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Functional properties of 2D materials like graphene can be tailored by designing their 3D structure at the
Angstrom to nanometer scale. While there are routes to tailoring 3D structure at larger scales, achieving
controllable sub-micron 3D deformations has remained an elusive goal since the original discovery of graphene.
In this contribution, we summarize the state-of-the-art in controllable 3D structures, and present our perspective
on pathways to realizing atomic-scale control. We propose an approach based on strategic application of me-
chanical load to precisely relocate and position topological defects that give rise to curvature and corrugation to
achieve a desired 3D structure. Realizing this approach requires establishing the detailed nature of defect
migration and pathways in response to applied load. From a computational perspective, the key needed advances
lie in the identification of defect migration mechanisms. These needed advances define new forward and inverse
problems: when a fixed stress or strain field is applied, along which pathways will defects migrate?, and vice
versa. We provide a formal statement of these forward and inverse problems, and review recent methods that
may enable solving them. The forward problem is addressed by determining the potential energy surface of
allowable topological configurations through Monte Carlo and Gaussian process models to determine defect
migration paths through dynamic programming algorithms or Monte Carlo tree search. Two inverse models are
suggested, one based on genetic algorithms and another on convolutional neural networks, to predict the applied
loads that induce migration and position defects to achieve desired curvature and corrugation. The realization of
controllable 3D structures enables a vast design space at multiple scales to enable new functionality in flexible
electronics, soft robotics, biomimetics, optics, and other application areas.

1. Introduction Angstrom to nanometer scale.

Many novel properties reported in 2D materials result from their

Two-dimensional materials offer new functionality due to their
atomic-scale thickness and fully-coordinated atomic bonding. This
combination leads to novel design methods in 2D materials like gra-
phene. A unique feature of graphene is that it can undergo large out-of-
plane deformations, enabling 3D corrugation and reconfiguration.
Because of the large difference in rigidity for in—plane [1] and out-
—of-plane [2,3] deformation, the presence of internal strain induces 3D
reconfigurations. For instance, topological defects known as dis-
clinations are non-existent in bulk materials, but form in 2D materials
due to their ability to deform out-of-plane. Such 3D features can be used
to tune electronic, chemical, and mechanical properties, providing vast
degrees of freedom in the design space. However, there are no mecha-
nisms yet that achieve controlled out-of-plane deformation at the
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ability to deform out-of-plane. Controlled 3D deformation in 2D mate-
rials can tailor functional properties such as mechanical toughness,
optical band gap, thermal transport, and pseudomagnetic fields [4-6].
Each of these arise from local strains that are present and induce a 3D
structure that alters the engineering properties. For instance, the Ki¢
fracture strain of graphene is nearly tripled, due to crack deflection and
bridging in 3D sinusoidal deformation as compared to flat [7]. Or,
nanometer scale 3D deformation, which are on the length scale of the
building blocks of life (proteins, carbohydrates, nucleic acids, and
lipids), significantly impacts the properties of biological materials due to
better adhesion and interaction [8-10].

One of the principal assumptions of each of these examples is that 3D
deformation and curvature occurs at the atomic scale (1-10 nm). While
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recent work has shown that crinkle formation can create sharp features
[11], ruga-mechanics based methods of the substrate typically result in
features at larger length scales [12,13]. Utilizing substrates to selectively
create ripples through uniaxial and biaxial compression [14-16] yields
ripples having wavelengths of hundreds of nanometers limiting the
amount of strain localization that occurs due to 3D deformation [17,18].
Additionally, further compression of the substrates lead to delamination
causing crumpling and fold generation [19,20]. While selective delam-
ination has created an entire new area of study for creating novel 3D
sensors using 2D materials, the periodic feature size of devices still re-
mains at the micron scale [21-23]. In order to create 3D deformations at
the atomic scale, a different method that can create localized deforma-
tion is needed.

A promising approach is the controlled introduction of patterned
in—plane (internal) strain. When built-in internal strains are introduced
to 2D materials constrained to be flat, the in-plane accommodation of
strain gives rise to large local stresses. When released, 2D materials can
buckle out-of-plane, adopting 3D configurations that relieve stress to the
extent possible. Out-of-plane deformation results in a regular 3D
structure with controlled features and curvature at the desired scale (see
Fig. 1(a)). Internal strains can be introduced in many ways. One
approach is through in—plane heterostuctures of 2D materials. The strain
caused by the lattice mismatch of two materials causes nanometer
bending and curvature [24-26]. However, this approach to control is
reliant on creating atomically sharp interfaces between materials during
growth [27,28]. Shape programming of 2D transition metal dichalco-
genides by patterned alloying could yield dynamic and reversible shape
changes by including components that respond to stimuli [29]. Here, the
synthesis of these materials requires a patterned substrate, which limits
the resolution to feature sizes achievable with lithography. Atomic scale
3D deformation is also possible by altering the internal strain of 2D
materials through precise patterning of topological defects and their
position [30]. The goal is to create 3D structures like hemispheres,
ridges, and hills using topological defects that each have a unique 3D
deformations (see Fig. 1(b)). For internal strain engineering via topo-
logical defects, there exist formulations of the forward problem (viz. given
a topological defect distribution, find the resulting 3D structure) [31]
and the inverse problem (viz. given a desired 3D structure, identify the
defect distribution) [7].

What is missing is a path to achieving the desired spatial distribution
of topological defects. Deterministic control over topological defects —
their positions and arrangement — in 2D materials would overcome a
critical bottleneck to control of 3D deformation in 2D materials and
allow access to new frontiers in device engineering applications. In this
paper, we review the state of the art in accomplishing this goal and
propose necessary advances to achieve it. We suggest that strategically
applied loads — prescribed tractions and displacements of the 2D mate-
rial — can be used to achieve the desired control. In Section 2, we first
review an established framework that connects topological defects to 3D
deformation. We then summarize earlier computational efforts to
describe defect formation and evolution (Sections 3.1,2,3.2), and pre-
sent a formal description of the challenges faced when seeking to control
the spatial distribution of topological defects (Section 3.3). Finally, we
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propose computational approaches that may help overcome these
challenges (Section 4). The path to control of topological defects in 2D
materials is based on determining (1) the mechanisms of topological
defect formation and migration and (2) the applied load that will evolve
a given distribution of topological defects to a target distribution. Our
proposal is associated with its own meta forward and inverse problem:
given that a mechanical load is applied to a 2D material, along what
pathway will topological defects evolve and what resting position will
they ultimately adopt, and vice versa. We close with by considering how
this computational approach can be validated by and extended to ex-
periments (Section 5).

2. 3D design from topological defects

The notion of topological defects arose from homotopy theory in the
field of algebraic topology [32], and is closely related to the concept of
geometric frustration in crystals [33]. A defect is a tear in the order
parameter field (here the atomic displacements), and a topological
defect is a tear that cannot be patched using only local rearrangements.
For instance, no amount of reshuffling of atoms can ‘fix’ the fact that
more rows of atoms enter from one side than leave the other side of a
circuit encircling an edge dislocation [34]. Although algebraic topology
is an old field, the application of topological defects to condensed matter
systems itself originated in the 1970’s (nematic liquid crystals [35],
superfluid helium [36], and metallic glasses [37,38]). Topological de-
fects are invoked in a theory of melting in 3D crystals [39,40] and
flexible 2D membranes [41], in which melting occurs by a destruction of
crystalline order as defects proliferate.

As illustrated in the work of Seung and Nelson [42], a key distinction
between 2D and 3D is that the strain field surrounding a topological
defect in 2D can be relieved by buckling out of plane: 2D membranes
deforming in a 3D world can trade stretching energy for bending energy.
This is quantified in the Foppl-von Karman parameter y: the ratio of in-
plane stiffness to out-of-plane bending stiffness, where materials with
large y (e.g. 2D materials) more easily bend and crumple than stretch
and shear [43,44]. The large reduction in the distortion energy that
occurs through buckling is responsible for the prevalence of these de-
fects in 2D. For instance, the distortion energy of a disclination diverges
linearly with system size in 3D, but the divergence is reduced to loga-
rithmic in 2D. Similarly, the distortion energy of a dislocation (a bound
disclination pair) diverges logarithmically with size in 3D, but becomes
finite-valued in 2D [42]. Although we focus on the role of the large
Foppl-von Karman parameter of 2D materials for 3D deformation from
topological defects, we note that it also makes them good candidates for
kirigami based devices [45,46].

2.1. Disclinations and dislocations

Topological defects impart internal strain to the lattice by breaking
the ground-state lattice symmetry of the pristine crystal. The principal
defects are disclinations and dislocations. Each topological defect has a
characteristic 3D deformation, the set of which forms a basis set for 3D
deformations in 2D materials (see Fig. 1(d-f)). The 3D deformation of a

Fig. 1. The three-dimensional design of two-
dimensional materials is underpinned by to-
pological defects. Given an arbitrary 3D
structure from (a) hemispheres to (b) ridges
to (c) peaks, the set of topological defect
building blocks such as (d) positive and (e)
negative disclinations or (f) edge dislocations
can be combined to create arbitrary 3D
deformation. Engineering topological defects
and 3D deformation into 2D materials re-
quires a new degree of control over the
spatial arrangement of the defects.
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sample can be tuned through a particular arrangement of disclinations
and dislocations.

For 2D materials, the basic topological defect that underpins most
others is a disclination [47]. A disclination for lattices with 6-fold
rotational symmetry like most 2D materials (graphene, h-BN, TMDCs,
silicene, phosphorene, etc.) is formed by removing or adding a wedge to
change the rotational symmetry to 5-fold (removal) or 7-fold (addi-
tion). The symmetry change is readily seen through a Volterra descrip-
tion of the defects as in Fig. 2, where the induced deformation is shown
in a continuous medium [48]. In Fig. 2(a,c) positive and negative dis-
clinations are created by tearing the medium, respectively removing or
adding a wedge, and restitching it to achieve the configurations in Fig. 2
(b,d). A key challenge to utilizing disclinations for design is that their
presence in 2D materials, as compared to bulk materials, is unique. In
bulk materials (as well as flat 2D materials), disclinations are essentially
non-existent due to their large formation energies arising from the strain
field of the rotational defects. However, out of plane relaxation in 2D
materials dramatically reduces the in-plane strain and makes isolated
disclinations theoretically possible [49]. The out of plane deformation
follows the topological character. The positive disclination introduces a
3D deformation with positive Gaussian curvature resembling a hill,
while the negative disclination a negative Gaussian curvature resem-
bling a saddle. The absence of disclinations in bulk materials means that
there is very little knowledge on how to control or position them.

Edge dislocations, on the other hand, are topological defects that
break translational symmetry via the insertion of a half-plane of atoms
as shown again using a Volterra description in Fig. 2(e,f). Edge dislo-
cations in 2D materials comprise of a bound positive and negative dis-
clination that share an edge [31]. The introduction of a positive and
negative center of curvature in close proximity reduces the strain fields
and defect energy. So, while isolated disclinations are not often observed
in 2D materials, disclination dipoles (in the form of edge dislocations)
are quite common.

Examples illustrating the arrangement of dislocations, and the dis-
clinations that compose them, for a number of 2D materials are repro-
duced in Fig. 3. Both experimental and theoretical works on flat systems
show that oppositely signed disclinations tend to remain bound. In Fig. 3
(a-c), the lattice is assumed to be confined to remain flat, so internal
strain is relieved through macroscopic rotation of the grains on either
side of the dislocation arrays (grain boundaries). The rotation of the
lattice vectors can be clearly seen on either side of the dislocation array

a) jlj c) > e) "H

b)

Fig. 2. Volterra definitions of topological defects. (a) Positive disclinations are
formed by removing a 60° sector (red) from a triangular lattice. (b) The lattice
is restitched to form a five sided shape with convex edges (compare to dotted
pentagon). (c,d) Negative disclinations are formed by adding in a 60° sector
(green) to a triangular lattice at the dotted line in (c). (d) The deformed
structure forms a seven sided shape with concave edges (compare to dotted
heptagon). (e) Edge dislocation created by adding a half-plane of atoms (blue)
to a lattice at the dotted line. (f) The edge dislocation creates a strain field that
creates bulges at the boundary of a sample.
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in Fig. 3(b). Experimental observation of topological defects (Fig. 3(d-f))
show that they are not perfectly ordered. Instead, dislocation arrays take
on sinuous shapes (Fig. 3(d)), and even positive disclinations with only
four atoms have been observed (Fig. 3(f)).

2.2. Usual forward and inverse problem

The 3D deformation associated with a topological defect or distri-
bution of defects can be found through atomic scale (ab initio or classical
potential) simulations and/or continuum modeling. This corresponds to
the forward problem: given a defect distribution, find the corresponding
3D structure. Yazyev and Louie first reported 3D deformation from to-
pological defects in 2D materials through ab initio calculations of dis-
locations arrays in graphene [31]. Chen et al. built on this to model the
3D deformation of dislocations using von Karman equations based on
the 3D deformation obtained from atomistic simulations using the
classical REBO potential [53]. More recently, Zhang et al. also used the
von Karman equations to model the 3D deformation of isolated dis-
clinations [49].

These atomistic and continuum models obtain the 3D deformation
for a given set of topological defects, but the design objective - finding a
set of topological defects that results in a desired 3D structure — is better
represented via the inverse problem. Although the forward calculation of
3D deformations of defect distributions can be input into a search al-
gorithm to find the appropriate one, this approach is more computa-
tionally costly than a direct inverse model. The search algorithm would
need to optimize both the distribution of topological defects to find a 3D
geometry (a non-linear search) allowing for varying the total number of
defects present (a grand-canonical optimization problem).

Instead an inverse model may directly solve for the number and type
of topological defects necessary to obtain the desired 3D deformation.
An example inverse model that utilizes a phase field crystal (PFC)
approach was developed by Zhang et al. [7]. The PFC method identifies
a possible atomic scale structure by finding the steady state charge
density (Fig. 4(b)) on a curved manifold (Fig. 4(a)) [54]. The PFC
method is an alternative to molecular dynamics simulations as it
simultaneously captures atomic length scales and diffusive time scales. It
is governed by the Swift-Hohenberg equation

[

F:/{E(7e+(1+A)2)¢+%¢4 dx, (¢D)

where A is the 2D Laplace operator, ¢ the reduced density, and < the
reduced temperature [55]. If the dynamics are assumed to be dissipa-
tive, this amounts to evolving the governing equation

WA~ 1480 +4) @
using a numerical solver such as a finite element method or spectral
method. The minima that result from the charge density evolution are
converted into a triangular lattice (Fig. 4(c)), the Voronoi tesselation of
which is the atomic lattice (Fig. 4(d)).

In Fig. 4(d), isolated disclinations facilitate the 4 nm wavelength of
the sinusoidal curvature, but these features have never been observed
experimentally and require precise control of defect position and
spacing. So, even though this approach finds the atomic structure that
corresponds to an arbitrary curved manifold, there is no method to
achieving this target distribution of topological defects experimentally.
While the inverse approach provides the set of topological defects that
underlie a given 3D deformation, achieving the desired set of topological
defects is non-trivial. An intimate knowledge of the formation and
migration of topological defects is required to achieve the desired
configuration.
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Fig. 3. Examples of topological defects in 2D

. ,:': YYry<yyx 'A"a_:., SR 4 sl ) ¥ materials. (a-c) Structural models showing
- -~ - . . L

:‘y‘,c,.".".' :‘:‘: '.".",‘,‘v"" °° d | 4 4,4 i )} y 2 & arrays of dislocations composed of positive
A ' 4 Y A .. . . . . .

LYY YAALT T I AAAY Y Y . A4 4 Iyea % : T ¢ & and negative disclinations in (a) graphene,
rY'vAwAAd I'Y I L AAAYY A 4 4 2 ‘ t
SALLITTY Y'Y A" Y T 1 LA Ay @ a4 4 = ¢ 1 ) 4 & ¥ (b) MoS,, and (c) phosphorene. Reproduced
i T V'Y AYAATAAAYY Y T L - a4 $-& ¥ ; .

Y YA I L L L AAAYY S 4 J - ¥ b ¥ ¥ with permission from [47]. (d-f) Trans-

AL 1A v

X

mission electron microscopy images of dis-
locations in (d) graphene (Reprinted with
permission from [50] Copyright 2011 Amer-
ican Chemical Society) (e) MoS,, (Reprinted
with permission from [51]. Copyright 2013
American Chemical Society) and (f) silica
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Fig. 4. Overview of inverse design method for topological defects [Reproduced with permission from Ref. [7]]. (a) Input 3D deformation with sinusoidal 3D to-
pology. (b) Charge density map created from the phase field crystal model. (c) Triangular lattice generated from the minima of (b). (d) Voronoi tesselation of the

triangular lattice yielding a graphene sample with an array of topological defects.

3. Beyond the forward and inverse problem - tracking the
pathways and migrations of topological defects

The forward and inverse problems described above determine the
internal strain and 3D configuration for a set of static positions of to-
pological defects and vice versa. Even given robust solution methods for
these, the critical remaining problem lies in their dynamics — their mo-
tions and migrations, especially in response to applied fields. Given a
target spatial distribution, how can defects be introduced in graphene,
and then guided in their motions to the target? An understanding of the
migration mechanisms and pathways is a prerequisite to answering this
question.

3.1. Prior experimental and computational work

Some mechanisms for the formation of topological defects have been
identified, but most work has aimed at their observation and not in
controlling their movement and position. Experimental observation has
shown that topological defects are introduced into 2D materials during
synthesis as both geometrically necessary dislocations [56] and as iso-
lated defects [57,58]. For instance, a principal source of topological
defects in graphene is grain boundaries, where arrays of dislocations
stitch two grains together [59]. The dislocations are geometrically
necessary and account for the misorientation between two grains. The
specific arrangements of topological defects that can stitch grains
together have been enumerated to show the vast arrangements possible
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in graphene spanning varying misorientation angles and line directions
[60,61].

The large phase space of observed grain boundaries arises from the
natural misorientation of 2D materials grown on substrates [62,63]. In
addition, during annealing grain boundaries can migrate so as to remove
non-equilibrium structures that form during island coalescence during
growth, to increase the average grain size. Still, both high and low-angle
grain boundaries persist in annealed graphene [64]. While most
observed grains are quite large, small grain boundary loops also form
resulting in metastable ‘flower-defect’ configurations [65,66]. The for-
mation mechanisms of flower defects has recently been proposed to be
based on a bulge mechanism associated with the dynamic process of
annealing [67]. Unfortunately, none of these observations have shown
how we can tailor a specific grain boundary structure.

To overcome this, recent theoretical studies have focused on utilizing
the substrate morphology to synthesize topological defects directly [30].
However, the substrate topology can only be defined up to a specific
resolution set by the limits of lithographic techniques. In addition,
nanoscale features tend to become reorganized (e.g. through step
bunching) by 2D materials during growth [68,69]. Therefore there re-
mains a need for controlling the position of topological defects.

The control of defect positions is grounded in understanding the
topology and mechanisms of dislocation migration. Considering geom-
etry alone, dislocations can be created and manipulated through isolated
bond rotations in otherwise pristine material. For example, Stone-Wales
defects in graphene form when a single carbon-carbon bond is rotated
by 90°, resulting in a 5|7|7|5 quadrupole of disclinations [70,71]. The
quadrupole can be thought of as a pair of 5|7,7|5 dislocation dipoles
with opposing topological character [72]. Bond rotation is a conserva-
tive form of defect introduction since it does not require insertion or
removal of atoms. Stone-Wales defects have been observed to form this
way in experiment, as a result of electron damage in microscopy
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experiments [57,73] or due to ion bombardment [74]. After they are
created, the two dislocations present in the Stone-Wales defect could
then be separated through additional bond rotations.

In modeling and simulation, the formation and migration of topo-
logical defects is most commonly tracked through Monte Carlo (MC)
simulations based on bond rotations for conservative glide motion.
Recently, climb as well as glide was addressed with a point defect
mediated hopping mechanism [77]. Other common approaches such as
molecular dynamics (MD) may struggle to capture the long time scales
needed, and events such as bond rotations are relatively rare on MD
timescales. Early Monte Carlo simulations of carbon nanotubes under
constant tensile stress show the role of bond rotations, defect formation,
and defect migration in their plastic deformation [78]. Those simula-
tions, for instance, identified a defect unique to 2D systems that could
serve as a mediator of plastic deformation known as a ‘worm’ due to its
method of locomotion. Such worms are comprised of alternating arrays
of dislocations (a dislocation screened by multiple dislocation dipoles),
and form under large applied tensile stress since the screening of the
strain fields due to dislocation-dislocation interactions reduces out-of-
plane buckling. Other MC simulations address graphitic sp?> bonded
systems to show the evolution of not only Stone-Wales defects but also
more general flower defects and grain boundary loops seen in experi-
ments [79,76]. Most recently, MC approaches have been used to evolve
the connectivity of carbon atoms during growth. These simulate the
annealing of amorphous carbon to show the origin of defect structures in
graphene [75].

Such Monte Carlo approaches are useful, but they require energy
calculations at each step to determine the acceptance or rejection of a
specific bond rotation. Additionally, within a given instance, pathways
are identified for a specific applied load and require a new simulation for
each applied load. This becomes computationally expensive as the
simulations can require hundreds of thousands of bond rotations. For

Fig. 5. Examples of Monte Carlo results from prior literature. (a) Formation of graphene from random carbon precursor with bond rotations. Color shows different
defect structures in the graphene. Reprinted with permission from [75]. (b) Annealing of a flower defect through bond rotations in both experiment and simulation.
Reprinted with permission from [76]). Copyright (2012) American Chemical Society.
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instance, in the MC simulation results reproduced in Fig. 5(a), Zhuang
et al. simulate a 7.6 nm x 7.6 nm graphene supercell and, even though
5 x 10° bond rotations are included, the structure still contains features
not observed in experiment [75]. Even the evolution of much smaller
flower defects carried out by Kurasch et al. in Fig. 5(b) enclose only
seven hexagonal rings of carbon but require 5 x 10* bond rotations to
recreate the flower topological character [76]. A simple example shows
the challenge with MC methods. Given a 100 x 100 nm? sample with 10
dislocations in it that are on average 10 nm from their final position,
there are 1052 paths that the dislocations can take to move to their final
position. Disclination migration is even more complicated since (as
described in the next subsection), it itself is based on dislocation
migration. The large computational cost of Monte Carlo methods
coupled with their stochastic nature makes it difficult to use them to
exhaustively search and identify migration pathways and mechanisms.
The phase space of possible pathways is prohibitively large to be fully
sampled.

3.2. Example: pathway to create isolated disclinations

To illustrate the challenge in detail, we consider mapping out a single
defect migration pathway that yields a specific desired spatial arrange-
ment of topological defects. From this specific example, in the following
subsection we will generalize the problem at hand by representing
migration pathways as sequences of bond rotations and present a formal
statement of the associated meta forward and inverse problem.

Our example path is one that leads to the creation of isolated dis-
clinations in graphene. While the formation and migration mechanisms
of dislocations (5|7 pairs) is relatively more explored, the formation and
migration mechanisms of disclinations (isolated 5 or 7 rings) needs to be
further developed. This is especially true since positive and negative
disclinations effectively introduce point sources of curvature into a 2D
material, and therefore would be effective for designing 3D geometries.
The pathway outlined here is one that creates isolated disclinations by
taking advantage of the fact that dislocations can be thought of as bound
disclination dipoles. It is outlined without regard to its energy land-
scape, which we will discuss later.

Fig. 6 shows the hypothetical pathway for creating isolated dis-
clinations using only bond rotations. Starting with pristine graphene in
Fig. 6(a), four isolated disclinations are formed in Fig. 6(h). The process
is underpinned by dislocation migration, where a 5|7|7|5 disclination

90° Rotation
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quadrupole is formed in Fig. 6b) and separated through fourteen bond
rotations (Fig. 6(c,d)). A second 5|7|7|5 defect forms in Fig. 6(e), and
dissociates again (Fig. 6(e,f)). Fig. 6(g) shows the annihilation of dis-
clinations as the negative disclination in one edge dislocation cancels the
positive disclination in the other. The annihilation creates four isolated
disclinations in Fig. 6(h). In theory, this process can be repeated to form
disclination arrays with defined spacing. This path utilizes dislocation
migration — described above as a sequence of bond rotations — as the basis
for positioning disclinations.

However, the path relies only on conservative bond rotations, and is
associated with a complex and possibly unattainable energy landscape.
Even if this pathway were feasible, it is one of out of many and it is
unlikely to be the lowest energy pathway. For instance, the dislocations
may migrate through the same worm mechanisms identified in carbon
nanotubes or the disclinations could separate into partials connected by
a stacking fault [80]. It is not obvious what type of applied loading might
help to promote this path. Due to the many different paths that a set of
dislocations can take, a more robust approach is needed to enumerate
possibilities and efficiently select likely candidates.

3.3. Formal statement of ‘meta’ forward and inverse problem

To give a formal statement of the meta forward and inverse problems,
we generalize the example above to consider arbitrary allowable defect
migration pathways. A rigorous problem statement helps to define the
nature of the search space and conceive solution strategies.

3.3.1. Configuration representation through network connectivity

In principle the presence of topological defects within a hexagonal
lattice can be described by the network connectivity of the lattice. In
graphene, each atom is bonded to three nearest neighbors to ensure an
sp? hybridization. Some possible connectivities of a graphene sheet are
seen in Fig. 7, all showing different arrangements of topological defects
preserving sp? bonding. The black lines in Fig. 7(a) show the connec-
tivity for pristine hexagonal graphene, with points (atoms) labeled by
letters. In the pristine configuration C; each atom is linked to three
others, as enumerated in Table 1 and the configuration energy is E;.
Connected points are listed in a clockwise sense around the central
point. (see Table 2).

If a single bond rotates by 90° degrees, the connectivity of the
network changes but maintains sp? bonding. The topological

Fig. 6. Mechanism for forming and migrating dis-
clinations. (a) Starting with pristine graphene, a 5|7|
7|5 defect is formed in (b) through a bond rotation
(inset b,c). (c,d) Bond rotations create isolated edge
dislocation (5|7,7|5) with a desired spacing. (d) A
second 5|7|7|5 defect is formed one lattice vector
above the first one in (b). (f,g) Bond rotations create
isolated edge dislocation (5|7,7|5) up until the same
sign dislocations are sharing carbon atoms. (h) The
same sign dislocations react to create isolated dis-
clinations separated by a hexagonal ring. Color
coding is used to highlight positive (magenta) and
negative (cyan) disclinations.
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brittle fracture

chain formation dislocation glide

Fig. 7. Definition of network connectivity for graphene. (a) The connectivity between atoms (points) are the three bonds (lines) that connect them to adjacent atoms.
A 90° rotation of bond OP to O’P’ changes the network connectivity to the lines in red. (b) The network connectivity is altered by successive bond rotations. From a
5|7|7|5 defect the connectivity diverges and requires accounting for a particular sequence of configurations.

Table 1

Network connectivity table for the configuration shown in Fig. 7(a). Points are
labeled by letters, and for sp> bonding each point is connected to three neighbors
for a given configuration. Configuration C; describes the neighbors around each
point before bond rotation (black) while configuration C;;; shows a configura-
tion accessible from C; via a single bond rotation.)

Pt. Ci - Cit1

D: (P.C.E} - {0,C.E}

K: {L,0,J} — {L,P,J}

o: {A,P.K} = {A.D.P}

P: {0,D,H} — {0,H,K}
Table 2

A collection of paths S; that evolve the initial con-
nectivity Cjo to show the divergence of paths in 7
(b). Each path has an index j that is associated with
each connectivity Cj;.

So: {Co0,Co1.Cozis .-}
Si: {C10.C11,Cri, ...}
Sat {C20,C21, Cagii, ...}
S3: {C30.C31,C2i0, ...}

rearrangement for rotation of bond OP is shown in red in Fig. 7a) and
introduces a 5|7|7|5 quadrupole of disclinations. The bond rotation in-
volves changes to the connectivity of four atoms (D, K, O, P). The change
in connectivity is shown in Table 1: points O,P swap neighbors K,D and
points K,D swap neighbors O,P.

The set of all possible configurations C that maintain sp> connectivity
is an equivalence class. Each possible defect arrangement corresponds to
a configuration C: the topology of each dislocation configuration is
unique and can be described by its connectivity. The usual forward
problem can be posed as: given a network configuration C, what is the
associated 3D structure? And the usual inverse problem can be posed as:
given a desired 3D structure, what is the needed network configuration?.

3.3.2. Defect migration pathways as sequences of bond rotations

Given the large phase space of defect migration pathways, efficient
ways to enumerate, search through, and select possible pathways are
needed. With unique arrangements of topological defects denoted by
configurations C, then pathways along which a set of topological defects
may move can be given by sequences of configurations S = {Cy, C1,C2,

...} with associated configuration energies {Eo, E1, Es, ..}. For example,
the Stone-Wales bond rotation described in Fig. 7(a) updates the con-
nectivity from configuration C; with energy E; to C;.; with energy E;.1,
where the latter is accessible from the former through the bond rotation.
A particular pathway S consists of sequences of configurations where
Ciy1 is accessible from C; because the connectivities differ by only a
single bond rotation.

Starting at an initial connectivity Cy the superset S = {S1, S2, S3,
...}lists the unique paths S; = {Cjo,Cj1,...} that are possible. For
instance, in Fig. 7(b) the sample starts with connectivity C, and with a
bond rotation transforms to C;, introducing a Stone-Wales defect ac-
cording to the rules from Fig. 7(a). A subsequent bond rotation can
annihilate the original Stone-Wales defect, create an additional Stone-
~Wales defect Cy;, create an octagon Coy; (typically leading to strain
localization and brittle failure), form a chain Cy;;, or advance an existing
dislocation by one Burger’s vector Cy;, (glide). To find the corresponding
configuration energies, the atomic configuration of each candidate state
should be optimized subject to the constraint that its network topology is
fixed. In this way, local minima of the potential energy surface (PES) are
sampled.

Such enumeration of pathways, where allowable configuration
changes can be considered systematically in terms of accessible modi-
fications to ring connectivity tables, enables a degree of organization
within the large phase space of pathways. Elements S; of S take on a tree
structure that branches outwards starting from a fixed initial configu-
ration. The pathways described this way will exhibit large diversity, and
path enumeration like this could be extended to 2D materials beyond
graphene with slight modification. For example, the formation of 3-fold
rotational ‘trefoil” defects (8-4-8-4-8—4 rings with trigonal symmetry) in
boron nitride when isolated vacancies cluster together involves one 60°
rotation of three atoms neighboring another [81]. The formation of
mirror twin boundaries in MoSe, when Se vacancies coalesce [82] re-
quires a sequential set of bond rotations similar to formation of ‘worms’.

The superset S = {S;},j = 1,2,3,...defines the phase space of paths
from an initial position, capturing in full the divergence of paths from an
initial configuration Cy. The meta forward problem then becomes effi-
ciently selecting the most likely sequence S amongst all elements of S,
given the initial configuration and the application of a prescribed load.
The meta inverse problem is to find what mechanical loading to apply, if
a given path is desired. The meta forward problem requires an efficient
approach to identifying candidate pathways and determining their en-
ergy landscape. The meta inverse problem requires a way to efficiently
search the set of all possible sequences and select the viable ones in a
given setting/environment.



E. Annevelink et al.
4. Predicting applied load to control topological defects

Realizing a specific distribution of topological defects to create a
desired deformation will enable designing the 3D deformation of 2D
materials. Achieving this control requires understanding defect mecha-
nisms of migration, especially in response to applied loads. Here we
briefly review how applied loads induce forces on topological defects;
we show an illustrative example of how a displacement boundary con-
dition (given as an applied strain) can alter the energy landscape of
defect migration; and we discuss opportunities to address the meta
forward and inverse problems that determine the path of topological
defects in response to an applied load, and the load that gives a desired
migration path for topological defects.

4.1. Forces on dislocations arising from external fields

Externally applied loads and body forces induce configurational
forces on topological defects, which is the basis for guiding their motions
along a desired path. Specifically, external loads can be applied in the
form of traction and/or displacement boundary conditions that induce a
particular stress, strain, and displacement state in a boundary value
problem. When present, these external fields interact with the corre-
sponding internal fields of the defects. The interaction reflects the fact
that the minimum energy configuration (spatial distribution) of a set of
topological defects in the presence of an external field is generally not
the same as the minimum energy configuration in the absence of the
external field. As a result, the introduction of an external stress may
cause defects to move, inducing a rearrangement.

The tendency of a dislocation to move through the crystal in response
to an stress field is described by the Peach-Koehler (PK) force:

Jo = oyniby, 3

where the force f; is the result of the external stress ¢; acting on a
dislocation that moves on plane with unit normal n; and dislocation
Burgers vector b; [83]. The force on the dislocation is based on its to-
pological character, i.e. the Burgers vector. It is therefore a result of the
lattice incompatibility. The plane on which the dislocation moves de-
pends upon whether the motion is in the form of climb, glide, or cross
slip. This configurational force on the dislocation provides a means of
controlling it. Since the topological content of disclinations can be
modeled as an array of dislocations [84], the force on disclinations can
be found through the PK force on all the constituent dislocations.
Alternatively, numerical methods that find the energy of disclinations

a) Sy b c)
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can be used to solve for the force as shown by Zhang et al. [49].

4.2. Example: Using strain to control dislocation spacing

The forces on dislocations, and the associated potential energy
landscape, can be used to induce a desired migration pathway amongst
dislocations. Here we return to our previous example, and show how the
application of an external shear (e.g. via fixed displacement boundary
conditions) can affect the energy landscape of the pathway shown in
Fig. 6 where dislocation dipole separation results in the formation of
isolated disclinations. The geometry of the supercell, the shear &,
applied to it, and resulting change in geometry, is shown in Fig. 8(a).
The shear is applied in a direction perpendicular to the line along which
the dislocation dipole separates. The curves in Fig. 8(b,c) show the local
minimum energies for each network connectivity shown in Fig. 6,
thereby mapping out the potential energy surface (PES) along the path.
They are determined assuming that the graphene sheet is constrained to
remain flat along the entire pathway. The family of curves presented in
Fig. 8(b,c) corresponds respectively to the introduction and separation
of the first and second set of dislocation dipoles, respectively. The en-
ergies are calculated using LAMMPS [85] with the interatomic potential
AIREBO [86].

Fig. 8(b) shows the energy landscape to introduce and dissociate the
first dislocation dipole (d;), for varying external applied shear. The
applied strain field changes the potential energy surface such that
dislocation dissociation becomes favorable and makes 5|7|7|5 dipole
separation possible. As shear strain is applied, the energy landscape for
dislocation separation is altered to create a meta-stable 5|7|7|5 dislo-
cation configuration that is separated. As the applied shear increases, the
dislocation separation that minimizes the total energy becomes larger,
as shown by the black dotted line. The minimum in the energy corre-
sponds to the configuration where the PK force is zero. If larger shear is
applied (not shown), the initial thermodynamic barrier (spacing d; = 1
nm Fig. 8(b)) is overcome at 3.5% strain, removing the effective barrier
to dipole separation. Of course, the simple picture for the separation of a
single dislocation dipole would be more complicated than shown if a
more complex topological structure (like a larger number of pre-existing
defects) were present. For example, the potential energy surface asso-
ciated with grain boundary migration contains numerous metastable
configurations of dislocation arrays [87].

Fig. 8(c) then shows the energy landscape associated with intro-
ducing and dissociating the second dislocation dipole. This pathway
corresponds to the bond rotations shown in Fig. 6(e-h), the end result of

Fig. 8. Dislocation separation versus energy
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which are isolated disclinations. From Fig. 8(a), we simulate the sepa-
ration dy of the light blue dislocations as the dark blue dislocations are
fixed with separation of d; =5 nm. In Fig. 8(c), the minimum energy
separation of the second dislocation dipole is altered by the external
strain in the same way as a single dipole. A key difference is the higher
external strain field needed, which results from the need to overcome
the strain field of the first set of dislocations itself.

Once the dislocations have been positioned as desired, the external
strain field can be relieved and the graphene sheet released from the
substrate. The 2D material can deform out of plane, revealing the
spontaneous 3D deformation (insets in Fig. 8(b,c)) induced by the array
of topological defects. Even in these simple examples, the difference
between the 3D structure of bound vs. separated disclinations shows
how precisely topological defects alter 3D deformation. The 3D defor-
mation in the inset in Fig. 8(b) is largely localized to the dislocations,
whereas the 3D deformation in the inset of Fig. 8(c) shows ridges
spanning the entire 5 nm separation, with a peak-to—peak amplitude of
6 nm and wavelength of 1.3 nm.

These two contrived examples illustrate the concept of using strain to
control dislocation position. However, the dimension of the potential
energy surface increases rapidly when more than dislocation dipoles are
considered. In addition to creating dislocations through 5|7|7|5 defect
formation and separation, as-grown dislocations can be utilized from
nanograined 2D materials, where strain could be used to manipulate the
densely packed grain boundaries through shear coupling [88,89].
However, the more dislocations that are present the more complex and
high-dimensional the energy pathways become (as described in Section
3.3.2). To address the more complicated scenario of multiple topological
defects and branching paths, we explore automated methods for deter-
mining the evolution of defect spatial distribution given a more complex
potential energy surface.

4.3. Forward problem: finding the path for a prescribed load

Finding the path a topological defect follows in the presence of a
prescribed loading constitutes the meta forward problem. The system
parameters — material, applied fields, and initial configuration — are
defined and the topology is evolved to obtain the path and final
configuration. While this problem is challenging due to the large
dimension of the search space, any solution strategy must involve first
mapping the potential energy surface to identify the low energy valleys,
and then using the mapping to identify the path along which the
network topology changes. This approach to the forward problem is
shown in Fig. 9, and also serves as the basis for any attempt at inverting
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the solution.

4.3.1. Mapping the potential energy surface

Mapping the PES, and therefore navigating the space of configura-
tions, is challenging due to the many energy evaluations needed to
approximate the smooth variation of energy in a high dimensional
space. While the energy of every possible configuration could be esti-
mated — using atomistic methods, continuum methods, or a combination
— this is extremely inefficient since most configurations are not realistic
and since relationships exist between the energies of adjacent states.
Such relationships are evident in Fig. 8(b,c), where each energy trajec-
tory could be described by the interaction energy of the dislocations and
the elastic strain in the supercell. Instead, an approach that efficiently
identifies and maps the low energy pockets of the configuration space,
and avoids the unreasonably high energy portions, is desirable.

The most commonly used approach to identify relevant configura-
tions is to map the high dimensional PES using Monte Carlo methods to
find minima [90]. When using Monte Carlo approaches, the PES is
sampled along a chain of connected states (evolved by, e.g., bond ro-
tations). However, the effectiveness of the MC search through high
dimensional space is limited. For example, when mapping a PES via
bond rotations, from a given configuration typically one considers all
possible bond rotations determines the energy change despite that most
bond rotations are unlikely or irrelevant. Assuming that a computational
engine is available that can robustly and efficiently return the energy
when presented with a given configuration, then improvements over
Monte Carlo may be possible.

For instance, in terms of more efficient strategies, there is an op-
portunity in new machine learning methods like probabilistic Gaussian
process models. Gaussian process models can take into account the
correlations in the PES and can both map the PES and give estimates on
the uncertainties in the mapping. In a Gaussian process model,
numerous random samples of the entire potential energy surface are
generated, which enables identifying the dominant low-energy pockets
and assigning uncertainties to the unexplored regions. The uncertainties
direct the PES exploration such that not only are the minima discovered
but the entire PES can be approximated within a desired tolerance
[91,92]. A simplified demonstration problem could be defined in which
the PES that spans between two prescribed local minima is searched and
mapped. When calculating the energy of the system, any of the methods
introduced in Section 2.2 including ab initio, classical potentials, or
continuum modeling can be used. In fact, a number of these could be
combined with the error estimation to form high, medium, and low fi-
delity models that reduce the variance associated with the Gaussian
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process model [93].

4.3.2. Finding the path through a PES

Navigating a high-dimensional network topology according to the
potential energy surface is challenging due to the non-locality of the
problem. Changing one bond rotation in the path will affect every sub-
sequent bond rotation. However, there are many well-established
methods that determine migration paths through a potential energy
surface, once the potential energy surface is known [94]. Although here
we address the migration of topological defects, the problem of finding
paths through potential energy surfaces is quite broad and applies to
many physical questions including ion diffusion and annealing. Paths
can be identified based on several criteria, for example:

e Minimize final configuration energy: Identifying the path that gives the
largest total reduction of energy between the initial and final
configuration. Note that this would not require explicit knowledge of
the path, but only its initial and final configuration, and therefore
more closely resembles the original forward and inverse problem.
Steepest descent: Identifying the path that gives the largest total
reduction of energy possible at each step.

Minimize largest energy increase between two successive configurations:
Given sequence energies {Ejo,Ej1,Ej2,..} for path S;, the largest
energy change is given by AE; = max (Ejir1 —Ej;). The selected path

Sj is then the one that has the smallest AE;.

Minimize largest energy increase between two configurations: Given
sequence energies {Ejo,Ej1,Ej2,..} for path Sj, the largest energy
change is given by AE; = max (Ejy —Ej;) where i’ > i. The selected

path S; is then the one that has the smallest AE;. That is, avoid paths
that traverse steady climbs over the potential energy landscape over
several steps.

Since the energies considered are local minima of metastable states of
the PES, further complexity could be introduced by considering transi-
tion states between successive configurations [95,96]. The metrics are
useful for evaluating the likely path through a PES. Coupled with the
enumeration of paths given in Section 3.3.2, these criteria allow for a
ranking system of what the most likely paths are.

The problem of mapping the PES and finding an optimal path
through it could be merged by combining Gaussian process modeling
and dynamic programming. In fact, this approach has recently been
demonstrated to predict transport pathways for proton diffusion in ox-
ides [97]. As a demonstration, one could search a path between two
well-defined local minima in the PES based on the criterion that the
energy barrier along the path be minimized. A Gaussian process model
could be used to iteratively update the description of the PES, based on
the estimated uncertainty of the energy barrier itself. Dynamic pro-
gramming is an optimization method that can be applied to simplify a
complex search by recursively breaking it down into simpler sub-
searches. Dynamic programming algorithms have been shown to be
effective at finding paths through PES [97,98], and may be effective for
searching through the lattice network space here as well. Additionally
this approach offers the advantage that it does not rely on prior
knowledge, and therefore may not be biased by preconceptions of likely
pathways.

Alternatively, given the tree-like structure of the space of migration
paths, the optimal path might be determined using Monte Carlo Tree
Search (MCTS) algorithms [99,100]. MCTS excels in scenarios where the
number of choices in successive branches becomes too computationally
expensive to calculate exhaustively, and underpins recent accomplish-
ments of Al in the games of chess or GO [101]. In addition, MCTS has
been applied to materials informatics. It has mainly been used in the
space of molecular chemistry to discover new molecules and to deter-
mine how to synthesize them [102-104]. The principal underlying
MCTS is to assess the most promising move (bond rotation), where the
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search space is expanded by random sampling of possible sequences. It is
applied by generating multiple play-outs, where a game is ‘played out’ to
the end by selecting moves randomly. The final outcome of each play-
out — in our case a sequence of bond rotations — would be weighted by
a given metric — in our case the energy barrier — so that better choices are
made in forthcoming rounds. A similarity between AlphaGO and the
physical applications of MCTS are that the decision making can be
accomplished by a neural network (NN). The deep learning method al-
lows for efficient exploration in the network structure [105]. The met-
rics for suitable paths can be used to define the loss function of a NN that
is able to optimize the local choices that are made using previous
knowledge of simulation results. In comparison to dynamic program-
ming that only uses the metrics, the NN is able to determine its own
heuristics to make decisions in order to gain the same desired outcome.

Together, path selection metrics together with robust approaches to
PES mapping and path finding are critical to solving the meta forward
problem. However, what we are after is the inverse, determining an
applied field that produces a desired set of topological defects. We next
show how the forward problem is necessary in order to formulate a
strategy for the inverse problem.

4.4. Inverse problem: finding the load to control topological defects

The meta inverse problem is to identify what field to apply to achieve
a target configuration from a prescribed initial configuration. For
instance, in Fig. 9 the initial configuration C;, three grain boundaries
(arrays of dislocations ), and final configuration Cy, an array of dis-
clinations, are given as the inputs to the inverse model. The inverse
model aims to find the loading that results in a path that corresponds to
the configuration transformation C;—Cy. The specific path that connects
the initial and final configurations is not as important as the final
configuration. The degree of freedom in the path allows for putting
constraints on the applied load such that it can be accomplished
experimentally.

Here we suggest two strategies to the inverse problem. The first is a
conventional approach that utilizes the forward method to iteratively
find an applied load that produces a path that gives the final configu-
ration. The second is based on supervised machine learning, which uses
the conventional approach to generate labelled data and identify cor-
relations in the data. For instance, a loading that is applied to a material
to control the path does not change the path {Cy, Ci, C2, ...}but does
change the potential energy surface {Eo,E1,Es, ... }the path traverses. In
Fig. 8, the same path is taken in each instance, but different applied
loads change the potential energy surface that dictates a particular
dislocation separation. The second approach has been shown to be
effective in finding predictive inverse solutions and can more directly
find the applied load [106,107].

4.4.1. Iteratively finding the optimum loading

The conventional approach is based on updating the applied loading
until a path that produces the desired final configuration is achieved. An
initial guess of the applied load would be provided, and the forward
solution used to find the path and final configuration. Optimization of
the applied load would be based on minimizing the distance of the
predicted to the desired final configuration. In addition to this primary
metric, a number of others may prove useful to optimizing the load. One
such metric, for example, is the distance of the closest point in the
predicted path to the final configuration. A configuration in the path
generated by the forward solution may be closer than the predicted final
configuration or even contain the desired final configuration. So, instead
of finding a better end point, the algorithm may be able to update the
applied load to terminate the path after fewer bond rotations. Additional
considerations would be to include metrics that account for the feasi-
bility of applying the particular load experimentally, or checking the
sensitivity of the path to the applied load to make it more robust in light
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of experimental uncertainty.

Optimizing the load is a highly non-linear problem as small changes
could change the path dramatically by making a new path suddenly
accessible [97]. Therefore, while a gradient descent algorithm could be
used to find solutions that are close, it may have a hard time exploring
the phase space effectively. Instead, genetic/evolutionary algorithms
that sample the phase space and build solutions iteratively may be
effective to find the applied loading [108]. A possible merit to the use of
genetic algorithms is that the spatial distribution of the applied load can
be mapped to the fitness of the resulting path such that genetic repre-
sentations of the effective regions of the loading field are passed on
through cross-over but ineffective areas are blended to explore new
areas of phase space.

4.4.2. Direct calculation of the applied load through deep learning

The conventional solution to the inverse problem is reliable but not
efficient at solving for the applied load since iterative search is needed.
Instead, a deep learning model may be able to find correlations in the
data generated by the conventional approach that can produce an
applied load directly from the network topology and the initial and final
configurations. This is a typical use-case of supervised machine learning
models, where although physical solutions to the problem may exist, the
solution may be computationally expensive or require a sufficient
amount of human input. In this case, the challenges posed may warrant
developing a machine learning model.

The concept of network connectivity as described in Section 3.2 has
recently been used to predict the stability of inorganic crystals
[109-111]. The approach uses convolution layers to transform a graph
representation of a material to a vector and finally to produce an esti-
mate of the formation energy (or some other quantity) as an output. A
convolutional neural network (CNN) is a class of deep neural networks
that is commonly applied to analysis of visual representations of sys-
tems. In addition to the graph convolution, the deep learning approach
requires utilization of contextualization techniques to map an entire
loading field instead of a single output. Insight may be gained from a
recent ‘U-Net’ architecture that provides context to the output to pro-
duce a field instead of a single value [112] U-Net is able to generate a
pixel-by-pixel map of the output field (applied load) using the inputted
information (desired 3D configuration), wherein concatenation in the
‘U’—shaped architecture gives the context for the features. The approach
has been shown to work well in computer vision and does not require
large amounts of training data to produce accurate results [113].
Combined, the graph and U-Net architectures facilitate the input of
network topologies in the form of graphs and output a spatially resolved
loading condition. The model would be fit with data generated from the
conventional approach.

The load, in addition to being the solution to the inverse problem,
can be input back into the forward solution to find the actual path that
topological defects follow. The paths themselves may yield insight into
defect migration mechanisms. Broadly, the trends can be separated into
either random or sequential migration, where sequential migration is
based on individual topological defects moving directly from their final
to initial configurations as seen in Fig. 7. In reality, the migration will be
a blend of sequential and random migration. Here, unsupervised clus-
tering of network topologies may illuminate the concerted migration of
dislocations that occurs within a path.

5. Experimental linkage

A major driver of this work is to show what is needed in order to
realize the potential of controlled atomic-scale 3D deformation of 2D
materials. Success though ultimately hinges on linking the theoretical
predictions of atomic scale 3D deformation to experimental capabilities
and realization of prediction. The path we have detailed addresses the
missing theoretical techniques that link the set of topological defects
that have been predicted to yield a desired 3D deformation to applied,
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experimentally achievable loads that control the formation and migra-
tion of topological defects.

It will be critical to utilize experimental observation to develop the
theoretical techniques. A preliminary testing area is the annealing of
grain boundary loops created during synthesis. For this test case, the
migration of dislocations can be observed without any applied load,
where the boundary conditions are relaxed due to high annealing tem-
peratures. The migration can be observed in situ as has recently been
done for graphene grain boundary migration [114,115]. These obser-
vations, where there is no applied load, serve as a good stepping stone as
they do not require new experimental techniques or specialized
manipulation.

As the dislocation migration mechanisms are validated without
applied load, they can be extended to actively control topological defect
distribution with applied load. For example, load can be applied to a
sample using hydrostatic pressure, voltage, or even mechanical contact.
Applying strain to 2D materials is often accomplished through drum-
head devices, where pressure, voltage, and contact can impart biaxial
strains onto a sample [1,116-118]. Local control of the strain distribu-
tion could be accomplished through patterned substrates like nano-
pillars and nano-spheres [119,120,4]. In addition, mechanical contact
can be made through tip based methods that locally deform a sample
[121,122]. Each of these methods alters the applied strain in a 2D ma-
terial due to the particular loading condition of the experimental setup.
An important aspect of the experimental verification will be to correctly
translate manipulation methods to the loads that they apply. Microscopy
techniques that can map the strain with high accuracy without
damaging the samples will be critical to ensuring this [123]. Finally, the
experimentally achievable loads will have to be used to bias the
computational techniques such that the predicted loads are experi-
mentally achievable.

6. Conclusion

Atomic scale control of 3D deformation in 2D materials presents
great opportunity, but viable means of control remain elusive to date.
Here we have presented a survey of recent findings that facilitate control
of 3D deformation at the nanoscale using topological defects. We suggest
that control of the positions and spatial distributions of topological de-
fects — in particular — is a key to achieving atomic scale control. In
addition, we have identified gaps between simulation and experiments
and proposed the computational tools that may help to close that gap.
From the computational perspective, progress can be made by devel-
oping detailed understanding of the formation and migration mecha-
nisms of topological defects. We describe new meta forward and inverse
problems that will be key to establishing how to use external applied
loads to achieve a desired spatial distribution of defects. Possible routes
to these problems based on emerging numerical methods, machine
learning, and deep learning, are outlined. These steps pave the way for
experimental work that can further increase the validity of these
methods by adding experimental pathways into the loading prediction
from the neural network. Ultimately, we believe that these steps will
facilitate the development of novel control of 3D deformations at atomic
length scales.
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