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To this end, we use a bi-stable water-bomb base as an archetypal example to uncover the underlying

Keywords: principles of dynamic folding based on numerical simulation and experimental testing. If the water-

Origami bomb initially settles at its “weak” stable state, one can use a base excitation to induce the intra-well

Bi-stability resonance. As a result, the origami would fold and remain at the other “strong” stable state even if the

Self-folding excitation does not stop. The origami dynamics starting from the strong state, on the other hand, is

lcmrét“"‘l’e” resonance more complicated. The water-bomb origami is prone to show inter-well oscillation rather than a uni-
ontro

directional switch due to a nonlinear relationship between the dynamic folding behavior, asymmetric
potential energy barrier, the difference in resonance frequencies, and excitation amplitude. Therefore,
we develop an active feedback control strategy, which cuts off the base excitation input at the critical
moment to achieve robust and uni-directional folding from the strong stable state to the weak one.
The results of this study can apply to many different kinds of origami and create a new approach
for rapid and reversible (self-)folding, thus advancing the application of origami in shape morphing
systems, adaptive structures, and reconfigurable robotics.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction their functionality. However, achieving a (self-)folding efficiently
and rapidly remains a significant challenge [19]. To this end,
Origami—the ancient art of paper folding—has received a surge we have seen extensive studies of using responsive materials to

of interests over the past decade from many research commu- achieve folding via different external stimuli, such as heat [20],
nities, such as mathematicians, material scientists, biotics re-  magnetic field [21], ambient humidity change [22], and even light
searchers, and engineers. A key driving factor underneath suchin- ~ €xposure [23,24]. In a few of these studies, bi-stability was also
terests is the seemingly infinite possibilities of developing three- introduced as a mechanism to facilitate folding and maintain the
dimensional shapes from folding a simple flat sheet. The kinemat- folded shape without requiring a continuous supply of stimula-

ics (or shape transformation) of origami is rich and offers many ~ tion [25,26]. While promising, these folding or self-folding are
desirable characteristics for constructing deployable aerospace  achieved in a slow and quasi-static fashion, and some of them

structures [1], kinetic architectures [2,3], self-folding robots [4], are non—rgversiblg. . . . .
and compact surgery devices [5,6]. The mechanics of origami To achieve rapid, reversible, and efficient folding, we examine

offers a framework for architecting material systems [7] with d dytnimlc a%proagh dlsly dexplomngt t.h%.c O?E!??U(g} Otf Elamiomc
unique properties [8,9], like auxetics [ 10], tunable nonlinear stiff- excitation and embecded asymmetric bi-stability. bl-stable struc-

ness [11,12], and desirable dynamic responses [ 13-16]. Moreover, tures POssess two dls.tht .stable gqu111brla (or “stable stqtes )
. o . . . . and this strong non-linearity can induce complex dynamic re-
the origami principle is geometric and scale-independent, so it

lies t . . ¢ ¢ vastly different si sponses from external excitation, such as super-harmonics,
appies 1o engineering systems of vastly diflerent sizes, rahg- intra/inter-well oscillations, and chaotic behaviors [27]. These
ing from nanometer-scale graphene sheets [17] all the way to

le civil inf nonlinear dynamics have found applications in wave propagation
meter-scale civil in rastrucFureg [18]. . . L control [28], energy harvesting [29], sensing [30], and shape
For most of these growing lists of origami applications, large

. ; ° . morphing [31,32]. Here, shape morphing is particularly relevant
amplitude and autonomous folding (or self-folding) are crucial for to folding, so we used a proof-of-concept numerical simulation to

demonstrate the feasibility of using harmonic excitation to induce
* Corresponding author. folding in a bistable water-bomb base origami [33] (Fig. 1(a)). The
E-mail address: ssadegh@clemson.edu (S. Sadeghi). bi-stability of the water-bomb base is asymmetric [25,26], i.e. the
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2352-4316/© 2020 Elsevier Ltd. All rights reserved.
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Fig. 1. The design, folding kinematics, and prototyping of the water-bomb base origami. (a) The external shape of the water bomb origami at its unfolded flat
configuration and two stable states (N = 6). We assume the triangular facet is rigid, and the fold lines behave like hinges with embedded torsional springs. (b)
Variables that define the folding kinematics. The inertial frame of reference (XYZ) is attached to the ground, and the body frame of reference (xyz) is attached to
the facets. Here, 6, is the angle between Z axis and a valley fold, and 6, is the angle between Z axis and a mountain fold. y, is the dihedral angle along a valley
fold (e.g., between facet 0 and facet 5 in this figure), and y,, is the dihedral angle along a mountain fold (e.g., between facet 0 and facet 1). (c) Proof-of-concept
prototype made out of a polypropylene sheet with perforations along the creases. The geometry of the pre-folded shim stocks used to create stiffness along the
creases is shown along with its folding angles for mountain and valley crease. The geometry of the water-jet cut trapezoidal panels is also shown.

two stable states of the structure are asymmetric with respect to
the unstable state and the energy gaps of the two stable states are
different, so the resonance frequencies of its two stable configu-
rations differ significantly. Due to this asymmetry, it is possible
that when the water-bomb origami is harmonically excited at the
resonance frequency of its current stable state, it can rapidly fold
to and remain at the other stable state. Moreover, the required
excitation magnitude by this dynamic folding method is smaller
than static folding.

Building upon this proof-of-concept study, this study aims
to obtain a comprehensive understanding of the harmonically-
excited rapid folding via a combination of dynamic modeling,
experimental validation, and controller design. First, we formu-
late a new and nonlinear dynamic model of a generic water-bomb
origami and conduct an in-depth examination into the relation-
ships among the dynamic folding behaviors, potential energy
landscape, resonance frequencies, and excitation amplitudes. It
is worth noting that this model is a significant advancement
to our previous study in that it releases unnecessary bound-
ary conditions and includes the facet rigid body motion (both
translational and rotational). Since the bistability of water-bomb
origami is asymmetric, we can designate its two stable states as
“strong” or “weak” based on the magnitude of potential energy
barriers between them. Our simulation and experiment results
show dynamic folding from the weak stable state to the strong
one is relatively easy, but folding in the other direction is quite
challenging to achieve. That is, starting from the strong stable
state, the water-bomb origami tends to exhibit inter-well oscil-
lations under most excitation conditions, which is undesirable
for rapid folding purposes. This challenge is further complicated
by the fact that the nonlinear dynamics of origami are highly
sensitive to design variations, fabrication errors, and excessive
damping. Therefore, we then devise and experimentally validate
a control strategy that ensures the robustness of dynamic folding
by cutting off the excitation input at a critical configuration. This

control strategy is essential for practical implementations of this
dynamic folding method in the future.

It is worth highlighting that although this study uses the
water-bomb origami as an example, the insights into the har-
monically excited folding and the control strategy can apply
to many other origami designs that exhibit asymmetric multi-
stability, such as stacked Miura-ori [34], Kresling [35], and leaf-
out pattern [36]. Moreover, harmonic excitation at the resonance
frequency has a high actuation authority, so it can be an efficient
method compared to other dynamic inputs, such as impulse [37].
Therefore, the results of this study can create a new approach for
rapid and reversible (self-)folding, thus advancing the application
of origami in shape morphing systems, adaptive structures, and
reconfigurable robotics.

In what follows, Section 2 of this paper details the dynamic
modeling of the water-bomb base origami, Section 3 discusses its
dynamic folding behavior under harmonic excitation, Section 4
explains the active control strategy, Section 5 provides some in-
sights on scaling of the dynamic folding strategy and its potential
applications, and Section 6 concludes this paper with a summary
and conclusion.

2. Dynamic model of the water-bomb origami

In this section, we derive the governing equation of motion of
a generic water-bomb base origami. Assuming the water-bomb
is symmetric in its design and rigid-foldable (i.e., rigid facets
and hinge-like creases), we can describe the kinematics of a
water-bomb with N triangular facets as a two degrees-of-freedom
(DOF) mechanism. These two degrees can be defined by the angle
between the vertical Z-axis of the origami and its valley creases
(6, in Fig. 1(b)), and the vertical position of the central vertex hy,
respectively. We assume that this central vertex is rigidly con-
nected to an external excitation, which is a vertical shaker table
in this case (APS Dynamics 113, Fig. 2). In this way, h, becomes
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Fig. 2. Dynamic folding test of the waterbomb origami. (a) A schematic drawing showing the overall experiment setup. A rigid rod connects the central vertex to the
shaker table. The facets are free to rotate. The vertical oscillations of one of the facets are measured using a laser vibrometer (r; ~ 3 c¢m), which is then converted
to folding angles in the DAQ system. The vibrations of the shaker are measured using a piezoelectric accelerometer. (b) The water-bomb origami prototype in its

strong stable state (left) and weak stable state (right).

the dynamic input variable, and 8, is the only degree-of-freedom
left.

Using spherical trigonometry, we can derive the angle be-
tween the vertical Z-axis and the mountain creases of the struc-
ture as a function of 6, in that:

0 _1 cos o 4 cos~! cos 6, (1)
m = €08 <cos(d/2)> €08 (cos(d/Z))’

where @ = 27 /N, and d is the radius of a circular arc defined by
the central vertex and two adjacent vertices on the valley creases

(Fig. 1(b)):
d = cos™" (cos® 6, + sin® 6, cos B) , (2)

where 8 = 2«. Again, using spherical trigonometry, one can show
that:

(3)

cos? 0, + sin® 6, cos B — 1
sin® o ’

Ym =7 — cos”! (1 +

d d
— 7 +2cos”! (cota tan 5) +2cos”! (cot 6, tan 5)
ifg, <=
Yo = 2
v _, {(cosd — 1) cot¥, O d
7T — 2C0S ——— )+ 2cos coto tan —
sind 2
) 7
if 91) > 5

(4)

where y,, and y, are the angles between the facets connected by
the mountain and valley creases, respectively (Fig. 1).

The position and orientation of each triangular facet can be
described by the position of the central vertex h, in the XYZ
(inertial) frame of reference attached to the ground and the
orientation of the xyz (body) frame of reference. The latter can
be described by three independent Euler angles, which represent
the consecutive rotations of the XYZ (inertial) frame of reference
needed to align it with the xyz (body) frame of reference. The
order of rotations is arbitrary. Here, we choose the zyx order (aka,
the aircraft rotations) that consists of three steps: The first step is
arotation about the Z-axis by v;, where ¥; = <. The second step
is a rotation about the y’-axis (aka., y-axis of the rotated frame
after the first step) by 6;, where 6; = %(n —6, —0p). The third step
is a rotation about the x”-axis (aka. x-axis of the rotated frame
after the second step) by ¢;, where

Ym if i is even,

2
¢ = (5)
' 2n——%;r if i is odd.

Here, the sub-index “i” (i = 0...N — 1) labels the different tri-
angular facets as defined in Fig. 1(a). Therefore, the total rotation
matrix is a combination of these three steps in that C; = &,;0,;¥;,
where:

! 0 0

®;=|0 cos¢; sing;|, (6)
L0 —sing; cos¢;
fcos®; 0 —sinb;

;= 0 1 0 , (7)
Lsing; 0 cosé;
[ cosy; siny; O

W, =|—siny; cosy; O (8)
L O 0 1

In addition, the angular velocity of the xyz (body) frame of
reference can be derived using:

Wi = Cl)xi2 + U)yii + a)zii‘a (9)
where:

wyi = ¢ — Yising,

wyi = 1/}i €0s 6; sin ¢; + 6; cos ¢;, (10)

wyi = ;€S 6; cOS ¢; — 0 sin .
2.1. Kinetic energy of the origami

As the water-bomb base origami folds, its facets exhibit both
translational and rotational motions with respect to the central
vertex. One can show that the total kinetic energy of the origami
structure originates from these two distinct motions based on the
following equations:

N—1
1 1 .
Tror = Elevpl2 + EO (5wglwi +mu, - pc,-) , (11)

where, m is the mass of a triangular facet, v, is the velocity of the
central vertex. p. = @ X pq, where p; is the vector of center of
mass of each facet in xyz (body) frame of reference. Note that v,
and p.; should be expressed in the same frame of reference which
is possible using the total rotation matrix C. Finally, the matrix I
contains that moment of inertia of each facet around the central
vertex in that

l« 0 O
I=(0 1, o], (12)
0 0 I

where, I = 3mr?sin’a, I, = Smr? cos*(%), and I, = Jmr® +
1 2 2«
3 Mre cos*(3).
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2.2. Gravitational potential energy of the origami

In order to derive the gravitational potential energy of the
water-bomb origami, we need to calculate the location of the
center of mass of each facet. One can show that the distance of
each center of mass from the ground can be derived using the
following relationship:

2 0 0,
Zcm:hp—(grcos%cos< m—; >> (13)

The corresponding gravitational potential energy is Vg = NmZ,.

2.3. Elastic potential energy of the origami

Assuming that the triangular facets are rigid and the creases
behave like hinges with embedded torsional springs, we can
derive the elastic potential energy of the origami as

N
Ve=> [kym (V= Vo) + kyo (75 — yvo)z] , (14)

where k,,, and k,, are the torsional stiffness coefficient of the
mountain and valley creases, respectively. y,, and y, are the di-
hedral folding angles of the mountain and valley creases (Egs. (3)
and (4)). In addition, y;, and y,, are the corresponding stress-free
dihedral angles.

2.4. Equation of motion

The Lagrangian of the origami structure becomes £ = Tyr —
V¢ — Vg, and we can derive the governing nonlinear equations of
motion using

d oc aL

dt 372)) 06,

Fy is the damping force generated along the origami creases,
and we assume that it has a simple form of crf,. Here, c is the
equivalent viscous damping coefficient, and r is the length of each
crease.

+F;=0. (15)

3. Dynamic folding of the bistable water-bomb origami

The equation of motion (15) can be solved numerically using
MATLAB ODE45 solver to obtain the dynamic response to arbi-
trary base excitation inputs and initial conditions. We assume
that the base excitation is harmonic in that h, = Acos £2t. By
solving the equation of motion under small-amplitude excitations
and performing a stroboscopic sampling over a range of excitation
frequencies, we obtain the intra-well frequency response of the
water-bomb origami near its two stable equilibria. In this way, we
can identify the corresponding intra-well resonance frequencies.

We analyze the accuracy of the origami dynamic model by
comparing its predicted frequency responses near the two stable
states and experimental measurements from a proof-of-concept
prototype. This prototype has a hexagonal shape with a crease
length of 10 cm (N = 6 and r = 10 cm, Fig. 1(c)). We cut a
0.76 mm thick flame-retardant Polypropylene sheet and perfo-
rated the crease lines using an FCX2000 series GRAPHTEC flatbead
cutting plotter to create the compliant base layer of the origami.
A significant amount of the material along the creases is removed
to reduce the damping as much a possible. The torsional stiffness
along the creases are generated by attaching 0.127 mm thick shim
stocks, which are folded carefully to give the initial stress-free
crease dihedral angles y,,, = 120° and y,, = 175°. Then, we
attach twelve water jet-cut stainless steel trapezoids (24 g each)
to the triangular facets to offer sufficient inertia. Moreover, these
trapezoids provide the desired rigidity to the facets according to
the rigid-folding assumptions.

3.1. Intra-well frequency response analyses and parameter estima-
tion

Although the geometric design and mass of the origami are
known, we need to estimate the magnitudes of torsional stiffness
(ky,, and k,,) and damping coefficient (c) of the creases. To this
end, we perform intra-well frequency sweeps near both of the
stable states of the structure with a small excitation amplitude
to obtain the frequency response. Then we can estimate k; and
k,, which are assumed equal in this case, and c by fitting the
model predicted frequency responses to experimental results
using the least square method. In what follows, we show that
these stiffness coefficients are crucial for determining the intra-
well resonance frequency, and the damping coefficient directly
affects the excitation amplitude for dynamic folding.

Fig. 3(a) shows the experimentally measured frequency re-
sponse of the water-bomb origami near its stress-free stable state
and the closest numerical prediction based on the least square
method. Here, the frequency response is defined as Eﬁzgzq% after
the transient response has damped out, where hq is the verti-
cal displacement of a representative point on the median of a
facet (Fig. 2(a)). We use an OFV-5000 Polytec laser vibrometer
equipped with an OFV-503 laser head to capture the displace-
ment response of this representative point and a 352C33 PCB
accelerometer to measure the acceleration of the shaker, which
is then converted to displacement. We find that k,, = k,, =
0.32 ’l—g‘ and ¢ = 0.05 % give the best fitting at this stress-
free stable state. Fig. 3(b) shows the experimentally measured
frequency response near the other stable state and the corre-
sponding numerical prediction by using the estimated crease
stiffness and damping coefficient from the previous test. The
comparison shows an approximately 15% discrepancy between
the estimated resonance frequency of this second stable state and
the measured resonance frequency (15.8 Hz based on the experi-
ments and 17 Hz based on simulation). This discrepancy probably
originates from a combination of fabrication uncertainties and
the simplifications made in the analytical model. Moreover, the
experimental results show higher damping than the prediction,
which is reasonable due to the higher excitation frequencies at
this stable state.

Overall, our model successfully captures the difference in the
intra-well resonance frequencies near the two stable states of the
water-bomb origami with a relatively small error. This difference
in resonance frequencies comes from the inherently asymmet-
ric potential energy landscape of the origami (Fig. 4(a)), which
creates an asymmetric force-displacement curve (Fig. 4(b)) with
different tangent stiffness near its two stable equilibria. For clar-
ity, we refer to the initial, stress-free stable equilibrium with
a deeper potential energy well as the “strong” state, and the
other stable equilibrium with a shallower energy well as the
“weak” state. The differences in the energy barriers for switching
between these two stable states are evident. That is, the origami
must overcome a large barrier to switch from the strong stable
state to the weak one, but only needs to overcome a small barrier
for the opposite switch (AVg, > AV, in Fig. 4). In the following
subsections, we show that the differences in resonance frequen-
cies, energy barriers, and the base excitation amplitude all play
crucial roles in the harmonically excited folding of water-bomb
origami.

3.2. Dynamic folding from the weak stable state

If the water-bomb origami initially settles at the weak stable
state, we can induce an intra-well resonance by exciting it with
the corresponding resonance frequency. In this way, the origami
can exhibit a large reciprocal folding motion with a small energy
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Fig. 3. Frequency response near the two stable states of water-bomb origami.
(a) A typical time response from small-amplitude intra-well oscillations around
the stress-free stable state. Here, the vertical displacements of point q (hg) are
represented in orange and the corresponding shaker excitations represented in
gray. (b) Stroboscopic sampling results for intra-well oscillations around the
stress-free stable state. (c) Typical time response of similar small-amplitude
intra-well oscillations around the other stable state. (d) The corresponding
stroboscopic sampling results.

input. If the excited origami can overcome the energy barrier
AVg,, it can rapidly switch to the other, strong stable state.
Moreover, once this switch is complete, the water-bomb will
remain in the strong state because 1) the energy barrier of the
opposite switch is significantly higher, and (2) the resonance
frequency of the strong state is significantly different from the
original input frequency (that is, the intra-well resonance stops
after the switch).

To experimentally validate this dynamic folding. We mount
the origami on the shaker and manually set it at the weak stable
state initially (Fig. 2(b)). We excite the shaker with a constant
frequency of £2 = 15.8 Hz, which is the experimentally mea-
sured intra-well resonance frequency at this stable state. Then,
we gradually increase the amplitude of base excitation until the
water-bomb “snap” to the strong stable state. Once the snap

(a) Sr
41
é 3t “Weak” stable state
N 2r “Strong” stable state
b
| Initial folding angle
0° 20° 40° 60“ 80° 100° 120°
(b)
151
Z 10} “Weak” stable state
(0]
8 5t « 2
5] Strong” stable state
ol o \/\v
5k
0 200 40 60° 80°  100°  120°

0,

Fig. 4. The asymmetric bi-stability of the water-bomb origami. (a) The asymmet-
ric elastic potential energy landscape with two different energy barriers (AV,
and AVg,). (b) The reaction force-displacement curve of the origami due to the
elastic deformation along the creases. The potential energies are derived based
on Egs. (13) and (14) and the reaction force is calculated as the variation of
potential energy Ff'

Table 1

Comparison between the required quasi-static displacement and dynamic ex-
citation amplitude for the dynamic folding between two stable states. Here,
the quasi-static displacement is based on the reaction force-displacement curve
shown in Fig. 4.

Quasi-static Dynamic
Weak to Strong 6.5 mm 1.3 mm
Strong to Weak 51.1 mm 242 mm

occurs, we stop increasing the excitation amplitude (Fig. 5(a)).
The water-bomb origami continues to oscillate around the strong
state without switching back to its original configuration. We
also replicate the same scenario numerically (Fig. 5(c, d). In this
simulation, the excitation frequency equals to the experimentally
measured resonance frequency, and the excitation amplitude in-
creases linearly over time until the snap-through occurs. It is
worth noting that the numerical model predicts a higher base
excitation amplitude required for switching. This difference is due
to the over-prediction of resonance frequency by the analytical
model, as we discussed in the previous subsection. In a different
study shown in Fig. 5(e, f), we repeat the simulation exactly with
the numerically predicted resonance frequency (£2 = 17 Hz),
and observe a much smaller excitation amplitude requirement for
switching. Despite these quantitative differences, our model and
experiment confirm the feasibility of dynamic folding from the
weak stable state to the strong state solely by inducing an intra-
well resonance with a small excitation amplitude. Moreover, we
can reduce the required excitation magnitude by using this dy-
namic folding method. That is, the required base displacement
to achieve a dynamic folding from the weak to the strong stable
state is A = 1.3 mm, while the required base displacement is
significantly higher if we fold the water-bomb quasi-statically
(A =6.5 mm, Table 1).
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Fig. 5. Harmonically excited folding from the weak stable state to the strong state. (a) Acceleration of the shaker’s base (or central vertex) based on the piezoelectric
accelerometer readings. The frequency of excitations here is the experimentally measured resonance frequency from the actual prototype (15.8 Hz). The energy
landscape is shown on the right for clarity. (b) Time response of 6, calculated from that laser vibrometer data. (c) The base acceleration from the numerical
simulation based on the same excitation frequency of 15.8 Hz. (d) The corresponding time response of 6, by numerically solving the equation of motion (15). (e, f)
The base acceleration and time response (6,) from a similar numerical simulation using the analytically predicted resonance frequency (17 Hz).

3.3. Dynamic folding from the strong stable state

If the water-bomb base origami structure initially settles at
the strong stable state, it has to overcome a significantly higher
potential energy barrier AV, to fold to the weak state. Although
the intra-well resonance can help the origami to overcome this
significant energy barrier, a large amount of energy in the system
may lead to an inter-well oscillation between the two stable
states, which is not desirable for the dynamic folding purpose.
To demonstrate this complex nonlinear dynamics, we conduct
a parametric study to examine the relationships among the dy-
namic folding behaviors from the strong stable state, potential en-
ergy barriers, difference in resonance frequencies, and excitation
amplitudes. Fig. 6(a) shows the numerically predicted frequency
responses of water-bomb origami with different stress-free fold-
ing angles (0,,) around their two stable states, while Fig. 6(b)
shows the corresponding elastic potential energy landscape.

We then excite each water-bomb origami with the resonance
frequency of its strong stable state for a range of excitation
amplitudes, all from zero initial conditions. Fig. 6(c) summarizes
their overall dynamic behaviors. For every water-bomb design,
there exists a small span of excitation amplitude that can gener-
ate the desired uni-directional switch (aka. rapidly folding from
the strong state to the weak state without switching back). For
example, the case (ii) in Fig. 6(c)—with 6,, = 60° and A = 24
mm-—exhibits such a dynamic response. Its time response and
the corresponding Poincare’s map are shown in Fig. 6(d) and (e),
respectively. One can observe that the oscillations of this water-
bomb origami start from near the strong state, but eventually
switch to and remain at the weak stable state.

Any excitation below this span of uni-directional switch is
not sufficient to overcome the potential energy barrier, leading
to intra-well oscillations only (e.g., the case (i) in 6(c-e) with
A = 24 mm). On the other hand, any excitation above this span
would generate an inter-well oscillation. Case (iii) and (iv) 6(c-
d) are two examples of this inter-well oscillations. Moreover,

one can observe that, although both these two cases show inter-
well oscillation, their state-state responses still show marked
differences. For example, a period in the steady-state response
of case (iii) (A = 30 mm) consists of three oscillations around the
strong state before one inter-well oscillation, while the responses
of the case (iv) (A = 40 mm) only involve two oscillations around
the strong state before an inter-well oscillation (Fig. 6(d, e)).

Moreover, there is a clear trade-off between the potential en-
ergy barriers and natural frequency differences. As the stress-free
folding angle 6,, of the water-bomb increases from 50° to 70°, the
difference in resonance frequencies also increases between the
two stable states, however, the energy barrier AV;, decreases.
Therefore, as 6,, increases, the excitation magnitude correspond-
ing to these spans of uni-directional switch decreases, and the
width of these spans increases and then decreases. Overall, we
observe that a water-bomb origami with 6,, = 55° has the
most balanced design and the widest excitation span to achieve
a uni-directional switch.

Overall, our numerical simulations show that solely using
the intra-well resonance to achieve the dynamic folding from
the strong stable state to the weak state is possible but quite
challenging. That is, the excitation magnitude spans of the uni-
directional switch are always narrow (< 10 mm) even with
the more optimized origami designs. Moreover, the nonlinear
dynamics of the water-bomb base origami are quite sensitive
to other uncertainties like initial conditions, fabrication errors,
and excessive damping. For example, the actual differences in
resonance frequencies are actually less than the prediction shown
in Fig. 3. As a result, we could not achieve a consistent and
repeatable fold from the strong stable state to the weak one in the
experimental efforts, despite the relatively small differences be-
tween the frequency response obtained from experiment and the
prediction from numerical simulation. This challenge necessitates
an active control strategy, as we detail in the next section.
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Fig. 6. Dynamic folding behaviors of the water-bomb base origami from its strong stable state: (a) The numerically predicted frequency responses of water-bomb
base origami structures with different stress-free folding angle 6,,. The small inset figure shows the differences in resonance frequency between the two stable
states. (b) The corresponding potential energy landscape. (b) The correlation between stress-free folding angle, excitation amplitude, and the overall response. The
desired rapid folding (aka. uni-directional switch) is highlighted. (e) The time responses of four representative cases based on different excitation amplitudes. (e) The
corresponding Poincare’s map. Note that, except for the case (ii), only steady-state responses are shown in these maps.

4. Active control strategy for robust folding

In this section, we propose a feedback control strategy that
enables us to achieve a robust dynamic folding from the strong
stable state of water-bomb origami to the weak state. We show
that this strategy is successful when pure dynamic excitation
without control only generates inter-well oscillations between
the two stable states. The idea of this feedback control strat-
egy seems relatively straightforward. Assuming the water-bomb
origami is showing inter-well oscillations due to base excitation,
we can cut off this excitation at the moment when the origami
is folding toward the weak stable state (aka. hy > 0) and passing
through the flat, unstable equilibrium (aka. 6, = 90°). In this way,
the water-bomb origami should be able to overcome the energy
barrier and switch to the weak stable state, but it would not be
able to switch back to the strong state due to energy dissipation
via damping. Fig. 7(b) shows the numerically simulated folding
with this controller.

We experimentally validate the effectiveness of this control
strategy on the same water-bomb origami prototype. Fig. 7(a)
shows the flow chart of this feedback loop based on the proposed
control strategy. This feedback loop is encoded in a LabVIEW pro-
gram that uses the laser vibrometer and accelerometer readings
as the inputs. The 1abVIEW program filters out the acceleration
data from the accelerometer using a bandpass filter and then

integrates it twice to derive the displacement of the shaker’s
base. Then it calculates the relative displacement of the water-
bomb base origami and the shaker by subtracting the derived
displacements from the laser vibrometer readings. Finally, it cal-
culates 6, using this displacement data. In this setup, we excite
the water-bomb origami with the intra-well resonance frequency
of 8.8 Hz and increase the excitation amplitude until an inter-
well oscillation occurs. We then activate the controller, which can
automatically detect the threshold of hy > 0 and 6, = 0 and cut
of the excitation accordingly. In our experiment, this controller
can reliably and repeatedly fold the water-bomb origami from
the strong stable state to the weak one (see supplemental video).
Therefore, despite its simplicity, the proposed controller provides
an effective approach to complete the bi-directional dynamic
folding of the water-bomb origami. Moreover, it is worth noting
that the required base displacement to achieve dynamic folding
from strong state to the weak state is A = 24.5 mm, which
is much smaller than the excitation amplitude in a quasi-static
folding (A 51 mm, Table 1). It is also worth noting that
this control algorithm is effective, but can certainly be modified
further to increase its efficiency.

5. Discussion

Scaling of the harmonically-excited folding strategy: Al-
though this study is based on a water-bomb base origami, the
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Fig. 7. The control strategy to achieve a robust and dynamic folding from the strong stable state to the weak state. (a) The flow chart showing the concept and
implementation of the controller (b) The controlled base acceleration and water-bomb origami folding angle based on the numerical simulation (top) and experimental
validation (below). It is clear that when the controller is engaged, inter-well oscillation is stopped quickly, and the water-bomb settles at the targeted weak stable

state.

physical insights into harmonically-excited folding and the con-
trol strategy certainly apply to other origami or even other struc-
tures with similar nonlinear properties. This is because the dy-
namic folding relies on the asymmetry of the potential energy
landscape and the resulting difference in the resonance frequen-
cies between the two stable states. Such asymmetric bi-stability
has been demonstrated in other origami designs like the rigid-
foldable stacked Miura-ori [34] and leaf-out pattern [36], as well
as the non-rigid foldable Kresling [35] and square twist pat-
tern [38].

It is also worth noting that, although this study focuses on
a bi-stable origami, the results could provide some valuable in-
sights into the dynamic folding with more than two stable states
(e.g., a waterbomb base assembly with multiple vertices). It is
desirable to customize-design the multi-stable origami so that
each of its stable states exhibits a unique resonance frequency,
and the differences between these frequencies should be signifi-
cant. Moreover, it is conceivable that a multi-stable origami with
complex energy landscape is even more likely to show inter-
well oscillations than the bistable water-bomb base, so the active
control strategy discussed in this paper (or an improved version
of it) will be necessary.

Potential applications: A promising application of the dy-
namic folding is shape morphing (or deploying). Self-folding
origami can serve as the skeleton of light-weight, shape morphing
structures that can perform dissimilar tasks optimally [31]. In
this case, a low actuation requirement is crucial, so the higher
actuation speed and authority (Table 1) of dynamic folding offers
a pathway for enhanced morphing performance. Another promis-
ing application is origami robotics, especially shape-transforming
robots [39]. One can pre-program the bi-stability of origami for
different robotic tasks (e.g., the robot can be folded into a small
volume for transportation at one stable state and unfolded to
perform tasks like locomotion at the other state). Dynamic folding
can enable rapid robotic transformations.

Finally, although this study uses a shaker as the source of
dynamic input, the required harmonic actuation can also be
achieved by other methods depending on the application. It is
conceivable that for structural morphing applications, motors and
fluidic actuators are applicable. For a smaller-sized origami, one
could use external magnetic fields [21] or responsive materials
like dielectric elastomers [40]. Note that via dynamic inputs, we
could use the responsive materials more effectively than the
quasi-static folding.

6. Summary and conclusion

In this study, we examine a dynamic and reversible origami
folding method by exploiting the combination of resonance exci-
tation, asymmetric multi-stability, and an active control strategy.
The underlying idea is that, by exciting a multi-stable origami at
its resonance frequencies, one can induce rapid folding between
its different stable equilibria with a much smaller actuation re-
quirements than static folding. To this end, we use a bi-stable
water-bomb base origami as the archetypal example and, for
the first time, formulate a distributed mass-spring model to
describe its nonlinear dynamics. Via numerical simulations based
on this new model and experimental testing using a proof-of-
concept prototype, we characterize the difference in resonance
frequencies between the two stable equilibria of the origami.
This difference stems from the inherent asymmetry of the water-
bomb with respect to its unstable equilibrium at the unfolded
flat shape. For example, if the water-bomb initially settles at its
weak stable state, one can use a base excitation to induce the
intra-well resonance. As a result, the origami would fold and
remain at the other stable state even if the excitation does not
stop. The origami dynamics near the strong state, on the other
hand, is more complicated. The asymmetric energy barrier makes
the origami prone to show inter-well oscillation rather than a
uni-direction switch. There exist a complex trade-off between
the desired uni-directional folding, potential energy barrier, the
difference in resonance frequencies, and excitation amplitude.

Therefore, we propose an active feedback control strategy to
achieve robust and uni-directional folding from the strong stable
state to the weak one. This strategy cuts off the base excitation
input when critical dynamic conditions occur. Despite its simplic-
ity, the control strategy is effective for controlling the dynamic
folding. We should emphasize that the proposed algorithm can be
further modified to enhance performance. For example, we can
fully automate the task of detecting inter-well oscillations and
sending control signals to cut off shaker input when necessary.
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