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Abstract

This study examines a biology-inspired approach of using reconfigurable articulation to reduce the control
requirement for soft robotic arms. We construct a robotic arm by assembling Kresling origami modules that
exhibit predictable bistability. By switching between their two stable states, these origami modules can behave
either like a flexible joint with low bending stiffness or like a stiff link with high stiffness, without requiring any
continuous power supply. In this way, the robotic arm can exhibit pseudo-linkage kinematics with lower control
requirements and improved motion accuracy. A unique advantage of using origami as the robotic arm skeleton
is that its bending stiffness ratio between stable states is directly related to the underlying Kresling design.
Therefore, we conduct extensive parametric analyses and experimental validations to identify the optimized
Kresling pattern for articulation. The results indicate that a higher angle ratio, a smaller resting length at
contracted stable state, and a large number of polygon sides can offer more significant and robust bending
stiffness tuning. Based on this insight, we construct a proof-of-concept, tendon-driven robotic arm consisting of
three modules and show that it can exhibit the desired reconfigurable articulation behavior. Moreover, the
deformations of this manipulator are consistent with kinematic model predictions, which validate the possibility
of using simple controllers for such compliant robotic systems.

Keywords: articulation, Kresling origami, multistability, manipulator

Introduction

The ongoing advances in biomimicry, material science,
advanced fabrication, and control theory are enabling us

to build genuinely soft robotic arms (or robotic manipulators)
that can collaborate with humans in unstructured and dy-
namic task environments.1–5 These robotic arms are con-
structed with soft materials featuring low elastic moduli and
high strains before failure, so that they can passively deform
their bodies and conform to different objects. This flexi-
bility makes them inherently superior to and safer than the
traditional rigid-linked robotic manipulator in human–robot
interactions,6–8 thus opening up many potential applica-
tions in minimally invasive surgeries9–12 and assistive
health care.13–15 However, the compliant and continuous
nature of these soft robotic arms also imposes significant
challenges for effective modeling and control.16–20 They
usually struggle to achieve a high level of precision regarding
their arm configuration and movement control because their

soft bodies are high-dimensional and severely underactuated.
Furthermore, soft materials can exhibit complicated visco-
elastic properties with substantial uncertainties. As a result,
inverse kinematics and overall structural shape are difficult to
predict, making control tasks such as path planning inaccurate
and computationally expensive.19 We are still far away from
widely and commercially adopting soft robotics in many as-
pects of our modern life.

One approach to address the control challenge of soft ro-
botic arms is to decrease their effective degrees of freedom,
and nature provides terrific examples of this strategy. For
example, the octopus can generate a quasi-articulated struc-
ture with its arm, similar to that of a human, to achieve precise
point-to-point movement and fetch fast-moving prey within
seconds.21 The octopus achieves such arm reconfiguration by
selectively stiffening sections of its muscles and leaving other
sections flexible. Such reconfigurable structural articulation
allows a drastically simplified control by reducing the kine-
matic degrees of freedom from effectively infinite to a finite
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amount, thus granting the necessary accuracy to carry out the
rapid fetching. To implement this bioinspired articulation
strategy with a soft robotic arm, one must devise a method
of localized stiffness tuning to create and activate discrete
‘‘joints’’ at different locations. To this end, researchers have
achieved some success using jamming-based systems,22,23

lowmelting point materials,24 and shape-memory polymers.25

However, these methods are limited due to their complexity
and lack of scalability. They also require a continuous energy
supply to maintain their respective changes in stiffness.26

To achieve the localized stiffness tuning in soft robotic arms
in a scalable and energy-passive manner, we seek to analyze
and exploit the mechanics of a bistable and cylindrical-shaped
origami known as the Kresling (Fig. 1). Kresling origami

originates from the buckling and collapsing deformation of
a cylindrical shell under compression.27 It exhibits a
bistability—existence of two distant stable equilibria (or
stable states)—and can fold between the two states through a
coupled longitudinal and rotational motion.28–32 Such bist-
ability has led to many Kresling applications like deployable
structures,28,33 reconfigurable antenna,34 cellular materials,35,36

vibration control,37 mechanical memory,38,39and robotics.40–42

More importantly, each stable state of Kresling possesses un-
ique mechanical properties according to its folding geometry,
which enables a method of binary bending stiffness tuning.
Therefore, we can construct a soft robotic arm by serially
connecting Kresling cells (or modules) and create joint(s) at
any desired locations by switching these cells between their
stable states (Fig. 1). This approach is unique in that the lo-
calized stiffness tuning is embodied in the skeleton of the robot
arm itself, and the mechanics are scalable because they are
derived primarily from folding geometry.

The objective of this study is twofold. First, we examine
the correlation between Kresling origami design and the
bending stiffness ratio between its two stable states. A sig-
nificant and robust change in bending stiffness is the key to
successful articulation in the soft robotic arm. To this end, we
use a nonlinear bar-hinge model, together with experimental
validation, to identify the optimized Kresling pattern design.
Parametric analysis findings indicate that a higher angle ratio,
a smaller resting length at the contracted stable state, and a
large number of polygon sides result in a considerable change
in bending stiffness. In particular, the reorientation of the
triangular facets between stable states plays a crucial role.

Based on these insights, the second objective of this study
is to validate the feasibility of manipulator articulation
through multistability. To this end, we construct a proof-of-
concept, tendon-driven manipulator consisting of three
Kresling modules and show that it can exhibit the desired
reconfigurable articulation behavior. Moreover, the defor-
mation of this manipulator is consistent with the kinematic
model prediction, which validates the feasibility of using
simple controllers for such compliant robotic systems.

In what follows, Design and Construction of Generalized
Kresling section of this article briefly reviews the design of
the generalized Kresling origami, which is a variation of the
classical Kresling pattern to accommodate the kinematic re-
quirement of robotic manipulation. Bending Stiffness Tuning
of Kresling Modules section details the parametric analysis
and experimental testing of the bending stiffness of a
Kresling origami module, as well as the robustness of the
Kresling bistability against external payload. Robotic Arm
Articulation section details two test results of the re-
configurable articulation behaviors of robotic arm proto-
types. Finally, Conclusion section concludes this article
with a summary and discussion. The results of this study
will lay down the foundation for constructing a new family
of hybrid soft robotics arms that are both flexible in oper-
ation and precise in motion capability.

Design and Construction of Generalized Kresling

A generalized Kresling origami cell consists of a group of
triangular facets connected by two polygon end surfaces
(Fig. 2). Once assembled, the Kresling cell takes a twisted
polygonal prism shape. The convex creases (or mountain

FIG. 1. An overview of the envisioned reconfigurable
articulation in a continuous and compliant robotic arm. (a)
The current paradigms of the completely rigid or completely
soft robotic arm. (b) Different articulations of a re-
configurable arm consisting of four modules. Each module
has a relatively stiff stable state and soft state so that this
arm can switch from being entirely stiff (left) to entirely
flexible (right), as well as to many intermediate configura-
tions with a predictable degree-of-freedom. Notice that this
conceptual robotic arm has 16 (¼ 24) unique configurations,
and this figure only shows a few representative examples.
(c) Kresling origami can naturally show the desired switch
in bending stiffness between its stable states. In this study, it
will be used as the functional skeleton of the robotic arm.
Color images are available online.
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creases) on its side are open slits by design to ensure flexi-
bility and robustness during folding and bending.41 A Kresl-
ing cell can settle into an extended stable state [referred to as
‘‘state (1)’’ for simplicity hereafter] or a contracted stable
state [aka. ‘‘state (0)’’]. The bistability of Kresling origami
originates from its nonrigid-foldable nature. That is, the tri-
angular facets are flat and undeformed at the two stable states,
but must deform during the folding transition between these
two states. If these triangular facets were strictly rigid, the
Kresling segment would be unable to fold.

Four independent design parameters can fully define the
crease pattern of the generalized Kresling cell. They are (1) the
number of polygon sides (N), (2) radius (R), (3) resting length
at the contracted stable state [L(0)], and (4) an angle ratio (k).
Here, L(0) is the variable that differentiates the generalized
Kresling origami from conventional Kresling. The traditional
Kresling has a zero length by definition at the contracted state
(a property often known as ‘‘flat-foldable’’). However, a zero
resting length would prevent any kinematic freedom for
bending—an essential requirement for robotic arm applica-
tions. Therefore, we generalized the Kresling design with a
nonzero resting length at the state (0) to provide the freedom
for bending so that the Kresling cell can work like a revolute

‘‘joint’’ in the pseudo-articulated structure. The angle ratio (k)
influences the strength of the Kresling bistability. The Kresling
becomes bistable when 0:5 < k < 1. Moreover, the higher
the angle ratio, the stronger the bistability becomes in that one
needs to apply a higher force to fold the Kresling between two
stable states.41

Once we prescribe the aforementioned design variables,
the triangular facets can be defined as

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 cos2 c� kcð Þþ L2(0)

q
, (1)

M¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þV2 � 4PR cos c� kcð Þ cos kcð Þ

p
, (2)

h¼ cos� 1 P2 þV2 �M2

2PV

� �
, (3)

where c (¼ p=2�u) is the angle between the diagonal and
side of the end polygon, P (¼ 2R sinu) is the end polygon
side length, and u¼ p=N.

To calculate the resting length of the generalized Kresling
origami at its extended stable state [aka. L(1)], we first in-
troduce a—the relative rotation angle between the top and
bottom end polygon—as the independent variable that de-
scribes the folding motion. Moreover, we assume that the end
polygons are rigid, and the valley creases do not change their
length. In this way, facet deformation in the Kresling cell
during folding can be approximated by the shortening of
mountain creases, and we can calculate the current mountain
crease length (m), as well as the overall Kresling cell length
(l) as functions of a41,43:

l(a)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2(0) þ 2R2 cos (aþ 2u)� cos (a(0) þ 2u)½ �

q
, (4)

m(a)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2(1� cos (a))þ l2

p
: (5)

Based on the equations above, one can find the extended
stable state (1) by solving m(a)¼M and fully determine the
external geometry of the generalized Kresling origami cell at
its two different stable states.

Bending Stiffness Tuning of Kresling Modules

We use both numerical modeling and experimental testing
to examine the bending stiffness tuning of Kresling modules
between their two stable states, as well as the correlations
between these stiffness properties and the underlying origami
design.

Methods

For numerical modeling, we adopt a nonlinear bar-hinge
approach that transforms the Kresling origami into a pin-
jointed bar-hinge (or truss-frame) structure. This approach uses
stretchable bar elements to represent the creases and adds ad-
ditional torsional spring coefficients to approximate the crease
folding and facet bending stiffnesses (Fig. 3a). These simpli-
fications result in a reduced-order model capable of analyzing

FIG. 2. Design and construction of a paper based Kresling
origami cell. In this design N ¼ 8, k¼ 0:8, L(0) ¼ 30 mm,
and R¼ 30 mm. (a) The origami crease pattern showing
different design parameters. Notice that the triangular tips
should be joined together to form an end polygon. (b) The
completed Kresling cell at two different stable states. Notice
that the mountain folds on the side are open slits by design.
(c) The intermediate states of folding Kresling. Triangular
panels are attached to reinforce the facets to improve overall
bistability. Color images are available online.
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the folding kinematics and principle deformations of Kresling
origami without incurring the expensive computational cost
associated with three-dimensional finite element simulations.32

Interested readers can refer to Supplementary Appendix SA1
for the fundamentals of this bar-hinge approach and relevant
literature for further details.44,45

The overall stiffness of the equivalent bar-hinge structure
has two components. One comes from the stretching of the
bar elements and the other from the folding (or bending)
between adjacent triangular facets defined by these bar ele-
ments. Therefore, it is crucial to assign appropriate elastic
properties to this bar-hinge system so that it can accurately
represent the mechanics of the Kresling module. In this study,
we assume that the axial bar rigidity (ks) and folding/bending
torsional stiffness per unit length (kf) are all constant so that
the Kresling nonlinearity originates from the large amplitude
deformation during folding only.

There are two different types of torsional spring coeffi-
cients in this Kresling bar-hinge system. The first type is the
torsional stiffness per unit length of the origami creases (kfc),
which applies to the valley creases on the side (e.g., 2¢-3 and
3¢-4 in Figure 3a) and the creases between end polygons and
triangular facets (e.g., 2-3 and 2¢-3¢). The magnitude of this
stiffness is experimentally measured to be 0.047N/radian on
average (see Supplementary Appendix SA2 in for test de-
tails). The second type of torsional stiffness per unit length
(kfe) applies to the end polygon (e.g., along 0-1 and 0-2). Its
magnitude is assumed to be an order of magnitude higher

than the crease torsional stiffness because it represents the
polygon material bending (kfe ¼ 10kfc). It is worth noting that
the torsional spring coefficient of the mountain creases (e.g.,
2-2¢ and 3-3¢) is zero due to the open slit design.

Besides the torsional spring coefficients, we assume the
same axial rigidity for all bar elements in that ks ¼ 105kfc.

44

However, one exception is the bar elements along the
mountain creases on the Kresling side (e.g., 2-2¢ and 3-3¢).
The axial rigidity of these bar elements is two orders of
magnitude lower due to the slit cut design (aka. ksm ¼ 103kfc).

We also fabricated paper-based prototypes of the Kresling
module and conducted a three-point bending test (Fig. 2b, c).
To fabricate a Kresling cell, we first create the Kresling ge-
ometry in a computer-aided design programand convert it into
a vectorized image file. This file is then sent to a cutting plotter
(Graphtec FCX4000-50ES) that can accurately perforate the
crease lines and cut the Kresling cells out of a large piece of
thick paper (Daler-Rowney Canford 150 gsm). We then man-
ually fold these cells and assemble them into Kresling modules
for testing. It is worth noting that the triangular facets have
reinforcement panels attached inside to increase their bending
stiffness, thus increasing the bistability strength.41

A single Kresling cell, however, shows twisting in ad-
dition to longitudinal deformation when it folds from one
stable state to the other, and this twisting is undesirable for
the robotic manipulation purpose. Therefore, we construct
a Kresling ‘‘module’’ by combining two kresling cells of
the same design but opposite chirality (Fig. 3c). In this way,

FIG. 3. The numerical and experimental methods used for testing the bending stiffness of Kresling origami. (a) An
illustration of the nonlinear bar-hinge methods, where solid lines represent the stretchable bar elements, and small circles
represent the pin-joints. The different bar rigidity and folding/bending stiffness per unit length are highlighted for clarity. (b,
c) The three-point bending tests at two different stable states. Notice the definition of a Kresling ‘‘module’’ in (c), which is
an assembly of two Kresling cells of the same design but different chirality. Color images are available online.
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the two end polygons of a module do not rotate with respect
to each other. We secure an assembly of two identical
Kresling modules to the universal testing machine (AD-
MET eXpert 5601) and fix them at either their extended (1)
or contracted (0) stable state (Fig. 3b, c). We then apply a
5mm downward displacement, with a rate of 0.1 mm/sec, at
the center (aka. a three-point bending test). In this way, the
effective bending stiffness of a Kresling module is

KB ¼
M

/
¼ FL

tan� 1 y=Lð Þ , (6)

where M is the applied moment, / is the rotation angle, F is
the reaction force, y is the downward displacement, and L is
the distance between applied force and rotation axis of the
Kresling module. To characterize the performance of Kresl-
ing module, we define a ‘‘bending stiffness ratio’’ as the ratio
of bending stiffness at the stiff stable state (1) to that at the
soft stable state (0).

Results

Figure 4a summarizes the external moment-bending angle
relationships of four Kresling module assemblies based on
different crease designs. The results indicate that these ori-
gami modules can show a significant change in bending
stiffness as they switch from one stable state to the other.
Moreover, this change in bending stiffness is directly related
to the underlying origami design. Overall, the bar-hinge
model predictions correlate with the experimental results
well. However, some discrepancies exist at the beginning
stage of these tests. Compared to the model predictions, the
experiment results show a stronger nonlinearity when the
external load is small. This discrepancy probably origi-
nates from the fact that the Kresling module prototypes
have to be compressed slightly before testing so that their
initial length equals to the theoretically predicted resting
length at the two stable states [aka. L � L(0) or L(1)]. This
small compression generates some initial stress in the
structure. Regardless, the Kresling test samples show a
close-to-linear behavior as the bending angle h increases,

FIG. 4. Bending stiffness change between the two stable states of Kresling modules with different designs. (a) Experiment
results of the three-point bending tests (solid lines) and the corresponding numerical predictions (dashed lines). The shaded
bands are the standard deviation of three loading cycles. (b, c) Parametric analysis results of the bending stiffness ratio and
axial snap-through force (in N), respectively. Color images are available online.
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and the analytical and experimental results agree well with
each other in terms of the slope of these moment-angle
curves (Table 1).

Based on the experimentally validated model, we conduct
a parametric analysis to obtain a comprehensive understanding
of how we can tune the bending stiffness by tailoring the un-
derlying Kresling design (Fig. 4b). In this analysis, we keep the
Kresling module radius R as a constant at 30mm because it is
usually determined by specific application requirements. We
vary the magnitude of the other three independent design pa-
rameters such that the polygon side number N is 4, 6, 8, or 10,
the angle ratio k is between 0.7 and 0.9, and the resting length at
the contracted stable state L(0) is between 15 and 60mm. These
parameter ranges are chosen carefully according to the fabri-
cation constraints. The numerical simulation results conclude
that, regardless of the number of polygon sides,maximizing the
angle ratio k or minimizing the contracted length L(0) can lead
to a higher bending stiffness ratio. In other words, if the
Kresling design possesses stronger bistability and is closer to
the traditional design [aka. with zero L(0)], it will have a higher
bending stiffness ratio. Increasing the base polygon sides (N)
can also increase the bending stiffness ratio. However, this
benefit becomes marginal when N becomes bigger than 8.

Careful inspection of the Kresling origami geometry can
reveal the physical principles that underpin this stiffness
change. At the extended stable state (1), the triangular facets
in the Kresling origami align close to parallel to the longi-
tudinal axis of the cylindrical-shaped module, so the overall
bending stiffness is relatively high and dominated by the facet
stretching. However, at the contracted state (0), the triangular
facets are orientated close to perpendicular to the longitudinal
axis, so the bending stiffness is low and dictated by the crease
folding. To validate this causality, we define a ‘‘facet angle
ratio’’ as the ratio of the dihedral angles (angle between the
triangular facet and base polygon) at state (1) to the dihedral
angle at state (0). Figure 5 indicates that a higher facet angle
ratio directly creates a higher bending stiffness ratio.

Finally, it is also essential that the stiffness tuning of the
Kresling module is robust against external disturbances. That
is, once the Kresling module settles into the targeted stable
state, it should remain in this state so that external forces (e.g.,
from the payloads) will not create any unintentional switch.
To evaluate this robustness, we use the bar-hinge model to
calculate the axial force required to switch the Kresling
model from the extended state to the contracted state (Fig. 4c;
it is worth noting that pure bending would not create any
switch between stable states). Generally speaking, the para-
metric analysis shows that the Kresling designs with a higher

bending stiffness ratio also require a large axial force to be
compressed from state (1) to (0), thus showing a more robust
bistability.

In contrast, the bar-hinge model predicts that the axial
force required to extend the Kresling module from the state
(0) to (1) is typically smaller than the opposite compression
switch. To further assess the Kresling bistability’s robust-
ness, we experimentally test robotic arm prototypes by as-
sembling three identical and paper-based Kresling modules
[or 6 Kresling cells of alternating chirality with N¼ 8,
k¼ 0:8, and L(0) ¼ 15]. We hang these prototypes vertically
and apply increasing weight at its free end until any unde-
sirable stable state switch occurs (Fig. 6). With three Kresling
modules, the robotic arm can settle into 8 (¼ 23) different
configurations. For clarity, we label these configurations by
(ijk) where i, j, and k can take the value of either 0 or 1,
representing the current stable state of three Kresling mod-
ules from the robotic arm base to the tip, respectively. The
axial deformation of the robotic arm is directly related to
these stable state configurations. The arm deforms more if
more Kresling modules are in the relatively compliant state
(0), especially if the module at the base is at state (0). In
contrast, if the base module is at the relatively stiff state (1),
the robotic arm deforms significantly less in the axial direc-
tion and can carry close to twice its body weight (32 g) before
any modules switch from the state (0) to (1). These results are
conservative because if one uses plastic materials to make

Table 1. Summary of the Three-Point Bending Test Results on Four Different Kresling Module Samples

Design Test KB at (1) KB at (0) KB ratio

N¼ 8, k¼ 0:8, L(0) ¼ 30 mm Experiment 3.50 – 0.29 0.80 – 0.07 4.9
Bar-Hinge 2.79 0.48 5.8

N¼ 8, k¼ 0:8, L(0) ¼ 15 mm Experiment 3.59 – 0.17 0.29 – 0.01 12.3
Bar-Hinge 3.08 0.27 11.4

N¼ 4, k¼ 0:7, L(0) ¼ 30 mm Experiment 4.31 – 0.09 2.20 – 0.19 2.0
Bar-Hinge 3.59 1.61 2.2

N¼ 10, k¼ 0:9, L(0) ¼ 15 mm Experiment 2.88 – 0.03 0.25 – 0.02 11.5
Bar-Hinge 3.35 0.20 16.8

The unit of bending stiffness KB is [N m/rad].

FIG. 5. The correlation between the facet angle ratio and
bending stiffness ratio. Here, each point represents a unique
Kresling origami design used in the parametric analyses in
Figure 4. Color images are available online.
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Kresling origami and adds the motor-driven tendons (detailed
in the next section), the manipulator’s axial load capacity will
further increase.

Robotic Arm Articulation

To validate the concept of reconfigurable articulation in
the Kresling robotic arm, we conduct two different tests. The
first test uses the same paper-based robotic arm as in the
previous section’s axial payload test, and the purpose of this
test is to compare the articulation performance with or
without the payload. The second test uses a more robust,

FIG. 6. Testing the Kresling bistability’s robustness in
tension: Here, the horizontal axis is the ratio of applied
weight (aka. axial payload) over the robotic arm’s weight
(Wm ¼ 32 gram based on the paper-based prototype), the
vertical axis is the axial stretch (measured by processing the
images of deformed robotic arm). If the Kresling module at
the base settles at state (0), the prototype can carry *1.3
times its weight before any modules switch from the state
(0) to (1). If the base module is at state (1), the robotic arm
can carry about twice its weight before any switch occurs.
Color images are available online.

FIG. 7. Validation test of reconfigurable articulation with
or without payload. (a) Test setup showing the robotic arm
prototype configured at (101) with an end payload that
weighs the same as the robotic arm itself (32 g). (b–d)
Composite images showing robotic arm deformation under
tendon actuation (Notice that the test images without pay-
load are not shown here). The dotted lines show robotic arm
tip displacements measured from video footage, and the
solid lines show estimated arm shapes at the end of each
test. The articulation behavior is evident regardless of the
payload. Color images are available online.

FIG. 8. Fabrication of the PET plastic-based Kresling cell
for constructing the proof-of-concept robotic manipulator. (a)
The layered construction method involves two plastic sheets,
one adhesive sheet for bonding, and two different cuts. (b)
The fabrication sequence, from top-left and clockwise, (i):
bond the 0.25mm PET sheet and adhesive sheet and secure
them on the cutting plotter; (ii): perform the first cut, notice
that an end polygon piece is also cut out; (iii): attach the
0.05mm PET sheet; (iv): perform the second cut; (v): remove
the cut Kresling pattern from the cutting plotter; (vi): manu-
ally fold the Kresling and attach it to the end polygon piece.
(c) The three-point bending test results. PET, polyethylene
terephthalate. Color images are available online.
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layered polymer sheet construction for the robotic arm. The
polymer Kresling modules use a different design based on the
result in Figure 4 [N = 10, k= 0.9, and L(0) = 15mm], and this
test’s purpose is to assess the feasibility of using simple
kinematics-based model to predict the articulate arm defor-
mation. It is worth emphasizing that since the folding ge-
ometry dictates the correlation between Kresling design and
its nonlinear mechanics, insights from this study apply re-
gardless of the materials selected.

Paper Kresling test with payload

We use three evenly spaced, motor-driven tendons routed
through the Kresling robotic arm as the driving mechanism
(Fig. 7). Obviously, out of the eight possible stable state
configurations, the (111) configuration is immobile since all
Kresling modules are in the stiffer stable state (1), and the
(000) configuration is entirely soft, just like the more con-
ventional soft manipulators. In this study, we manually set
the Kresling robotic arm into the desired articulation con-
figuration, and the methods of automatic reconfiguration will
be a subject of a follow-up study.

After configuring the robotic arm, we attach a payload—
which weights the same as the robotic arm itself—to its free
end. It is worth highlighting that the tendons are loose during
this step. The motors are then activated to retract one tendon
and release the other two, creating a bending motion that
simulates the object relocation task. The robotic arm defor-
mations shown in Figure 7 validate the feasibility of re-

configurable articulation. That is, Kresling modules settled at
the stable state (0) act as joints, while those at state (1) act as
links. Moreover, the presence of the end payload does not
negate the articulation characteristics. The tip displacement
of the robotic arm, measured from the video footage using
MATLAB image processing program, is similar between the
scenarios with and without payload, indicating the robustness
of reconfigurable articulation using Kresling bistability.

Polymer Kresling test for kinematics assessment

In the plastic-based Kresling, a layer of 0.25 mm thick
polyethylene terephthalate (PET) sheet serves as the base
material for the facets, and an additional layer of 0.05 mm
thick PET sheet is used for the flexible creases. F9460PC
adhesive transfer tape bonds these polymer sheets seamlessly
(see Fig. 8 for fabrication details). A three-point bending test
shows that the plastic Kresling module can exhibit a bending
stiffness ratio of 8.24 between its two stable states.

Figure 9 summarizes the robotic arm deformation with
different configurations. It is worth noting that, unlike the
previous paper-based manipulator test where the tendons are
loose before testing, we apply small pretension to the tendon
in this test so that kresling modules’ initial lengths are the
same as the bar-hinge model prediction. This setup increases
the kinematics modeling accuracy as we detail below; it also
has an additional benefit of further improving the payload
capacity. To illustrate the feasibility of using simple con-
trollers for the articulated Kresling robotic arm, we attach

FIG. 9. Assessing the kinematics of Kresling robotic arm with reconfigurable articulation. (a) Test setup that shows the
arm with three identical Kresling modules. The three motor-driven, evenly-spaced tendons i, ii, and iii are highlighted. We
also attached green-colored markers A, B, C, and D at the end points of each Kresling module to facilitate measurement. (b)
A composite image that shows the robotic arm deformation—with the (101) configuration—at different tendon actuation
levels. The predicted arm deformations based on the kinematic model are plotted directly on top of the composite image as
solid lines, which show good agreement with the green marker positions. (c) Similar composite images showing the robotic
arm deformations and corresponding kinematic predictions at all other stable configurations. In these composite images, the
tendon actuation Dli ¼ 0, 8n(0), 14n(0), and 20n(0)mm, respectively, where n(0) is the number of Kresling modules at state (0)
corresponding to the current articulation configuration. For example, n(0) ¼ 1 for (101), n(0) ¼ 2 for (001), and n(0) ¼ 3 for
(000). Color images are available online.
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green-colored markers at the end points of each Kresling
module, take high resolution images of the robotic arm at
different tendon actuation inputs, use image processing soft-
ware to accurately measure the arm deformation by tracking
the position of markers, and finally compare these measure-
ments to analytical predictions based on a kinematic model. In
Figure 9b, c, the kinematic predictions are plotted directly on
top of the corresponding robotic arm images for comparison.

The kinematic model in this study adopts the Denavit–
Hartenberg convention, which represents the transformation
of coordinates from the reference frame attached to one
Kresling module to another.46 By defining four different
reference frames at the four end points of Kresling modules
(aka. A, B, C, and D in Fig. 9b), we can describe the trans-
formation from a reference frame A to frame B as:

HA
B ¼

RA
B oAB
0 1

� �
, (7)

where RA
B is a 3· 3 matrix representing the orientation

(rotational) transformation from frame A to frame B, and oAB

is a 3 · 1 column vector representing the translation from the
origin of frame A to frame B (both RA

B and oAB are formulated
with respect to frame A). A series of such transformations can
be performed to describe the total configuration of the robotic
arm shown by

HA
D ¼HA

BH
B
CH

C
D, (8)

where the final result is a matrix describing the orientation
and position of reference frame D with respect to frame A.

For Kresling modules at state (0), we use the Jones kine-
matic model that describes the shape of these soft modules as
a simple arc with constant curvature.47,48 Thus, their corre-
sponding transformation matrix is:

H(0)¼
cos/ � sin/ cos h sin/ sin h j� 1 sin/ 1� cos hð Þð Þ
sin/ cos/ cos h � cos/ sin h � j� 1 cos/ 1� cos hð Þð Þ
0 sin h cos h j� 1 sin h
0 0 0 1

2
664

3
775,
(9)

FIG. 10. The differences between experi-
mentally measured positions of Markers B,
C, and D and the corresponding kinematic
model prediction. Color images are avail-
able online.
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where

/¼ tan� 1

ffiffiffi
3

p

3

lii þ liii � 2li

lii � liii

� �
, (10)

h¼ 2N sin� 1 l2i þ l2ii þ l2iii � lilii � liiliii � liliii
� �1=2

3Nd

" #
, (11)

j¼K2
l2i þ l2ii þ l2iii � lilii � liiliii � liliii
� �1=2

d li þ lii þ liiið Þ : (12)

Here, li, lii, and liii are the lengths of three driving tendons
in this module, N¼ 1, and d ( = 32mm) is the distance be-
tween tendon and the longitudinal axis of Kreslingmodule. In
the tests shown in Figure 9b and c, we use the motors to pull
tendon i and release tendon ii and iii simultaneously so that
Dlii ¼Dliii ¼ � 0:5Dli.

For Kresling modules at state (1), we simply assume that
they are straight links so that their corresponding transfor-
mation matrix is:

H(1) ¼

1 0 0 0

0 1 0 0

0 0 1 L(1)
0 0 0 1

2
664

3
775, (13)

where L(1) (¼ 111:6mm) is the resting length of the Kresling
module at the stable state (1).

Overall, the robotic arm deformations agree well with the
kinematic predictions at different tendon actuation levels.
Figure 10 further summarizes the differences between the
experimentally measured marker positions and the corre-
sponding predictions based on the kinematic model. For most
of the stable configurations, these differences are smaller than
5mm, which is small compared to the overall length of the
robotic arm (ranging from*50 to 270mm depending on the
articulation setup). These discrepancies probably originate
from fabrication imperfections, gravity, as well as other small
and complex Kresling deformations due to its compliant
nature. In contrast, the position errors of Markers C and D are
more significant at the (011) and (010) configurations as the
robotic arm is displaced further. In these two configurations,
the Kresling module at the base behaves like a joint, which is
immediately followed by a link-like module. As a result, the
error from the base joint amplifies and accumulates further
down the chain.

Regardless, the two articulation test results validate the
linkage-like behavior, which can be modeled accurately with
a kinematics model. Therefore, one could apply ‘‘off-the-
shelf’’ feedback controllers typically used for rigid-linked
robotics for the compliant Kresling robotic arm. The results
also pave the way for future integration of active materials
(e.g., shape memory alloy and polymers) to achieve stable
state configuration autonomously. These results also lead to
an interesting topic for future study: understanding how to
configure the articulation of the Kresling arm to accommo-
date different robotic manipulation requirements (e.g., the
object’s shape and weight, original and targeted locations).

Conclusion

This study proposes to exploit the bistability of Kresling
origami to enable localized bending stiffness tuning and re-
configurable articulation of a modular robotic arm. By stra-
tegically switching the Kresling modules between the stiff,
link-like stable state (1) and soft, joint-like stable state (0),
one can significantly reduce the effective degrees of freedom
of a compliant manipulator to both simplify the control re-
quirements and increase motion precision. Through both
analytical studies using a nonlinear bar-hinge method and
experimental validations using a customized three-point
bending method, we uncover the correlations between the
magnitude of bending stiffness change and the underlying
crease pattern design of the Kresling module. Generally
speaking, the Kresling modules with more polygon sides,
lower resting length at contracted stable state, and higher
angle ratio can offer a more significant and robust change in
bending stiffness between their two stable states. However,
the module length at stable state (0) needs to be chosen
carefully to ensure sufficient kinematic freedom for bending.
In experiments, the paper-based Kirigami modules achieve
an order of magnitude change in bending stiffness by simply
switching between two stable states, without the need for a
continuous power supply to maintain this stiffness change.

We construct a tendon-driven, proof-of-concept robotic arm
prototype by assembling three identical Kresling modules. This
robotic arm successfully validates the concept of reconfigur-
able articulation by exhibiting linkage-like deformations at
different stable configurations. Moreover, the magnitudes of
these deformations agree well with analytical predictions ac-
cording to a kinematic model. Therefore, the results of this
study lay down the foundation for a reconfigurable robotic arm
that can adapt to different manipulation task requirements with
a significantly reduced control effort.
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