1(A,B) we have

X1 −X2 −X3 −X4 ≤ |Oi+1(A,B)| ≤ X1.

Combining QA,B with the fact that |Oi(A,B)| ≤ qi|O0(A,B)| by X≤i ⊆Qi,
we readily infer the upper bound |Oi+1(A,B)|≤ qi+1|O0(A,B)|. Turning to
the lower bound, using QA,B it follows that

X1 −X2 −X3 −X4 ≥ |Oi(A,B)| ·
(
qi+1/qi − 8σ3/2qi

)
− 36σq2i

√
n|A|

≥
(
τiqi
(
qi+1/qi − 8σ3/2qi

)
− 36σq2i
γC
√

log n

)
· |O0(A,B)|

≥
(
τi −

45σqi

γC
√

log n

)
· qi+1|O0(A,B)|

≥ τi+1 · qi+1|O0(A,B)|,

where for the second inequality we used |Oi(A,B)|≥τiqi|O0(A,B)| (by X≤i⊆
Qi) and |O0(A,B)| ≥ γ|A||B| ≥ γC

√
logn ·

√
n|A|, for the third inequality

we used τi ≤ 1 (see (82)), σ1/2 � 1/
√

logn, and qi ∼ qi+1 (see (55)), and
for the last inequality we used

√
logn ∼

√
log(Iσ)/β ∼ πI/

√
β (see (57)),

γC/
√
β ≥D0/δ

2 ≥ 91/δ (by assumption and (39)) and τi− δσqi/πI = τi+1

(see (38)). This completes the proof of Lemma 25 (assuming Claim 26).

Proof of Claim 26. We start with X1= |Oi(A,B)\Ĉi+1|. Since s≥s0, the
upper tail argument for X=X1 defined in (78) carries over from Lemma 24,
with EX1 ≤ |Oi(A,B)|(qi+1/qi− σ3/2qi/2) and λ ≤ 2zqi|Oi(A,B)|, say. In
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particular, noting that here |Oi(A,B)| ≥ τiqi|O0(A,B)| ≥ γτiqi|A||B|, an
application of Theorem 12 along the lines of (81) gives

(83)

P(X1 ≥ |Oi(A,B)|qi+1/qi) ≤ exp

(
−
(
σ3/2qi|Oi(A,B)|/2

)2
2 · 2zqi|Oi(A,B)|

)

≤ exp

(
−γτiσ

3q2i |A||B|
16z

)
≤ n−ω(s),

where for the last inequality we used z=σ4q2i |A|, τi≥1/2 (see (82)), γσ−1�
logn and |B|=s. For the lower tail of X1 we proceed similarly. Since Ĉi+1⊆
Ci+1, using Lemma 19 we obtain

EX1 =
∑

e∈Oi(A,B)

P(e 6∈ Ĉi+1)

≥
∑

e∈Oi(A,B)

P(e 6∈ Ci+1)

≥ |Oi(A,B)| · (qi+1/qi − 3σ3/2qi).

Furthermore, the edge-effect and stabilization-effect estimates from the
proof of Lemma 24 again carry over, giving λ ≤ 2zqi|Oi(A,B)| and
maxe∈Oi max{ce, ĉe} ≤ 2z, say. Applying inequality (49) of Remark 13
(with C=2z), it follows similarly to (83) that

(84)

P
(
X1 ≤ |Oi(A,B)|(qi+1/qi − 4σ3/2qi)

)
≤ P

(
X1 ≤ EX1 − σ3/2qi|Oi(A,B)|

)
≤ exp

(
−

(
σ3/2qi|Oi(A,B)|

)2
2
(
2zqi|Oi(A,B)|+ 2z · σ3/2qi|Oi(A,B)|

))

≤ exp

(
−γτiσ

3q2i |A||B|
8z

)
≤ n−ω(s).

Turning to X2 = |Oi(A,B)∩ Ĉ(2)
i+1|, note that by construction of Ĉ

(2)
i+1 we

have

(85) X2 =
∑

e∈Oi(A,B)
{e∈Ĉ(2)

i+1}
≤

∑
ab∈Oi(A,B)

∑
w∈V \W2

{{wa,wb}⊆Γi+1} =: X+
2 .

Gearing up to apply Theorem 15 to X+
2 , in view of Γi+1⊆Oi we define

I :=
{
{wa,wb} ⊆ Oi : ab ∈ Oi(A,B), w ∈ V, |{a, b, w}| = 3

}
,

K := {{wa,wb} ∈ I : w 6∈W2, {wa,wb} ⊆ Γi+1}.
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Since p2 · |Xab(i)|≤σ2q2i ≤σ2qi by X≤i⊆Pi and qi≤1 (see (53)), we obtain∑
α∈I

E {α⊆Γi+1} = p2
∑

ab∈Oi(A,B)

∑
v∈V

{{va,vb}⊆Oi}

= p2
∑

ab∈Oi(A,B)

|Xab(i)| ≤ σ2qi · |Oi(A,B)| =: µ.

Furthermore, since K only contains edge-pairs {wa,wb} with {a,b} ⊆
NΓi+1(w)∩ (A∪B) where the ‘central vertex’ w satisfies w 6∈W2 and thus
|NΓi+1(w)∩(A∪B)|≤z, for all β∈K we see that

|{α ∈ K : α ∩ β 6= ∅}| ≤
∑
f∈β
|{α ∈ K : f ∈ α}|

≤
∑
f∈β

∑
v∈f\W2

|NΓi+1(v) ∩ (A ∪B)|

≤ 2 · 2 · z.

It follows that X+
2 =

∑
α∈K {α⊆Γi+1}≤Z4z, where Z4z is defined as in The-

orem 15. Applying first (85) and then inequality (50) with C = 4z, using
|Oi(A,B)|≥γτiqi|A||B| it follows similarly to (83) that

(86)

P(X2 ≥ 2σ2qi|Oi(A,B)|) ≤ P(Z4z ≥ 2µ) ≤ exp

(
− µ2

2 · 4z · 2µ

)
≤ exp

(
−γτiσ

2q2i |A||B|
16z

)
≤ n−ω(s).

We next turn to X3 = |Oi(A,B)∩Γi+1|, which is a sum of independent
Bernoulli random variables with EX3 = |Oi(A,B)| ·p� σ2qi|Oi(A,B)|=: t,
as qi
√
n≥nτ by (54). Applying standard Chernoff bounds, using |Oi(A,B)|≥

γτiqi|A||B| and z≥1 it follows by comparison with the last inequality of (86)
that

(87)

P(X3 ≥ 2σ2qi|Oi(A,B)|) ≤ P(X3 ≥ EX3 + t) ≤ exp

(
− t2

2 · 2t

)
≤ exp

(
−γτiσ

2q2i |A||B|
4

)
≤ n−ω(s).

Finally, X4 is a more difficult variable: assuming that Ni+1∩Pi+1∩X≤i
holds, we shall bound X4 by deterministic counting arguments (here the
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edge-effects can potentially be fairly large, so concentration inequalities seem

less effective). Noting Ci+1 \ Ĉi+1=C
(1)
i+1 \ Ĉ

(1)
i+1, similarly to (85) we obtain

(88)

X4 ≤
∑

e∈Oi(A,B)
{e∈C(1)

i+1\Ĉ
(1)
i+1}

+
∑

e∈Oi(A,B)
{e∈C(2)

i+1\Ĉ
(2)
i+1}

≤
∑
w∈W1

(
|Oi(NΓi+1(w) ∩A,NEi(w) ∩B)|

+ |Oi(NΓi+1(w) ∩B,NEi(w) ∩A)|
)

+
∑
w∈W2

|Oi(NΓi+1(w) ∩A,NΓi+1(w) ∩B)|.

Using the upper bound estimate from X≤i⊆Q+
i when

min{|NΓi+1(v) ∩A|, |NEi(v) ∩B|} ≥ z

holds (note that z=σ4q2i s≥s0), and a trivial estimate otherwise, it follows
that
(89)
|Oi(NΓi+1(w) ∩A,NEi(w) ∩B)|
≤ qi|NΓi+1(w) ∩A||NEi(w) ∩B|+ zmax{|NΓi+1(w) ∩A|, |NEi(w) ∩B|}
≤
(
qi|NΓi+1(w)|+ z

)
· |NEi∪Γi+1(w) ∩ (A ∪B)|.

With an eye on (88), we note that an analogous estimate also
holds when we reverse the role of A and B in (89). Furthermore,
qi|NΓi+1(w)| ≤ 2σq2i

√
n by Ni+1, and z = σ4q2i s = O(σ3q2i

√
n) � σq2i

√
n.

Recalling Ei ∪ Γi+1 = Ei+1, observe that Pi+1 and i + 1 ≤ I imply
|NEi∪Γi+1(u)∩NEi∪Γi+1(v)| = |Zuv(i+ 1)| ≤ I(logn)9 =: y when u 6= v, and

that (77) implies z�
√
|A∪B|y (as |A|=s≥s0). Using the definition of W1

and Lemma 16 (with I=W1, U=A∪B and Uw=NEi∪Γi+1(w)∩U), it follows
that
(90)∑
w∈W1

(
|Oi(NΓi+1(w) ∩A,NEi(w) ∩B)|+ |Oi(NΓi+1(w) ∩B,NEi(w) ∩A)|

)
≤ 2 · 3σq2i

√
n ·

∑
w∈W1

|NEi∪Γi+1(w) ∩ (A ∪B)|

≤ 2 · 3σq2i
√
n · 2|A ∪B| ≤ 24σq2i

√
n|A|.

Proceeding analogously to (89)–(90), using the definition of W2 and
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Lemma 16 we similarly obtain

(91)

∑
w∈W2

|Oi(NΓi+1(w) ∩A,NΓi+1(w) ∩B)|

≤ 3σq2i
√
n ·

∑
w∈W2

|NΓi+1(w) ∩ (A ∪B)|

≤ 3σq2i
√
n · 2|A ∪B| ≤ 12σq2i

√
n|A|.

To sum up, inserting the bounds (90)–(91) into (88), we showed that
Ni+1∩Pi+1∩X≤i implies X4≤36σq2i

√
n|A|. This completes the proof together

with the probability estimates (83), (84), (86), and (87).

Remark 27. If desired, it would not be difficult to extend the event Qi
to larger vertex-sets (A,B) ∈ S≥s,γ :=

⋃
s≤r≤nSr,γ (the above

arguments all carry over, except for the modified bound X4 ≤
3 ·maxw(qi|NΓi+1(w)|+ z) · 2|A ∪B| ≤ 36σq2i max{

√
n,σ3|B|}|A|, which is

still strong enough to deduce Lemma 25). This in turn could, e.g., be used
to also extend the event TI to (A,B)∈S≥s,γ (the proofs in Section 3.5 then
carry over).

Remark 28. Under a mild extra assumption such as |O0| ≥ σn, say, it
would not be difficult to add two-sided bounds for the total number of
open edges |Oi| and edges |TI | to the events Qi and TI . For example, much
simpler variants of the above arguments then imply τiqi|O0| ≤ |Oi| ≤ qi|O0|
(by directly estimating |Oi \Ci+1| − |Γi+1| − |C(2)

i+1| ≤ |Oi+1| ≤ |Oi \Ci+1|,
without using Ĉi+1 or Ĉ

(2)
i+1, nor a union bound over all vertex-sets), which

in turn gives |TI |=(1±δ)ρ|O0| by straightforward variants of the proofs in
Section 3.5.

3.5. Event TI : number |TI(A,B)| of edges between large sets

Recall that the event TI defined in (42) concerns the triangle-free edge-
set TI ⊆ E(H) = O0, ensuring that |TI(A,B)| = (1 ± δ)ρ|O0(A,B)| for
all (A,B)∈Ss,γ ; see (41) for the definition of Ss,γ .

For |TI(A,B)| it is convenient to think of the entire nibble construction
as one evolving random process. Thus, in contrast to previous sections, in
Lemma 29 and Claim 30 below we shall not tacitly condition on Fi.

Lemma 29. We have P(¬TI ∩X≤I)≤n−ω(1).
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Since TI =
⋃

0≤i<I(Ti+1 \Ti) forms a partition, the proof strategy is to
estimate the two contributions to Ti+1\Ti=Γi+1\E(Di+1) separately (here
the deleted edges E(Di+1) will have negligible impact).

Claim 30. Let TA,B be the event that the following bounds hold:

X :=
∑

0≤i<I
|Oi(A,B) ∩ Γi+1| ∈

[
(1− δ/2)µ−, (1 + δ/2)µ+

]
,

Y :=
∑

0≤i<I

∣∣Oi(A,B) ∩ E(Di+1)| ≤ δ2µ−/9,

where µ+ :=
∑

0≤i<Ibqi|O0(A,B)|cp and µ− :=
∑

0≤i<Idτiqi|O0(A,B)|ep.
Then P(¬TA,B∩X≤I)≤3n−3s for all vertex-sets (A,B)∈Ss,γ .

Before giving the proof, we first show that Claim 30 implies Lemma 29.
Using a union bound argument (to account for the |Ss,γ | ≤ n2s vertex-
sets (A,B) ∈ Ss,γ), it is enough to show that TA,B implies |TI(A,B)| =
(1±δ)ρ|O0(A,B)|. Since all the (Γi+1)0≤i<I are edge-disjoint, by the recursive
definition (14) of TI we have

(92) X − Y ≤ |TI(A,B)| ≤ X.

Noting µ− ≥ τIµ
+ = (1− δ/2)µ+ (see (82)), it follows that TA,B implies

X≤(1+δ/2)µ+ and

X − Y ≥
(
1− δ/2− δ2/9

)
· µ− ≥ (1− δ + δ2/8)µ+.

It thus suffices to show that µ+∼ρ|O0(A,B)|, where ρ=
√
β(logn)/n. But

this is routine: indeed, since qi|O0(A,B)|≥ qi ·γs2� qin�
√
n by (54), and

πI∼
√

log(Iσ)∼
√
β logn by (57), using the definition (37) of πI we readily

infer

(93)
µ+ =

∑
0≤i<I

(qi|O0(A,B)| ± 1)p ∼
∑

0≤i<I
σqi/
√
n · |O0(A,B)|

= (πI − σ)/
√
n · |O0(A,B)| ∼ ρ|O0(A,B)|,

completing the proof of Lemma 29 (assuming Claim 30).

Proof of Claim 30. We start with X=
∑

0≤i<I |Oi(A,B)∩Γi+1|. Define

X+
i+1 := {Xi}

∑
e∈Oi(A,B)

{e∈Γi+1} and X+ :=
∑

0≤i<I
X+
i+1.

Note that X = X+ when X≤I =
⋂

0≤i≤IXi holds. Let Z+
i+1

d
=

Bin(bqi|O0(A,B)|c,p) be independent random variables (where
d
= means
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equality in distribution, as usual). Since the Fi-measurable event
Xi ⊆ Qi implies |Oi(A,B)| ≤ qi|O0(A,B)|, it is easy to see that
P(X+

i+1≥ t |Fi)≤P(Z+
i+1≥ t) for t∈R. Setting

(94) Z+ :=
∑

0≤i<I
Z+
i+1

d
= Bin

 ∑
0≤i<I

bqi|O0(A,B)|c, p

 ,

a standard stochastic domination argument then shows P(X+≥ t)≤P(Z+≥ t)
for t∈R, so that

(95) P(X ≥ t and X≤I) ≤ P(X+ ≥ t) ≤ P(Z+ ≥ t).

Since Xi also implies |Oi(A,B)| ≥ τiqi|O0(A,B)|, an analogous argument
gives

(96)

P(X ≤ t and X≤I) ≤ P(Z− ≤ t) with

Z−
d
= Bin

 ∑
0≤i<I

dτiqi|O0(A,B)|e, p

 .

Combining µ− ≥ τIµ+ ≥ µ+/2 (see (82)) and (93) with |O0(A,B)| ≥ γs2,
using δ2

√
βγ ·C≥D0=108 (by assumption and (39)) we have

(97)
δ2 min{µ−, µ+} ≥ δ2

2 µ
+ ≥ δ2

3 ρ|O0(A,B)|
≥ δ2

3

√
β(log n)/n · γC

√
n log n · s ≥ 36s log n.

Using (94)–(96) and EZ± = µ±, by standard Chernoff bounds (see, e.g.,
Remark 14) we obtain, say,

(98)

P
(
X 6∈

[
(1− δ/2)µ−, (1 + δ/2)µ+

]
and X≤I

)
≤ P

(
Z− ≤ (1− δ/2)µ−

)
+ P

(
Z+ ≥ (1 + δ/2)µ+

)
≤ exp

(
−δ2µ−/8

)
+ exp

(
−δ2µ+/12

)
≤ 2n−3s.

Finally, turning to Y =
∑

0≤i<I |Oi(A,B)∩E(Di+1)|, for brevity we define

Yi+1 := |Oi(A,B) ∩ E(Di+1)| and y := δ2µ−/9.

Note that Y =
∑

0≤i<I Yi+1 and Yi+1 ∈ N. Since X≤i =
⋂

0≤j≤iXj , a union
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bound argument gives
(99)
P
(
Y ≥ δ2µ−/9 and X≤I

)
≤

∑
(y1,...,yI)∈NI∑
1≤i≤I yi=dye

P

 ⋂
0≤i<I

(
Yi+1 ≥ yi+1 and X≤i+1

)

≤
∑

(y1,...,yI)∈NI∑
0≤i<I yi+1=dye

∏
0≤i<I

P

Yi+1 ≥ yi+1

∣∣∣ ⋂
0≤j<i

(
Yj+1 ≥ yj+1 and X≤j+1

) .

Gearing up to apply Theorem 15 to Yi+1, with an eye on Di+1⊆Bi+1 and
Ti⊆Ei (see Section 2.1) we define

I :=
{
{wu,wv} ⊆ Oi : uv ∈ Ei, |{u, v, w}| = 3, {wu,wv} ∩Oi(A,B) 6= ∅

}
∪
{
{uv, vw,wu} ⊆ Oi : |{u, v, w}| = 3, {uv, vw,wu} ∩Oi(A,B) 6= ∅

}
.

Since each edge-set α ∈ I contains at least one edge from Oi(A,B), when
the Fi-measurable event X≤i holds we infer by the usual reasoning (using,
e.g., Pi∩Qi and max{πiqi, q2i }≤1) that∑

α∈I
E( {α⊆Γi+1} | Fi) ≤

∑
e∈Oi(A,B)

∑
α∈I : e∈α

p|α|

≤
∑

e∈Oi(A,B)

(
|Ye(i)| · p2 + |Xe(i)| · p3

)
≤ qi|O0(A,B)| ·

(
2πiqi

√
n · p2 + q2i n · p3

)
≤ 3σ · qi|O0(A,B)|p =: µ∗i+1.

Since Di+1 is a collection of edge-disjoint elements of Bi+1 (and thus
{α∈Di+1 : α∩β 6=∅}= {β} for all β ∈Di+1), using E(Di+1) =

⋃
α∈Di+1

α⊆
Γi+1⊆Oi, |α|≤3 and Ti⊆Ei it is not difficult to check that

Yi+1 =
∑

α∈Di+1

|α ∩Oi(A,B)| ≤ 3 ·
∑

α∈I∩Di+1

{α∈Γi+1} ≤ 3Z1,

where Z1 is defined as in Theorem 15. Applying inequality (50) with C=1
and µ=µ∗i+1 (in the probability space conditional on Fi; cf. the beginning
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of Section 3.1), when X≤i holds it follows that, say,
(100)

P(Yi+1 ≥ yi+1 | Fi) ≤ P(Z1 ≥ yi+1/3 | Fi)

≤


(
eµ∗i+1

yi+1/3

)yi+1/3
≤ σyi+1/6 if yi+1 ≥ 9µ∗i+1/

√
σ,

1 otherwise.

Comparing the definition of
∑

0≤i<I µ
∗
i+1 with µ−, using τi ≥ τI ≥ 1/2

(see (82)) and σ�1 we see that∑
0≤i<I :

yi+1≤9µ∗i+1/
√
σ

yi+1 ≤ 9/
√
σ ·

∑
0≤i<I

µ∗i+1 ≤ 9/
√
σ · 6σµ− � δ2µ−/9 = y.

So, inserting (100) into (99), using (97) and the definition of s it follows that
y/ logy=Ω(

√
n)�I and

P
(
Y ≥ δ2µ−/9 and X≤I

)
≤

∑
(y1,...,yI)∈NI∑
0≤i<I yi+1=dye

σdye/6−o(y)

≤ (y + 2)I · σy/7 ≤ e−ω(δ2µ−) ≤ n−ω(s),

completing the proof together with the probability estimate (98).

References
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[33] T. Szabó, P. Zumstein and S. Zürcher: On the minimum degree of minimal
Ramsey graphs, J. Graph Theory 64 (2010), 150–164.

http://cs.nyu.edu/spencer/papers/ramsey3k.pdf


PACKING NEARLY OPTIMAL RAMSEY R(3, t) GRAPHS 101

[34] L. Warnke: When does the K4-free process stop? Rand. Struct. & Algor. 44 (2014),
355–397.

[35] L. Warnke: The C`-free process, Rand. Struct. & Algor. 44 (2014), 490–526.

[36] L. Warnke: On the method of typical bounded differences, Combin. Probab. Comput.
25 (2016), 269–299.

[37] L. Warnke: Upper tails for arithmetic progressions in random subsets, Israel J.
Math. 221 (2017), 317–365.

[38] G. Wolfovitz: Triangle-free subgraphs in the triangle-free process, Rand. Struct. &
Algor. 39 (2011), 539–543.

A. Appendix

Proof of Theorem 12. We may assume that I = {1, . . . , |I|}. Recalling
X=f

(
(ξi)i∈I

)
, we define

Di := E(X | ξ1, . . . , ξi−1, ξi = 1)− E(X | ξ1, . . . , ξi−1, ξi = 0) ∈ [−ci, 0],

where Di≤0 follows from the assumption that f is decreasing, and |Di|≤ci
follows, as usual, from the assumed discrete Lipschitz property of f . Anal-
ogous to, e.g., the proof of [36, Theorem 1.3], writing pi = P(ξi = 1) it is
routine to check that

∆i := E(X | ξ1, . . . , ξi)−E(X | ξ1, . . . , ξi−1) = Di(1−pi) {ξi=1}−Dipi {ξi=0}.

Since 1+x≤ex for x∈R and ex≤1+x+x2/2 for x≤0, for θ≥0 it follows
easily that

E
(
eθ∆i | ξ1, . . . , ξi−1

)
= (1− pi) · e−θDipi + pi · eθDi(1−pi)

= e−θDipi(1− pi + pie
θDi)

≤ e−θDipi+pi(eθDi−1) ≤ eθ2D2
i pi/2 ≤ eθ2c2i pi/2.

Hence E
(
eθ

∑
i∈I∆i

)
≤eθ2λ/2, where λ=

∑
i∈I c

2
i pi. NotingX−EX=

∑
i∈I∆i,

we deduce

P(X ≥ EX + t) = P
(
eθ

∑
i∈I ∆i ≥ eθt

)
≤ E

(
eθ

∑
i∈I ∆i

)
e−θt ≤ eθ2λ/2−θt = e−t

2/(2λ)

by choosing θ= t/λ, completing the proof of (48).
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Proof of Lemma 17. Note that the ODE Ψ ′(x) = e−Ψ
2(x) and Ψ(0) = 0

has the implicit solution

(101) x =

∫ Ψ(x)

0
et

2
dt.

For x≥0 it follows that Ψ(x) is strictly increasing, so that Ψ ′(x)≥0 is strictly
decreasing. Recalling qi=Ψ ′(iσ), we deduce qi≥ qi+1 and 0≤ qi≤ q0 = 1 for
all i≥0.

To facilitate our upcoming calculations, we first prove the auxiliary claim
that, for all i≥0,

(102) πi − Ψ(iσ) ∈ [σ, 2σ].

Indeed, using Ψ(0)=0 and monotonicity of Ψ ′ (for the first two inequalities)
together with Ψ ′(0)=1 and Ψ ′≥0 (for the last inequality) it follows that

0 ≤

 ∑
0≤j≤i−1

σΨ ′(jσ)

− Ψ(iσ) ≤ σ(Ψ ′(0)− Ψ ′(iσ)) ≤ σ,

which establishes (102) by the definition (37) of πi and Ψ ′(jσ)=qj .
For (57), note that by (102) and I = dnβe � 1 it suffices to show√

logx− 1 ≤ Ψ(x) ≤
√

logx+ 1 for x ≥ e (with room to spare). The up-

per bound follows from
∫ √logx+1
0 et

2
dt ≥ x and (101). Using the inequal-

ity (y − 1)e−2y+1 ≤ 1 with y =
√

logx, the lower bound follows from∫ √logx−1
0 et

2
dt≤x and (101).

Turning to (54), note that the above calculations for (57) imply Ψ ′(x)=

e−Ψ
2(x) =x−1+o(1) as x→∞, so that qI =n−β+o(1). Together with qi≥qI , it

then is routine to see that (54) holds for β<β0=1/14.
Now we focus on (53). As a warm-up, note that πi≤πI for 0≤ i≤ I by

the definition (37) of πi, and that πI≤
√

log(Iσ)+2� logn=σ−1/2 by (57),
so that

√
σπi ≤ 1. Next, using (102) together with the simple inequalities

e−x
2
x≤1/2 and e−x

2
x2≤1/2, we also infer that

qiπi ≤ e−Ψ
2(iσ)

(
Ψ(iσ) + 2σ

)
≤ 1,(103)

qiπ
2
i ≤ e−Ψ

2(iσ)
(
Ψ2(iσ) + 4σΨ(iσ) + 4σ2

)
≤ 1.(104)

Combined with qi≤1 this implies qiπ
j
i ≤1 for all j∈{0,1,2}, completing the

proof of (53).
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Turning to (55), note that Ψ((i+ 1)σ) ≤ πi+1 − σ ≤ πi by (102), (37)
and qi≤1. Since Ψ≥0 is increasing and Ψ ′≥0 is decreasing, using qj =Ψ ′(jσ)
together with Ψ ′′(x)=−2Ψ ′(x)2Ψ(x) and (103) it follows that

(105)
|qi − qi+1| ≤ σ max

iσ≤ξ≤(i+1)σ
|Ψ ′′(ξ)| ≤ σ · 2Ψ ′(iσ)2 · Ψ((i+ 1)σ)

≤ σ · 2q2i πi ≤ σ · 2 min{qi, qiπi}.

Noting that (105) also implies qi ∼ qi+1, this completes the proof of (55)
since qi≥qi+1.

Finally, for (56) it suffices to show |qi − qi+1 − 2σq2i πi| ≤ 8σ2q2i . Since
qi=Ψ ′(iσ), it follows that∣∣qi − qi+1 + σΨ ′′(iσ)

∣∣ ≤ σ2

2 max
iσ≤ξ≤(i+1)σ

|Ψ ′′′(ξ)|.

As Ψ ′(x)=e−Ψ
2(x), it is routine to check that Ψ ′′′(x)=2Ψ ′(x)3

(
4Ψ2(x)−1

)
.

Since Ψ ≥0 is increasing and Ψ ′≥0 is decreasing, using Ψ((i+1)σ)≤πi (as
above), (104) and qi≤1 we infer

max
iσ≤ξ≤(i+1)σ

|Ψ ′′′(ξ)| ≤ 2Ψ ′(iσ)3 ·max
{

4Ψ2((i+ 1)σ), 1
}

≤ 2q3i max
{

4π2i , 1
}
≤ 8q2i .

Furthermore, since Ψ ′′(x)=−2Ψ ′(x)2Ψ(x), using (102) we deduce∣∣Ψ ′′(iσ)− (−2q2i πi)
∣∣ =

∣∣−2q2i Ψ(iσ) + 2q2i πi
∣∣ ≤ 4σq2i ,

which completes the proof of (56).
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