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Topologically derived dislocation theory for twist and stretch moiré superlattices in bilayer graphene
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We develop a continuum dislocation description of twist and stretch moiré superlattices in two-dimensional
material bilayers. The continuum formulation is based on the topological constraints introduced by the periodic
dislocation network associated with the moiré structure. The approach is based on solving analytically for
the structural distortion and displacement fields that satisfy the topological constraints and that minimize the
total energy. The total energy is described by both the strain energy of each individual distorted layer and
a Peierls-Nabarro-like interfacial contribution arising from stacking disregistry. The dislocation core emerges
naturally within the formalism as a result of the competition between the two contributions. The approach
presented here captures the structure and energetics of twist and stretch moiré superlattices of dislocations
with arbitrary direction and character, without assuming an analytical solution a priori and while accounting
naturally for dislocation-dislocation image interactions. In comparisons to atomistic simulations using classical
potentials, the maximum structure deviation is 6%, while the maximum line energy deviation is 0.019 eV/Å.
Several applications of our model are shown, including predicting the variation of structure with twist angle and
describing dislocation line tension and junction energies.
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I. INTRODUCTION

Moiré superlattices are periodic patterns created when two
lattices are stretched or rotated with respect to one another
[1]. The stretch or rotation gives rise to unique electronic
properties distinct from those of the undistorted system. For
instance, the moiré patterns that form from two layers of two-
dimensional (2D) materials such as bilayer graphene create
a unique platform for studying exotic effects such as super-
conductivity and correlated electron physics [2–5]. Moreover,
structural relaxation determines whether flat bands emerge at
‘magic’-angle twisted bilayer graphene [6,7].

In a moiré superlattice, displacement u j and distortion
�i j = ∂iu j = u j,i fields define the relative shift between the
two layers measured from a reference. For example, pure
twist and stretch moiré patterns have displacement fields that
vary linearly with the distance from the origin and constant
distortion tensor components. Figure 1(a) shows examples
of both. However, pure twists or stretches in real materials
are rare. Local internal relaxations, if permitted, may shift
atomic positions from the idealized fields shown in Fig. 1(a)
to minimize the configuration energy. Thus, rather than pure
twists or stretches, distorted regions tend to become localized
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and separated from each other by large regions that are almost
entirely undistorted. At the atomic scale, the localization of
the deformed region increases regions of stacking registry
and reduces regions of disregistry. The rearrangement into
regions of large and small distortion corresponds to the for-
mation of interlayer dislocations. In Fig. 1(b), ideal uniform
and localized distortions of a mock 1D bilayer system for
a stretch moiré are illustrated. In the former, the disregistry
is uniform, while in the latter it is localized to well-defined
regions corresponding to the location of an edge dislocation.
Topologically, however, the uniform and localized cases are
identical.

The shared topological feature is a stacking fault that sep-
arates distinct regions of lattice stacking. In twisted bilayer
graphene moiré superlattices, stacking faults have been ob-
served experimentally as regions that separate AB and AC
(or BA) stacking [8]. The stacking fault has been described
mathematically as a soliton and observed with dark-field
transimission electron microscopy to analyze the width of
its core [9]. From a topology perspective, the stacking fault
is an interlayer dislocation. Using classical potentials, both
Zhang et al. [10,11] and Gargiulo and Yazyev [12] identified
the moiré wavelength of dislocation localization. Contin-
uum models have been developed to find the dislocation
structure of not only graphene [13] but also other 2D ma-
terials (e.g., h-BN [14,15], MoS2 [16,17]). For graphene,
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FIG. 1. (a) Displacement uj and distortion �i j fields of a uniform twist or stretch moiré superlattice, giving linear displacement and
constant distortion fields. The fields are related to each other by a spatial derivative given in Einstein notation. (b) The displacement fields
(black arrows) operate on atomic positions from a perfect lattice. A Burgers circuit, where numbers around the dislocation count lattice sites,
reveals the identical topological characteristic, the Burgers vector (red), of the dislocations with uniform and localized distortion. (c) The
topological components that define a dislocation are the Burgers vector �b (red), the line direction ξ̂ (green), and the sense φ. (d) Catalog of
dislocations. Full and partials are given by upper- and lowercase letters, respectively, where A–D are the primary types in a triangular lattice.

continuum models were used to explore the out-of-plane re-
laxation to find a second, bending relaxation mode in addition
to the well-known breathing mode [15,18]. Together, these
set the foundation that dislocation descriptions can effec-
tively describe the structure of moiré superlattices, as recently
suggested by Gornostyrev and Katsnelson [19]. However, in
order to confidently use continuum dislocation descriptions
of moiré superlattices, a formal treatment to establish the
equivalence of interlayer dislocations and moiré superlattice
topology is needed.

In this work we formalize a linear elastic theory of bilayer
graphene interlayer dislocations, and rigorously link them to
moiré superlattices. Our approach is distinct, as we account
for the dislocation geometries explicitly through the topolog-
ical constraints that they introduce in the displacement and
distortion fields. The solution is obtained for the case where
both layers remain flat, where we only solve for the in-plane
fields that minimize the total energy while satisfying the re-
quired topology. Capturing other reported features such as
a breathing-to-bending mode transition [18] requires includ-
ing out-of-plane relaxations. The structure of the dislocation
core arises as a result of a competition between intralayer
strain energy and interlayer interface energy. Our approach
naturally accounts for moiré superlattice periodicity, includ-
ing dislocation-dislocation interactions that can alter the core
structure (such as for large twists or stretches). The resulting
formalism has model parameters that are directly found from
interatomic potentials and does not a priori assume an analyt-
ical form for the solution.

Our approach correctly reproduces the energies and
displacement fields obtained from atomic-scale simulations
using classical potentials. To highlight applications of our
method, we show how dislocation core interactions impact
the relative size of AA and AB regions. At large twist angles
(θ > 5◦) the relative sizes of AA and AB stacking regions
are approximately equal but at low twist angles the relative
size of the AB stacking region is much larger than that of

the AA region. We also estimate line and junction energies
of arbitrary dislocations in bilayer graphene and find that
0◦ dislocation junctions are attractive and 90◦ dislocation
junctions are repulsive.

II. GEOMETRY OF INTERLAYER DISLOCATIONS IN
BILAYER GRAPHENE

The presence or absence of a dislocation is determined
from Burgers circuits formed around a region of material. For
example, in Fig. 1(b), a Burgers circuit with a right-handed,
start-finish (RH–SF) convention [20] around both the linear
and the localized stretch moiré structure encloses a dislocation
with the line direction coming out of the page (green). Starting
at the top left, five steps are used to move along the layers
and one step is used to traverse between them. The Burgers
vector b (red) is the closure failure of the loop and quantifies
the incompatibility in the displacement fields. It is identical
for the linear and the localized case and equal to the lattice
vector. The presence of the edge dislocation is denoted by
the symbol ⊥. The two cases correspond, respectively, to an
infinitely distributed or infinitely localized core.

The topological character of a dislocation is defined by
Burgers vector b and dislocation line ξ [Fig. 1(c)]. The dis-
location line defines the direction, and the Burgers vector
describes the magnitude and direction of the incompatibility
in the displacement field. The angle φ between b and ξ deter-
mines the sense of the dislocation (edge, screw, or mixed).
In Fig. 1(b) φ = 90◦, but in triangular lattices like bilayer
graphene there are four crystallographic dislocations with
unique angles. In Fig. 1(d), they are presented as letters, where
full dislocations and partial dislocations are differentiated by
their capitalization.

A. One-dimensional dislocation networks

Full dislocations [Fig. 2(b)] are boundaries separating re-
gions of AB stacking [21] and so have Burgers vectors of
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FIG. 2. Structure of dislocations in bilayer graphene. (a) The possible stackings of bilayer graphene. AB/AC are degenerate low-energy
stacking, while sp stacking is the saddle-point energy separating AB and AC regions. (b) Ball-and-stick representation of 0◦ full dislocation
(top) that separates into two 30◦ partial dislocations (bottom) with associated Burgers circuits. The full-dislocation Burgers circuit traverses
15 lattice vectors in the top and bottom layers, yielding the closure failure shown in red along the solid green dislocation line. The two
partial-dislocation Burgers circuits traverse seven lattice vectors in each layer, yielding closure failures, both 30◦ relative to the dotted green
line. (c) Continuum representation of full and partial dislocations from (b), showing a 0◦ full dislocation �A1 and two 30◦ partial dislocations �b1

and �b2. (d)–(f) Three remaining full-dislocation directions, 30◦, 60◦, and 90◦, and their partials, 0◦/60◦, 30◦/90◦, and 60◦/60◦, respectively.

a magnitude equal to the lattice vector. The four crystallo-
graphic full dislocations (four total) are shown in the top
row in Fig. 2, through atomistic [Fig. 2(b)] and continuum
[Figs. 2(c)–2(f)] representations. Using an RH-SF Burgers
circuit that traverses from AB stacking on the left to AB
stacking on the right along the top gray layer and back along
the bottom black layer, the closure failure yields the Burgers
vector (AI ; red). It is parallel to the dislocation line (green)
and has a sense φ = 0◦.

Full dislocations are rarely observed in graphene bilayers
since the two-atom basis permits the splitting of dislocations
into partials that separate regions of equivalent AB and AC
stacking [Fig. 2(a)]. Partial dislocations have a high-symmetry
SP stacking halfway between the AB and the AC stacking
centered at the dislocation line, as shown in the bottom row in
Fig. 2(b). The structure of the full and partial dislocations in
Fig. 2(b) differ by the relaxation to AC stacking in the central
region of the latter. The relaxation decomposes the full dislo-
cation A into two partials. The two partials are labeled b1 and
b2 according to their 30◦ sense. The topological characteristic
of the isolated full and two partials are the same, creating the
dislocation reaction AI = b1 + b2.

B. Moiré structures: 2D dislocation networks

Moiré superlattices are equivalent to 2D networks of dislo-
cations [22]. For bilayer graphene, we identify the dislocation
networks for twist and stretch moiré superlattices. Compared
to 1D networks, 2D networks may include junctions of dis-
location lines that correspond to high-energy AA stacking in
bilayer graphene [insets, Figs. 3(a) and 3(c)].

A ball-and-stick representation of perfect twist deforma-
tion of 2.85◦ is shown in Fig. 3(a). Regions are shaded by
the stacking type which reveals the moiré superlattice. The
triangular symmetry is visible immediately. Two possible
supercells, rectangular and triangular, are shown. Using a
Burgers circuit, the �Bi dislocations in the triangular supercell
split into three �ai dislocations [22]. Equivalently, using the
rectangular supercell three �Ai dislocations split into four �ai

dislocations. Therefore, a twist moiré superlattice corresponds

to a periodic network of partial screw dislocations with dis-
location lines oriented at 60◦ to each other. The twist angle
determines the size of the superlattice and the dislocation
spacing.

Similarly, stretch moire superlattices are described by tri-
angular networks of partial dislocations but with a 90◦ edge
sense. The ball-and-stick representation in Fig. 3(c) shows
a perfect stretch moiré with 5.2% strain. A key difference
between Figs. 3(a) and 3(c) is a 90◦ rotation of the upper layer
(visible in the AA insets). So, although the dislocation line
structure looks identical, the Burgers vectors are rotated by
90◦. This gives dislocation reactions of two �Ci dislocations
to three �di dislocations for triangular unit cells or three �Di

dislocations to four �di dislocations for rectangular unit cells.

III. CONTINUUM MODEL
FOR INTERLAYER DISLOCATIONS

The approach to describe interlayer dislocations in bilayer
graphene is based on a continuum formalism of the structure
and energy of periodic dislocation networks originally for-
mulated by Mura [23], later adapted by Daw [24], and then
applied to the description of topological defects in monolayer
graphene [25–27]. It is based on the idea that each dislocation
introduces a topological constraint that must be satisfied by
the distortion fields �i j . The solution is obtained by finding
the distortion that satisfies the topological constraints, while
using any remaining degrees of freedom to minimize the total
energy.

The method developed here and available on Github [28]
adapts the original formulation of Daw to the case of inter-
layer dislocations in bilayer graphene. Compared to existing
descriptions of interlayer dislocations in bilayer graphene
[15,19], desirable features of our approach are that (i) so-
lutions are obtained directly without the need to assume an
analytical form, (ii) dislocation-dislocation interactions and
periodic boundary conditions are naturally accounted for, and
(iii) no model parameters are adjusted to fit to the atomistic
results.
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FIG. 3. Twist and stretch moiré patterns are equivalent to 2D networks of, respectively, 0◦ and 90◦ partial dislocations. (a) Twisted
bilayer graphene (θ = 2.85◦) resulting in a twist moiré pattern. Triangular and rectangular supercells are overlaid to show possible periodic
computational domains. The red circles are regions of high-energy AA stacking (inset) that correspond to partial dislocation junctions.
(b) Continuum representations of a twist moiré pattern of full- and partial-dislocation configurations for triangular and rectangular supercells.
The twist moiré is a 2D network of partial dislocations parallel to their line direction (φ = 0◦). (c) Bilayer graphene with one layer bi-axially
stretched over the other (ε = 5.2%), resulting in a stretch moiré pattern. (d) Continuum representation of a stretch moiré pattern in terms of full
and partial dislocations for triangular and rectangular supercells. The stretch moiré is a network of partial dislocations with Burgers vectors
perpendicular to their line direction (φ = 90◦). The lattices in (a) and (c) are rotated by 90◦ as shown in the AA inset, seen by the zigzag and
armchair directions, respectively.

A. Total and elastic energy

The total energy of a deformed bilayer is

Etot = E1
elastic + E2

elastic + Einterface, (1)

with an elastic term for each layer and an interface energy
that couples the layers. The interface energy contribution is
discussed in Sec. III C. The elastic energy for layer I = 1, 2 is
given by the integral of the strain energy density, or

EI
elastic = 1

2
Cijkl

∫
cell

�I
i j�

I∗
kl dA, (2)

where Cijkl are intralayer elastic constants and �I
i j is the dis-

tortion tensor for layer I. Einstein notation, where repeated
indices are summed, is used.

By definition, the distortion field exhibits the periodicity of
the moire superlattice and can be expressed as a Fourier series,
or

�i j (X ) =
∑

G

�̃i j (G) exp(iG · X ), (3)

where the summation is over reciprocal lattice vectors of the
moire superlattice G, reciprocal components are distinguished
using a tilde �̃, and the distortion tensor is a spatially varying
field of position X. Substituting Eq. (3) into the integral in
Eq. (2) and evaluating the spatial integral gives

EI
elastic = �A

2

∑
G

Cijkl�̃
I
i j�̃

I∗
kl , (4)

where �A is the area of the moiré superlattice unit cell. Only
a single summation over G is needed because after the substi-
tution of Eq. (3) into the integral in Eq. (2), all terms with
G �= G′ integrate to 0. We consider bilayers constrained to

remain flat; we show results in a linear system of equations
that can be directly solved for distortion tensor components
�̃1

i j and �̃2
i j (Sec. III D).

B. Topological constraints for interlayer dislocations

In typical bulk materials, the presence of a dislocation is
indicated by a topological constraint given by the Nye tensor

α jm = ε jkl∂k�lm = ξ jbmδ(r⊥) , (5)

where ξ j , bm, and r⊥ are, respectively, the dislocation line
direction, Burgers vector, and perpendicular distance to the
dislocation line ξ [29]. The Nye tensor introduces an incom-
patibility into the displacement field wherever a dislocation is
present, as indicated by the curl of the distortion tensor �lm.
Compared to bulk dislocations, the formulation for interlayer
dislocations in 2D bilayers makes two sets of changes to
Eq. (5).

The first set arises from the bilayer nature of 2D materi-
als. We treat the bilayer as two isolated 2D layers that are
continuous in plane but coupled to each other in the third
direction via interfacial energy Einterface in Eq. (1). This causes
the repeated indices in Eq. (5) to be summed over only the
two in-plane directions, while the continuous partial deriva-
tive ∂3 in the out-of-plane direction is replaced by a discrete
difference between the two layers. Additionally, for interlayer
dislocations, the Burgers vector b and line direction ξ only
have components in the two in-plane directions.

The second change pertains to modifying the delta function
in Eq. (5). In the original formulation, the presence of the
delta function causes the elastic energy to diverge. To remove
the divergence, it is typically smoothed into a Gaussian and
normalized so that the integrated total incompatibility is fixed
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FIG. 4. (a)–(d) Local registry function rm and (e),(f) harmonic stacking fault energy. (a) Twisted bilayer graphene with dislocation lines
and stacking regions. (b) Full registry of one layer relative to the other centered at an AB stacking location. For a uniform twist, the magnitude
of the registry increases linearly with the distance from the AB stacking center. (c) The folded registry describes the registry relative to the
closest AB/AC stacking location, which always has a normalized magnitude of less than 1. (d) Line traces of the twist and folded registry
functions from (b) and (c). (e) Bilayer graphene stacking fault energy for a rigid translation along the armchair direction (AA to AA) with a
constant interlayer spacing of 3.4 Å, which shows the degenerate AB/AC minima as well as the energies of AA and SP. (f) The approximate
harmonic interface potential (red) is found by fitting the critical points (AA, SP, AB) of the shifted interface potential.

to the magnitude of the Burgers vector. The smoothing causes
the elastic energy to become finite, decreasing monotonically
with the width of the Gaussian. The width is referred to as
the core radius, since it indicates the spatial extent of the
dislocation core. The narrow core limit [see “localized” in
Fig. 1(b)] resembles the original delta function that causes an
infinite elastic energy. The infinite core limit, corresponding to
a uniform distortion everywhere [see “uniform” in Fig. 1(b)],
gives the minimum elastic energy. Typically the core radius is
the only parameter that is fitted to reproduce total energies as
obtained from atomistic simulations.

In our formulation, the interface contribution to the total
energy Einterface in Eq. (1) penalizes large core radii since
they introduce extended regions of stacking disregistry. The
interface energy, in contrast to the elastic energy, is largest
with a distributed core and smallest with a localized core (it is
described in detail in the following subsection). The inclusion
of the interface energy allows us to generalize the topological
constraint and formulate it in terms of the average value of the
incompatibility inside the moiré superlattice.

Accounting for these modifications, the topological con-
straint adopts the generalized form

�Aε j3l
〈
�1

lm − �2
lm

〉 = ξ jbm , (6)

where the finite difference between the distortion tensors in
each layer comes from the first set of changes, while the
average of the difference comes from the second set. Rather
than an explicit predefined core radius, an effective core radius
emerges as a result of the competition between in-plane elastic
energy and stacking energy. This results in a core structure that
arises from the competition and a model where all parameters
can be derived from the interatomic potentials used in atom-
istic calculations.

C. Interface energy contribution

The interface energy accounts for the disregistry between
the layers similarly to the Peierls-Nabaro model [30,31]. We
restrict the interface energy to the same form as the elastic
energy (summation over squares), but now the summation is
over displacement differences between the layers. The inter-
face energy is given by

Einterface = Ajl

∫
cell

r jr
∗
l dA = �A

∑
G

Ajl r̃ j̃ r
∗
l , (7)

where Ajl is a proportionality constant analogous to the elastic
constants in Eq. (2), and r is the local registry given by the
difference in displacement fields of each layer u1 − u2.

As shown in Figs. 4(a)–4(d), the expression for the inter-
face energy is valid when r = rm (mapped registry, defined
with respect to the closest minima) rather than for r = rt (total
registry, defined from a single reference point). Figure 4(a)
shows the stackings, while Figs. 4(b) and 4(c) show the total
and mapped registries for a perfect twist. The total registry rt

increases linearly with the distance from a selected AB center
and can have magnitudes greater than the carbon-carbon dis-
tance a. The mapped registry rm has no value larger than a.
For a mapped registry, AB/AC stacking both have rm = 0, SP
stacking has rm/a = 0.5, and AA stacking has the maximum
registry of rm/a = 1. Line scans for the total and mapped
registry fields are shown in Fig. 4(d) to show that the mapped
registry is obtained by subtracting the Burgers vector from the
total registry when traversing a dislocation.

The generalized stacking fault energy for flat bilayer
graphene is shown in Fig. 4(e). It is obtained using classical
force fields by rigidly sliding one layer relative to the other at a
constant interlayer spacing along the armchair direction from
AA to AA stacking. By fitting the parameters Ajl from Eq. (7)
to the stacking fault energy, we obtain a harmonic description.
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The fitted approximation of the stacking fault energy shown
in Fig. 4(f) overestimates the SP and underestimates the AA
energy, decreasing the relative size of the SP and increasing
the relative size of the AA regions. Forcing the curvature from
AB to SP to be the same as that from AB to AA has the
consequence that we cannot capture the finer-scale change in
concavity of the registry contours near the junction as reported
by Gargiulo et al. using atomistic simulations.

D. Energy minimization

Using the expression for the total energy in Eq. (1), we
find distortion fields �i j that minimize the total energy while
satisfying the topological constraints in Eq. (6) imposed by the
dislocations network. The minimum energy is found in recip-
rocal space; the Fourier transform of the topological constraint
gives

�̃1
lm(G = 0) − �̃2

lm(G = 0) = 1

�A
ε j3lξ jbm, (8)

a contribution only for the G = 0 Fourier coefficients. When
constrained to be flat, the minimum elastic energy is achieved
by sharing the topological constraint equally between the
layers (�̃1 = −�̃2). The interface energy does not affect
the distribution of the topological constraint since changing
the distribution does not change the registry between layers.

The solution is separated into inhomogeneous and ho-
mogeneous components � = �inh + �hom, where the former
satisfies the constraints. The homogeneous term is the general
solution that does not change the dislocation content (e.g.,
α = 0). In reciprocal space, the homogeneous solution sat-
isfies G × �̃hom = 0 and corresponds to displacement fields
that are compatible. This gives the general form

�̃I,hom
i j = Giχ̃

I
j , (9)

where the vector χ̃ encompasses the remaining degrees of
freedom in �̃. For each G, its two components are determined
by minimizing the energy [Eq. (1)] with respect to them. Dif-
ferent G components enter the energy separately in the sum,
so this can be done algebraically by solving ∂Etot/∂χ̃1∗

l = 0
and ∂Etot/∂χ̃2∗

l = 0 simultaneously. Further details on solving
the partial differential equations are given in the Supplemental
Material [32]. The topological constraint in Eq. (6) introduces
only nonzero �̃inh for G = 0. But the folded displacement
field appears in the expression for the interfacial energy,
which has the consequence of introducing nonzero �̃hom for
all G. The detailed solution is shown in the Supplemental
Material [32].

IV. COMPARISON TO CLASSICAL POTENTIAL
ATOMISTIC SIMULATIONS

We apply our dislocation formalism to the 1D and 2D
dislocation networks shown in Figs. 2 and 3 and compare
them to atomic-scale simulations. The simulations are per-
formed for various supercell sizes for flat bilayer graphene, a
subset of which is reproduced below. We use the Large-scale
Atomic/Molecular Massively Parallel Simulator simulation
tool, which calculates the energy for a given energy func-
tional to find the structural relaxation [33]. We use a reactive

TABLE I. Dislocation energies for 1D and 2D dislocation net-
works normalized by the dislocation line length for large supercells
(Lx > 1000 Å).

1D isolated dislocation

eV/Å �ai(0◦) �bi(30◦) �ci(60◦) �di(90◦)

Atomistic 0.055 0.065 0.085 0.093
Dislocation model 0.062 0.075 0.100 0.112

bond-order [34] intralayer potential and a registry-dependent
(Kolmogorov-Crespi) [35] interlayer potential and obtain
geometry relaxed configurations using the ‘fire’ energy min-
imization algorithm [36]. The dislocation model requires
as input material properties Cijkl and Ajl , which are found
from energy-strain and energy-displacement simulations from
atomic-scale calculations. For the classical potentials de-
scribed above, we find the two independent intralayer elastic
constants C1111 = 18.5 eV/Å2 and C1212 = 5.49 eV/Å2, and
C1122 = C1111 − 2C1212. The interface energy components are
A11 = A22 = 2.52 meV/Å2.

A. Dislocation line energies: 1D networks

The dislocation energies across supercells are reported in
Fig. 5. We use the line energies—the energy per length of
dislocation—of both small supercells with overlapping dislo-
cation cores and large supercells with isolated dislocations.
The line energies for the four partial dislocations identified in
Fig. 2 from 1D dislocation network supercells are shown in
Fig. 5(a). The atomistic and continuum results show the same
trend, with the line energies decreasing as the dislocations
become separated, converging at approximately Lx ≈ 200 Å.
The relative line energies among the four partial dislocations
are also in agreement, with 0◦ partials having the smallest and
90◦ partials having the largest line energy.

The biggest discrepancy between the atomistic and the dis-
location models occurs for small supercells, where the entire
supercell is out of registry due to core-core interactions. The
left inset in Fig. 5(a) shows that the high dislocation density
prevents relaxation to AB/AC stacking anywhere. The dis-
crepancy is largest in this regime because the linear expansion
of the interface energy in Fig. 4(f) is about AB/AC stacking,
but since the entire supercell is everywhere far from AB/AC,
the linear expansion is inadequate. In principle, it is possible
to capture these effects by including higher-order terms to
better match the interface energy, but this means we could
no longer solve for the distortion components separately for
different G values, since the terms would become coupled in
Eq. (1).

At the other extreme, isolated dislocations have cores that
can completely relax [see right inset, Fig. 5(a)] with large
regions of AB/AC stacking between them. In this regime, the
linear expansion is appropriate and the line energies from the
atomistic and dislocation models for each dislocation agree
well. The plateau of the dislocation line energy for large Lx

means that the dislocations are indeed isolated, as there are
no long-range strain fields interacting. The line energies of
the isolated dislocations are produced in Table I to show the
quantitative agreement.
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FIG. 5. Continuum and atomistic model for dislocation line energies for 1D and 2D dislocation networks. (a) The variation in the line
energy with the supercell length Lx shows the effect of dislocation-dislocation interactions for small Lx and isolated dislocations. Insets:
Comparison of dislocation cores for dislocation-dislocation interactions at small supercells with a high density of dislocations and isolated
dislocations with much larger cores. (b) Twist (0◦) and stretch (90◦) dislocations for supercells of varying size. Insets: Dislocation junctions for
small (Lm = 20Å) and large (Lm = 600Å) supercells. The uniform distortion tensor in small supercells makes the AA region much narrower
than for large supercells, where the core can completely relax. The insets show that the core regions for twist and stretch are rotated by 90◦

from each other.

B. Dislocation line energies: 2D networks

The line energies of twist and stretch moiré patterns are
compared across supercell sizes in Fig. 5(b). The line ener-
gies of the 2D 0◦ and 90◦ dislocation networks have nearly
identical trends for the atomistic and dislocation descriptions.
Notably, the shapes of the line energies across supercells for
�a and �d dislocation networks are different, but the dislocation
model accurately reproduces the opposing trends. The change
of shape is due to the dislocation junctions present in 2D
networks, whose energy is constant and negative (positive) for
0◦ (90◦) dislocations, respectively.

In contrast to 1D dislocation networks, the line energy for
2D dislocation networks is in good agreement for supercells
with both dislocation-dislocation interactions (small Lm) and
isolated dislocations (large Lm). The good agreement for large
supercells is expected, since as for the 1D case the interfacial
energies in the large regions of AB stacking in the interior
are well described in our model. The good agreement for
the smaller supercells is more surprising but occurs directly
as a result of the topological constraint imposed by the 2D
dislocation network. This constraint forces the interior of the
triangular regions to have AB/AC stacking, no matter what
the size of the moiré superlattice. The effect of the supercell
size on the absolute size of the AA stacking region is shown
in the insets in Fig. 5(b). The pair of insets corresponding to
small Lm shows a small AA region (red) and, by necessity,
maintains AB/AC stacking between the junctions. This is true
even though the relative proportion of AA stacking present in
the supercell is larger for small supercells.

C. Structural relaxations: 1D networks

The structural relaxations for 1D networks from the
atomistic and dislocation simulations are compared for su-
percells with Lx = 2500 Å. The displacement fields for each

simulation are normalized by the carbon-carbon spacing a or
lattice spacing

√
3a to highlight the symmetries of the dis-

locations. The displacement fields of networks of 1D partial
dislocations in Fig. 6 show agreement between continuum and
atomistic descriptions for �bi and �ci partial dislocations; �ai and
�di partials are presented in the Supplemental Material [32]

FIG. 6. Atomistic (solid black) and continuum (dotted) descrip-
tion of displacement fields for 1D partial dislocation networks for
a supercell with Lx = 2500 Å. Salmon/magenta represent displace-
ments in the x/y direction, for (a) two 30◦ dislocations and (b) two
60◦ dislocations. The bottom row shows the deviation between the
atomistic and the continuum displacement fields.
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FIG. 7. Atomistic and continuum displacement fields for 2D partial dislocation networks for (a)–(c) twist moiré and (d)–(f) stretch moiré
patterns. (a) Deviation between atomistic and continuum (�uj = ucp

j − udm
j ) for a twist angle of θ = 0.13◦ (λm = 107 nm) moiré pattern. The

contour plot shows the magnitude of difference, while the vector field shows the direction. (b, c) Line scans in the moiré zigzag/armchair
direction showing the classical potential (solid) and continuum model (dotted), the x (blue) and y (orange) displacement fields, and their
difference. (d) Difference between classical potential and dislocation model displacement fields for a stretch ε = 0.1% (λm = 108 nm) moiré
pattern. (e),(f) Line scans in the moiré zigzag/armchair direction showing the classical potential (solid) and continuum (dotted) displacement
fields and their difference. Insets (a) and (d): The different structures of 0◦ and 90◦ partial dislocation junctions.

(and appear here later in the 2D networks). The displacement
fields are shown in the top row, where the x and y components
of the dislocation model are shown by dashed salmon and ma-
genta lines, respectively, and the atomic simulation is shown
in black. The dislocation model reproduces the atomic sim-
ulation, where the solid black line is nearly obscured by the
dislocation model. Impressively, the dislocation model picks
up small features of the atomistic results at the dislocation
core [ux at x/Lx = 0.25 for Fig. 6(a)]. The deviation between
atomistic and continuum displacement fields is shown in the
bottom row. The normalized difference shows a maximum
difference of 6%, less than 0.1 Å.

D. Structural relaxations: 2D networks

The structures predicted by the atomistic and continuum
approach for 2D dislocation networks are compared in Fig. 7.
The deviation between the two approaches is plotted by the
contour plot on the rectangular unit cells for both twist and
stretch moiré superlattices for Lm = 1080 Å. A quiver plot that
shows the direction and magnitude of the difference is over-
laid. In both the twist and the stretch moiré superlattices, there
is good agreement, with maximum errors of 10% localized to
the dislocation junctions and of 5% at the dislocation lines.
The insets show the dislocation junctions in greater detail,
which show the different reconstructions present for twist and
stretch junctions.

Two line scans of the displacement fields are shown in
Fig. 7. A horizontal line scan taken at y/

√
3Lm = 1/2 crosses

the �ai and �di dislocations at x/Lm = 1/6 and 5/6, shown in
Figs. 7(b) and 7(e) respectively. The twist moiré line scan
shows that the two dislocations have opposite x components

but the same y component. The two dislocations in the stretch
moiré line scan, however, have opposite y components but the
same x component, showing how the two superlattices differ
by a 90◦ rotation. The horizontal line scans crossing isolated
dislocations show good agreement between the displacement
fields with less than 5% normalized error at any location.

A second vertical line scan of twist and stretch superlat-
tices taken at x/Lm = 1/2 is shown in Figs. 7(c) and 7(f).
The line scans cross a single dislocation perpendicularly at
y/

√
3Lm = 1/3 and show that the Burgers vectors for twist

(stretch) moiré patterns are parallel (perperpendicular) to the
dislocation line and have a magnitude of a. The line scans
cross a dislocation junction at y/

√
3Lm = 5/6, revealing that

junctions have twice the Burgers vector of a single dislocation.
The difference in the displacement fields shows that the max-
imum normalized error is just less than 10% at the dislocation
junctions.

V. APPLICATIONS OF CONTINUUM
DISLOCATION FRAMEWORK

Having established the energy and structural correspon-
dence between the continuum dislocation model and the
results of atomistic simulations, we now highlight some pos-
sible applications of the model.

A. Structural trends of moiré superlattices

Previous studies have demonstrated that the relative size of
the AA stacking regions increases with increasing twist angle
[10,12]. Based on our theory, this effect can be understood to
arise from the necessity to satisfy the topological constraints
of the dislocation network even as the decreasing superlattice
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FIG. 8. Structure of twist moiré superlattices versus twist angle. (a) Heat maps of the disregistry across twist angle θ , where blue indicates
disregistry > a/4, or half of the maximum value. (b) Width of AA and SP stacking regions across twist angle θ .

size (increased twist) confines the network. The blue color
maps in Fig. 8(a) show the regions of large disregistry, de-
fined here as rm > a/4, for varying twist angles θ . For large
twist angles (θ > 2◦), the portions of the superlattice unit
cell exhibiting rm > a/4 are similar and relatively large. As
θ decreases below 2◦, both the junctions and the dislocation
lines themselves take up a smaller proportion of the super-
lattice area and large triangular regions of AB/AC stacking
emerge. The proportion of dislocated regions across twist
angles is compared quantitatively in Fig. 8(b) for both SP and
AA stacking. It confirms the visual analysis in Fig. 8(a); the
relative size of the dislocation regions is similar for the twist
angle θ > 2◦ but decreases for smaller twist angles, where
the dislocations are fully relaxed due to the large supercell
size Lm.

In addition, our model can address structural relaxation
due to out-of-plane compression by refitting the interface en-
ergy parameter Ajl for different interlayer spacings (details
of the fitting are in the SI). We examine how compressing
the bilayers in the out-of-plane direction can affect the moire
structure for a given twist angle. Compressing the bilayers
this way has been shown to tune the ’magic’ angle in bilayer
graphene [37]. In Fig. 9, blue, green, and red correspond to
compression with ε33 = 0%, −5%, and −10% for the magic
twist angle of θ = 1.1◦ [38]. The trends shown may indicate
how compression can tune the magic angle by modifying the
structure, since increased compression reduces the relative
size of the dislocation cores and junctions (similar to the effect
of reducing the twist angle).

B. Dislocation line and junction models

Finally, we use the dislocation model to estimate the dis-
location line and junction energies for arbitrary φ. These
quantities could be used to drive mesoscale dislocation dy-
namics simulations to explore, for instance, how the moiré
structure interacts with external strain fields [39]. We inves-

tigate both the dislocation line energies and the dislocation
junction energies.

Figure 10 shows the line energies for continuous φ. These
energies are obtained from the continuum formalism and com-
pared to the approximate functional form

El (φ) = El (90◦) − (El (90◦) − El (0
◦)) cos2(φ) , (10)

FIG. 9. Structure of twist moiré patterns for a varying compres-
sive strain ε33 and constant θ . Color maps represent different ε33

values, where the color represents deviations from AB/AC stacking
greater than a/4. Magic-angle twisted bilayer graphene (θ = 1.1◦) at
equilibrium interlayer spacing is used as a reference (blue). Green
represents a compression of 5% (dz: 3.23 Å), while red represents a
10% compression (dz: 3.06 Å).
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(deg)

FIG. 10. Line tension (yellow) of a single dislocation and dislo-
cation junction energy (blue) as a function of angle φ. The energies
can be approximated within a line tension model that uses only two
parameters. The negative junction energy for small θ suggests favor-
able dislocation interactions and dislocation–dislocation attraction.

where El (φ) is the dislocation line energy, El (0◦) and El (90◦)
are obtained from Table I, and the factor cos2(φ) comes from
the line tension approximation of 3D dislocations [40]. The
two quantities show a good correspondence.

Meanwhile to estimate the junction energies, we calculate
the energy of 2D dislocation networks with well-separated
cores (Lm = 500Å) and subtract the energy associated with
the dislocation lines from Eq. (10). The remaining energy
is the junction energy. Figure 10 shows that the dislocation
junction energies are not uniform with φ. Instead, the 0◦ dis-
location junctions have negative energies, while 90◦ junctions
have positive energies, with a crossover around 34◦. This find-
ing is consistent with Fig. 5(b), which shows opposite trends
for 0◦ and 90◦ with decreasing Lm. The same functional form
from Eq. (10) is used to fit the dislocation junction energy,
using junction energy Ej rather than line energy El , and us-
ing Ej (0◦) = −28.7 eV and Ej (90◦) = 62.2 eV as boundary
conditions.

The energy landscape of the dislocation line and junc-
tion energies reveals that 2D dislocation networks favor 0◦

dislocations. This may be the origin of the nonuniform moiré
superlattices observed experimentally, for instance, in dark-
field transmission electron microscopy images of Alden et al.
[9]. Instead of a uniform moiré period over microns, the
dislocation networks relax to maximize the number of 0◦
dislocations and junctions.

VI. CONCLUSION

We have presented a dislocation theory based on topolog-
ical constraints to describe interlayer dislocations in bilayer
graphene. In our approach, both 1D and 2D (moiré) superlat-
tices are defined in terms of the periodic dislocation networks
of which they are comprised. Conventional dislocation theory
is adapted so as to treat the discrete nature of each layer of
the 2D bilayer by describing the total energy as arising from
both the elastic energy of each distorted layer and an interface
energy that couples the layers. The dislocation model does not
assume any analytic form for the solution, naturally accounts
for dislocation-dislocation interactions, and contains only pa-
rameters that can be derived from interatomic potentials. The
energy and structure predictions of the dislocation model
are in agreement with atomic-scale calculations. Finally, we
present two applications of our model: an investigation of the
evolution of the atomic-scale structure as a function of the
moiré twist angle and a prediction of the line tension and
dislocation junction energies for arbitrary dislocation sense φ.
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