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A sunflower with p petals consists of p sets whose pairwise intersections are identical.
The goal of the sunflower problem is to find the smallest r = r(p, k) such that any
family of r* distinct k-element sets contains a sunflower with p petals. Building upon
a breakthrough of Alweiss, Lovett, Wu and Zhang from 2019, Rao proved that r =
O(p log(pk)) suffices; this bound was reproved by Tao in 2020. In this short note we
record that r = O(plogk) suffices, by using a minor variant of the probabilistic part of
these recent proofs.

Sunflower conjecture © 2021 Elsevier B.V. All rights reserved.
Sunflower problem

Intersection theorem

1. Introduction

A sunflower with p petals is a family of p sets whose pairwise intersections are identical (the intersections may be
empty). Let Sun(p, k) denote the smallest natural number s with the property that any family of at least s distinct k-element
sets contains a sunflower with p petals. In 1960, Erdds and Rado [4] proved that (p — 1)¥ < Sun(p, k) < (p — 1)*k! + 1 =
O((pk)*), and conjectured that for any p > 2 there is a constant Cp > 0 such that Sun(p, k) < CI’,< for all k > 2. This famous
conjecture in extremal combinatorics was one of Erdds’ favorite problems [2], for which he offered a $1000 reward [3];
it remains open despite considerable attention [7].

In 2019, there was a breakthrough on the sunflower conjecture: using iterative encoding arguments, Alweiss, Lovett,
Wu and Zhang [ 1] proved that Sun(p, k) < (Cp? log k log log k)¥ for some constant C > 0, opening the floodgates for further
improvements. Using Shannon’s noiseless coding theorem, Rao [8] subsequently simplified their proof and obtained a
slightly better bound. Soon thereafter, Frankston, Kahn, Narayanan and Park [5] refined some key counting arguments
from [1]. Their ideas were then utilized by Rao [9] to improve the best-known sunflower bound to Sun(p, k) < (Cp log(pk))
for some constant C > 0, which in 2020 was reproved by Tao in his blog [10] using Shannon entropy arguments.

The aim of this short note is to record, for the convenience of other researchers, that a minor variant of (the probabilistic
part of) the arguments from [9,10] gives Sun(p, k) < (Cp log k) for some constant C > 0.

Theorem 1. There is a constant C > 4 such that Sun(p, k) < (Cp log k)* for all integers p, k > 2.

Setting r(p, k) = Cplog k + 1y—1p, we shall in fact prove Sun(p, k) < r(p, k)¥ for all integers p > 2 and k > 1. Similarly
to the strategy of [1,9,10], this upper bound follows easily by induction on k > 1 from Lemma 2, where a family S
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of k-element sets is called r-spread if there are at most r*~Tl sets of S that contain any non-empty set T. (Indeed, the
base case k = 1 is trivial due to r(p, 1) = p, and the induction step k > 2 uses a simple case distinction: if S is r(p, k)-
spread, then Lemma 2 guarantees a sunflower with p petals; otherwise there is a non-empty set T such that more than
r(p, k) > r(p, k — |T|)*"I7! sets of S contain T, and among this family of sets we easily find a sunflower with p petals
using induction.)

Lemma 2. There is a constant C > 4 such that, setting r(p, k) = Cplogk, the following holds for all integers p, k > 2. If a
family S with |S| > r(p, k)* sets of size k is r(p, k)-spread, then S contains p disjoint sets.

Inspired by [1], in [9,10] probabilistic arguments are used to deduce Lemma 2 with r(p, k) = ©(plog(pk)) from
Theorem 3, where X; denotes the random subset of X in which each element is included independently with probability §.

Theorem 3 (Main Technical Estimate of [9,10]). There is a constant B > 1 such that the following holds for any integer k > 2,
any reals 0 < 8, ¢ < 1/2,r > B§~'log(k/¢), and any family S of k-element subsets of a finite set X. If S is r-spread with |S| >
rk thenP(3S € S:SCXs)>1—€. O

The core idea of [1,9,10] is to randomly partition the set X into V; U - - - U V,, by independently placing each element
x € X into a randomly chosen V;. Note that the marginal distribution of each V; equals the distribution of X5 with § = 1/p.
Invoking Theorem 3 with € = 1/p and r = B5~' log(k/€), a standard union bound argument implies that, with non-zero
probability, all of the random partition-classes V; contain a set from S. Hence p disjoint sets Sy, ...,S, € S must exist,
which proves Lemma 2 with r(p, k) = Bp log(pk).

We prove Lemma 2 with r(p, k) = @(plogk) using a minor twist: by randomly partitioning the vertex-set into more
than p classes V;, and then using linearity of expectation (instead of a union bound).

Proof of Lemma 2. Set C = 4B. We randomly partition the set X into V;U- - -UV,,, by independently placing each element
x € X into a randomly chosen V;. Let [; be the indicator random variable for the event that V; contains a set from S. Since
V; has the same distribution as X; with § = 1/(2p), by invoking Theorem 3 with € = 1/2 and r = r(p, k) = 2Bp log(k?) >
B5~'log(k/¢), we obtain EI; > 1/2. Using linearity of expectation, the expected number of partition-classes V; with I; = 1
is thus at least p. Hence there must be a partition where at least p of the V; contain a set from S, which gives the desired
p disjoint sets Sy, ...,Sp, € S. O

Generalizing this idea, Theorem 3 gives p > [1/6](1 — €) disjoint sets Sy, ...,S, € S, which in the special case
[1/8]€ <1 (used in [1,9,10] with § = € = 1/p) simplifies to p > [1/6].

2. Remarks

Our proof of Lemma 2 only invokes Theorem 3 with € = 1/2, i.e, it does not exploit the fact that Theorem 3 has
an essentially optimal dependence on ¢ (see Lemma 4). In particular, this implies that we could alternatively also prove
Lemma 2 and thus the Sun(p, k) < (Cp log k)¥ bound of Theorem 1 using the combinatorial arguments of Frankston, Kahn,
Narayanan and Park [5] (we have verified that the proof of [5, Theorem 1.7] can be extended to yield Theorem 3 under
the stronger assumption r > B8~ max{logk, log?(1/€)}, say).

We close by recording that Theorem 3 is essentially best possible with respect to the r-spread assumption, which
follows from the construction in [1, Section 2] that in turn builds upon [4, Theorem II].

Lemma 4. For any reals 0 < §, ¢ < 1/2 and any integers k > 1, 1 < r < 0.256 ! log(k/¢), there exists an r-spread family S
of k-element subsets of X = {1,...,rk} with |S| =r* and P(3S € S: S S Xs) < 1 — €.

Proof. We fix a partition V; U --- UV} of X into sets of equal size |V;| = r, and define S as the family of all k-element

sets containing exactly one element from each V;. It is easy to check that S is r-spread, with |S| = r. Focusing on the
necessary event that X contains at least one element from each V;, we obtain

PESeS:SCX) < (1—(1—08)) <e -k cee™k<covVek o1
by elementary considerations (since e™v¢ < 1—¢ dueto 0 < € < 1/2). O
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Appendix. Theorem 3

Theorem 3 follows from Tao’s proof of Proposition 5 in [10] (noting that any r-spread family S with |S| > r* sets of
size k is also r-spread in the sense of [10]). We now record that Theorem 3 also follows from Rao’s proof of Lemma 4
in [9] (where the random subset of X is formally chosen in a slightly different way).

Proof of Theorem 3 based on [9]. Set y = §/2 and m = [y|X]]. Let X; denote a set chosen uniformly at random from all
i-element subsets of X. Since X5 conditioned on containing exactly i elements has the same distribution as X;, by the law of
total probability and monotonicity it routinely follows that P(3S € S: S C X;s) isatleast P(AS € S : S C Xyn) - P(|Xs| > m).
The proof of Lemma 4 in [9] shows that P(3S € S: S C X;;) > 1 — €2 whenever r > ay~'log(k/¢), where o > 0 is a
sufficiently large constant. Noting |S| < |X|* we see that |S| > r¥ enforces |X| > r, so standard Chernoff bounds (such as
[6, Theorem 2.1]) imply that P(|X;| < m) < P(|Xs| < |X|8/2)is at most e~I5/8 < ¢=78/8 < ¢2 wheneverr > 166! log(1/€).
This completes the proof with B = max{2c«, 16}, say (since (1 —€2)> > 1 —edueto0 <€ < 1/2). O
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