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In 1995 Kim famously proved the Ramsey bound R(3,t) > ct?/logt by constructing an
n-vertex graph that is triangle-free and has independence number at most C'y/nlogn. We
extend this celebrated result, which is best possible up to the value of the constants, by
approximately decomposing the complete graph K, into a packing of such nearly optimal
Ramsey R(3,t) graphs.

More precisely, for any € > 0 we find an edge-disjoint collection (G;); of n-vertex
graphs G; C K,, such that (a) each G; is triangle-free and has independence number at
most Cey/nlogn, and (b) the union of all the G; contains at least (1—¢)(%) edges. Our
algorithmic proof proceeds by sequentially choosing the graphs G; via a semi-random (i.e.,
Rodl nibble type) variation of the triangle-free process.

As an application, we prove a conjecture in Ramsey theory by Fox, Grinshpun, Liebe-
nau, Person, and Szabé (concerning a Ramsey-type parameter introduced by Burr, Erdés,
and Lovész in 1976). Namely, denoting by s,(H) the smallest minimum degree of r-
Ramsey minimal graphs for H, we close the existing logarithmic gap for H = K3 and
establish that s,.(K3)=06(r*logr).

1. Introduction

The 1947 paper of Erdés [10] on the diagonal Ramsey number R(t,t) is often
considered the start of the probabilistic method, where R(s,t) is defined as
the smallest integer n € N such that every red-blue colouring of the edges
of the complete n-vertex graph K, contains either a red K or a blue Kj;.
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In general, the estimation of R(s,t) and other Ramsey-type parameters is
known to be notoriously difficult.

One of the celebrated results in Ramsey theory is R(3,t) = O(t?/logt),
and this special case has repeatedly served as a testbed for the development
of new tools and techniques in probabilistic combinatorics. Indeed, comple-
menting the basic bound R(3,t) =O(t?) of Erdés and Szekeres [14], in 1961
Erdds [11] used a sophisticated random greedy alteration argument to prove
R(3,t)=92(t?/(logt)?). This lower bound was subsequently reproved (or only
slightly improved) using the Lovdsz Local Lemma [31], a basic analysis of
the triangle-free process' [13], large deviation inequalities [21], and differen-
tial equations [32]. Furthermore, in 1980 Ajtai, Komlés, and Szemerédi [1,2]
invented the influential semi-random method (nowadays also called Rodl
nibble approach) to prove the upper bound R(3,t) = O(t?/logt). But it
was not until 1995, when Kim [20] famously proved the matching lower
bound R(3,t) = £2(t?/logt) by analyzing a semi-random variation of the
triangle-free process? (combining several of the aforementioned ideas with
martingale concentration); for this major breakthrough he also received the
Fulkerson Prize in 1997. But the story does not end here: advancing the dif-
ferential equation method, in 2008 Bohman [5] reproved R(3,t)=(2(t?/logt)
by analyzing the triangle-free process itself (and his analysis was recently
further improved in [7,15]).

In this paper we refine the powerful techniques developed for R(3,t) =
O(t?/logt) to determine the order of magnitude of another Ramsey-type
parameter introduced in 1976 by Burr, Erdds, and Lovész [8], proving a
conjecture of Fox, Grinshpun, Liebenau, Person, and Szabé [16] (in partic-
ular, analogous to Kim’s R(3,t)-result, we again remove the last redundant
logarithmic factor from existing bounds).

1.1. Main result: packing of nearly optimal Ramsey R(3,t) graphs

Kim and Bohman both proved the Ramsey bound R(3,t) = 2(t?/logt) by
showing the existence of a triangle-free graph G C K, on n vertices with
independence number «(G)=0(y/nlogn), which is best possible up to the
value of the implicit constants. Our first theorem naturally extends their

! The triangle-free process (proposed by Bollobds and Erd8s) proceeds as follows: start-
ing with an empty n-vertex graph, in each step a single edge is added, chosen uniformly
at random from all non-edges that do not create a triangle (if added to the graph).

2 Kim’s semi-random variation proceeds similar to the triangle-free process: it intuitively
adds a large number of carefully chosen random-like edges in each step (instead of just a
single edge); see Section 2 for more details.
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celebrated results, by approximately decomposing the complete graph K,
into a packing of such nearly optimal Ramsey R(3,t) graphs.

Theorem 1. For any € >0 there exist ng,C, D >0 such that, for all n > ny,
there is an edge-disjoint collection (G;)icz of |Z| = [D+/n/logn]| triangle-
free graphs G; C K,, on n vertices with max;c7ra(G;) < Cy/nlogn and
>iere(Gi) = (1=€)(5).

Our algorithmic proof proceeds by sequentially choosing the |Z| =
O(y/n/logn) edge-disjoint triangle-free subgraphs G; C Ky \ Uy<;; Gj
with a(G;) = O(y/nlogn) via a semi-random variation of the triangle-free
process akin to Kim [20] (see Sections 1.3 and 2 for the details). In par-
ticular, we do not only show existence of the (G;);cz, but also obtain a
polynomial-time randomized algorithm which constructs these subgraphs.

Theorem 1 improves a construction of Fox et al. [16, Lemma 4.2],
who wused the basic Lovdsz Local Lemma based R(3,t)-approach to
sequentially choose ©(y/n/logn) edge-disjoint triangle-free subgraphs
with a(G;) = O(y/nlogn). It is natural to suspect that applying a more
sophisticated R(3,t)-approach in each iteration ought to give an improved
packing (with smaller independence number than the LLL approach), and
here the usage of the triangle-free process was proposed by Fox et al. [16,
Section 5] as early as 2013 [22,26]. One conceptual difficulty of this approach
is to control various error terms over many iterations of the triangle-free pro-
cess (so that these always stay small enough to carry out the next iteration),
which in turn is the main technical reason why for Theorem 1 we instead
iterate a semi-random variation.

It would be interesting to know if Theorem 1 also holds with e=0, i.e., if
one can completely decompose K, into nearly optimal R(3,t¢) graphs. Per-
haps rashly, we conjecture that this is indeed possible (it might be insightful
to first prove a variant of Theorem 1 where the constant C' does not depend
on €).

1.2. Application in Ramsey theory: s,.(K3) has order of
magnitude r2logr

Turning to our main application, we say that a graph G is r-Ramsey for
H, denoted by G — (H),, if any r-colouring of the edges of G contains
a monochromatic copy of H. Most fundamental questions and results in
Ramsey theory can be formulated in terms of various parameters of the
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class
M, (H) :={G: G — (H), and G’ » (H), for all G’ C G}

of graphs which are r-Ramsey minimal for H. For example, Ramsey’s the-
orem [28] states that |[M,(H)| >0 for all graphs H, which for cliques was
strengthened to |M, (K;)| =00 by Rédl and Siggers [29]. Furthermore, the
archetypal problem of estimating various Ramsey-type parameters also cor-
responds to the study of certain extremal parameters of M, (H), since, e.g.,
R(t) = R(t,t) := minge pm,(x,) v(G) is the famous diagonal Ramsey num-
ber [14,10,9], R.(t)=R(t,...,t):=minge, (x,) v(G) is the r-coloured Ram-
sey number [9], and R, (H):=minge M, (i) €(G) is the widely-studied r-size-
Ramsey number of H (see, e.g., [12,4,30,9]).

In 1976 Burr, Erdés, and Lovész [8] initiated the systematic study of other
extremal parameters of M, (H), including the smallest minimum degree of
all ~-Ramsey minimal graphs for H, denoted by

sr(H) = GE%I:%H) I(G).

As usual, the clique-case H = K is of particular interest, where r(t —2) <
sr(Ky) < Ry(t) is easy to see (cf. [17,33]). Perhaps surprisingly, for r=2
colours Burr et al. [8] were able to prove sa(K;) = (t —1)2, showing that
the simple exponential upper bound Ry(t) = R(t) = 2® is far from the
truth. For r > 2 colours the behaviour of s,(K;) was recently investigated
in detail by Fox et al. [16]: they proved super-quadratic bounds of form
s.(K;) = r? - polylog r for fixed t > 3, and also determined s,(K3) up to
a logarithmic factor (by sharpening their general estimates). In particular,
they showed cr?logr < s,(K3) <Cr?(logr)?, and conjectured that their lower
bound gives the correct order of magnitude, see [16, Conjecture 5.4].

Our second theorem proves the aforementioned conjecture of Fox, Grin-
shpun, Liebenau, Person, and Szabé for s,.(K3), i.e., we close the logarithmic
gap and establish s,(K3)=06(r?logr).

Theorem 2. There exists C'>0 such that s,.(K3)<Cr?logr for all r>2.
Corollary 3. We have s,(K3)=0(r?logr) for r>2.

Using a reformulation of s,(K3) from [16], Theorem 2 follows easily
from our main packing result. Indeed, applying Theorem 1 with e =1/2,
say, it is routine to see that there is a constant A > 0 such that the
following holds for each r > 2: there exists a collection of edge-disjoint
triangle-free graphs Gi,...,G, C Ky, on N, := |Ar?logr| vertices with
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independence number «(G;) < N,/r (as N, > ng, Dy/N,/logN, > r and
C+v/N;log N, < N, /r all hold for A= A(ng,C,D) large enough). By Theo-
rem 1.5 and Lemma 4.1 in [16] (with n = N, and k = 2) this immediately
implies s, (K3) < N,, establishing Theorem 2.

Note that the above deduction of Theorem 2 did not use » ;.re(Gi) >
(1—e) (g), i.e., that the nearly optimal R(3,t) graphs (G;);cz approximately
decompose the edge-set of K,,. It would be interesting to find applications
(e.g., in Ramsey theory or extremal combinatorics) where this natural pack-
ing property is useful.

1.3. Main tool: pseudo-random triangle-free subgraphs

The R(3,t)-proofs of Kim and Bohman both in fact construct a triangle-
free graph G C K,, with pseudo-random properties (see also [32,38,7,15]).
Our third theorem extends their intriguing results to host graphs H C K,
which are far from complete, by showing that one can again construct a
triangle-free subgraph G C H with pseudo-random properties. Here the crux
is that Theorem 4 holds under very weak assumptions,® that G resembles a
random subgraph of H with edge-probability p=6(y/(logn)/n), and that
the edge-estimate (1) implies a(G) = O(y/nlogn) for many well-behaved
host graphs H C K,.

Theorem 4. There exist 5y, Dy >0 such that, for all v, € (0,1], € (0, Bo)
and C > Dy/(6%v/BY), the following holds for all n > ng(v,d,,C), with

p = /B(logn)/n. For any n-vertex graph H, there exists a triangle-free
subgraph G C H on the same vertex-set such that

(1) ec(A,B) = (1£0)pen (A, B)

for all disjoint vertex-sets A,B C V(H) with |A| =|B| = [Cy/nlogn| and
ern(A,B)>~|A||B|.

Our proof uses a semi-random variant of the triangle-free process to con-
struct G C H, extending and simplifying Kim’s R(3,t)-approach for the
complete case H =K, (see Sections 2-3 and Theorem 9 for the details). In
particular, besides handling the difficulties arising due to incomplete host

3 Note that Theorem 4 does not require the host graph H to be approximately degree
or codegree regular. Furthermore, even if G C H was a random subgraph with edge-
probability p, then by standard calculations we would only expect the edge-estimate (1)
to hold for vertex-sets A,B C V(H) where the number of edges en (A, B) is reasonably
large (see Remark 11 for the details, which also indicates that the constant C in Theorem 4
has the correct dependence on 7,4, 3).
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graphs H C K,, (by, e.g., exploiting a ‘stabilization mechanism’ to keep vari-
ous parameters under control), the major technical difference lies in the way
we analyze the properties of all large vertex-sets (by, e.g., focusing on bi-
partite subgraphs, applying a concentration inequality of Warnke [37], and
showing concentration in (1) instead of just eq(A,B) > 1). Together with
some streamlining of Kim’s arguments (by, e.g., using fewer variables, ap-
plying convenient bounded differences inequalities, and some changes to the
semi-random construction), this leads to a shorter and hopefully more ac-
cessible proof even in the complete case H = K,,. As a by-product, we also
obtain a randomized polynomial-time algorithm which constructs G C H
(see Remark 10).

Theorem 4 will be the main tool for establishing our main packing result
Theorem 1. Let us briefly sketch the argument (deferring the details to
Section 1.5). The idea is to sequentially choose the triangle-free subgraphs
Gi C Hi:= Ky \Up<j<; Gj via Theorem 4 with ¢ € (0,1), using the pseudo-
random edge-estimate (1) to inductively control the number of remaining
edges (between large sets) in H; as

(2) em, (A, B) = (1 - (1£4)p)" - |A||B|

for all disjoint A, BCV (H) of size s:=[C/nlogn], stopping when the right
hand side of (2) drops below €| A||B| after I=0(log(1/¢)/p)=0O(1/n/logn)
steps. A double counting argument will then show that the leftover graph H;
contains at most €(;) edges, so that Y o, ;e(Gi)=e(K,\ Hr)>(1—¢)(3).
Furthermore, eq,(A,B) = (1 £ 6)pen,(A,B) > 0 implies a(G;) < 2s =
O(v/nlogn), completing this rough proof sketch of Theorem 1 (assuming
Theorem 4).

We believe that variants of Theorems 1 and 4 also hold for many
other forbidden graphs (using semi-random variants of the H-free pro-
cess [25,6,34,35,27]); we hope to return to this topic in a future work.

1.4. Organization of the paper

The remainder of this paper is organized as follows. In Section 1.5 we use
Theorem 4 to state and prove some extensions of our main packing re-
sult Theorem 1. In Section 2 we introduce a semi-random variation of the
triangle-free process and state our main result for this Rodl nibble type con-
struction (that implies our main tool Theorem 4, see Section 2.4), which is
then subsequently proved in Section 3.
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1.5. Further results

Our methods allow us to extend Theorem 1 to R(3,t)-packings of graphs
which are far from complete. Our fourth theorem shows that if H C K, only
satisfies certain uniformity conditions on its edge distribution (that resemble
a weak form of pseudo-randomness, see (3) below), then we can still approxi-
mately decompose H into a packing of nearly optimal Ramsey R(3,t) graphs
(again by an efficient randomized algorithm).

Theorem 5. For all ¢,£,Cy > 0 there exist ng,C1,D > 0 such that the
following holds for all n>ng. If H is an n-vertex graph satisfying

(3) EH(A, B)
disjoint A,B C V(H): |A||B|
|A|=|B|=[Cov/nlogn]

2§,

then there is an edge-disjoint collection (G;)icz of |Z| = [D+/n/logn]
triangle-free subgraphs G; C H with V(G;) = V(H), maxera(G;) <
Crv/nlogn and ), c7e(Gi) > (1 —€)e(H).

Note that the case H = K,, and & =Cy =1 implies Theorem 1. Further-
more, the case H=G_G),,, {=p/2 and Cy=1 routinely implies the following
sparse analogue of Theorem 1 for binomial random graphs G, ;.

Corollary 6. For any p € (0,1] and € > 0 there exist C,D > 0 such that,
with probability at least 1—o(1), the following event holds: there exists an
edge-disjoint collection (G;)iez of |Z| = [D+/n/logn| triangle-free graphs
Gi C Gpnyp on n vertices with max;ez a(G;) < Cy/nlogn and ), .re(G;) =
(1xe)p(5).

We conjecture that Corollary 6 (with |Z| = [Dpy/n/logn] and con-
stants C,D > 0 depending only on €) holds for much sparser random
graphs Gy, , with edge-probabilities of form p=p(n) >n~V2te() gay.t

We conclude the introduction with the short proof of Theorem 5, which
proceeds by sequentially choosing the graphs G; C H \ [y« j<iGj via Theo-
rem 4 (generalizing the argument sketched in Section 1.3). The reader mainly
interested in the proof of Theorem 4 may perhaps wish to skip straight to
Section 2.

4 The range of p = p(n) in this conjecture is essentially best possible, since it is well-
known that typically a(G,,p) > v/nlogn for p < +/(logn)/n. Furthermore, although we
have not checked all details, it seems that our proofs can be modified to verify the con-
jecture for p>n~°, where § >0 is some small constant; so the main question is whether
p>n~1/2teM) guffices.
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Proof of Theorem 5 (assuming Theorem 4). We may assume € < 1
(as decreasing € gives a stronger conclusion). For concreteness, set 0:=1/4,
yi=€2¢, B:=[p/2 and C:=max{Cy, Do/ (6?\/B7)}, where By, Dy are defined
as in Theorem 4. Let C; := 3C, s:= [Cy/nlogn], p := \/B(logn)/n, and
I:=[og(1/e)/(p(1—6))].

Define Hy:= H. Let & denote the set of all pairs (A, B) of disjoint vertex-
sets A,B C V(H) with |A| = |B|] = s. Combining a ‘handshaking lemma’
like double counting argument with the assumed lower bound (3), writing
t:=[Cpy/nlogn] it follows that

er,(A,B) > AcABCB: |A|=|B|=t en(4, B) ())& _
W s - 2 e Z2@hey ¢

for all (A,B)€6.

The plan is to sequentially choose the graphs (G;)o<i<r with G; C H; such
that, setting H;4+1:= H;\G; (which ensures that all the G; are edge-disjoint),
for all 0<i<1I we inductively have

€H, (A, B)

) A €0 a9 wran@pee.

Turning to the details, note that inequality (5) holds trivially for i = 0.
Given H; with 0<¢<T—1 satisfying (5), by combining the definition of I
with (1420)/(1—0)=2 and (4) it follows for n>ng(/3) that, say,

en, (4, B) —(1+28)p(I-1) ery (A, B) 2
¢ > p . > v £ = f 11 (A, B .
(6) AllD >e AllB >e-¢{ =~ forall (A,B)e &S

Using Theorem 4, for n > ng(€,£,d,3,C) we can thus find a triangle-free
subgraph G; C H; with eg,(A,B)=(1£0)pen,(A,B) >0 for all (A,B) €.
Hence a(G;) < 2s < 3Cy/nlogn, say. Furthermore, noting ep, (A, B) =
er;(A,B)—eq, (A, B), it is immediate that H;y1 = H;\ G; maintains (5).

Finally, for the number of edges of |Jy<;.;Gi = Ho\ Hy, by (5) and
definition of I it follows that

(7) C€Ho\H; (Av B) 2 (1 - 67(176)10[) " €Hy (A7 B) > (1 - 6)eHo (A7 B)

for all (A, B)€&. Using a double counting argument similar to (4), in view
of (7) and Hy=H we infer

Z(A,B)e@ emo\H, (A, B)
92 (n—2) (n—2—(s—1))

s—1 s—1

e(Ho \ Hr) =
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>_(A,B)es €H (A, B)

2O )
= (1 = e)e(H),
completing the proof of >y, ;e(G;)=e(Ho\ Hr) > (1 —€)e(H). |

2. The nibble: semi-random triangle-free process

The remainder of this paper is devoted to the proof of our main tool The-
orem 4. Given an n-vertex graph H with vertex-set V =V (H) and edge-
set E(H), inspired by Kim [20] our strategy is to incrementally construct
the triangle-free edge-set of G C H using a semi-random variation of the
triangle-free process (adding large chunks of random-like edges in each step;
see also Footnotes 2-3 on page 2). One key difference to [20,5] is that our
approach only uses edges from the host graph H (and not the complete
graph K,,). In particular, deferring the details to Section 2.1, the rough plan
of our R6dl nibble type construction is to step-by-step build up a ‘random’
set of edges F; C E(H) and a triangle-free subset T; C F;; we also keep track
of a set

(®)

O;C{ecE(H)\E;: e does not form a triangle with any two edges of E;}

of ‘open’ edges that can still be added. The idea of each step is to choose a
small number of random edges 541 C O; so that only a few new triangles are
created in ;11 =F;Ul;,1. This allows us to find an edge-subset Fz'/+1 Crlit1,
with |I7, |~ |li41], such that T;1 =T;UT}, ;| remains triangle-free.® After

(9) I:=[n”]
such alteration-method based steps, we eventually obtain a triangle-free

graph G = (V,T;) C H, which intuitively ought to be ‘random enough’ to
resemble (many features of) a random subgraph of H.

5 For the construction of Ti+1 it might seem overly complicated to define O; with re-
spect to E; (and not T3). However, this slightly wasteful definition actually simplifies the
analysis: e.g., for the purpose of tracking various auxiliary variables, it intuitively is eas-
ier to understand the effect of adding the random edges ;41 (rather than some subset
I'jy1 CIit1). Using an inclusion in (8) might also seem overly complicated, but it again
simplifies the analysis: by removing some extra edges it actually becomes easier to prove
concentration (see the ‘stabilization mechanism’ discussion around (21) and Lemma 19).
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2.1. Details of the nibble construction

Turning to the details of the nibble construction, consistent with (8) we start
with

(10) Op:=E(H) and Ey:=Ty:=1Ip:=0.

In step i4+1>1 we then set

(11) Eiy1 = E; U4,

where each edge e € O; is included in I 1, independently, with probability

(12) pi=o/ V.

(The definition of the deterministic parameter o < 1 is deferred to (35) in
Section 2.3.) Note that T;UTI5 1 is not necessarily triangle-free, since two or
three edges of a triangle could enter via I511 C O; (one edge is not enough
by (8) and T; C E;), i.e., via the following set of ‘bad’ pairs and triples of
I 1-edges:

Bit1 = {{wu,wv} C Iiy1: wo € Ty, {u,v,w}| = 3}

(13) U{{uv,vw,wu} C iy Hu,v,wi| = 3}’

where we write zy = {z,y} for brevity. To avoid triangles in T;;1 by alter-
ation, we thus take D; 1 to be a maximal collection of pairwise edge-disjoint
elements of B;11 (say the first one in lexicographic order to resolve ties; any
other deterministic choice also works, see Remark 7 and Section 3.5), and
then set®

(14) Tiv1:=TiU (lis1\ B(Dig1)),

where we write E(Diy1) :=U,ep,,, @ for the set of edges in the pairs and
triples of D;41. Note that T; 1 is indeed triangle-free by maximality of D;;1 C
Bit1. Defining

(15) Y (i) :=={uw € O;: vw € E;} U {vw € O;: uw € E;},
we now turn to the open edge-set O;+1 CO;\i+1: by (8) the set Ci(}r)l UCZ( +)1

O; of newly ‘closed’ edges (that form a triangle with some two edges of E; 1)
is given by

(16) CLy = {f € 0s: Yy(i) N Ty # 0},

5 The standard alteration approach of removing one edge from each element of Bij1
seems harder to analyze: e.g., removing the edges of a maximal edge-disjoint collec-
tion D;11 CBiy1 greatly facilitates the technical calculations in Section 3.5.
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(17) C'Z»(Z)1 := {uv € O;: there is w s.t. uw € Iiy1,vw € I}
Mimicking a technical idea of Alon, Kim, and Spencer [3], we intuitively
increase the set of closed edges (via the random set S;;1 below) in order to
add a ‘stabilization mechanism’ to our construction,” and define

(18) Cisr = Oy U Sig,
(19) Oir1:=0;\ (11 UCip U Cﬁ)l),

where each edge e € O; is included in S;4 1, independently, with ‘stabilization’
probability

(20) Pei =1~ (1 — p)ymax{2a:(mi+v/o)Vn—|Ye(i)].0},

(The definition of the deterministic parameters ¢;, m; is deferred to (36)—(37)
in Section 2.3.) Roughly put, the main point of the technical definitions of
Si+1 and pe; will be that all the conditional probabilities

oy PEFCi|OLE) =Pl ¢ CL) | 04 E) - (1= o)
=(1- p)max{2qz'(m+\/5)x/77,lYe(i)|}

can inductively be made equal and thus independent of the history (by
only maintaining a weak upper bound on max,.|Y(i)|; see (45), (62) and
Lemma 19), which in turn helps to keep various error terms under control.

Remark 7. Note that each step of our nibble construction requires only
randomized polynomial time (since we can easily find a mazimal edge-
disjoint collection D;1 C By by a deterministic greedy algorithm).

2.2. Pseudo-random intuition: trajectory equations

In this informal section we give a heuristic explanation of the differential
equation that predicts the behaviour of (O;, E;) for 0<i<T ~nP. Inspired
by [32,20], our main non-rigorous ansatz is that the edge-sets (O;, E;) should

7 Kim uses a different stabilization mechanism in [20, Section 5.1]: instead of introducing
the random sets S;, he deterministically modifies the underlying graphs in each step (by
temporarily adding some extra edges and vertices), mimicking an earlier ‘regularization’
idea from [19]. We find our randomized approach more elegant, and easier to implement
algorithmically.
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resemble properties of a random subgraph of H with two types of edges,
where

(22) Plec O;))~¢q and Plec E;)~m/vn

are approximately independent. We now derive properties of ¢;,m; that are
consistent with this ansatz. For example, combining F; | = FE; U ;41 with
the random construction of I';11 CO;, we expect to have

(23)

IP’(e S EiJrl) *P(e € EZ) = P(B € i | e c OZ)P(B € Ol) Rp-g; = O'qi/\/ﬁ,

which together with (22) and Ep={) suggests that
(24) Tit1 — T~ oq and  mo ~ 0.

Furthermore, with lots of hand-waving, by (19) we intuitively have O;\O; 41 =

I; Z-HUCiHUCﬁ)l ~(Cj+1 (since each closed edge in C’i(i)l requires the presence
of at least two random edges from I51; C O;). As (22) suggests E|Yc(i)] <
2q;mi+/n, by the stabilization mechanism (21) and p=0/+/n we thus loosely

expect that
Ple € Oiy1 | Oi, Ei) = P(e & Ciyy | O, Ei) = (1—p)2amHVOVe 1 _95¢,m;

for e € O;, where we bluntly ignored the y/o-term in the exponent. Similar
to (23), using (22) we thus ought to have

(25) Git1—q; = IP’(e S Oi+1) —IF’(e S Oz) ~ —2qu7ri -IP’(e € Oz) ~ —20qi27ri.

To extract the behaviour of 77 from (24) and (25), we further assume that
m; =W (io) holds for some smooth function ¥(x), where o <1 is tiny. Using
Taylor series, in view of (24) and Oy = E(H) this suggests that

(26) ¢~V (ic) and qo=~1.

Together with (25) and the initial values from (24) and (26), this leads to
the second order differential equation ¥ (x) = —2¥'(x)?¥(z) with ¥'(0) =1
and ¥(0) =0, which in turn reduces to the simple ODE

(27) W' (z) =e 7 and w(0)=0.

Noting the implicit solution = = fgp @ e d it is now easy to derive
that ¥(x) ~ +/logz as © — oo (see, e.g., the proof of (57) in Ap-
pendix A). Since I ~n” is sufficiently large compared to ¢ (which will be of
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form o= (logn)~®W, see (35) in Section 2.3), this makes it plausible that

(28) 71 =~ W(Io) = \/log(Io) ~ \/Blogn.

Finally, since by construction we expect |E;+1 \ Ei| = |Ti+1 \ T;| to hold
for all 0 <7< I, the edge-sets E; and 17 ought to share many properties.
Together with (22) and (28) this intuitively suggests

(29) P(e € T1) = P(e € Er) =~ +/B(logn)/n,

making the pseudo-random edge-estimate (1) plausible for G=(V,T7) with
Ty CErCE(H).

2.3. Definitions and parameters

In this section we formally define several variables and parameters used in
our analysis of the nibble construction. We start with two standard notions
from graph theory: for any edge-subset S C (‘2/) we write

(30) S(A,B) :={abe S:a€ A,be B},
(31) Ng(v) :={w e V:vw € S},

where A, BCV are vertex-disjoint. For all pairs of distinct vertices u,v €V
we then define

(32) Xuw(2) := No,(u) N No, (v),
(33) Zup (1) := Ng,(u) N Ng,(v),

where | Xy, (7)] and | Zy,(7)] intuitively correspond to an ‘open codegree’ and
the usual codegree, respectively (note that |Y,,(i)| defined in (15) corre-
sponds to a ‘mixed codegree’).

Guided by Section 2.2, we define ¥(z) as the unique solution to the
differential equation

(34) W (z) =e 7@ and w(0) =0,

as suggested by (27). With the heuristics (22) in mind, we then introduce
the parameters

(35) o = (logn)~2,
(36) g =V'(io) = 6_472(“’),
i—1
(37) T =0+ ZJQj =Ti—1 + 0qi-1l{>1y,

=0
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making (24) and (26) rigorous (starting with mp = ¢ > 0 leads to cleaner
formulae later on). With foresight, for i <1 we also introduce the ‘relative
error’ parameter

om; 00q;—1

= Ti—1 —

i = 1-—
(38) 7 2y 2y

Tgi>1y,

which slowly degrades from 79=1—0(d) to T7=1-4¢/2.
With an eye on Theorem 4, for concreteness we introduce the absolute
constants®

(39) Dy :=108 and fo:=1/14,

as well as the set-sizes (with sy < s) and idealized edge-probability

(40)  s:= [C\/nlogn], S0 = La4q%3J, and p:=+/B(logn)/n,

and, recalling Oy = FE(H), the collection of ‘relevant’ pairs of large vertex-sets

G, = {(A, B): disjoint A,B C V with |A| =|B| =5

(41) and |Og(A, B)| > ~|Al|B|}.

2.4. Main nibble result: pseudo-random properties

In this section we state our main nibble result Theorem 9, which implies our
main tool Theorem 4 and establishes various pseudo-random properties of
(0i, E;, T, I )o<i<r. The following event is of core interest:

(42) Tr := {|T1(A, B)| = (1 £ 6)p|Oo(A, B)| for all (A, B) € &, }.

Indeed, it implies the conclusion of Theorem 4 with G = (V,T) since the
edge-set TT CEr CE(H) =0y is triangle-free. To get a handle on 77, in view
of Section 2.1 it is natural that we also require some control over the other
edge-sets (E;,O;,17)o<i<r. To this end we introduce the ‘good’ events

(43) X =N;,NPiNQfNQ; and Xg:= () X
0<j<i

where the following auxiliary events encapsulate various pseudo-random
properties:

(44)  Ni:={|No,(v)| < gin and [Ny, (v)| < 20¢;—1+/n for all v € V },

8 To make this paper easier to read, we have made no attempt to optimize the constants
Do,ﬁo in (39)
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(45) {|Xw i) < % Yo (4)] < 2¢imiv/n, and
| Zuw(i)| < i(logn)? for all u,v € V with u # v},
(46)
9 := {|0i(A, B)| < ¢;|A||B| for all disjoint A, B C V with |A],|B| > so},
(47)

Q; := {7:4:|00(A, B)| < |0i(A, B)| < i|Oo(A, B)| for all (4, B) € &}

In words, the above events give bounds for degree-like variables (N;),
codegree-like variables (P;), and the number of open edges (Q; and Q;).
A subtle but important point is that N;, P; and Q;r only guarantee one-
sided concentration, i.e., ensure upper bounds but no matching lower bounds
(which can fail badly, for example, |Y,,(7)]=0 holds when uv € E;). Merely
Q; guarantees two-sided concentration, which is harder to prove, but crucial
for establishing the edge-estimate from 77 (see the heuristic below Theo-
rem 9).

With 7,21 and Og=FE(H)C E(K,,) in mind, most of the bounds in (42)
and (44)—(47) can easily be guessed by the pseudo-random heuristics (22)
and (29) from Section 2.2 (the |Np,(v)|-bound is one exception: based on
E|Nr,(v)|=p-E|No,_,(v)], it contains an extra factor of 2 to avoid additive
error terms; another exception is the | Z,,(i)|-bound: it relaxes the prediction
E|Zu(i)| S72=0(logn) for technical reasons).

Inspectlng (44)—(47) in the special case i =0, it is not difficult to see
that the good event Xy = X< always holds (by combining ¢o =1 > 79
and o,q_1,m >0 with E():TQZF():Q)).

Remark 8. The event Xy holds deterministically for any n-vertex host
graph H.

Our main nibble result (which is at the heart of this paper) states that,
under fairly natural constraints, the pseudo-random events 7; and X<y both
hold with very high probability. Recall that I ~n”, and that all pairs (A, B) €
&, of vertex-sets satisfy |Og(4, B)|>vs? and |A|=|B|=s~C/nlogn.

Theorem 9 (Main nibble result). For all v,0 € (0,1], 5€(0,5) and C >
Dy/(6%\/B7) the following holds for n>ng(v,d,3,C): we have P(T;NX<y)>
1—n~“W for any n-vertex host graph H.

Proof of Theorem 4. If the event 7T; holds, then the triangle-free
graph G := (V,T7) has the claimed properties by (42), V = V(H) and
T CErCE(H)=0, so Theorem 9 completes the proof. ]
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Remark 10. In view of I=0(n") and Remark 7, the nibble thus yields a
randomized polynomial time algorithm (with error probability <n~“()) for
constructing the triangle-free G C H from Theorem 4.

Remark 11. The heuristic edge-estimate (29) suggests that in Theo-
rem 9 the dependence of the constant C on §,5,v is qualitatively best
possible, since it would also naturally arise if G = (V,T7) C H was
a random subgraph with edge-probability p ~ \/B(logn)/n. Indeed, for
all (A,B) € &, the expected number of edges between A and B would
then be at least A\ p:=E|T(A, B)|=p|Oo(A,B)| > p-vs? > /ByC - slogn,
and the probability that the event 7; from (42) fails would there-
fore be (using a union bound and standard Chernoff bounds) at most
Yames,, ¢ M) < pBBEVIED = o(1) for C = Q(1/(6*VB))
large enough.

We defer the proof of Theorem 9 to Section 3, and now just outline a
brief heuristic argument that illustrates how the event X<j C(\y<;,<; Qi is
instrumental for establishing the edge-estimate from 7; (which seems infor-
mative). Similar to (29), in view of Section 2.1 we expect that in each step
only few edges are removed due to the creation of triangles, which intuitively
suggests

ITi+1(A, B)\ Ti| = |Ei11(A, B) \ Ey.

Combining the construction of F;y1\ E; =141 CO; with the event Q; and
T~ 1, we also expect that

|Eiv1(A, B)\ Ei| = |Ii41(A, B)| = p- |0i(A, B)| = p - 4:|O0(A, B)|.

Recalling p=0/+/n and p=+/F(logn)/n, using the definition (37) of 7y and
the approximation 7y ~+/flogn from (28) it now becomes plausible that

T (A, B)| = > |Tisa(AB)\ T
0<i<I
2_0<i<1 0
~ S 100(4, B)|

T
N ——= - A B

\/ﬁ ’OO< ) )|
~ p|Oo(4, B)|,

as suggested by 77 (Section 3.5 contains a rigorous version of this heuristic
argument).
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2.5. Tools and auxiliary estimates

In this preparatory section we gather, for later reference, some results that
will be used throughout the proof of Theorem 9 (mostly probabilistic and
combinatorial tools, and ending with some auxiliary estimates). On a first
reading the reader may perhaps wish to skip straight to Section 3.

We start with a convenient version of the bounded differences inequal-
ity [23,24,36] for Bernoulli variables. Note that the upper tail estimate (48)
for decreasing functions does mot have an extra Ct term in the exponent
like (49). Remarks 13-14 are well-known, see, e.g., [24, Theorem 2.3, 3.8,
and 3.9] or [36, Corollary 1.4]. Inequality (48) can be deduced from the ar-
guments in [23, Lemma 7.14], but this monotone version does not seem to
be widely known; in Appendix A we thus include a simple proof for com-
pleteness.

Theorem 12. Let (§,)aez be a finite family of independent random vari-
ables with &, € {0,1}. Let f: {0,1}*l — R be a function, and assume
that there exist numbers (cqo)acz such that the following holds for all
2 = (sa)aez € {0,117 and 2/ = ()aer € {0,117 [f(2) — f())] < c5 if
zq =2, for all a# fB. Define X = f((a)acz) and A=Y 72 P(éa=1).
Then, for all t >0,

2
(48) P(X >EX +1) <exp <_2/\>
if the function f is decreasing (i.e., that f(z) < f(z') whenever z, > z!, for
all veT).

Remark 13. Define C :=maxyc7cy. If we drop the assumption that f is
decreasing, then

£2
49 PIX<EX—-t) < ——— .
(49) (X< )—eXp< 2()\—|—Ct)>
Remark 14. In the special case X =) 7& we have C = ¢, = 1 and
A=EX. Standard Chernoff bounds (or applying (48)-(49) to the decreasing
function —X) then show that in this case P(X <EX —t) and P(X >E X +t)
are at most the right hand side of (48) and (49), respectively.

For random variables with a special combinatorial form (based on the
occurrence of events with ‘limited overlaps’) we shall use the following
Chernoff-type upper tail inequality, which is a convenient corollary of a more
general result by Warnke [37, Theorem 9|. Note that the exponent of (50)
scales with 1/C.
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Theorem 15. Let (§;)ics be a finite family of independent random
variables with & € {0,1}. Let (Ya)acz be a finite family of variables
Yo :=1ie,1 for all ica} With D c7EYs <p. Define Zo:=max} . ; Yo, where
the maximum is taken over all 7 CT with maxge s |[{a€J: anNB#0} <C.
Then, for all C,t>0,

el (u+t)/C 2
P(Zc > < mind (- 7\
(50) (Zc > p+t) < min <M+t> ,exp( 20(M+t>>

The following simple combinatorial lemma formalizes the intuition that
we expect y . |U;]=O(|U]|) whenever the subsets U; CU are nearly disjoint
(i.e., have small pairwise intersections).

Lemma 16. Suppose that (U;);cz is a family of subsets U; CU with |U;| >
2>0 and |U;NU;| <y for all i#j. Then z>+/4|U|y implies |Z| <2|U|/z and
Zi€I|Ui’ <2|U|.

Proof. Aiming at a contradiction, suppose that |Z|>2|U|/z. Then there is
J CT with |J|=|2|U|/z]+1. Observe that, for any i€ J,

(51) Yo NI < (T -1y < 2Uly/= < 2/2 < Uil /2.
JET  i#£]
So we obtain a contradiction by noting that

(52)

Ul =

U v

€T

> (o= Y wnul] =Y (w2 = 1712/2 > U],

iedJ JET : i#] eJ

With |Z| < 2|U|/z in hand, after replacing J with Z, note that (51)
and the first three inequalities of (52) remain valid, completing the proof of
>iez Ui <2|UJ. |

Our final auxiliary result contains a number of convenient estimates in-
volving the parameters ¢;,m;,0,I defined in Section 2.3 and (9). Roughly
put, (55)—(57) state that ¢; ~q;i+1, 1—20¢;m;~¢q;+1/q; and 7y~ +/log(Io), as
predicted by (25) and (28). The technical estimates (53)—(54) can safely be
ignored on a first reading. The proof of Lemma 17 is based on elementary cal-
culus and thus deferred to Appendix A (it also establishes ¢; > gy =npFtol)
which together with I~n” and (54) motivates our choice of fp=1/14).
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Lemma 17. If 5€(0,5p), then there exists T,n9 >0 such that, for all n>ng
and 0<¢ <1,

i A
(53) max {je%?l};} {qml }, \/Eﬂ'l} <1,
(54) min{mi{ﬁ {qf\/ﬁ},q?\/ﬁ/l,qf’{‘/ﬁ/\/f} >n',
je
(55) 0 < ¢i — giv1 < 4o -min{q;, ¢it1, ¢imi},
(56) |(1 = 20qim;) — giv1/a| < 80°q;,
(57) |71 — log(Io)| < 2.

As a simple application, for 0 < i < I we now bound the stabilization
probability pe; defined in (20). Since (54) implies g;v/oy/n>>1, by applying
(1—p)">1—pr=1—o0r/y/n (valid for r >1) we infer
(58) Pei < 1= (1= p)* 5 HVIVE < 964,(m; + Vo) < g,

where we used /om; <1 and 0 <1 (see (53) and (35)) for the last inequality.

3. Analyzing the nibble

In this section we prove our main nibble result Theorem 9 (which in turn
implies our main tool Theorem 4, see Section 2.4) as a corollary of the
following auxiliary lemma.

Lemma 18. Under the assumptions of Theorem 9, for n>mng(v,6,5,C) we
have

M) forall 0 <i<I-—1,
—w(l).

(59) P(=Xiy1 | X<i) <n
(60) P(ﬂ’T] N fs[) <n
Proof of Theorem 9. Recalling I < [n] =n°M) and X<, = No<j<i Xi
note that P(—Xp) = 0 (see Remark 8) and (59) readily imply P(—~X<;) <
n~*() | which together with (60) completes the proof. ]

The remainder of this section is devoted to the proof of Lemma 18: the
proof of (59) with —=X;11=-N;11U-P;11 UﬁQij_l U—Q;41 is spread across
Sections 3.2-3.4, and the proof of (60) is given in Section 3.5.
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3.1. Preliminaries: setup and conventions

To avoid clutter, up to (and including) Section 3.4 we shall suppress the
conditioning in the notation: we will write P(-) and E(-) as shorthand
for P(- | 7;) and E(- | F;), where (F;)o<i<r denotes the natural filtration
associated with (O;, E;,T;, 15, S;)o<i<1, as usual. We will also tacitly as-
sume that the F;-measurable event X<; holds. Conditional on F;, note that
by construction of the random edge-sets I+ and Sj;1, the (conditional)
probability space formally consists of the 2|0;| independent Bernoulli ran-
dom variables (Ijcer;, },1fees; 1} )eco;, With P(e € Ii11) =p =0o//n and
P(e€ Sit1) =Pe,i < qi, see (58).

Using the above setup and conventions, we shall repeatedly consider ran-
dom variables of form

(61) X = f((]l{eéfi+1}7]l{eesi+1})e€oi>'

To get a handle on the (conditional) expectation EX we will often use
Oi+1 C 0;\ Ci41 together with the following key lemma, which hinges on
the stabilization mechanism to equalize all (conditional) probabilities P(e ¢
Ci11), see (62) below. (The extra /o term in (20) ensures that P(eZ C;y1) <
¢i+1/q; holds with plenty of elbow room, which is convenient for avoiding
ugly error terms in the upper bounds of (44)—-(47).)

Lemma 19. We haveP(eZ C;11)—qit1/¢ € [—303/2qi,—03/2qi] for alle€ O;.

Proof. For any e€ O;, since |Y.(i)| <2¢;mi/n by X<; CP;, by definition of
Cit1 :Cfi)l US;4+1 we have

Ple & Cis1) =Ple & CLP) -Ple & Sip1) = (1 —p)"O . (1 — ..,

2
(62) =(1 _p)2qz'(7fi+\/5)\/5.

It is well-known (and easy to check) that 1 —rz < (1—2)" <1—ra+ (5)z?
for all z € [0,1] and r > 2. Using v/np = o < 1 and max{q;,¢;m;,¢im?} < 1
(see (53)), it follows that

Ple ¢ Cit1)— [1—20%(77#\/5)]’ < 20%¢} (mi+v/0)? = O(0%q;) = o(0*/ ;).

This completes the proof since 1—20¢;m; =qir1/q +0(c%/%¢;) by (56). 1
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To deduce concentration properties of such random variables X we shall
frequently rely on the bounded differences inequality (Theorem 12). In those
cases we will bound the associated parameter \ via

(63) A=Y cPlecli)+ > &PlecSi)<pY c+a» &,
ecO; ecO; e€0; e€0;

where the edge-effect ce is an upper bound on how much X can change if we
modify the indicator Tyecr, |y (alter whether e is in I or not), and the
stabilization-effect ¢, is an upper bound on how much X can change if we
modify the indicator Tg.cg, .y (alter whether e is in S; 41 or not). Moreover,
the following simple observation will later allow us to control the above
sum (63) of these effects.

Lemma 20. If X<; holds, then ) .o |Ye(i)NJ| <2g;mi/n:|J]| for any edge-
subset J C (‘2/)

Proof. For any e € O;, note that f €Y,(i) implies e € Y (i). As Y(i) CO;,
we infer

D eNJIl=3 > Tpevioy < D D Teevyan = ) V(0]
ecO; feJecO; feJecO; feJ

This completes the proof since X<; CP; implies |Y(i)| <2¢;mi\/n. |

3.2. Event Nj;1: degree-like variables |No,,,(v)| and |Nr,,, (v)]

Recall that the event Ny defined in (44) concerns degree-like variables,
ensuring that |No, , (v)| < git1n and |Np,,, (v)| <20¢;4/n for all vertices v;
see (31) for the definition of Ng(v).

Lemma 21. We have P(—~N;, ) <n«),
Proof. We start with |[No,,,(v)|. Note that O;11 CO;\ Ciy1 implies
(64) ’N0i+l(v)‘ < Z ﬂ{vw€0i+1} =: X.

weNQ, (v)

Since X<; CN; implies [N, (v)| <g;n, using Lemma 19 we obtain

(65)

EX = Y PwgC i) < [No, ()| (gi+1/2—0°*¢) < girin—a®¢in.
w€No, (v)

Gearing up to apply Theorem 12 to X, we now bound the associated param-
eter A<p)_ .co. 2+ > eco; ¢2 from (63). Set X,:={v} x No,(v) CO;, and
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recall that Cj41q :C’Z-(j_)1 US;+1, where Cﬁ_)l depends only on ;11 and thus is
independent of S;;1. The edge-effect ¢, (an upper bound on how much X
changes if we alter whether e€ I, 1 or e I;41) is thus at most the number
of changes to Cﬁ_)l NXy, ={vweX,: Yy (i)N 1 #0}. Since e € Yy, (4) im-
plies vw € Y (i) when vw € X, we infer ¢, <|Ye(i) N, | <|Ye(i)| < 2¢imi/n
by X<; CP;. Using Lemma 20, |X,|=|No,(v)| <gn, and ¢;m? <1 (see (53)),
it follows that

pY & <p2qmvn- Y [Yo(i)N A,

e€0; ecO;
< o/Vn-(2gmivn)? | X,

< 40q§’7r2~2n3/2 < 40q2-2n3/2.

(66)

By our above discussion, the stabilization-effect ¢, (an upper bound on how
much X changes if we alter whether e € S;11 or e € S;11) is at most the
number of changes to S;+1NAX,. Hence ¢c <lj.cx,), so that

g Y e <q || <gn<ogn®?.
ecO;

Noting that X is a decreasing function of the edge-indicators

(]I{BEF¢+1}7 ﬂ{e€S¢+1})€€Oi)

using Theorem 12 together with the \-bound (63) and ¢?n'/2>n" (see (54))
it follows that

(W) > gipin) < P(X > EX + 0¥/2¢2n)
o3qin?
< Tt
< exp ( 2. 5Uq2-2n3/2)
<nW),

P(|No

i+1

Taking a union bound over all vertices v completes the proof for the
|No,., (v)| variables.

Finally, note that |Np,, ,(v)| is a sum of independent Bernoulli random
variables with

E‘Nle(’U)’ = ’NOL(U” ‘DS gin - U/\/ﬁ: UQi\/ﬁ =W,

where we used X<; CN; to bound |No, (v)| < g;n. Applying standard Chernoff
bounds (see, e.g., Remark 14), using ¢;/n > n" (see (54)) it is routine to
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deduce that p>logn and
IED(|]\7Fi+1 (U)| > 20_‘]i\/ﬁ) = P(|Nfi+1 (U)| > 2:“)
2
L
< _
= ( 2: 2u>
= exp (—%) < n~w),

Taking a union bound over all vertices v completes the proof for the
|NT,., (v)| variables. 1

3.3. Event P;y1: codegree-like variables | Xy, (24 1)|, |Yyu(i+1)]
and |Zy,(i+1)|

Recall that the event P;y; defined in (45) concerns codegree-like variables,
ensuring that | X, (i+1)] < qi2+1n, |Yiw (i41)| <2¢i 117414/, and | Zy, (i41) | <
(i+1)(logn)? for all pairs uv of vertices.

Lemma 22. We have P(=P;; 1) <n "«

Proof. We start with |X,,(i+1)|. Recalling O;4+1 CO;\ Cit+1, note that by
construction

(67) ’Xuv(z + 1)| < Z ﬂ{uw€0i+1 and vwgCiy1} =+ X.
'LUGXuv(i)

To estimate E X, note that the event f ¢ C’i(}r)l ={f€0;: Y;(i)NI;11#0}
is determined by the values of the independent indicator variables
(Lteer; 1} )eey;(i)- In view of the reasoning (62) for the value of P(e & Cjt1),

it follows by construction of C;1q :C’i(i)l US;41 that

P(uw ¢ Cij41 and vw & Cit1)

68 . .
(0% = P(uw & Cis1) Plow & Ciypa1) - (1 — p)~MowOMew

Since X<; CP; implies |V (1) N Yo (i) < | Zuw (i) < I(logn)? and | X, (1)] <
q?n, by combining (68) with Lemma 19 it follows that

(69) EX < |Xuo(i)]- (qi41/qi—0*?;)? - (1—p) 05" < g}, yn—0*gPn,

where for the last inequality we used pI(logn)? < 03/%¢} < 1 (since
g@vn/I > n™ by (54)) and o3¢} < 0%2¢} ~ 0%2¢i1q7 (see (53)-
(55)). With an eye on Theorem 12, we now bound the parameter
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MDY eco, €+ Yoeco, Co from (63). Set Xy :={u,v} X Xy (i) CO;. Anal-
ogous to the proof of Lemma 21 for |[No,,(v)|, here we have edge-effect
Ce < |Ye(1) N Xyy| < [Ye(i)] < 2¢imi/n and stabilization-effect ¢. < Tgeex,, -
Similar to (66), using Lemma 20, |Xy,| =2 | Xuw(i)] <2¢?n and ¢;m? <1 it
follows that

(70)  p Y e <o/vn- 2qmiv/n)® | Xl < 8ogimin®? < 8ogin®/2.
e€0;

Furthermore, ¢; > ¢2 < ¢;|Xuw| < 2¢3n < Jq?n3/2. Noting that X is a de-
creasing function of the edge-indicators (Igeer;, |}, lees,, })eco;, using The-
orem 12 and ¢?n'/2>n" (see (54)) it follows that

P(|Xuo(i +1)] > ¢711n) < P(X > EX +0%/?g}n)
3,6,,2

o q;n —w(1)
<e ————= | <n .
= XP( 2.90(]%;”3/2) =

Taking a union bound over all pairs of vertices u,v completes the proof for
the | Xy, (74 1)| variables.
Turning to the more involved |Yy, (i+1)| variables, note that by construc-
tion
(71)
‘Yuv(z + 1)’ < Z ]l{quFHl or vweljq1} + Z ﬂ{f&C’iJrl} = Yu—’l_) + YJU
WE X o (1) f€Yuu ()

(To clarify: Y,} and Y, are defined by the first and second sum in (71),
respectively.) Using Lemma 19 together with o¢? = 0¢;qi+1 + 0(03/2qi27ri)
(see (55)) and Tiqi+1 = qi+1Ti+1 — 04;qi+1 (as Ti+1 = T —|-qu by (37)), it
follows that

E(Y,5 + Yy) < [Xuo(D)] - 20+ Yo (9)] - (g1 /@i — /%))
(72) < 20¢2v/n + 2miv/n(gi1 — %)
< 2giimipiVn — o 2qkm/n.

We now estimate Y, and Y, separately. Noting EY,} < 20¢?y/n and
o?¢?mi/n=o0(cq?y/n) (see (53)), using standard Chernoff bounds together
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with 72 >7m2 =02 and ¢?\/n>n" (see (54)) it follows that
2
(o%g?miv/n)
4-20¢2\/n
5,2
< exp <_W> < o)

]P)(Y’Ujl > Eyut) + UQQ?Wi\/ﬁ) < exp <_
(73)

8

For Y}, we shall apply Theorem 12, and we thus now bound A
P cco, c? + @i Y eco, ¢2 from (63). As usual, we have edge-effect c.
[Ye(i) N Yy (i) < |Ye(i)] < 2¢imiy/n and stabilization-effect ¢e < Tgccyy, (i)}-
Here we can significantly improve the simple worst case estimate ¢, <|Ye(i)]
when e # uv. Indeed, if e = wiws does not intersect uv, then c. < 4 since
Ye(i) N Yo () C {u,v} x {wy,ws}, say. Furthermore, if e = wjwy intersects
uv in one vertex, say u = wi, then ¢, < maxy|Zs(i)] < I(logn)? since
Ye(i) N Yo () C {u} X [Ng,(w2) N Ng,(v)]. To sum up, for e # uv we have
ce <max{4,I(logn)?} <o =51, say. Similar to (66) and (70), using Lemma 20
and Yy, (1) <2¢;my/n it follows that

pY < 0/\/ﬁ-<(2qm¢x/ﬁ)2 + 071 - 2q;mi/n - !Yuv(i)!> < 8o tgimiI/n.

ecO;

<
<

Furthermore, using m; > o and I > 1 we obtain Qizeeoi &2 < qi| Yo (1) <
2ql-27ri\/ﬁ<< U_4q2-27ri2]\/7z. Noting that Y, is decreasing, using Theorem 12
and ¢Z\/n/I>n" (see (54)) it follows that

(74) P, >EY: + 022mvn) < exp ( — olg/min <neW
we— oo e =P\ 7y 9o—4gin?l\/n) — '
Combining the probability estimates (73) and (74) with inequalities (71)—
(72) and 02 < ¢%/2, now a union bound argument (to account for all pairs
of vertices u,v) completes the proof for the |Y,,(i+1)| variables.
Finally, for |Z,,(i+1)| note that the one-step difference

AZ = |Zuv<i + 1)’ - |Zuv<1)‘

(75) = Z ﬂ{uweFi+1 and vwel;1} + Z ﬂ{f€F¢+1}
WE X yv (’L) fEYuv(i)

is a sum of independent Bernoulli random variables with
(76) E(AZ) = | X ()| - p* + |V ()] - p < 02¢? 4 20qim; < 30 < 1,

where we used | Xy, (7)| < ¢?n and |Y,(i)| <2g;mi+/n for the first inequality,
and max {q¢?,q;m} <1 (see (53)) and o < 1 for the last two inequalities.
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Inspecting (75), note that X<; C P; implies |Zy, (i +1)] < AZ +i(logn)®.
Applying standard Chernoff bounds, using E(AZ) <« 1 it readily follows
that, say,

P (|Zuw(i+1)| > (i + 1)(logn)?) <P (AZ > (logn)?) < n~*W,

Taking a union bound over all pairs of vertices u,v completes the proof for
the |Zu,(1+1)| variables. 1

Remark 23. If desired, it would not be difficult to establish the better
upper bound |Z,,(i)| < (logn)?, say (using the stochastic domination argu-
ments leading to (95) in Section 3.5; in view (75)—(76) the main point is that,
for 0<i <1, the event X<; implies » o ;<;(| Xuo (DNP*+HYuu (5)|p) =O(logn)).
This in turn could, e.g., be used to increase the constant Sy slightly (as we
could then remove I =[n?] from constraint (54)).

3.4. Event Q;:_l N Q;t1: number |O;4+1(A, B)| of open edges
between large sets

Recall that the events Q; ,,Qiy1 defined in (46)—(47) concern the open
edge-set O;11 C E(H) = Oy, ensuring that [O;41(A4, B)| < gi+1]A||B| for all
disjoint A, BCV with ’A‘, ’B‘ > sp, and Ti+1qi+1‘OQ(A,B)‘ < ‘OH_l(A,B)’ <
¢i+1|O0(A, B)| for all (A,B) € &,; see (40)—(41) for the definition of sg
and S, .
Turning to |0;+1(A,B)|, note that one edge e € I;11 can add up
to [¥e()) N O(A, B)| < X\e. IN5,(w) N (AU B)| edges to C\(4,B) C
Oi(A,B)\ O;+1(A, B), which can potentially lead to large edge-effects c..
To sidestep such technical difficulties, we now introduce the following aux-
iliary variables for vertex-sets A, B CV with |A|=|B| (to avoid clutter we
suppress the dependence on A, B,i in parts of our notation):
z = 0-4(]1'2’A‘7
Wi i={weV:|Ng(w)N(AUB)| > z},
Wy :={w e V:|Nr,, (w)N(AUB)| > z},
CA'Z»(i)l := {uv € O;: there is w ¢ W7 s.t.
{uw,vw} N G| = {uw,vw} N E;| =1},

CA'Z-(JZF)1 :={uv € O;: there is w &€ Wy s.t. uw € Ijp1,vw € T},

Ciy1:= (ji(}r)l U Sit1.
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Note that C’i(i)l C C’i(i)l for j € {1,2}, and that éz'-i—l C Ciy1. Furthermore,
recalling ¢; > gqr (see (55)), using inequality (54) it is routine to check
that sp>>1 holds, that |A|> s implies z>>1, and moreover that

(77) mln z/\/m> o /f>>g f/ﬁ/\/f > nT/?

Lemma 24. We have P(=Q], ) < n—w),

Proof. Mimicking the double counting argument from (4), it follows that
the special case |A| = |B| of Qf, implies the event Q; , in full. Hence
—Q;" | implies that |O;41(A, B)| < gi+1|A||B] fails for some disjoint vertex-
sets A, BCV with |A|=|B|> so, and we shall below estimate the probability
of this special case.

Recalling éi+1 CCit1, noting O;11 C0O;\Ciy1 CO;\ éi+1 we obtain

(78) 0i1(A, B) < |Oi(A, B)\ Cial = >~ Tgpge g = X
FE0,(A,B)

To estimate EX, recall that C(ll ={f€0;: Ys(i)NIi1#0}. Note that

if the event Qf = {(fxW1)NIiz1=0} holds, then f ¢ C +1 im-

plies f ¢ C +1, so that f ¢ Ciy1 implies f ¢ Ciy1 = C’( )1 U Sit1-

Since f ¢ C +1 and Qy are both monotone decreasing functions of the
edge-indicators (Igcery, 1, 1ees,,1})eco;, using Harris’s inequality [18] and

P(Qf)>(1— p)2Wil it follows that

P(f ¢ Ciy1) > P(f ¢ Ciyr and Q)

> P(f ¢ Ciy1) P(Qy)

>P(f ¢ Cipa) - (1 —p)"™l.
Note that X<; and i < I imply |Ng, (u) N Ng, (v)| = | Zuw(i)| < I(logn)® =:y
when u#wv, and that (77) implies 2> /|AU B|y. Using the definition of W
and Lemma 16 (with Z=W;, U= AUB and U, = Ng,(w)NU), we infer
|Wi| < 2|AUB|/z =4/(c%¢?) < gio/n by (54), say. Similar to (69), using
Lemma 19, |0;(4, B)| < q|A||Bl, p|W1| < gio? <1 and ¢;gi+1~q? (see (55))
it is routine to deduce that
EX <|0i(4,B)| - (g41/¢ — 0*q;) - (1= p)~2"1

(79)
<|A||B|- (gi+1 — 077} /2).

Gearing up to apply Theorem 12, we now bound A <pzeeo c+qi Zeeo ¢
Noting C;11 C Ciy1, as usual we have edge-effect ¢, <|Y.(i)NO;(A, B)| and
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stabilization-effect ¢ < lf.co,(a,p)}- Here the definition of Oi—i-l allows us
to improve the simple worst case estimate ¢, < |Yc(7)|. Indeed, inspecting
the corresponding argument for |[Nop, ,(v)| from Lemma 21, we see that
the edge-effect ¢, (an upper bound on how much X changes if we alter
whether e€ I 1 or e ;+1) is at most the number of changes to

Cfi)l N Oi(A, B) = {uv € O;(A, B): there is w ¢ W1 s.t.
(80) either uw € Iy, vw € E;

or vw € 1, uw € Ez}
Since any w & W1 has at most z neighbours in AU B via Ej;-edges, we infer
that ¢, <2z (the factor of two takes into account that each vertex of e could

potentially play the role of w in (80) above). Similar to (66) and (70), using
Lemma 20, om; <+\/o <1 (see (53)), and |O;(A, B)|<q¢;|A||B| it follows that

p Z 2 <o/vn-2z-2qmiv/n-|0:(A, B)| < 2i|0i(A, B)| < z¢?|A||B].
ecO;

Furthermore, using z > 1 we obtain ¢; Y. ¢2 < ¢;|0;(4, B)| < 2¢;]O0;(A, B)| <
2q?|A||B|. Noting that X is decreasing, using Theorem 12 and the M-
bound (63) it follows that

P(|0i11(A, B)| > gin1|A||B|) < P(X > EX + 0%} |A||B|/2)

“ e (_ (o*/24?|4]|B|/2)° )

2 2:q2|AJ| B

o3q?|A||B i
— exp ( 1'(;2’“) (B,

where for the last inequality we used z =o¢?|A| and o~! > logn. Finally,
taking a union bound over all disjoint vertex-sets A, BCV with |A|=|B|> so
completes the proof (as discussed). ]

For the ‘relative error’ 7; used in the event Q;, see (38), we now record
the following convenient bounds:

(82) 1>7n>7m=1-0/2>1/2 forall0<i<I.
Lemma 25. We have P(=Q; 1 NN; 11 NPy 1) <n <),

The proof strategy is to estimate the different contributions to O;4; =

O\ (141 UCiq1 UCZ( +)1) separately (here Q; will be crucial for bounding
some of the large edge-effects ignored in Lemma 24).
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Claim 26. Let Q4 p be the event that the following bounds hold:

X1 :=|04(A,B)\ CA‘z‘+1‘

€ [|0i(A, B)| - (gi41/a — 4024;),|0:(A, B)| - giz1/ai],
Xy = |0;(4, By N CC)| < |0i(A, B)| - 2074,
X3 :=|0;(A,B)NIi1| <|04(A, B)| - 20%g;,

X4 1= |0i(A, B) N (Cip1 UCE)\ (Cipr UC))| < 36002v/nlA|.
Then P(=Q4 g NNit1NPit1) <n~%6) for all vertex-sets (A,B)e6,,.

Before giving the proof, we first show that Claim 26 implies Lemma 25.
Using a union bound argument (to account for the |Ss.,| < n?* vertex-
sets (A,B) € &,,), it is enough to show that Qap N X<; implies
Ti+1¢i+1/00(4, B)| < 10i11(A,B)| < ¢i+1/00(A4, B)|. By definition of
0;+1(A, B) we have

X1 —Xo— X3 — X4 <1|041(A,B)| < X;.

Combining Q4 p with the fact that |O;(A, B)| < ¢;|Oo(A,B)| by X<; C Q;,
we readily infer the upper bound |0;41(A, B)| <gi+1|00(A, B)|. Turning to
the lower bound, using Q4 p it follows that

X1 — Xo— X3 — X4 > |0i(A,B)| - (qiy1/a — 80’3/2%') — 360q;v/n|A|

> (gi1/q — 80°/%q;) _ 360q; 100(A, B)]
0. (a: 8y AR . ,

= 14i\qi+-1/ 4 qi ’)’C Tog 11 0
S 450¢;

s~ ——7h ) 4,41]00(A, B
> (5 o)l On(A. )

> Tiv1 - ¢i1|O0(A4A, B)|,

where for the second inequality we used |O;(A, B)|>7,¢;|O0(A, B)| (by X<; C
Q,) and |Oy(A, B)| > v|A||B| > vC+/logn - /n|A|, for the third inequality
we used 7; < 1 (see (82)), 0/2 < 1/\/logn, and ¢; ~ qi11 (see (55)), and
for the last inequality we used /logn ~ \/log(Ic)/B ~ 7r/\/B (see (57)),
vC/v/B > Dg/5% >91/§ (by assumption and (39)) and 7; — doq; /71 = Tis1
(see (38)). This completes the proof of Lemma 25 (assuming Claim 26).

Proof of Claim 26. We start with X; =|0;(A4, B)\Ci11|. Since s> s, the
upper tail argument for X = X; defined in (78) carries over from Lemma 24,
with EX; < |05(A4, B)|(gis1/q — 0%/%¢;/2) and X < 22q;|0;(A, B)|, say. In
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particular, noting that here |O;(A4,B)| > 7:¢;|O0(A,B)| > v7;q¢:|A||B|, an
application of Theorem 12 along the lines of (81) gives

(0%24:|0i(A, B)|/2)°
P(X1 > |0i(A, B)|gi+1/gi) < exp (— 2.2:4,]04(A, B)|

i A||B
< oxp (<A e

(83)

where for the last inequality we used z=0%q?|A|, 7, >1/2 (see (82)), yo 1>
logn and |B|=s. For the lower tail of X; we proceed similarly. Since Cjy; C
Cit1, using Lemma 19 we obtain

EX; = Z Ple ¢ Cit1)

e€0;(A,B)
> ) PlegCin)
e€0;(A,B)
> |0i(A, B)| - (gi+1/ai — 30°/%q;).
Furthermore, the edge-effect and stabilization-effect estimates from the
proof of Lemma 24 again carry over, giving A < 2z¢;|0;(A,B)| and
maxeco, max{ce,Cc} < 2z, say. Applying inequality (49) of Remark 13
(with C'=2z), it follows similarly to (83) that
P (X1 < |0i(A, B)|[(gi+1/q — 4o 3/2 i)
<P (X1 <EXi—0*%4|0:(A, B)))
2
<exp| — (03/2qi|0i(A’ B)D
- 2(22¢;]0:(A, B)| + 2z - 63/2¢;|0;(A, B)|)

Sexp( V70 q81|AHB’) <n —w(s)
z

Turning to Xo=10;(A, B) ﬂCA'i(i)ﬂ, note that by construction of C'( )1 we
have

(85) Xo= Z {eecu)}i Z Z I fwawb}cri} = X5

ecO; (A,B) abGOi(A,B) wEV\WQ
Gearing up to apply Theorem 15 to X;’ , in view of I541 CO; we define

7 := {{wa,wb} C O;: ab € O;(A, B),w € V, [{a,b,w}| = 3},
K :={{wa,wb} € Z: w & Wa,{wa, wb} C Ij11}.
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Since p? - | Xy (i)| <02 <o%q; by X<; CP; and ¢; <1 (see (53)), we obtain

ZEH{QQFHI} :p2 Z Zﬂ{{va,vb}goi}
ael abeO; (A, B) vEV
=’ Z | Xap(1)] < 0%q; - |0s(A, B)| =: p.
abe0;(A,B)

Furthermore, since K only contains edge-pairs {wa,wb} with {a,b} C
Nr,,,(w)N(AUB) where the ‘central vertex’ w satisfies w ¢ Wa and thus
INT,, (w)N(AUB)| <z, for all €K we see that

HoeK:anp#£0} <> [{fack: feal
fes
SZ Z ‘NFHl(U)ﬂ(AUB)’
feBvef\Ws
<2-2.-z.

It follows that X2+ :ZQGK]I{QQFZ.H} < Zy4,, where Z,, is defined as in The-
orem 15. Applying first (85) and then inequality (50) with C' = 4z, using
|0;(A, B)| >~7iqi|A||B] it follows similarly to (83) that

2

w
P(X, > 202q;|0:(A, B)|) < P(Zs, > 2u) < __
(X2 > 207¢;|05(A, B)|) < (4_M)_6XP< 2_4%2#)

22| A||B
< exp <_77’zU féL H ‘) <n—w(s)‘

(86)

We next turn to X3 =1|0;(A, B)NI;1|, which is a sum of independent
Bernoulli random variables with E X3 = |0;(4, B)|-p < 02¢;|0:(A, B)| =: 1,
as giv/n>n" by (54). Applying standard Chernoff bounds, using |0;(A4, B)|>
~7iqi|A||B| and z >1 it follows by comparison with the last inequality of (86)
that

2
P(X3 > 20%¢;|0i(A, B)|) <P(X3 > E X3 +1) < exp (2 : 2t)

2.2
< exp <_vmq4\AHm> < =),

(87)

Finally, X4 is a more difficult variable: assuming that N1 NP;41 NX<;
holds, we shall bound X4 by deterministic counting arguments (here the
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edge-effects can potentially be fairly large so concentration inequalities seem
less effective). Noting C;y1\Cip1= z+1\ z+1’ similarly to (85) we obtain

<
X4 = Z {eEC(Jrl\ +l} Z {eeq“\cgl}

e€0;(A,B) e€0;(
< Y (I0:(Nr (w) 0 A, N, (w )mB)|
(88) weWy
+|O-(Np. () N B, N, (w) 0 A)])
+ Y 0N, (w) VA, Np,, (w) N B)].
weWa

Using the upper bound estimate from X<; C QT when
min{|Nr,,, (v) N A, [Ng,(v) N B} > 2

holds (note that z=0%g?s>sp), and a trivial estimate otherwise, it follows
that
(89)
|Oi(NFz‘+1(w) N Aa NEz(w) N B)‘
< qi’NFH-l(w) N AHNEz(w) N B| + Zmax{|NFi+1(w) N A|7 |NEz(w) N B‘}

< (Qi‘NFHl(w)’ +Z) ’ ’NEiUFiJrl(w) N (AUB)|

With an eye on (88), we note that an analogous estimate also
holds when we reverse the role of A and B in (89). Furthermore,
¢|Nr,,, (w)| < 20¢2\/n by N1, and z = o'¢?s = O(c®¢?\/n) < og?\/n.
Recalling F; U ;41 = FE;11, observe that P;y; and ¢ +1 < [ imply
INg,ur, (W) N Ngur,, (V)| = [ Zuw(i+1)| < I(logn)? =: y when u # v, and
that (77) implies z2>>+/|AUB|y (as |A|=s>sp). Using the definition of W
and Lemma 16 (with Z=W,, U=AUB and U,,= Ng,ur;,, (w)NU), it follows
that
(90)
Z (‘Oi(NFi+1(w) N Av NEz(w) N B)| + |Oi(NF¢+1(w) N Bv NEz(w) N A)D
weWy
<2 30'qi2\/ﬁ- Z |NEiUFi+1(w) N (A U B)‘
weWy
< 2-30q;v/n-2|AU B| < 240¢7\/n|A|.

Proceeding analogously to (89)-(90), using the definition of W5 and
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Lemma 16 we similarly obtain

Z |Oi(Np,,, (w) VA, Nr,,, (w) N B)|
weWs
(91) <30¢ivn- Y INp,,(w)n(AUB)
weWs

< 30¢?V/n-2|AU B| < 120¢2y/n|A|.

To sum up, inserting the bounds (90)—(91) into (88), we showed that
Nit1NMP;41NX <; implies X4<360q v/n|A|. This completes the proof together
with the probability estimates (83), (84), (86), and (87). 1

Remark 27. If desired, it would not be difficult to extend the event O;
to larger vertex-sets (A,B) € G6>sy = Uscp<,Sry (the above
arguments all carry over, except for the modified bound X; <
3-maxy(qi|Nr,,, (w)] + 2) - 2|AU B| < 360¢? max{y/n,c®|B|}|A|, which is
still strong enough to deduce Lemma 25). This in turn could, e.g., be used
to also extend the event 77 to (A4, B)€&>; (the proofs in Section 3.5 then
carry over).

Remark 28. Under a mild extra assumption such as |Og| > on, say, it

would not be difficult to add two-sided bounds for the total number of

open edges |O;| and edges |T7| to the events Q; and 7. For example, much

simpler variants of the above arguments then imply 7:4i|Oo| < |0;i] < 4i|Oo|

(by directly estimating 0; \ C; 1| — |Tia] — (O] < 01| < 03\ Cral,
(2)

without using C’i+1 or C’ 11, nor a union bound over all vertex-sets), which
in turn gives |T7|= (1i5) p|Oop| by straightforward variants of the proofs in
Section 3.5.

3.5. Event 77: number |T7(A, B)| of edges between large sets

Recall that the event 7T; defined in (42) concerns the triangle-free edge-
set Tt C E(H) = Oy, ensuring that |T7(A,B)| = (1£9)p|Oo(A,B)| for
all (A,B) €&, y; see (41) for the definition of &, .

For |T7(A,B)| it is convenient to think of the entire nibble construction
as one evolving random process. Thus, in contrast to previous sections, in
Lemma 29 and Claim 30 below we shall not tacitly condition on F;.

Lemma 29. We have P(=T;NX<) <np—w@),
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Since T7 = Jy<;(Ti+1 \T;) forms a partition, the proof strategy is to
estimate the two contributions to Tj4+1\7T; =111\ F(D;+1) separately (here
the deleted edges E(D;+1) will have negligible impact).

Claim 30. Let T4 g be the event that the following bounds hold:

X = Z |0i(A, B) N Tyl € [(1 = 6/2)p~, (1 +5/2)u'],
0<i<I
Y= ) |0i(A,B)N E(Diy1)| < 6% /9,
0<i<I
where pt = Zogz‘<1 14i|O0(A, B)|]p and p~ := Zogz‘d [7iqi|Oo (A, B)[p.
Then P(~TapNX<y) <3n=3° for all vertex-sets (4, B) € &,.

Before giving the proof, we first show that Claim 30 implies Lemma 29.
Using a union bound argument (to account for the |Ss.,| < n?* vertex-
sets (A,B) € 6;,), it is enough to show that T4 p implies |T7(A,B)| =
(1£0)p|O0(A, B)|. Since all the (I541)o<i<s are edge-disjoint, by the recursive
definition (14) of 77 we have
(92) X —Y < |Ti(A, B)| < X.

Noting p= > mrut = (1 —4§/2)u™ (see (82)), it follows that T4 p implies
X<(146/2)u" and

X-Y>(1-6/2-6%/9) - u~ >(1—-5+6/8)u".

It thus suffices to show that u™ ~ p|Og(A, B)|, where p=+/B(logn)/n. But
this is routine: indeed, since ¢;|Oy(A, B)| > g;-ys%>qn>>+/n by (54), and
mr~+/log(Io)~+/Blogn by (57), using the definition (37) of m; we readily
infer

= S (@lOo(A, B) £ o~ 3 0gi/vn - [Oo(A, B)]
(93) 0<i<I 0<i<I

= (m1—0)/vVn-100(A, B)| ~ p|Oo(A, B)|,

completing the proof of Lemma 29 (assuming Claim 30).

Proof of Claim 30. We start with X=3,_, 0;(A, B)NIi11]. Define

X;—l = ]l{fl} Z ]1{861—'14_1} and X+ = Z th—l
e€0;(A,B) 0<i<I

Note that X = X* when X<f = (goye; X holds. Let Zj, <

Bin(|¢i|Oo(A,B)|],p) be independent random variables (where 2 means
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equality in distribution, as wusual). Since the JF;-measurable event
X, C Q,; implies |0;(A,B)] < qi|Oo(A,B)|, it is easy to see that

P(X; >t| Fi) <P(Z}  >t) for teR. Setting

(94) 7t=% Zf;, EBin | Y |al0o(A,B)|].p |,

0<i<I 0<i<t

a standard stochastic domination argument then shows P(XT>)<P(Z1>t)
for teR, so that

(95) P(X >tand X<;) <P(XT>1t) <P(Zt >1t).

Since X; also implies |O;(A, B)| > 7,¢i|Oo(A, B)|, an analogous argument
gives

P(X <tand X<;) <P(Z~ <t) with
(96)

z= £Bin | Y [mailOo(4, B)|].p
0<i<I

Combining p~ > 7yt > pt/2 (see (82)) and (93) with |Og(4, B)| > vs?,
using 62v/B7y-C > Dy=108 (by assumption and (39)) we have

ut > £ pl0o(A, B)|

> 02
= 2
> 2\ /B(logn)/n - 1C/nlogn - s > 36slogn.

Using (94)-(96) and EZ* = p*, by standard Chernoff bounds (see, e.g.,
Remark 14) we obtain, say,

(o7) 0* min{u~, pt}

P(X ¢ [(1—8/2u . (14 8/2)"] and X<)
(98) <SP(Z<(Q-6/2)p")+P(Z" > (1+6/2)u")
<exp (=%~ /8) +exp (=0 ut/12) < 2n73,

Finally, turning to Y =3 ;7 |0i(A, B)NE(D;1)|, for brevity we define
Yiy1 = |0;(A,B)N E(Diy1)| and y:= 8%~ /9.

Note that Y =3, ;Yit1 and Y1 € N. Since X<; = ﬂ0<j<i X, a union
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bound argument gives
(99)
P (Y > 6% /9 and X<;)

= Z P ﬂ (Vi1 > yiy1 and X<ipq)
(Y1,--yr ) ENT 0<i<I
D<i<r ¥i=[yl

< Z H PYii1 >y ’ ﬂ (Yj41 > yj+1 and X<jp)
(y1,-yr)eNT 0=i<t O=j<t
0<i<I yi+1:|—y-‘

Gearing up to apply Theorem 15 to Y41, with an eye on D;+1 C B;4+1 and
T; C E; (see Section 2.1) we define

7 = {{wu,wv} C O;: w € E;, {u,v,w}| = 3, {wu,wv} N O;(A, B) # 0}
U {{uv,vw,wu} C 0;: {u,v,w}| = 3,{uv,vw,wu} N O;(A, B) # (Z)}.

Since each edge-set a € Z contains at least one edge from O;(A,B), when
the F;-measurable event X<; holds we infer by the usual reasoning (using,
e.g., PiNQ; and max{m;q;,q’} <1) that

Y E(acrg | F)S D 3l

acl e€0;(A,B) a€l: ecx
< D (V)] P+ 1Xe(d)] - %)
eEOz‘(A,B)
< ¢;|O(A, B)| - (2miqiv/n - p* + @'n - p°)
<30 - qi|Oo(A, B)|p =: 41

Since D;4+1 is a collection of edge-disjoint elements of B;y; (and thus
{a€Dipy: anp#0} ={B} for all B € Diy1), using E(Dit1) =Ugep,,, @ S
Ii11CO;, || <3 and T; C E; it is not difficult to check that

Yisr= Y |anO(AB) <3 Y Taen,y <3721,

CYGDZ'+1 CYGIODH_l

where Z; is defined as in Theorem 15. Applying inequality (50) with C'=1
and p=py,, (in the probability space conditional on J;; cf. the beginning
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of Section 3.1), when X<; holds it follows that, say,
(100)
P(Yiy1 > yiv1 | Fi) SP(Z1 > yir1 /3 | Fi)
* Yit1/3 ) . .
< (;‘i’f/é) < o¥it/0if g > 9084 /V/0,

1 otherwise.

Comparing the definition of » ., ;ui; with p=, using 7, > 77 > 1/2
(see (82)) and o<1 we see that

Yo v <9Vo Y i <9/Vo - bopT <8 /9=y.
0<i<I: 0<i<I
Yir1S9piy 4 /o

So, inserting (100) into (99), using (97) and the definition of s it follows that
y/logy=92(y/n)>1I and

P (Y > (52/117/9 and %SI) < Z O.[y]/ﬁfo(y)

(y1,..-yr)ENT
o<i<1 Yi+1=[y]

<(y+ 2)1 oY/ < e*w(fSQH_) < n*W(S)7

completing the proof together with the probability estimate (98). ]
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A. Appendix

Proof of Theorem 12. We may assume that Z = {1,...,|Z|}. Recalling
X =f((&)iez), we define

D’i = E(X ‘ glv o 7£i—17§i = 1) _E(X ’ 617 ce e 7€i—17§i - 0) S [_ci70]7

where D; <0 follows from the assumption that f is decreasing, and |D;| <¢;
follows, as usual, from the assumed discrete Lipschitz property of f. Anal-
ogous to, e.g., the proof of [36, Theorem 1.3], writing p; =P(§; = 1) it is
routine to check that

A i=E(X &1, &) —E(X [ &1y, 6i-1) = Di(1=pi)lgg, =1y — Dipilge,—o0y-

Since 1+z <e” for x€R and ez§1+x+x2/2 for <0, for >0 it follows
easily that

< o~ 0Dipitpi(e”Pi-1) < 0 Dipi/2 < 02cini/2.

Hence E (eeZieI Ai) <ef’M2 where A= Yoier c?p;. Noting X—E X = Y et Ais
we deduce

P(X >EX +1t) =P (f Ziez 4 > )
<E (69 Yier Ai)e_et < 692)\/2—975 _ e—t2/(2>\)

by choosing #=t/)\, completing the proof of (48). |
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Proof of Lemma 17. Note that the ODE & (z) = ¢~ ?*®) and ¥(0) =0
has the implicit solution

¥ (x) 9
(101) = / et dt.
0

For x>0 it follows that ¥ (z) is strictly increasing, so that ¥’(z) >0 is strictly
decreasing. Recalling ¢; =¥’(io), we deduce ¢; > ¢;+1 and 0<¢; <go=1 for
all :>0.

To facilitate our upcoming calculations, we first prove the auxiliary claim
that, for all 1>0,

(102) mi — ¥ (io) € [o,20].

Indeed, using ¥(0) =0 and monotonicity of ¥’ (for the first two inequalities)
together with ¥/(0)=1 and ¥’ >0 (for the last inequality) it follows that

o< | Y o¥(jo) | —¥(io) < o(¥'(0) - ¥'(i0)) < o,
0<j<i—1

which establishes (102) by the definition (37) of m; and ¥'(jo)=g;.

For (57), note that by (102) and I = [n®] > 1 it suffices to show
Viegz —1 < ¥(z) < y/logz+1 for z > e (with room to spare). The up-
per bound follows from fo‘/mH et’dt > x and (101). Using the inequal-
ity (y — 1)e”2¥*! < 1 with y = /logz, the lower bound follows from

0‘/@71 e’ dt <z and (101).

Turning to (54), note that the above calculations for (57) imply ¥/(z)=
e~ ??(@) = p=1+o(1) a5 7 — 00, so that g =n A+, Together with ¢; > qp, it
then is routine to see that (54) holds for < f8y=1/14.

Now we focus on (53). As a warm-up, note that m; <7y for 0<i <[ by
the definition (37) of m;, and that 7; < /log(Io)+2<logn=0"'/2 by (57),
so that y/om; < 1. Next, using (102) together with the simple inequalities
e r< 1/2 and e T2 < 1/2, we also infer that

(103) gimi < eV (W(io) +20) <1,
(104) gim? < eV (W2 (i0) + 4o (io) + 40?) < 1.

Combined with ¢; <1 this implies qﬂrg <1 for all j€{0,1,2}, completing the
proof of (53).
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Turning to (55), note that ¥((i+ 1)o) < mip1 —o < m; by (102), (37)
and ¢; <1. Since ¥ >0 is increasing and ¥’ >0 is decreasing, using qj ="'(jo)
together with ¥ (z) = —2¥'(x)*¥(z) and (103) it follows that

g — git1| <o max  |[P7(&)] <o -20(io)* ¥((i + 1)0)
(105) 10<E{<(i+1)o
<o-2¢m < o-2min{g;, ¢}

Noting that (105) also implies ¢; ~ g;+1, this completes the proof of (55)
since ¢; > qi41.

Finally, for (56) it suffices to show |¢; — qi+1 — 20¢?m;| < 802¢?. Since
qi=V¥'(io), it follows that

. o (i < a2 o ]
‘Qz gi+1+0 (ZU)‘ =3 iagglg%ﬁno‘ €3]

As W' (z)=e"7*(®) it is routine to check that ¥ (z) =20 (2)? (403 (z) - 1).
Since ¥ >0 is increasing and ¥’ >0 is decreasing, using ¥((i+1)o) <m; (as
above), (104) and ¢; <1 we infer

7" ()] < 20 (io)? - 402((i 4+ 1)o), 1
Lo ()] < 20 (i) max {4021+ 1)0), 1)
< QqS’ max {47712, 1} < 8qz-2.
Furthermore, since ¥”(z)=—2¥'(x)*¥(x), using (102) we deduce
‘W"(ia) - (—2ql~27ri)‘ = |—2q§@(ia) -+ 2qi27r7;‘ < 4aqi2,

which completes the proof of (56). |
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