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Magnetocrystalline anisotropy of the easy-plane metallic antiferromagnet Fe2As
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Magnetocrystalline anisotropy is a fundamental property of magnetic materials that determines the dynamics
of magnetic precession, the frequency of spin waves, the thermal stability of magnetic domains, and the efficiency
of spintronic devices. We combine torque magnetometry and density functional theory calculations to determine
the magnetocrystalline anisotropy of the metallic antiferromagnet Fe2As. Fe2As has a tetragonal crystal structure
with the Néel vector lying in the (001) plane. We report that the fourfold magnetocrystalline anisotropy in the
(001) plane of Fe2As is extremely small, K22 = −150 J/m3 at T = 4 K, much smaller than the perpendicular
magnetic anisotropy of ferromagnetic structure widely used in spintronic devices. K22 is strongly temperature
dependent and close to zero at T > 150 K. The anisotropy K1 in the (010) plane is too large to be measured
by torque magnetometry and we determine K1 = −830 kJ/m3 using first-principles density functional theory.
Our simulations show that the contribution to the anisotropy from classical magnetic dipole-dipole interactions
is comparable to the contribution from spin-orbit coupling. The calculated fourfold anisotropy in the (001) plane
K22 ranges from −290 to 280 J/m3, the same order of magnitude as the measured value. We used K1 from theory
to predict the frequency and polarization of the lowest frequency antiferromagnetic resonance mode and find that
the mode is linearly polarized in the (001) plane with f = 670 GHz.

DOI: 10.1103/PhysRevB.102.064415

I. INTRODUCTION

Antiferromagnets (AFs) have potential advantages over
ferromagnets for spintronic devices. Collinear AFs are rela-
tively insensitive to external fields because the net magnetiza-
tion is zero. AFs typically have much higher antiferromag-
netic resonance (AFMR) frequency than ferromagnets and
therefore precessional switching can occur in AFs at a faster
rate than in ferromagnets.

The recent discovery of electrical manipulation and detec-
tion of spin configurations in metallic AFs has led to a rapidly
expanding scientific literature on this class of magnetic mate-
rials. Tetragonal crystals with easy-plane magnetic anisotropy
are preferred because the two degenerate orientations of the
Néel vector can store binary information. In crystals with
globally centrosymmetric but locally noncentrosymmetric
magnetic structures—e.g., CuMnAs and Mn2Au—an electri-
cal current exerts a torque on the Néel vector and the domain
structure can potentially be switched electrically [1–4].

A small value of the in-plane magnetocrystalline
anisotropy facilitates electrical switching of the domain
orientation since a smaller torque is needed to overcome the
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energetic barrier that separates the two orientations. Thermal
stability of the domain requires, however, a large value of the
in-plane anisotropy. The Néel-Arrhenius law provides an esti-
mate of the rate of thermal fluctuations of a single domain [5]:

1

τ
= f0 exp

(
− �E

kBT

)
, (1)

where τ is the average time between thermally activated
changes in the direction of the magnetization, f0 is the
resonance frequency, �E is the energy barrier between two
degenerate magnetic states, and kBT is the thermal energy.
�E is given by the product of an anisotropy parameter K and
the volume of the domain V; �E = KV . Stable data storage
typically requires �E/kBT > 40 to meet the criteria that data
must be retained for 10 years [6].

For the media of conventional hard drives, the anisotropy
parameter K is controlled by the perpendicular magne-
tocrystalline anisotropy of ordered intermetallic alloys. In
the emerging technology of magnetic random access mem-
ory (MRAM), K is controlled by the interfacial magnetic
anisotropy of a ferromagnetic layer adjacent to the oxide bar-
rier in a magnetic tunnel junction. The perpendicular magnetic
anisotropy K1 of MRAM materials is typically 106 < K1 <

107 J m−3 [7].
Magnetocrystalline anisotropy Eani is described by a phe-

nomenological expansion of the energy as a function of
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direction cosines for the orientation of magnetization of a fer-
romagnet or the sublattice magnetization of an antiferromag-
net (AF). For a tetragonal crystal, the expansion to fourth or-
der gives three coefficients: K1, K2, and K22 [8]. K1 is a second-
order coefficient; K2 and K22 are fourth-order coefficients,

Eani/V = K1 sin2φ + K2 sin4φ + K22 sin4φ cos (4θ ), (2)

where φ is the angle of the magnetization relative to the 〈001〉
direction and θ is the angle of the magnetization relative to
the 〈100〉 direction (Fig. 2). The coefficient K1 describes the
twofold anisotropy in the (010) plane and K2 represents the
higher-order fourfold symmetry of the (010) plane. Because
the effect of K2 is usually much smaller than K1, K2 will be
neglected in the following discussion. A crystal with an easy-
plane anisotropy is described by K1 < 0. The coefficient K22

describes the fourfold anisotropy of the (001) plane and deter-
mines the thermal stability of an easy-plane domain structure.

An external magnetic field applied to an antiferromagnet
(AF) produces a small induced magnetic moment. The in-
duced moment is small because tilting of the orientation of
sublattice magnetization is constrained by strong exchange
interaction between the magnetic sublattices that favors a
parallel alignment of the sublattices. In general, however, the
induced magnetic moment is not parallel to the applied field
because magnetocrystalline anisotropy favors an orientation
of the sublattice magnetization along an easy axis [9,10].

The lack of alignment between the induced moment m
and the applied field B produces a macroscopic torque on
the sample, τ = m × B. A torque magnetometer measures
this torque. Data for the torque as a function of applied field
is sensitive to magnetocrystalline anisotropy as long as the
anisotropy is neither too small nor too large. If the anisotropy
is small, then the angle between m and B is small and the
torque becomes difficult to detect. If the anisotropy is large,
then the direction of m is fixed with respect to the crystal-
lographic axis and the torque does not provide information
about the magnitude of the anisotropy. We can measure the
in-plane fourfold anisotropy of a mm-size bulk crystal of
Fe2As by torque magnetometry but the out-of-plane twofold
anisotropy is not accessible to this technique because the
external field is too small in comparsion to the anisotropy field
to extract information about the anisotropy in the out-of-plane
direction. We instead employ first-principles calculations
based on density functional theory to determine K1.

When magnetic energy is larger than the anisotropy energy,
the amplitude of the torque in the (001) plane saturates and the
fourfold magnetic anisotropy K22 can be directly determined
from the amplitude of the torque. We measured three samples
extracted from the same growth run, and the K22 value of
all three samples is comparable to −150 J/m3 at 4 K. The
magnitude of K22 drops quickly as temperature increases
and reaches a small value above 150 K. The temperature
dependence of magnetic anisotropy for antiferromagnets is
similar to that of ferromagnets, following a power law of
sublattice magnetization [11–13].

Strikingly, torque data for the applied field rotating in the
(010) plane reveal the motion of domain walls. An applied
field in the (010) plane of 1 T is sufficient to orient the Néel
vector fully perpendicular to the applied field. Domain-wall

motion occurs even at T = 4 K and, therefore, is not thermally
activated.

In the final section, we derive the lowest, zone-
center AFMR frequency for easy-plane AFs, ω =
|γ |√2HE (H22 − H1) ≈ |γ |√−2HE H1, where γ is the
gyromagnetic ratio, and HE , H1, H22 are the exchange
field, out-of-plane anisotropy field, and in-plane anisotropy
field, respectively. The anisotropy fields are calculated with
anisotropy energy and sublattice magnetization: H1 = K1/M
and H22 = K22/M. With K1 calculated by DFT as K1 =
−830 kJ/m3, the AFMR frequency is f = 670 GHz at 4 K.

II. METHODS

Fe2As crystallizes in the Cu2Sb tetragonal crystal struc-
ture. Based on the corresponding magnetic symmetry (mmm1’
magnetic point group), the Néel vector of Fe2As has two
degenerate orientations in the (001) plane [14–16].

The Fe2As crystal was synthesized by mixing Fe and As
powders in a 1.95:1 ratio and vacuum sealing inside a quartz
tube. The vacuum tube was heated at 1 °C/min up to 600 °C
and held for 6 h in a furnace. The temperature was then
ramped to 975 °C at 1 °C/min and held for 1 h before cooling
down slowly to 900 °C at 1 °C/min. Finally, the quartz tube
was kept at 900 °C for 1 h and allowed to cool down to room
temperature in the furnace at 10 °C/min. We obtained a large
silver-hued crystal ingot of Fe2As and it easily detached from
the quartz tube. Part of the ingot was crushed into powder
for powder XRD characterization and the data showed phase
pure Fe2As. But the sample is slightly off-stochiometry as
described in Ref. [17]. The remaining portion of the ingot
was then fractured and the fractured surface revealed a smooth
facet. Laue diffraction was carried out after polishing this
fractured surface. A fourfold symmetry pattern was observed
indicating that the fractured surface is the (001) plane.

We used a wire saw to cut the sample into smaller pieces
for magnetic property characterization and torque measure-
ments. One of the pieces was measured on the supercon-
ducting quantum interference device vibrating sample magne-
tometer (SQUID VSM; see below), the other three pieces were
used in torque magnetometry measurements. We name these
three samples measured by torque magnetometry samples
A–C, and the one for SQUID VSM is named sample D.
We confirmed the Néel temperatures of samples A–C with
differential scanning calorimetry (DSC) to be 352, 353, and
353 K, respectively. During the DSC measurement, each
sample was heated from 393 to 493 K, then cooled from
493 to 393 K at a rate of 10 K min−1. Each sample exhibited
a 2–3 K hysteresis in critical temperature between warming
and cooling cycles. We averaged the critical temperatures
measured during heating and cooling to determine the Néel
temperatures listed above.

The temperature-dependent magnetic susceptibility was
measured with a SQUID VSM in a Quantum Design Magnetic
Properties Measurement System (MPMS). The susceptibility
of the sample was measured while cooling from 398 to 4 K in
a 10-mT field.

Torque measurements were performed in a Quantum De-
sign Physical Property Measurement System (PPMS). We
mounted the sample on a standard torque sensor chip, P109A
from Quantum Design with a sensitivity of 1 × 10−9 N m.
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The PPMS horizontal sample rotator was used to control the
angle between the crystal and the applied field. During the
measurement, the external field rotated in either the (010)
plane or the (001) plane, while the field-induced moment
resided in the same plane as the rotating applied field. We de-
tected the torque component, m × B, that is perpendicular to
this plane. Samples A–C were mounted on the cleaved (001)
plane when the applied field was rotating in the (010) plane,
and samples were mounted on the wire-cut (010) plane when
the field was rotating in the (001) plane. The misorientation of
samples mounted on the wire-cut (010) plane was judged to
be less than 5°, based on the amplitude of twofold symmetry
of torque data for the (001) plane. The amplitude of twofold
symmetry component of the torque data for the (001) plane is
shown in Fig. S2 and our calculation of the misorientation is
also discussed in the Supplemental Material [18].

We performed first-principles DFT simulations using the
Vienna Ab Initio Simulation Package (VASP) [19,20], to cal-
culate the twofold anisotropy K1 and obtain an estimate for
the fourfold anisotropy K22. The projector augmented wave
(PAW) method [21] is used to describe the electron-ion in-
teraction. Kohn-Sham states are expanded into plane waves
up to a kinetic-energy cutoff of 600 eV. The Brillouin zone
is sampled by a 21 × 21 × 7 Monkhorst-Pack [22] (MP) k-
point grid and the total energy is converged self-consistently
to within 10−9 eV. The local density approximation (LDA)
[23] and the generalized-gradient approximation developed by
Perdew, Burke, and Ernzerhof (PBE) [24] are used to describe
the exchange-correlation energy function, and results from the
two different computational strategies are compared.

Achieving the extremely high accuracy for total energies
that is required to compute the (001) plane magnetocrystalline
anisotropy that is on the order of μeV per magnetic unit cell
is numerically challenging; the required convergence param-
eters render it computationally too expensive to perform such
calculations fully self-consistently. Instead, we use the con-
vergence parameters quoted above to compute Kohn-Sham
states, electron density, and relaxed atomic geometries for
collinear magnetism and take noncollinear magnetism and

spin-orbit coupling [25] into account without self-consistency
of the Hamiltonian, as described in Ref. [26].

III. RESULTS AND DISCUSSION

A. Magnetic susceptibility and domain-wall motion

We use data for the magnetic susceptibility as input for
modeling the torque magnetometry data and to provide insight
into the reorientation of antiferromagnetic domains in an
external magnetic field. Figure 1(a) summarizes the results for
the magnetic susceptibility in the limit of small field. We fixed
the applied field at 10 mT, along the 〈100〉 or 〈001〉 direc-
tion, measured the induced magnetic moment while cooling
from T = 398 K, and calculated the susceptibility, χ = M/H ,
where M is the magnetization. The measured susceptibility is
similar to that in a prior report [14].

When the applied field is along an easy axis, we must take
domain-wall motion into account. We assume that a 10-mT
external field is too weak to significantly affect the domain
structure. We further assume that the magnetic moment gener-
ated by an applied field along the 〈100〉 direction (the a axis of
the crystal) has equal contributions from two types of domains
that we label as D1 (Néel vector along 〈100〉) and D2 (Néel
vector along 〈010〉) as illustrated in Fig. 2. For an applied field
in the (001) plane, we define the susceptibility parallel to the
Néel vector as χ‖ and that perpendicular to the Néel vector
as χ ′

⊥. On the other hand, the susceptibility for an applied
field in the 〈001〉 direction is defined as χ⊥. We expect χ ′

⊥
and χ⊥ to be similar but due to the tetragonal symmetry of
the crystal structure, χ ′

⊥ and χ⊥ are not necessarily equal. We
show below that the difference between χ⊥ and χ ′

⊥ is less than
5%.

Measurements of the magnetization as a function of field,
see Fig. 1(b), show that χc is constant for H applied along the
c axis. For H along the a axis, χa increases with field at low
field, and is approximately constant for an applied field > 1 T.
We attribute the field dependence of χa to domain-wall motion
and the consequent evolution of the populations of domains

(a) (b) (c)

FIG. 1. (a) Temperature dependence of the magnetic susceptibility of Fe2As in the low-field limit as measured using 10-mT field applied
along the a axis (blue data points) and c axis (black data points) of the crystal. (b) Dependence of Fe2As magnetization M on applied field H
at T = 4 K. With H along the c axis (red line), M is a linear function of H. With H along the a axis (black curve), the nonlinear dependence of
M on H is due to the rotation of antiferromagnetic domains. (c) The population of domains with Néel vectors parallel and perpendicular to the
applied field estimated from the dependence of M on H. The assumptions are (1) in zero field, the population of domains with Néel vectors in
the a and b directions are equal, and (2) in the high-field limit, the Néel vector is perpendicular to the applied field.
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FIG. 2. Geometry of the torque magnetometry experiments. The
a-b-c coordinates are the crystal axes. MD1 and MD2 are the sublattice
magnetizations of the two types of domains labeled as D1 and D2. (a)
The magnetic unit cell of Fe2As. (b) Three-dimensional perspective
of the measurement with the magnetic field rotating in the ac plane.
The magnetic field makes an angle ξ with the c axis of the crystal.
MD1 and MD2 are assumed to stay along the a and the b axis,
respectively. The torque is along the b axis. (c) Plan view of the
measurement with the magnetic field rotating in the ab plane. The
magnetic field makes an angle ψ with the b axis of the crystal. MD1

and MD2 tilt away from a and b axis by θ1 and θ2, respectively (θ1

and θ2 are not necessarily the same). The torque is along the c axis
(normal to the plane of the drawing).

with Néel vectors parallel and perpendicular to the applied
field.

The populations of the two degenerate domains can be
estimated from the M vs H curve in Fig. 1(a) by expressing
the field-induced magnetization as Ma = σ⊥χ ′

⊥H + σ||χ||H
and Mc = χ⊥H , where σ⊥ and σ|| are the normalized domain
fraction perpendicular and parallel to the a axis, respectively,
and σ⊥ + σ|| = 1. We made three assumptions: (1) σ⊥ = σ|| =
0.5 at zero field; (2) σ⊥ ≈ 1 at high field; and (3) domain-wall
motion is reversible. The field-dependent distributions of do-
mains parallel and perpendicular to the external field along the
a axis at T = 4 K are shown in Fig. 1(c) and are treated as free
parameters; we find χ‖ = 0.008 and χ ′

⊥ = 0.018. For an ideal
collinear antiferromagnet, we expect χ‖ = 0 at low tempera-
tures [9]. This is not what we observed in our measurements.
The reason is that there is a background contribution to the
magnetic susceptibility that we do not yet understand. We
assume that the background susceptibility is isotropic.

B. Torque magnetometry

The field-induced torque is the cross product of the field-
induced magnetic moment and the applied field, τ = m × B.
The direction of the induced magnetic moment m is given
by the minimum in the total energy: Etot = Em + Eani + Eex,
where Em is the magnetic energy, Eani is the magnetocrys-
talline anisotropy energy, and Eex is the exchange energy that
couples the two sublattices. We refer to the condition Em 	
Eani as the low-field limit and the condition Em � Eani as the
intermediate-field regime [27]. We ignore a separate Eex term
when we analyze the torque data in the (001) plane because
we assume that the exchange interaction stays the same and
can be represented by susceptibility. For torque data in the
(010) plane, our analysis is based on the anisotropy in the
susceptibility, χ⊥ − χ||, which is also related to the strength
of the exchange interaction.

Figure 2(a) shows the experimental geometry when the
applied field is rotating in the (010) plane. ξ is the angle
between the c axis and the applied field. The induced moments
are also in the (010) plane. Thus, the torque is along the 〈010〉
direction. In the low-temperature limit, χ|| = 0 if the isotropic
background is ignored; the induced moment of domain D1 is
therefore along 〈001〉 and the induced moment of D2 lies in
the (010) plane between 〈001〉 and 〈100〉. The direction of the
induced moment of D2 is determined by χ⊥ and χ ′

⊥.
Figure 2(b) shows the experimental geometry when the

applied field is rotating in the (001) plane. In this case, because
of the relatively small magnetocrystalline anisotropy, the tilt
of the sublattice magnetization away from the crystal axes is
significant. ψ is the angle between the external field and the
crystal axes; θ1, θ2 are the angles between the directions of the
sublattice magnetization of domains D1, D2 and the crystal
axes, respectively (θ1 and θ2 are not necessarily equal).

1. Torque magnetometry in the (010) plane in the low-field limit

The torque is zero when the applied field is along the easy
or hard axis of a sample, because the induced magnetization
is in the same direction as the field. Here, we refer to the easy
axis as the lowest energy orientation of the Néel vector, and
define orientations of the hard axis as perpendicular to the
easy axis. When the applied field is oriented away from an
easy or hard axis, the direction of the induced magnetization
shifts toward a hard axis because χ⊥ > χ||. In an AF, the slope
of the torque as a function of field orientation has opposite
signs when the field passes through the orientation of an easy
axis and when it passes through the orientation of a hard
axis. In our sign convention, torque with a negative slope as a
function of angle indicates a hard axis; torque with a positive
slope as a function of angle indicates an easy axis. In a single
magnetic domain of Fe2As, there are two hard axes: the c axis
perpendicular to the (001) plane and the axis perpendicular to
the Néel vector in the (001) plane.

Torque data at 4 K with the field rotating in the (010) plane
are shown in Fig. 3(a). The slope when the field is along
the a axis (ξ = 90◦) is positive at B = 0.5 T and changes
to negative at B > 0.5 T. Therefore, when the 0.5-T field is
oriented along the a axis, the a axis is an easy axis but when B
is greater than 0.5 T, the a axis becomes a hard axis. This
interpretation is consistent with the analysis of the domain
distribution discussed above and displayed in Fig. 1(c). When
the applied field along the a axis is larger than 1 T, the majority
of domains are in the D2 configuration and the a axis becomes
a hard axis.

The slope of torque data when the applied field is along
the c axis (ξ = 0◦) is negative because the c axis is a hard
axis. However, when ξ = 10◦ and B > 0.5 T, the sign of the
torque changes abruptly. This dramatic change in the sign of
the torque is periodic; the periodicity indicates that domain-
wall motion is reversible. When the applied field is aligned
along the c axis, the populations of domain D1 and D2 are
equal. As the field rotates away from the c axis, the projection
of the applied field in the (001) plane changes the domain
distribution as described by Fig. 1(c). When the field returns
to the c axis, the populations of domain D1 and domain D2
become equal again.
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(a) (b) (c)

FIG. 3. (a) Torque magnetometry measurements in the ac plane of Fe2As at T = 4 K. Open symbols are measured data; solid lines are fits
to the data. The legend gives the magnitude of the applied field labeled by color. (b) Calculated torque generated by domains of type D1 as a
function of applied field. (c) Calculated torque generated by domains of type D2 as a function of applied field.

To model the torque data, we first calculate the direction
and magnitude of the induced magnetization M by describing
the susceptibility as a tensor Mi = ∑

j χi jHj [8]. As shown
in Fig. 2(a), there are two degenerate domains with their
Néel vectors perpendicular to each other. For domains of type
D1, the Néel vector is along the a axis and the susceptibility
tensor is

χD1 =
⎛
⎝χ|| 0 0

0 χ ′
⊥ 0

0 0 χ⊥

⎞
⎠. (3)

For domains of type D2, the Néel vector is along the b axis
and the susceptibility tensor is

χD2 =
⎛
⎝χ ′

⊥ 0 0
0 χ|| 0
0 0 χ⊥

⎞
⎠. (4)

The external field in the (010) plane is H =
H0[ sin(ξ ) 0 cos(ξ ) ]T , where ξ is the angle between
the c axis and the external field as depicted in Fig. 2(a).
We consider the effect of the projection of the applied
field along the a axis H0sin(ξ ) on the domain distribution
as described by the data of Fig. 1(c). The torque signals
of two types of domains are τD1/V = σD1χD1H × B and
τD2/V = σD2χD2H × B, while the total torque is the sum
τD1 + τD2. To evaluate this model, we use the measured
magnetic susceptibility as shown in Fig. 1. The free
parameters are χ ′

⊥/χ⊥ and χ||.
Figures 3(b) and 3(c) show the calculated values of τD1 and

τD2; the solid lines in Fig. 3(a) are the summation of the two.
The good correspondence between the model and the data
supports our assertion that domain-wall motion is reversible.

The difference in the sign of τD1 and τD2 contributes to the
abrupt change in the torque signal near an angle of 10°. For D1
domains, when the applied field is rotating in the (010) plane,
the induced moment is always close to the c axis because
χ|| is small. For D2 domains, the field-induced magnetization
is M = H0[ χ ′

⊥ sin(ξ ) 0 χ⊥ cos(ξ ) ]T . If χ ′
⊥ = χ⊥, the

induced magnetization M = χ⊥H0[ sin(ξ ) 0 cos(ξ ) ]T

would be parallel to the applied field H . This would infer that

there is no torque signal from D2 domains and the total torque
signal would be generated only by D1 domains [Fig. 3(b)].

However, the total torque signal we observe is obviously
different from what is depicted in Fig. 3(b) (D1 domains only).
The torque signal resembles a combination of two domains,
hence, we can conclude χ ′

⊥ �= χ⊥. On the other hand, the
dramatic change in the sign of the total torque signal at ξ =
10◦ and T = 4 K indicates that τD1 and τD2 have opposite
signs. Since the induced moment of D1 domains is along the
c axis, the induced moment of D2 domains must be between
the applied field and the a axis.

The difference between χ⊥ and χ ′
⊥ is also observed in the

dependence of M on H [Fig. 1(b)]. Figure 4(a) shows the
difference between Mc and Ma as a function of applied field
and temperature. The bump of Mc − Ma at room temperature
and below is due to domain-wall motion; the difference at high
fields is a result of χ⊥ − χ ′

⊥.
The magnetization of D2 domains in the (010) plane ex-

periences an anisotropic environment that originates from the
difference of the a and c axes of the crystal. By fitting the
model to the torque data, we determine χ ′

⊥ − χ⊥ as a function
of temperature [Fig. 4(b)]. We observe a change in the sign
of χ⊥ − χ ′

⊥ near 200 K that is consistent with the anisotropy
in the dependence of M on H [Fig. 4(a)]. This change in sign
indicates that the field-induced magnetization of D2 domains
is between the applied magnetic field and the a axis below
200 K, and between the applied magnetic field and the c axis
above 200 K. The anisotropy in the perpendicular susceptibil-
ity, χ⊥ − χ ′

⊥, is always small compared to its absolute value,
|χ⊥ − χ ′

⊥|/χ⊥ � 0.05.

2. Torque magnetometry in the (001) plane under
intermediate field

Figure 5(a) shows torque data acquired with the applied
field rotating in the (001) plane. As expected, the data show
fourfold symmetry. We attribute the small twofold symmetry
to a background that comes from misalignment of the sam-
ple. (The c axis is not precisely perpendicular to the field
direction.) The amplitude of the fourfold contribution to the
torque as a function of applied field of three samples from the
same growth run at 4 K is plotted in Fig. 5(b). The fourfold
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(a) (b)

FIG. 4. (a) The field dependence of the difference Mc − Ma between the magnetization with an applied field along the c direction Mc and
the field applied along the a direction Ma. Each curve is labeled by the measurement temperature. When the applied field along the a axis is
larger than 1.5 T, all domains can be treated as equivalent to MD2. Therefore, the slope of the data for magnetic fields larger than 1.5 T is the
difference in the susceptibility χ⊥ − χ ′

⊥, where χ ′
⊥ is the susceptibility in the ab plane perpendicular to MD2 and χ⊥ is the susceptibility along

the c axis perpendicular to MD2. (b) Comparison of the temperature dependence of χ ′
⊥ − χ⊥ value from direct measurements of the type shown

in (a) and from fitting the torque data.

amplitude at higher temperature of three samples can be found
in Fig. S1 of the Supplemental Material [18].

To quantify the magnetic anisotropy in the (001) plane of
Fe2As, we analyze the torque data by minimizing the total
energy for D1 and D2 domains, respectively, then add τD1 and
τD2 together to compare it to the data. When Em is comparable
to or larger than Eani (Em � E (001)

ani ), Néel vectors start tilting
away from crystal axes as shown in Fig. 2(b). We assume that
the two sublattice magnetizations are approximately parallel
to each other, so the exchange interaction is considered in
magnetic energy. With the applied field rotating in the (001)
plane of Fe2As, the total energy is

Etot/V = − 1
2 H (ψ )χtot (ψ, θ )HT (ψ )

+ K22 cos(4θ ) + K1 + K2, (5)

where χtot = σD1χD1, θ = θ1 for D1 domains and χtot =
σD2χD2, θ = θ2 for D2 domains.

To obtain an accurate value of Em, we rotate the susceptibil-
ity tensor together with the Néel vector, χR(θ ) = R(θ )χRT (θ )
[8], where θ is the angle between the Néel vector and the
crystal axis, and R(θ ) is the rotation matrix:

R(θ ) =
⎛
⎝cos(θ ) − sin(θ ) 0

sin(θ ) cos(θ ) 0
0 0 1

⎞
⎠. (6)

During the rotation, the field component along MD1 and
MD2 result in a change in the populations of D1 and D2
domains. Thus, σD1 and σD2 are determined by the angle
between the applied field and the spin axis.

The analogous behavior of a uniaxial antiferromagnet
(AF) [10] provides a point of comparison. In a uniaxial
AF, the critical field for the spin-flop transition is Hc =√

2(K1 + K2)/(χ⊥ − χ‖). For Fe2As, as shown in Figs. 1(c)
and 5(b), we do not observe a sudden change in the

(a) (b)

FIG. 5. (a) Torque magnetometry measurements of Fe2As (sample A) in the ab plane at T = 4 K. (b) The amplitude of the fourfold
component of the torque extracted from measurements of the type shown in panel (a) at T = 4 K and compared to an analytical model (see
text). When amplitude of the fourfold component of the torque saturates at the value τ0, the in-plane anisotropy is τ0 ≈ 4K22.
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domain populations that would be characteristic of a spin-flop
transition. Furthermore, in a perfect crystal that is free from
disorder, the single domain structure created by an applied
field would persist after the field is removed. (In ferromagnets,
domains form to reduce the contribution of the magnetic
energy of stray fields to the total energy. In AFs, this driving
force for domain formation is absent.) We attribute gradual
and reversible domain movement in Fe2As to random strain
fields created by static disorder in the crystal that lead to local
variations in the anisotropy energy.

The midpoint of the change in the populations of the D1
and D2 domains as a function of field is, however, close to
what is expected for the characteristic field of a spin-flop tran-
sition of an ideal single domain easy-plane antiferromagnetic
crystal. The total energy of D2 when ξ = 90◦ is [8]

Etot

V
= K1 + K2 + K22 cos(4θ2)

+ 1

2
(χ⊥ − χ||)H2cos2(ψ + θ2) − 1

2
χ⊥H2. (7)

Both anisotropy and magnetic energy are functions of θ2

but with different periodicity. For an applied field along the
〈010〉 direction (ψ = 0◦), Etot (θ2 = 90◦) is always a global
minimum while Etot (θ2 = 0◦) is at a local minimum under
low fields and it becomes the global maximum when the
applied field is larger than a characteristic field Hc. We

can derive this critical field from θmax = 1
2 arccos (χ⊥−χ|| )H2

16|K22|
in which θmax represents the spin orientation when total
energy is at the global maximum under a known applied
field. When H � Hc, θmax(H � Hc) = 0◦. Therefore, μ0Hc =√

16|K22|/(χ⊥ − χ‖) = 560 mT using the value of K22 =
−150 J/m3 from our torque magnetometry measurement as
described below.

We attribute our observations that domains begin to move
in an applied field smaller than Hc and domain-wall motion
is not complete until the applied field is larger than Hc to
an inhomogeneous distribution of local values of the magne-
tocrystalline anisotropy. We speculate that random strains in
the crystal caused by point and extended defects create a rel-
atively broad distribution of anisotropy at different locations
in the sample. When the external field is removed, the random
strain field controls the energy of the domain orientation and
the volume fraction of domains recovers its initial states.

The torque induced by the applied field is the derivative
of the total energy τ = dEtot/dψ . In the intermediate-field
regime, i.e., Em � Eani or H � Hc, we assume that the sample
is a single domain and the sublattice magnetization is always
nearly perpendicular to the applied field, i.e., θ + ψ ≈ π/2.
The “intermediate-field” regime refers to an applied field
larger than the characteristic field, but not large enough to
significantly change the exchange interaction. An important
assumption here is that the tilt of the two sublattice magnetiza-
tions in the external field is small enough to be neglected. With
this approximation, the magnetic energy is nearly independent
of θ and ψ , Em ≈ − 1

2χ⊥H2
0 . Then, the torque can be easily

related to the anisotropy: τ = dEtot
dψ

≈ dEani
dψ

= −4K22 sin(4ψ ),
where τ no longer depends on the magnitude of the applied
field.

A gradual reorientation of domains of an easy-plane anti-
ferromagnet as a function of applied field was also recently
observed in 50-nm-thick CuMnAs epitaxial layers grown on
GaP [28]. (CuMnAs and Fe2As have essentially the same
crystal structure with Cu and Mn atoms in CuMnAs occu-
pying the same lattice sites as the two crystallographically
distinct Fe atoms in Fe2As.) The strength of the field needed
to reorient antiferromagnetic domains in CuMnAs epitaxial
layers is similar to what we observe in Fe2As bulk crystals.
Thinner, 10-nm-thick CuMnAs layers show a pronounced in-
plane uniaxial anisotropy and a more abrupt transition in do-
main structure as a function of field than 50-nm-thick layers.
X-ray magnetic linear dichroism (XMLD) measurements of
CuMnAs epitaxial layers reveal that the domain reorientation
is not fully reversible and hysteretic for fields less than 2 T.
X-ray photoelectron microscopy (XPEEM) images acquired
after applying 7-T fields in orthogonal directions also show
that the domain structure does not revert to a fixed configura-
tion in zero field.

Based on our observation in Fig 5(b), as field increases, τ

increases quickly then saturates. At higher fields, τ is slightly
smaller than the saturation value, rather than staying the same
until 9 T. At higher fields, the tilting of spins caused by the
external field cannot be neglected, so exchange interaction is
no longer a constant. In our model, however, the torque stays
the same after saturation based on our assumption of constant
susceptibility and exchange interaction. This assumption is no
longer valid in higher field. While induced magnetization is
smaller than χH , the torque is also smaller than the saturation
value.

As our model predicts, the experimentally measured torque
amplitude saturates as the applied field approaches 1 T for
sample B, and 3 T for samples A and C. Hence, it is safe to
select 1 and 3 T as the “intermediate-field” regime for sample
B and for samples A and C, respectively. The measured K22

value of sample A is −150 J/m3. The field dependence of K22

in all three samples follows the same trend, however, indi-
vidual data points do not overlap perfectly. To determine the
error in the measurement of K22 when there is misalignment
of the crystal, we introduced a 10◦ tilting of the susceptibility
tensor in the model and calculated the error propagation.
This 10◦ misorientation of susceptibility resulted in a 0.3%
error in the simulated fourfold torque amplitude. Since the
fourfold amplitude is linearly related to K22, the error of K22

caused by a 10◦ misalignment is also 0.3%. We attribute
the differences in K22 between the three samples to minor
variations in the defect microstructures and stoichiometries of
the three samples.

With a temperature-dependent measurement of torque in
the ab plane at an intermediate field, we obtain the tem-
perature dependence of K22 as shown in Fig. 6. The overall
temperature dependence is similar for all three samples with
relatively minor differences. As temperature increases, the
magnitude of K22 decreases and becomes close to zero at
T > 150 K. K22 of sample A becomes slightly positive for
T > 150 K. From Eq. (2), the total energy reaches a minimum
when the Néel vector is along the crystal a and b axes (θ = 0◦
or ±90◦) for K22 < 0 at zero field. When K22 > 0, the Néel
vector lies in directions with θ = ±45◦ [8].
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FIG. 6. Temperature dependence of in-plane magnetocrystalline
anisotropy K22 of Fe2As. The torque data with the external field
rotating in the (001) plane were measured with an intermediate-field
strength (3 T for sample A and sample C, and 1 T for sample B)
and the amplitude of the fourfold symmetry was extracted to obtain
the in-plane anisotropy with τ0 ≈ 4K22. Intermediate field is defined
as a field strength under which the torque amplitude of fourfold
symmetry saturates at 4 K. The error bars represent 20% uncertainty
in determining the saturation value of the torque amplitude. All three
samples have the same uncertainty, and we only plot error bars for
sample A to make the plot more readable.

C. First-principles calculations
of magnetocrystalline anisotropy

Magnetocrystalline anisotropy of Fe2As has two contribu-
tions, one from spin-orbit interaction (SOI) and one from clas-
sical magnetic dipole-dipole interaction (MDD): anisotropy
from SOI is calculated using DFT for noncollinear magnetism
with spin-orbit coupling, by rotating the Néel vector both
within the easy plane (001) and out of the plane towards the
hard axis (in the (010) plane). The corresponding total-energy
changes are visualized in Fig. S3 of the Supplemental Material
[18] and the anisotropy energies are then obtained by fitting
the energy change vs Néel vector orientation to Eq. (2). This
leads to a twofold symmetric SOI anisotropy energy for the
Néel vector in the (010) plane and a fourfold symmetric one
for the (001) plane. In DFT-LDA, the (010) plane anisotropy
energy is K1 = −320 kJ/m3 and K22 = −290 J/m3 for the
(001) plane. A nonzero K22 indicates the existence of two local
energy minima. In DFT-PBE, the corresponding values are
K1 = −530 kJ/m3 for the (010) plane and K22 = 280 J/m3

for the (001) plane. The sign of K22 differing between DFT-
LDA and DFT-PBE implies that the energetic ordering of
these two minima is inverted. Negative K22 means that the

energy minimum occurs for a Néel vector along a 〈100〉
equivalent direction and positive K22 for a Néel vector along a
〈110〉 equivalent direction.

The MDD contribution is computed using a classical model
that is parametrized using the chemical and magnetic ground-
state structure from DFT. We use the ground-state chemical
and magnetic structure from DFT-LDA as well as DFT-PBE,
to evaluate the following expression for the classical magnetic
dipole-dipole interaction and to compare the influence of
exchange and correlation:

Ed =−1

2

μ0

4π

∑
i �= j

3[m(ri ) · ri j][m(r j ) · ri j]−[m(ri ) · m(r j )]r2
i j

r5
i j

(8)
To obtain the anisotropy energy for bulk Fe2As from this

expression, we use an interaction shell boundary ri j of 180 Å,
which converges the result to within 10−7 eV. This leads
to a twofold symmetric MDD contribution to the anisotropy
energy in the (010) plane of K1 = −220 kJ/m3 for LDA.
For PBE, the corresponding value is K1 = −300 kJ/m3. The
MDD contribution in the (001) plane is less than 1 neV and,
thus, negligible.

Therefore, we find a total out-of-plane anisotropy energy
of −540 kJ/m3 and −830 kJ/m3 from LDA and PBE, respec-
tively. We attribute ∼2/3 of the total out-of-plane anisotropy
energy to the SOI contribution and ∼1/3 to the MDD con-
tribution. Both terms show twofold symmetry with the hard
axis along the 〈001〉 direction. Torque magnetometry can only
measure a lower bound of |K1| > 36 kJ/m3 for the out-of-
plane anisotropy energy and does not contradict our DFT
results.

The in-plane anisotropy energy is computed as K22 =
−290 J/m3 (DFT-LDA) and K22 = 280 J/m3 (DFT-PBE),
while the measured result is K22 = −150 J/m3.

D. Antiferromagnetic resonance of easy-plane antiferromagnets

Without anisotropy, the magnon dispersion of energy in
antiferromagnet is zero at the center of the Brillouin zone.
Anisotropy introduces a band gap at the zone center. The
antiferromagnetic resonance (AFMR) mode we refer to in
this work describes this precessional magnetization motion
at the zone center. With the anisotropy values we determined
by theory and experiment, we can make an estimation of the
AFMR frequency.

We start from equations of motion under the “macrospin”
approximation of the two magnetic sublattices in domain D1
[29,30]:

dM1

dt
= |γ |M1 ×

[
(H22 + Hex)î +

(
−λMb

2 + Mb
1

M
H22

)
ĵ +

(
−λMc

2 + Mc
1

M
H1

)
k̂

]
, (9)

dM2

dt
= |γ |M2 ×

[
(−H22 − Hex)î +

(
−λMb

1 + Mb
2

M
H22

)
ĵ +

(
−λMc

1 + Mc
2

M
H1

)
k̂

]
, (10)

where γ is the gyromagnetic ratio, M1 and M2 are sublattice
magnetizations of domain D1, H1 and H22 are out-of-plane

and in-plane anisotropy fields, respectively, which can be
written as H1 = K1/M and H22 = K22/M. Hex = λM and λ
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is the intersublattice exchange interaction. Ma
1 = −Ma

2 ≈ M,
Mb, and Mc are magnetization components along the b and
the c axis, respectively, during spin procession.

Because the two sublattices along the a axis are aligned
antiparallel to each other, the anisotropy fields along the a
axis are of opposite signs. Along the b and c axes, the sign
of the effective anisotropy field is determined by the signs
of Mb

1,2 and Mc
1,2. In domain D1, although the sublattice

magnetizations stay along the a axis, the in-plane anisotropy is
of fourfold symmetry, so there is equivalent anisotropy energy
contribution along the a and b axes. The effective anisotropy
fields along the a and b axes are determined by the projection
of magnetization on these axes.

The only nonzero solution of the equation of motion re-
quires Mb

1 = Mb
2 and Mc

1 = −Mc
2, as shown in Fig. S4 of

the Supplemental Material [18]. The corresponding angular
frequency can be expressed as ω = |γ |√2Hex(H22 − H1).

In easy-plane AFs, K1 < 0 and its absolute value is usually
much larger than K22, thus the frequency is always real.
Besides, the AFMR frequency is smaller with smaller H22 −
H1 value, because the system is more isotropic. For easy-
plane materials with |K22| − |K1| 	 0, the AFMR frequency
is dominated by the anisotropy in the direction perpendicular
to the easy plane.

For the exchange field, we use sublattice magnetiza-
tion MD1 = 4 × 105A/m and an exchange integral λ ≈ 1/χ⊥
with calculated χ⊥ = 0.0036. We obtain an exchange field
Hex ≈ 140 T. With calculated K1 value from DFT-PBE, K1 =
−830 kJ/m3, the AFMR frequency is f = 670 GHz.

For tetragonal antiferromagnets like Fe2As, the AFMR is
dominated by K1 because |K1| 
 |K22|. The same relation is
also valid for Mn2Au where a previous calculation [31] shows
that the magnitude of the out-of-plane anisotropy is also much
larger than the in-plane anisotropy. It is important to determine
K1 to estimate AFMR frequency, and both K1 and K22 values
are needed for thermal stability of spintronic materials.

As discussed in Refs. [2] and [32], the electrical current
typically switches only a small number of antiferromagnetic
domains. As the anisotropy energy scales with sample vol-
ume, the total in-plane anisotropy energy is determined by
the volumetric difference of the two kinds of domains, �E =
(VD1 − VD2)K22. VD1 − VD2 depends on temperature, current
density, and the pulse width [33]. If the attempt frequency
is high and VD1 − VD2 is small, the magnetic state is more
susceptible to thermal fluctuations.

IV. CONCLUSION

We performed torque magnetometry measurements on
an easy-plane antiferromagnet Fe2As. The measurement re-
sults prove that the domain-wall motion in the single-
crystalline sample is reversible, and allow us to extract the
in-plane anisotropy when the magnetic energy Em is com-
parable to magnetocrystalline anisotropy energy Eani. The
in-plane anisotropy of Fe2As is K22 = −150 J/m3 at 4 K.
K22 is strongly temperature dependent and its magnitude
decreases as a function of temperature. This means that
the domain structure in Fe2As may easily be perturbed
by a small applied field at room temperature. With K1 =
−830 kJ/m3 calculated from DFT, we derived the AFMR fre-
quency f = |γ |

2π

√
2Hex(H22 − H1) = 670 GHz. Our analysis

of torque magnetometry data suggests that the in-plane mag-
netic anisotropy of some candidate materials for antiferromag-
netic spintronic applications, such as Fe2As, can be very small
at room temperature. A field smaller than 1 T is sufficient to
significantly alter its domain structure. The measurement of
K22 in Fe2As provides a baseline value for further studies of
magnetic anisotropy of easy-plane antiferromagnets and the
motion of antiferromagnetic domain walls.
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