Demo

CCS 20, November 9-13, 2020, Virtual Event, USA

Demo: PhishBench 2.0: A Versatile and Extendable
Benchmarking Framework for Phishing

Victor Zeng, Xin Zhou, Shahryar Baki, and Rakesh M. Verma
University of Houston
Houston, Texas
{vzeng,xzhou21,sbaki2,rverma}@uh.edu

ABSTRACT

We describe version 2.0 of our benchmarking framework, Phish-
Bench. With the addition of the ability to dynamically load fea-
tures, metrics, and classifiers, our new and improved framework
allows researchers to rapidly evaluate new features and methods
for machine-learning based phishing detection. Researchers can
compare under identical circumstances their contributions with
numerous built-in features, ranking methods, and classifiers used
in the literature with the right evaluation metrics. We will demon-
strate PhishBench 2.0 and compare it against at least two other
automated ML systems.

KEYWORDS

Automatic Framework, Phishing, Machine Learning, Benchmarking

ACM Reference Format:

Victor Zeng, Xin Zhou, Shahryar Baki, and Rakesh M. Verma. 2020. Demo:
PhishBench 2.0: A Versatile and Extendable Benchmarking Framework for
Phishing. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS "20), November 9-13, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3372297.
3420017

1 INTRODUCTION

Phishing is a serious and challenging problem with a large amount
of research [11]. While previous literature has used a variety of
machine learning algorithms and evaluation metrics, few studies
compare the performance of these algorithms using common met-
rics and datasets, or evaluate the metrics’ suitability. Moreover,
phishing researchers usually test their proposed methods against
limited baselines and with few metrics when presenting new fea-
tures or approach(es) [4]. Hence, there is a need for a benchmarking
framework to evaluate such systems as comprehensively as possi-
ble.

PhishBench 1.0 [5, 14] is a framework for testing features and
classifiers on identical pipelines. It supports both email and URL
datasets and contains 12 toggleable evaluation metrics, including
metrics suitable for imbalanced datasets. With configuration files,
users can specify which of its numerous features and methods to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7089-9/20/11.

https://doi.org/10.1145/3372297.3420017

2077

use. However, its extendability is limited; researchers needed to
modify the framework to add new features, classifiers, or metrics.

Besides PhishBench, there is little work on benchmarking sys-
tems for phishing. Chiew et. al. [3] prescribe a set of baseline fea-
tures and a classifier (Random Forest) for benchmarking URL/web-
site detection but do not develop a system for comparing methods
against their baseline.

In this paper, we discuss PhishBench 2.0, a new and improved
framework for benchmarking phishing detection systems. This
framework allows researchers to easily evaluate new features and
classification approaches and compare their effectiveness against
existing methods from the literature. It offers evaluation metrics
and methods suitable for imbalanced datasets, so researchers can
test and compare their works in realistic scenarios. For baselines,
it includes a rich variety of algorithms for detection or classifica-
tion problems including deep learning algorithms. It has feature
extraction code for over 160 features gleaned from the phishing
detection literature published between 2010 and 2018 and over 90
new features from more recent work [15].

PhishBench 2.0 will be released to the public on GitHub later
this year so that other researchers can also use and contribute to it.
Moreover, we will continue to add new features and methods to it
as our research on phishing evolves.

To summarize, our contributions are:

e We present an improved benchmarking framework for ma-
chine learning tasks, specifically classification and detection,
which can dynamically load features, metrics and classifiers,
and provides over 250 features, 12 classifiers, and 17 evalua-
tion metrics.

e We implement and demonstrate the complete pipeline on
datasets of phishing websites and emails from public sources.

1.1 Outline of Poster and Demonstration

Our poster will describe PhishBench 2.0 and compare it with at least
two other automatic ML frameworks, selected from TPOT, H20,
Auto-WEKA and auto-sklearn. We will select these frameworks
based on objective criteria such as [1, 7]. In addition, we will also
demonstrate how PhishBench 2.0 can accelerate research in the
phishing field by showcasing two example experiments using the
framework. Besides showcasing PhishBench 2.0, our demonstration
will also help the audience compare the framework with existing
automated machine learning frameworks.

2 WHAT’S NEW IN PHISHBENCH 2.0

Since its inception, we have completely revamped PhishBench to
significantly enhance its utility. In particular, we:

https://doi.org/10.1145/3372297.3420017
https://doi.org/10.1145/3372297.3420017
https://doi.org/10.1145/3372297.3420017

Demo

4’.47

Insights

PhishBench 2.0

E Evaluation Module
Use.r (Built-In Metrics >
Metrics
X
i Classification Module
User |) _
Classifiers Built-In Classifiers
A

Feature Processing Module

(Feature Scaling) [Feature Selection)
A

Feature Extraction Module

C

X
Input Module

() (

A A
% ‘

Figure 1: A high-level overview of the PhishBench 2.0 archi-
tecture

hd

User

Built-In Features
Features

)

)

Email

Config
Files

restructured the framework as a python package, so re-

searchers can use it as a library for custom experiments.

rewrote the feature extraction, classification, and metrics

modules using python’s reflection capabilities for rapid pro-

totyping.

e implemented an object-based data model for inputted data

o added the XGBoost [2] classifier.

o added L-tree, ranked matrix, and hidden input website fea-
tures [15] (L-tree is a group of 90 fine-grained features).

o added 3 new URL features.

o implemented exporting of features and performance data for

further analysis.

3 PHISHBENCH 2.0 ARCHITECTURE

PhishBench 2.0 has five modules (shown in Figure 1) that represent
the different stages of a general machine learning pipeline. These
modules function as independent units based on the user’s needs
and the input given. The framework also tracks meta-information
about its modules including feature extraction time, classification
time, etc.

The Input module loads raw email and URL datasets and parses
them into a standard data model. For URL datasets, it can also
download and parse the associated website and network meta-data

2078

CCS 20, November 9-13, 2020, Virtual Event, USA

such as DNS and WHOIS records. For email datasets, the module
extracts both header information and body contents. It can parse
both raw binary emails and pre-decoded text emails. If the email
only contains a HTML part, it will automatically extract the text
from the HTML.

The Feature Extraction module takes datasets from the Input
module and extracts features. Through the configuration file, users
can toggle features they wish to use. It contains over 250 built-in
features. Eighty-six email features, 31 URL features and 47 net-
work/website features come from an extensive study of phishing
literature from 2010 to early 2018 [4, 5], and over 90 additional
features come from more recent work [15]. In addition, users can
easily implement custom features; using reflection, the module will
automatically recognize and load them.

The Feature Processing module performs pre-processing tasks
such as vectorization, feature ranking/selection, and min-max scal-
ing on extracted features. It supports multiple popular feature se-
lection methods, including Information Gain (IG), Gini Index (Gini),
Chi-Square Metric (Chi-2), and Recursive Feature Elimination (RFE).

The Classification module trains classifiers on feature vectors
and labels. The user can choose which classifiers to run, whether to
weigh samples (if the individual classifier supports it), and whether
to use default hyperparameters or perform hyperparameter tuning.
It comes with 12 popular machine learning-based classifiers built-in,
including classical algorithms such as Support Vector Machines and
Decision Trees, and more modern algorithms such as XGBoost [2]
and deep neural networks. In addition, users can define a custom
classifier by implementing a scikit-learn-like [10] APL

The Evaluation module evaluates the performance of the clas-
sifiers using both prediction-based metrics such as accuracy and
f1-score and probability-based metrics such as the ROC-AUC. It
includes 17 built-in metrics, including metrics suitable for imbal-
anced datasets [8], and users can easily define custom metrics. For
ease of processing, it reports results as a pandas [9, 13] DataFrame.

4 USING PHISHBENCH 2.0

We give a brief overview of how to use PhishBench 2.0. Upon its
upcoming release, PhishBench 2.0 will come with a detailed user
manual.

On a high level, the PhishBench 2.0 workflow consists of three
steps: (1) implementing custom features, classifiers, and metrics, (2)
creating a configuration file, and (3) performing the experiment.

To implement custom features, users simply need to write a func-
tion and decorate it with the register_feature decorator as in
Figure 2. Depending on the feature type, PhishBench 2.0 will pass
the function the appropriate data model. Metrics are implemented
in a similar fashion with the register_metric decorator, and clas-
sifiers are implemented by extending the
BaseClassifier abstract class.

After creating their custom components, users should generate a
starter configuration file by running the make-phishbench-config
command. Using reflection, PhishBench 2.0 will automatically rec-
ognize all classifiers, features, and metrics implemented in the cur-
rent working directory and include toggles for them in the config-
uration file. Users then edit the configuration file to specify their
datasets and the parts of the framework they wish to execute.

Demo

from phishbench.feature_extraction.reflection
from phishbench.input import EmailHeader

import =x

@register_feature(FeatureType.EMAIL_HEADER,
'received_count')
def received_count(header: EmailHeader):
if header.received is None:
return 0
return len(header.received)

Figure 2: A sample feature implementation for PhishBench
2.0.

In our experience, many machine-learning experiments follow a
basic workflow of (1) loading a dataset from the disk, (2) extracting
features, (3) pre-processing features, (4) training classifiers on a
training set, and (5) evaluating the trained classifiers on a held-out
test set. For performing such experiments, PhishBench 2.0 comes
with a script that users can control via the configuration file. In
addition, researchers who wish to perform experiments that deviate
from the basic workflow can use PhishBench 2.0 as a library, wiring
up the individual modules however they wish. During these custom
experiments, users will still be able to control the behavior of the
framework modules using configuration files.

5 DEMONSTRATIONS

We will demonstrate the versatility of PhishBench 2.0 and how it
can accelerate research on phishing detection in two experiments.

5.1 Demonstration 1

First, we will show: (1) how to implement new features for Phish-
Bench 2.0, (2) how to make a PhishBench 2.0 configuration file, and
(3) how PhishBench 2.0 can accelerate experiments by evaluating
the performance of features from Feng and Yue’s visualization of
RNNs [6] on the URL Benchmarking Dataset [12, 14]. We will im-
plement their proposed RNN features and set up configuration files
for experiments with the following feature sets:

e RNN features alone
e All built-in features
e All built-in features + RNN features

We will then run the PhishBench 2.0 basic expt. script with these
configuration files and analyze the results in a Jupyter notebook.

5.2 Demonstration 2

Second, we will showcase how researchers can use PhishBench
2.0 in experiments that deviate from the basic workflow by mea-
suring the performance scaling of various classifiers on the Email
Benchmarking Dataset.

For this demonstration, we will construct an annotated Jupyter
notebook using PhishBench 2.0 as a library. We will use the input,
feature extraction and processing modules to extract feature vec-
tors from the Email Benchmarking dataset [14]. Next, we will use
utilities from scikit-learn to generate 4-fold splits of the features.
Within each split we will use the classification module to train
classifiers on subsets of 1,000 to 15,000 samples from the split’s
training set and the evaluation module to measure the performance

2079

CCS 20, November 9-13, 2020, Virtual Event, USA

of the classifiers on the validation set. Finally, we will use pandas
to aggregate and plot the generated performance data.

6 CONCLUSION

We presented PhishBench 2.0, a versatile and extendable bench-
marking framework for phishing detection. Through its use of
reflection, the framework enables researchers to rapidly and thor-
oughly test new features and methods. While we used it for phish-
ing, the full PhishBench 2.0 pipeline can also be used for other
binary classification problems involving emails or URLs. Likewise,
by replacing the input and feature extraction modules, researchers
can repurpose the remainder of the pipeline for other binary classi-
fication tasks, e.g., threat analysis or malware detection.

ACKNOWLEDGEMENTS

We thank Radoslaw Konopka for his contributions to PhishBench
2.0. This research was supported in part by NSF grants DGE 1433817,
CCF 1950297 and ARO Grant W911NF-20-1-0254.

REFERENCES

[1] Adithya Balaji and Alexander Allen. 2018. Benchmarking Automatic Machine
Learning Frameworks. arXiv preprint arXiv:1808.06492 (2018).

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). New York, NY, USA, 785-794.
https://doi.org/10.1145/2939672.2939785

Kang Leng Chiew, Choon Lin Tan, KokSheik Wong, Kelvin S.C. Yong, and
Wei King Tiong. 2019. A new hybrid ensemble feature selection framework
for machine learning-based phishing detection system. Information Sciences 484
(2019), 153 - 166. https://doi.org/10.1016/j.ins.2019.01.064

A. Das, S. Baki, A. El Aassal, R. Verma, and A. Dunbar. 2020. SoK: A Comprehen-
sive Reexamination of Phishing Research From the Security Perspective. IEEE
Communications Surveys Tutorials 22, 1 (2020), 671-708.

A.El Aassal, S. Baki, A. Das, and R. M. Verma. 2020. An In-Depth Benchmarking
and Evaluation of Phishing Detection Research for Security Needs. IEEE Access 8
(2020), 22170-22192.

Tao Feng and Chuan Yue. 2020. Visualizing and Interpreting RNN Models in
URL-based Phishing Detection. In Proc. 25th ACM Symposium on Access Control
Models and Technologies. 12. https://doi.org/10.1145/3381991.3395602

P. J. A. Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl,
and Joaquin Vanschoren. 2019. An Open Source AutoML Benchmark. ArXiv
abs/1907.00909 (2019), 8.

Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets
in Machine Learning. Journal of Machine Learning Research 18, 17 (2017), 1-5.
http://jmlr.org/papers/v18/16-365

The pandas development team. 2020. pandas-dev/pandas: Pandas.
//doi.org/10.5281/zenodo.3509134

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Rakesh M. Verma and David J. Marchette. 2019. Cybersecurity Analytics. CRC
Press, Boca Raton, FL.

Rakesh M. Verma, Victor Zeng, and Houtan Faridi. 2019. Data Quality for Se-
curity Challenges: Case Studies of Phishing, Malware and Intrusion Detection
Datasets. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY, USA, 2605-2607.

Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van der Walt and Jarrod
Millman (Eds.). 56 - 61. https://doi.org/10.25080/Majora-92bf1922-00a

Victor Zeng, Shahryar Baki, Ayman El Aassal, Rakesh Verma, Luis Felipe Teixeira
De Moraes, and Avisha Das. 2020. Diverse Datasets and a Customizable Bench-
marking Framework for Phishing. In Proceedings of the Sixth International Work-
shop on Security and Privacy Analytics (IWSPA ’20). Association for Computing
Machinery, New York, NY, USA, 35-41. https://doi.org/10.1145/3375708.3380313
Xin Zhou and Rakesh Verma. 2020. Phishing Sites Detection from a Web Devel-
oper’s Perspective Using Machine Learning. In Proc. of the 53rd Hawaii Int’l Conf.
on System Sciences (HICSS). 10. https://doi.org/10.24251/HICSS.2020.794

[2

[4]

[5]

G

3

—
)

https:

—_
o

[12

(13]

[14

=
&

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.ins.2019.01.064
https://doi.org/10.1145/3381991.3395602
http://jmlr.org/papers/v18/16-365
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1145/3375708.3380313
https://doi.org/10.24251/HICSS.2020.794

	Abstract
	1 Introduction
	1.1 Outline of Poster and Demonstration

	2 What's New in PhishBench 2.0
	3 PhishBench 2.0 Architecture
	4 Using PhishBench 2.0
	5 Demonstrations
	5.1 Demonstration 1
	5.2 Demonstration 2

	6 Conclusion
	References

