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Abstract
We introduce a non-increasing tree growth process ((Tn, σn), n� 1), where Tn is a rooted labelled tree
on n vertices and σn is a permutation of the vertex labels. The construction of (Tn, σn) from (Tn−1, σn−1)
involves rewiring a random (possibly empty) subset of edges in Tn−1 towards the newly added vertex; as a
consequence Tn−1 �⊂ Tn with positive probability. The key feature of the process is that the shape of Tn has
the same law as that of a random recursive tree, while the degree distribution of any given vertex is not
monotone in the process.

We present two applications. First, while couplings between Kingman’s coalescent and random recur-
sive trees were known for any fixed n, this new process provides a non-standard coupling of all finite
Kingman’s coalescents. Second, we use the new process and the Chen–Stein method to extend the well-
understood properties of degree distribution of random recursive trees to extremal-range cases. Namely,
we obtain convergence rates on the number of vertices with degree at least c ln n, c ∈ (1, 2), in trees with n
vertices. Further avenues of research are discussed.

2020 MSC Codes: 60C05, 05C80

1. Introduction
In a paper published in 1970, Na and Rapoport [21] introduced the problem of modelling how the
structure of networks (such as sociograms, communication and acquaintance networks) emerge
through time. They considered two models of random trees which they called growing and static,
respectively. The ‘growing’ model is now known as the uniform attachment model, and each
instance of it is usually called a (random) recursive tree. These are part of a broad class of tree
growth models where vertices are added sequentially and connected to a random vertex in the
current tree. The ‘static’ model was an early description of what are now referred to as coales-
cent processes, and the term static was motivated by the fact that in this construction the vertex
set is fixed throughout the process. More precisely, it starts with n vertices, and n− 1 edges are
added one by one (without creating cycles). These two seemingly distinct models of growth have
been shown to be related for certain coalescent procedures (e.g. additive and Kingman’s); that
is, their resulting trees can also be constructed by a growth process [1, 20, 22]. In particular,
finite Kingman’s coalescents, which are introduced in Section 2, correspond to recursive trees;
see Remark 2.3.
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80 L. Eslava

Here we present a non-increasing tree growth process ((Tn, σn), n� 1), where Tn is a rooted
labelled tree on n vertices and σn is a permutation of the vertex labels; precise definitions will be
given shortly. The three key features of this new growth process are as follows.

(1) The shape of Tn has the same distribution as that of recursive trees (vertices are labelled
uniformly at random).

(2) Adding edges according to the permutation σn (in reverse order), recovers Kingman’s
coalescent.

(3) There is a positive probability that Tn−1 �⊂ Tn.

Formally, we introduce the class Dn of decorated trees on n vertices and a random map-
ping Hn : Dn−1 → Dn such that Hn(Tn−1, σn−1)

dist= (Tn, σn) for all n> 1. Our main result,
Theorem 1.1, states that recursively applying the mappings Hn to the unique element in D1 gives
uniformly random elements on Dn; from this the properties above are recovered. The fact that we
can construct recursive trees in a non-increasing fashion is, to the best of our knowledge, a novel
idea and it opens a wide range of further avenues of research. We discuss some of these in the last
section.

We give the name Robin Hood pruning to the random mapping Hn that builds (Tn, σn)
from (Tn−1, σn−1); this is the key conceptual contribution of this work and builds on the cor-
respondence between recursive trees and Kingman’s coalescent exploited in [2, 10]. It seems that
such a connection had rarely been exploited, with the exception of [6, 23], where an equivalent
construction was used to study union-find trees and relate them to recursive trees.

Additionally, we provide applications to high-degree vertices of recursive trees and their max-
imum degree. Kingman’s coalescent had already been exploited by Addario-Berry and the author
to describe near-maximum degrees in recursive trees [2, 10]. With the new procedure, we are able
to extract finer information about extreme degree values in recursive trees. The main underlying
technique is the Chen–Stein method for convergence rates to Poisson distributions. Informally,
this method approximates the law of a sum W of indicator variables, by understanding how the
law of such indicator variables changes when conditioning on one of them being equal to one.
In our case the sum W counts the number of vertices with high degree. The perspective of the
Robin Hood pruning allows us to understand how the vertex-degree distributions change when
we condition on the degree of one of the vertices being large.

Before we continue to precise statements of our results, we introduce basic notation that will
be used throughout the paper, as well as the standard construction of recursive trees.

1.1 Notation
For n ∈N, we write [n]= {1, . . . , n} andSn for the set of permutations on [n]. We denote natural
logarithms by ln (·) and logarithms with base 2 by log (·).

Given a rooted labelled tree T = (V(T), E(T)), write |T| = |V(T)| and call |T| the size of T. We
writeTn for the set of rooted trees T with vertex setV(T)= [n]. By convention, we direct all edges
toward the root r(T) and write e= uv for an edge with tail u and head v. For u ∈V(T) \ {r(T)},
we write pT(u) for the parent of u, that is, the unique vertex v with uv in E(T). Finally, write
dT(v) for the number of edges directed toward v in T, and call dT(v) the degree of v. Note that
dT(v)= #{u : pT(u)= v}.

We say T ∈ Tn is increasing if its vertex labels increase along root-to-leaf paths; in other words,
if T ∈ Tn and pT(v)< v for all v ∈ [n] \ {r(T)} (in particular, r(T)= 1). We write In ⊂ Tn for the
set of increasing trees of size n. Using induction, it is easy to see that |In| = (n− 1)! for all n.
Next, a tree growth process is a sequence (Tn, n� 1) of trees with Tn ∈ Tn for each n. The process
is increasing if Tn ⊂ Tn+1 for all n; this implies that Tn ∈ In for all n.
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Figure 1. (a) A decorated tree (T, σ ) ∈ D6; the permutation σ is depicted with bold numbers next to the vertices in T (so for
example σ (1)= 5 and σ (6)= 2). (b) The increasing tree σ (T).

Recursive trees on n vertices, which we denote by Rn, are usually constructed as follows. Start
with R1 as a single node with label 1. For each 1< j� n, Rj is obtained from Rj−1 by adding a new
vertex j and connecting it to vj ∈ [j− 1]; the choice of vj is uniformly random and independent
for each 1< j� n. It is readily seen that Rn is a uniformly random tree in In. It follows that the
process (Rn, n� 1) is a random increasing tree growth process.

1.2 The new growth process
In what follows we extend the concept of increasing trees. If T ∈ Tn and σ ∈ Sn, then σ (T) is the
tree T′ ∈ Tn with edges {σ (u)σ (v) : uv ∈ E(T)}. In words, T′ is obtained from T by relabelling the
vertices of T according to the permutation σ ; see Figure 1 for an example. We say that σ is a stamp
history for T if σ (T) is increasing. If σ is a stamp history for T, then we say that the pair (T, σ ) is
a recursively decorated tree or decorated tree, and that vertex v has stamp history σ (v). We denote
the set of decorated trees of size n by

Dn = {(T, σ ) : T ∈ Tn, σ is a stamp history of T}.
For each n� 2, the Robin Hood pruning Hn : Dn−1 → Dn is a random mapping that can be

applied to any decorated tree. The exact definition of Hn will be given in Section 3. Broadly speak-
ing, Hn(T, σ ) is obtained from (T, σ ) by pruning some subtrees of T and placing them as subtrees
of a new vertex labelled n; additionally, vertex n attaches to a random vertex or becomes the root
of the new tree. The stamp history in Hn(T, σ ) is adjusted from σ in such a way that vertex n has
a uniformly random time stamp. Heuristically, the random procedure follows a ‘steal from the old
to give to the new’ scheme; that is, once the time stamp of n has been determined, vertices with an
earlier time stamp have larger probability of being reattached to vertex n.

Ourmain theorem states that, when the input of Hn is uniformly random inDn−1, the output is
uniformly random in Dn. For the remainder of the paper, for any n� 1, the pair (Tn, σn) denotes
a uniformly random element in Dn.

Theorem 1.1 (main coupling). For each n� 2, the Robin Hood pruning provides a coupling
between (Tn−1, σn−1) and (Tn, σn) such that (Tn, σn)=Hn(Tn−1, σn−1).

This result boils down to carefully setting up the distribution of the random parameters
involved in the Robin Hood pruning. Note that |D1| = 1, thus the Robin Hood pruning can be
unambiguously applied to decorated trees starting from D1. Theorem 1.1 implies that the tree
growth process ((Tn, σn), n� 1) given by (Tn, σn)=Hn((Tn−1, σn−1)) is composed of uniformly
random decorated trees, but it yields a non-increasing growth process on trees. This occurs since

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548320000073
Downloaded from https://www.cambridge.org/core. Georgia Institute of Technology, on 30 Apr 2021 at 16:06:46, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548320000073
https://www.cambridge.org/core


82 L. Eslava

the rewiring may destroy some subtrees in the previous tree; see Remark 3.4. However, the shape
of Tn has the same law as that of Rn; this is proved by a straightforward bijection between Dn and
In × Sn.

Proposition 1.2. For each n ∈N, |Dn| = n!(n− 1)!, and if (Tn, σn) ∈ Dn is chosen uniformly at
random then σn(Tn)

dist= Rn is a recursive tree of size n and σn is a uniformly chosen permutation
in Sn.

Proof. By definition, if (T, σ ) ∈ Dn, then σ (T) ∈ In. Let ϕ : Dn → In × Sn be defined such that
ϕ(T, σ )= (σ (T), σ ). For an increasing tree T and σ ∈ Sn, let T′ = σ−1(T). Then ϕ(T′, σ )=
(T, σ ); it is also straightforward that ϕ is injective. Therefore |Dn| = |In| · |Sn| = n!(n− 1)!. The
result follows since bijections preserve the uniform measure on finite probability spaces.

Growth procedures naturally couple families of trees as the size varies. For example,
Proposition 1.3 below shows that (Tn, σn) is a representation of Kingman’s coalescent on [n];
informally, the stamp history encodes the addition of edges in the coalescent. Precise defini-
tions are given in Section 2, and for the moment it suffices to say that C= (Fn, . . . , F1) denotes a
Kingman’s coalescent, where the Fj are forests with j trees.

Proposition 1.3. Let (Tn, σn) be uniformly random in Dn and let C= (Fn, . . . , F1) be a Kingman’s
coalescent. Denote F1 = {TC}; then TC

dist= Tn and the forest’s evolution is given by σn.

Typically there is no simple coupling of finite n-coalescent processes as n varies. The first appli-
cation of Theorem 1.1 extends Proposition 1.3; namely, we establish that the RobinHood pruning,
given a Kingman’s coalescent on n vertices, produces a Kingman’s coalescent on n+ 1 vertices.

Corollary 1.4 (coupling for Kingman’s coalescents). The tree growth process ((Tn, σn), n� 1),
coupled as in Theorem 1.1, gives an explicit coupling of all finite Kingman’s coalescents.

The proof of Proposition 1.3 is given in Section 2 and is based on previous connections between
recursive trees and Kingman’s coalescents; see Remark 2.3.

1.3 High-degree vertices in Rn
In this section we establish a phase change on the number of high-degree vertices in recursive trees.
Throughout the paper we use log to denote logarithms with base 2.

Phase changes occur on random structures when a class of variables undergo a transition from
asymptotic normal limits to asymptotic Poisson limits. The change is marked by the mean of the
variables going from infinity to bounded. In recursive trees, for example, the number of fringe
trees of a given size undergoes a phase change when the size k of the trees tends to infinite and
k= o(

√
n) no longer holds [12]; similar results are given when the fringe trees are required to

satisfy any given property or pattern [5, 16]. For an integer 0<m� n, let us denote the number of
high-degree vertices by

Z(n)
m = #{v ∈ [n] : dRn(v)�m}

and write λn,m =E[Z(n)
m ]. The following estimates were implicitly given in [2] and a proof can

be found in Appendix A, Proposition A.3. For each c ∈ (0, 2), there is γ = γ (c)> 0 such that,
uniformly overm< c ln n,

2−m+log n(1− o(n−γ ))=E[Z(n)
m ]� 2−m+log n. (1.1)
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It thus follows that the phase change occurs when m=m(n)≈ log n. Using a Poisson approxi-
mation together with (1.1), we obtain the following phase change for the number of high-degree
vertices.

Theorem 1.5 (phase change). For each c ∈ (1, log e), there exists c′ ∈ (1, c) such that, if c′ ln n<

m< c ln n, then

Z(n)
m − λn,m√

λn,m

dist−→N(0, 1). (1.2)

If m� log n, and (nj) is a sequence for which λnj,m → λ, we have that

Z(nj)
m

dist−→ Poi (λ). (1.3)

Remark 1.6. Counting the high-degree vertices is equivalent to counting fringe trees (of all sizes)
with a high-degree root. Although it is possible to deduce (1.2), the asymptotic normal distribu-
tion of Z(n)

m , from [16, Corollary 1.25], the computation of both the mean and variance for the
renormalization of the variables is apparently not straightforward.

Remark 1.7. The associated convergence rates for (1.3) given in Theorem 1.8 are strong and
novel.

Previous results on the profile of recursive trees consider X(n)
m = #{v ∈ [n] : dRn(v)=m}, for

m< n. For fixed values ofm, Janson established the joint limiting distribution of (X(n)
m , m� 1) in

[17]. Addario-Berry and the author addressed the casem=m(n)→ ∞, providing all the possible
limiting distributions of (X(n)


log n�+k, k ∈Z) and establishing asymptotic normality for X(n)
m when

m= log n− d and d = d(n) slowly tends to infinity [2].
Theorem 1.5 follows from the convergence rates of the next theorem, which in turn, applies

the Chen–Stein method to Z(n)
m . By changing the perspective of recursive trees to the distri-

bution equivalent Tn we can use the Robin Hood pruning to understand how the variables
(1[dTn (v)�m], v ∈ [n]) change when conditioning to dTn(u)�m where u is a vertex chosen uni-
formly at random. The details of this approach are somewhat delicate, so we defer the discussion
to Section 4.

Theorem 1.8 (convergence rates). Fix 1< c′ < c< 2. There are constants α = α(c) ∈ (0, 1) and
β = β(c′)> 0 such that, uniformly for m=m(n) satisfying c′ ln n<m< c ln n,

dTV(Z(n)
m , Poi (λn,m))�O(2−m+(1−α) log n)+O(n−β).

The exponent α is determined by the almost negative correlation between pairs of vertices in
Tn (see Proposition 4.1), while the exponent β depends on an auxiliary coupling based on the
Robin Hood pruning (see Proposition 4.4).

Remark 1.9. A detailed but simple track of the conditions on α (see Proposition 4.1) shows that
there is a non-empty interval I = ((1− α) log e, c) such that, if c′ ∈ I ∩ (1, 2), then the bounds
in Theorem 1.8 do, in fact, tend to zero.

Remark 1.10. We believe that the constraint c′ > 1 could be relaxed by obtaining uniform bounds
on P(dRn(i)=m) rather than P(dRn(i)�m).
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Finally, now consider the maximum degree �n of a recursive tree Rn. Note that Z(n)
m > 0 if

and only if �n �m. Therefore, having E[Z(n)
log n]≈ 1 indicates �n ≈ log n. In fact, Devroye and

Lu showed that �n/ log n→ 1 a.s. [7]. The first tail bounds on �n were obtained for P(�n <


log n� + i) with i ∈Z using singularity analysis of generating functions [13]. The relation between
recursive trees and Kingman’s coalescent provided simpler proofs of such results, extending them
also to i< 2 ln n− log n [2]. The bounds in Theorem 1.8 yield broader, tighter bounds.

Corollary 1.11 (max-degree tails). There exists C > 0 such that, uniformly over 0< i= i(n)<
log e ln ln n− C,

P(�n < 
log n� − i)= exp{−2i+εn}(1+ o(1)),

where εn = log n− 
log n�.

The maximum of i.i.d. random variables is, under rather general conditions, distributed in
the limit as the Gumbel (or double-exponential) distribution [15]; however, lattice distributions
are excluded from this regime. Addressing the case of integer-valued variables, Anderson gives
sufficient conditions under which the Gumbel distribution serves as an approximation for their
maximum [3]; among those is the geometric distribution. Now, when we randomize the labels
in Rn (e.g. using the tree Tn instead), vertex degrees become exchangeable and their limiting dis-
tributions are geometric. Although the degrees of Tn are not independent, their correlations are
weak and the Gumbel-type approximation still arises for the distribution of�n. Goh and Schmutz
provide an alternative heuristic based on the fact that dRn(i), with i→ ∞ slowly, is asymptotically
normal [13].

Outline. The paper is divided into two parts. Sections 2 and 3 establish that the Robin Hood
pruning is well-defined and provides a new coupling of recursive trees (andKingman’s coalescent),
while Sections 4 and 5 apply the Chen–Stein method to such a representation of recursive trees.

We discuss further the connection between recursive trees, Kingman’s coalescents and other
tree models in Section 2. The precise definition of the Robin Hood pruning Hn, together with the
proof of Theorem 1.1, is given in Section 3. The results on high-degree vertices of recursive trees
use the Chen–Stein method and the Robin Hood pruning in a non-trivial way; an overview of how
we use the Chen–Stein method is given in Section 4. Assuming the existence of an auxiliary cou-
pling (Proposition 4.4), we complete the proofs concerning high-degree vertices in Section 4.1.
The auxiliary coupling, based on the Robin Hood pruning, is presented in Section 5. Finally,
Section 6 discusses further avenues of research.

2. Kingman’s coalescents and recursive trees: distinct representations
Discrete coalescents are processes on partitions of [n] that can be represented by different tree
structures. On can encode the coalescent using an n-chain: a sequence of forests where at all times
there are n vertices (or elements), and n− 1 edges are added one by one until a tree is formed.
However, there is a more traditional construction using binary search trees (BSTs), where internal
nodes correspond to merges and only external nodes correspond to elements of the coalescent.
In the next section we introduce the representation used in this paper and prove Proposition 1.3.
Following that, we discuss the well-known bijection between BSTs and recursive trees and the
difference between the two coalescent representations. In addition, we explain the difference
between the Yule–Harding model of phylogenetic trees and its uniform model, and highlight the
importance of clarifying both the rules applied to the mergings in coalescent processes and their
representation as trees.
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2.1 Recursive trees perspective
Na and Rapoport [21] loosely described this process as the construction of static trees with n
vertices:

Initially, single elements move about at random. Each collision forms a couple. A collision
of a couple with a single element forms a triple, a collision of an s-tuple with a t-tuple forms
an (s+ t)-tuple, and so on. At each collision a link is established between an element of one
X-tuple and an element of another, the links being rigid so that the elements of the same
k-tuple cannot collide. The process goes on until the entire set of n elements has been joined
into an n-tuple.

By changing the rule on how to link the elements on the tuples, we obtain distinct coalescent
distributions. In the description in [21] there are no restrictions on the elements allowed to be
linked during the coalescent.1 In fact, the discrete multiplicative coalescent arises when any possi-
ble link is chosen uniformly at random. It is associated with Kruskal’s algorithm for the minimum
weighted spanning tree problem [1].

Kingman’s coalescent is characterized by the property that the merging probability of any pair
of components is independent of the components’ sizes. The representation used in this paper
uses the fact that at each time the representative of each ‘tuple’ is the current root of the tree and it
is closely related to the ‘union-find’ algorithm used in computer science (see e.g. [24]). We present
a formal description following the notation of [2].

A (deterministic) forest f is a set of trees with pairwise disjoint vertex sets. Let V( f ) and E( f ),
respectively, denote the union of the vertex and edge sets of the trees in f . For n� 1, an n-chain
is a sequence C = ( fn, . . . , f1) of elements of Fn = {f : V( f )= [n]} such that, for 1< i� n, fi−1
is obtained from fi by adding a directed edge between the roots of some pair of trees in fi. In
particular, fn consists of n one-vertex trees and f1 consists of a single tree on n vertices denoted by
tC. For an example see Figure 2.

Next we introduce the necessary notation to define Kingman’s coalescent using n-chains. For
an n-chain ( fn, . . . , f1) and 1� i� n, list the trees of fi in increasing order of their smallest-labelled
vertex as t(i)1 , . . . , t(i)i . Independently for each 1< i� n, let {ai, bi} ⊂ {{a, b} : 1� a< b� i} be uni-
formly chosen at random; in addition, let ξi be independent Bernoulli random variables with
mean 1/2.

Definition 2.1. Kingman’s n-coalescent is defined as C= (Fn, . . . , F1), constructed as follows.
For 1< i� n, Fi−1 is obtained from Fi by adding an edge between r(T(i)

ai ) and r(T
(i)
bi ). If ξi = 1 then

direct the edge towards r(T(i)
ai ); otherwise direct it towards r(T

(i)
bi ). The forest Fi−1 consists of the

new tree and the remaining i− 2 unaltered trees from Fi.

In other words, if C= (Fn, . . . , F1) is a Kingman’s coalescent, then each of the trees of Fi cor-
respond to a set of coalesced elements after n− i+ 1 steps of the process. At each step, two sets
(represented by their roots) coalesce and a new representative is chosen uniformly at random.

To link n-chains with decorated trees, we first define a natural edge labelling that tracks the
number of trees left in the forest when a given edge comes along. Fix C = ( fn, . . . , f1), for each
e ∈ E(tC), let

ρC(e)=max{i ∈ [n− 1] : e ∈ E( fi)}.
We next define a vertex labelling σC : V(tC)→ [n]. Let σC(r(tC))= 1, and for each uv ∈ E(tC), let

σC(u)= ρC(uv)+ 1.

1Unfortunately, it was incorrectly presumed in [21] that ‘static’ trees build uniformly random unrooted labelled trees.
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Figure 2. An example of an n-chain with
n= 6. The edge labelling ρn is represented
by numbers in bold.

The following proposition shows that the pair (tC, σC) ∈ Dn contains all the information for
recovering the original n-chain C; in other words, if Cn denotes the set of n-chains, then Dn and
Cn are in bijection.

Proposition 2.2. Let ϒ : Cn → Dn be defined as follows. For an n-chain C = ( fn, . . . , f1), let
ϒ(C)= (tC, σC). Then ϒ is a bijection.
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Proof. First, we show that Cn andDn have the same cardinality. To count the number of n-chains,
consider constructing ( fn, . . . , f1) by deciding which edge to add from fk to fk−1. Since there are
k trees in fk, when we have chosen ( fn, . . . , fk), there are k(k− 1) possible directed edges to add.
Therefore |Cn| = n!(n− 1)!.

Next, let C = ( fn, . . . , f1) be an n-chain. For each 1� i< n, the new edge in fi joins the roots of
two trees in fi+1 and is directed towards the root of the resulting tree. Thus the labels {ρC(e), e ∈
E(tC)} decrease along all paths in tC towards the root r(tC). Consequently the labels {σC(v), v ∈
[n]} form, indeed, a stamp history of tC. It follows that ϒ is well-defined.

Finally, let C = ( fn, . . . , f1), C′ = ( f ′n, . . . , f ′1) be distinct n-chains and write k=min{i : fi �= f ′i }.
If k= 1 then tC �= tC′ , and clearly ϒ(C) �= ϒ(C′). Otherwise tC = tC′ , fk−1 = f ′k−1 and the (unique)
edges e ∈ E( fk−1) \ E( fk) and e′ ∈ E( f ′k−1) \ E( f ′k) are distinct. It follows that e= uv ∈ f ′k and so
σC(u)= k> σC′(u). This shows thatϒ is injective, and soϒ is a bijection between Cn andDn.

Using the bijection of Proposition 2.2, it follows that Proposition 1.3 boils down to showing
that C is uniformly random in Cn.

Proof of Proposition 1.3. Let C= (Fn, . . . , F1) be a Kingman’s coalescent. For any fixed n-chain
( fn, . . . , f1) ∈ Cn,

P((Fn, . . . , F1)= ( fn, . . . , f1))=
n−1∏
k=1

P(Fk = fk | (Fn, . . . , Fk+1)= ( fn, . . . , fk+1)).

Among the k(k+ 1) possible oriented edges connecting roots of fk+1, exactly one of them can be
added to fk+1 to yield fk. Thus, regardless of the sequence ( fn, . . . , f1),

P((Fn, . . . , F1)= ( fn, . . . , f1))= [(n− 1)!n!]−1.

Recall F1 = {TC}. By Proposition 2.2, (TC, σC) ∈ Dn and it has a uniform distribution, since the
bijection preserves the uniformmeasure ofC. Finally, by Proposition 2.2, it follows that TC

dist= Tn.
The evolution of the forests is given by ρC; equivalently by σC.

Remark 2.3. It follows from Propositions 1.2 and 1.3 that, for any fixed n and up to relabelling
of vertices, Kingman’s coalescent corresponds to recursive trees. See also [1, 2] for direct proofs of
this fact.

2.2 The binary search tree connection
Binary search trees have been related to both recursive trees and phylogenetic trees. In this section
we briefly discuss these connections and compare them with Kingman’s coalescent. Let Bn be
the set containing all plane, rooted, unlabelled binary trees with n external nodes. Trees in Bn
distinguish between left and right subtrees of any given internal vertex. It can be shown that the
sizes |Bn| = 3 · 5 · · · (2n− 3) are given by the Catalan numbers.

Binary search trees are the tree representation of the sorting algorithm Quicksort. Simply
described, for each n� 1, the Quicksort algorithm takes a permutation σ ∈ [n] and constructs
(step by step) a binary tree with internal vertex labels on [n] as follows. The root is σ (1) and ver-
tices σ (2), . . . , σ (n) are added sequentially so that the final tree satisfies the following property:
for any internal node j, all nodes on its left subtree are smaller than j and all nodes on its right tree
are larger than j. It follows that, given a shape of a binary tree B ∈ Bn+1, there is exactly one way
to label internal vertices.

There are n! distinct permutations as input for the quicksort algorithm. Devroye introduced
the representation of the binary search tree (process) using time stamps which record the entire
insertion process. Using this representation, the rotation correspondence maps (one-to-one)
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recursive trees (on n− 1 vertices) and binary search trees (with n external vertices). For a thorough
description of the correspondence, see [16, Section 2, Figures 1–2].

On the other hand, phylogenetic trees on n species are represented by elements in Bn. In this
case species are assumed to have a common ancestor (the root), internal nodes are also ancestors,
and the time elapsed between differentiation of species, i.e. the length of the branches, is omitted.
Two common distributions on phylogenetic trees are the uniform one, known as the Catalan
model, and the Yule–Harding model. The latter is a process that constructs trees starting from the
root, by branching a uniformly random external node and replacing it with a cherry (an internal
node with two external nodes). Clearly, this construction corresponds one-to-one to the quicksort
algorithm. We remark that the Yule–Harding process does not yield uniform phylogenetic trees
(as the BST is not uniform in Bn). For further comparison between the two models, see e.g. [4,
Section 3].

It has been presumed that Kingman’s coalescent is the bottom-up construction of the Yule–
Harding model; see e.g. [5]. However, such correspondence has to be done carefully, as merges
in principle are not bound to satisfy planarity constraints. As we can see from the bijections and
n!-to-1 mappings from Propositions 2.2 and 1.2, there should be a correspondence between BSTs
with time stamps and Kingman’s coalescent.

The construction of Kingman’s coalescent as a binary tree in Bn with time stamps is as follows.
Using the same random variables used in Definition 2.1, add an internal node connecting the two
roots of the merging trees, while the coin flip indicates which of the trees is the left child of the
new internal vertex; the time stamps indicate the (reversed) order of addition of internal nodes.
Note that in this construction, the symmetry breaking of the coin flip is still necessary.

Conversely, we describe how to interpret time stamps of a BST as the merging history of a
Kingman’s coalescent. To do so, we have to label external nodes uniformly at random (so that
there are a total of n!(n− 1)! different processes). Now the role of internal vertices is as follows.
At step k ∈ [n− 1], the two sets of external vertices in each of the subtrees of the vertex with time
stamp n− k are the subsets to be merged in the coalescent.

Kingman’s coalescent has uniform distribution when considering all possible merging histories
with elements labelled exchangeably. However, considering only the final tree (in either Tn or
Bn) yields a non-uniform distribution: there are n!(n− 1)! total ways to merge the subtrees (if we
use the symmetry breaking at each merging), but there are only |Tn| = nn−1 and |Bn| = 3 · 5 · · ·
(2n− 3) different rooted, labelled trees and phylogenetic trees, respectively.

3. The Robin Hood pruning
The Robin Hood pruning Hn : Dn−1 → Dn is a random procedure based on randomizing the
parameters of a deterministic mapping hn : Dn−1 × Pn → Dn where the set Pn defines all possi-
ble ways to prune a decorated tree on n− 1 vertices. The distribution on Pn is tailored so that the
Robin Hood pruning in fact yields a coupling of ((Tn, σn); n� 1).

First we introduce the necessary notation to define Pn, the deterministic pruning hn and verify
that, indeed, the mapping hn is well-defined. We then continue to define the distribution on Pn
used in defining the RobinHood pruning (Definition 3.5). The proof of Theorem 1.1 requires us to
characterize the properties of the uniform distribution in decorated trees. For the characterization
in Lemma 3.6 and the proof of Theorem 1.1, we emphasize the difference between deterministic
elements (T, π) of Dn and random elements (T, σ ) using bold notation; the distribution of (T, σ )
is not given a priori.

3.1 A deterministic process
Informally, we define all possible ways to prune a decorated tree on n− 1 vertices using three
parameters (k, l, x) ∈ Pn: the time stamp k of the new vertex, its point of attachment l, and the
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vertices to be rewired encoded by time stamp in the sequence x= (x1, . . . , xn−1). Once a stamp
history is given to a tree T, Vn contains the vertices to be pruned and rewired towards the new
vertex n.

We now proceed to precise definitions. Let n� 2 and set

Pn = {(k, l, x) : 1� l< k� n, x ∈ {0, 1}n−1} ∪ {(1, 0, x) : x ∈ {0, 1}n−1, x1 = 1}.
Additionally, for (k, l, x) ∈ Pn and a permutation σ ∈ Sn−1, let

Vn(k, l, x, σ )= Vn(k, x, σ )= {v ∈ [n− 1] : xσ (v) = 1, σ (v)� k}.

Remark 3.1. The definition of Pn is such that σ−1(1) ∈ Vn if and only if k= 1.

The following definition of a deterministic pruning is illustrated in Figure 3.

Definition 3.2. Fix n� 2, (T, σ ) ∈ Dn−1 and (k, l, x) ∈ Pn . We define (T′, σ ′) and set

hn((T, σ ), (k, l, x))= (T′, σ ′)

as follows. First, let V = Vn(k, x, σ ) and construct T′ from T. For each v ∈ V \ {r(T)}, replace the
edge vpT(v) with an edge connecting v to a new vertex labelled n. Now if k= 1 then attach r(T) to
n; otherwise attach vertex n to σ−1(l). In other words the edges of T′ are given by

E(T′)=
{
(E(T)∪ {vn; v ∈ V }) \ {vpT(v); v ∈ V } if k= 1,
{nσ−1(l)} ∪ (E(T)∪ {vn; v ∈ V }) \ {vpT(v); v ∈ V } if k> 1.

Second, let σ ′ : [n]→ [n] be defined by σ ′(n)= k and for v< n,

σ ′(v)= σ (v)+ 1[σ (v)�k].

Lemma 3.3. For any n� 2, hn : Dn−1 × Pn → Dn is well-defined. That is, for any (T, σ ) ∈ Dn−1
and (k, l, x) ∈ Cn,

hn((T, σ ), (k, l, x)) ∈ Dn.

Proof. Write hn((T, σ ), (k, l, x))= (T′, σ ′). When k= 1, it is clear that T′ is a tree. When k> 1,
let w= σ−1(l) be the parent of n in T′ and let (w= v1, . . . , vj = r(T)) be the path from w to the
root of T. Since σ is a stamp history of T, l= σ (v1)> σ (v2)> · · · > σ (vj)= 1; moreover, l< k. It
follows that vi /∈ V (k, l, x, σ ) for all i ∈ [j], and consequently no edges in the path from n to the
root in T′ close a cycle by connecting to n.

Now we show that σ ′ is a stamp history for T′. It is clear that σ ′ is a permutation of [n],
so it suffices to prove that σ ′(v)> σ ′(pT′(v)) for all v ∈V(T) \ {r(T′)}. First, for vertices v with
pT′(v)= n we have σ (v)� k, and consequently σ ′(v)= σ (v)+ 1> k= σ ′(n).

Second, consider v,w< n with pT′(v)=w. It follows that vw ∈ E(T) and thus σ (v)> σ (w).
Consequently 1[σ (v)�k] � 1[σ (w)�k] and so σ ′(v)> σ ′(w). The last case occurs when k> 1 and
pT′(n)=w= σ−1(l). We then have σ ′(n)= k> l= σ (w)= σ ′(w).

Remark 3.4. Whenever (k, l, x) ∈ Pn has xj = 1 for some j� k, setting

(T′, σ ′)= hn((T, σ ), (k, l, x)) and v= σ−1(j)

yields n= pT′(v) �= pT(v) ∈ [n− 1]. This implies that T �⊂ T′.
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Figure 3. An example of the Robin Hood pruning
for (T, σ ) with k= 6, l= 5 and x1 = x2 = x7 = x8 = 1;
all other xi = 0. (a) A tree (T, σ ) in D9. The per-
mutation σ is depicted with bold numbers. (b)
Vertices in grey satisfy Xσ (v) = 1 and underlined
numbers indicate time stamps σ (i)� k. (c) Nodes i
with σ (i)� k and xi = 1 have been pruned and time
stamps have been adjusted. (d) The resulting tree
h10((T, σ ), (k, l, x)) ∈ D10.

3.2 The random process
The Hn-set is a sample of Pn according to the following distribution.

Definition 3.5. Fix n� 1. Let K dist= Unif (1, 2, . . . , n); if K = 1 let L= 0, and if K > 1 let
L=Unif (1, 2, . . .K − 1). Independently, let X = (X1, . . . , Xn−1), where Xi

dist= Bernoulli (1/i)
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are independent variables. An Hn-set is a triple of random variables with the same law as
(K, L, X) ∈ Pn.

We are ready to define the RobinHood pruning. For each n� 2, let (K, L, X) ∈ Pn be anHn-set
and define

Hn(T, σ )= hn((T, σ ), (K, L, X)).

The law of Hn(T, σ ) depends on the initial input (T, σ ); however, the distribution of the Hn-set
is tailored so that Hn(Tn−1, σn−1) preserves the uniform measure on decorated trees. In order to
prove Theorem 1.1, we start with a characterization of (Tn, σn).

Lemma 3.6. Let n� 1 be an integer. A random decorated tree (T, σ ) ∈ Dn is uniformly random if
and only if the following properties are satisfied.

(i) The permutation σ is uniformly random on Sn.
(ii) Conditional on σ , the vertices (pσ (T)(σ−1(v)), v ∈V(T) \ {r(T)}) are independent.
(iii) For all vertices v,w ∈ [n] and indices i, j ∈ [n],

P(pT(v)=w, σ (v)= j, σ (w)= i)= 1
n(n− 1)(j− 1)

1[j>i]. (3.1)

Proof. Let (T, σ )= (Tn, σn) be uniformly random on Dn. Condition (i) follows directly from
Proposition 1.2, which states that σ is a uniformly random permutation and σ (T) has the law
of a recursive tree Rn. In addition, Proposition 1.2 implies

(pσ (T)(σ−1(v)), v ∈V(T) \ {r(T)}) dist= {pRn(j), 1< j� n},
from which conditions (ii) and (iii) immediately follow: parents in recursive trees are chosen
independently for each of the vertices, and for all v,w, i, j ∈ [n],

P(pT(v)=w, σ (v)= j, σ (w)= i)= 1
n(n− 1)

P(pT(v)=w | σ (v)= j, σ (w)= i)

= 1
n(n− 1)

P(pσ (T)(j)= i)

= 1
n(n− 1)(j− 1)

1[j>i].

Now consider a random decorated tree (T, σ ) ∈ Dn satisfying conditions (i)–(iii). Fix a deco-
rated tree (T, π) ∈ Dn, and for v ∈V(T) \ {r(T)}, let wv = pT(v). Condition (ii) on the conditional
independence of parents gives, for v �= r(T),

P(pT(v)=wv | σ = π)= P(pσ (T)(σ (v))= π(wv) | σ (v)= π(v), σ (wv)= π(wv))

= P(pT(v)=wv, σ (v)= π(v), σ (wv)= π(wv))
P(σ (v)= π(v), σ (wv)= π(wv))

.

Using the fact that π is a stamp history for T, so π(v)> π(wv), and that σ is uniformly random,
it follows from (3.1) that

P(pT(v)=wv | σ = π)= 1
π(v)− 1

. (3.2)
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Any increasing tree T′ ∈ In is determined by the set of parents {pT′(v), 1< v� n}. Using the
fact that π(T) ∈ In and the conditional independence from condition (ii), we get

P(σ (T)= π(T) | σ = π)= P(pσ (TTT)(j)= pπ(T)(j), 1< j� n | σ = π)

= P(pT(v)= pT(v), v ∈V(t) \ {r(T)} | σ = π)

=
∏

v∈V(T)\r(T)
P(pT(v)= pT(v) | σ = π)

= [(n− 1)!]−1,

where the last equality holds by (3.2) and the fact that {π(v), v ∈V(T) \ {r(T)}} = {2, . . . , n}.
Finally, using the equation above and the fact that σ is uniformly random, we have

P((T, σ )= (T, π))= P(σ (T)= π(T) | σ = π) P(σ = π)

= 1
n!P(σ (T)= π(T) | σ = π)

= [n!(n− 1)!]−1.

This holds regardless of the choice of (T, π), so (T, σ ) is uniformly random in Dn.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let (Tn−1, σn−1) ∈ Dn−1 be a uniformly random decorated tree. Let
(K, L, X) be an Hn-set and let (T, σ )= h((Tn−1, σn−1), (K, L, X)). It suffices to show that (T, σ )
satisfies the properties in Lemma 3.6.

First, condition (i) follows from the construction of σ and the distributions of bothK and σn−1.
Second, conditioning on σ , which is equivalent to conditioning on both σn−1 and K, we get

{pT(v), v ∈V(T) \ {r(T)}} = {pT(v), 1< σ (v)< σ (n)}
∪ {pT(v), σ (n)� σ (v)� n}

= {pTn−1 (v), v ∈ 1< σn−1(v)<K}
∪ {pT(v), (2∨K)� σ (v)� n},

where the last two sets are conditionally independent given σ . Now, since (Tn−1, σn−1) is
uniformly random in Dn−1, the parents {pTn−1 (v), v ∈ 1< σn−1(v)<K} are independent, con-
ditionally given σn−1 (and thus also conditionally given σ ). On the other hand, for v with
σ (v)�K,

pT(v)=

⎧⎪⎪⎨
⎪⎪⎩
n if Xσ (v)−1 = 1,

pTn−1 (v) if Xσ (v) = 0,

σ−1(L) if σ (v)=K.

Note that pT(v) is determined independently from other vertices, thus {pT(v), K � σ (v)� n} are
also independent, conditionally given σ . This implies that condition (ii) is satisfied.

Third, fix 1� i< j� n and fix distinct v,w ∈ [n]. We consider three cases, namely v= n, w= n
and {v,w} ⊂ [n− 1]. Let

A1 = {pT(n)=w, σ (n)= j, σ (w)= i},
A2 = {pT(v)= n, σ (v)= j, σ (n)= i},
A3 = {pT(v)=w, σ (v)= j, σ (w)= i}.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548320000073
Downloaded from https://www.cambridge.org/core. Georgia Institute of Technology, on 30 Apr 2021 at 16:06:46, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548320000073
https://www.cambridge.org/core


Combinatorics, Probability and Computing 93

It remains to show that the probabilities of A1,A2,A3 are given by (3.1) for all i, j ∈ [n]. The event
pT(n)=w implies that σn−1(w)= L<K. Therefore A1 occurs precisely when K = j, L= i and
σn−1(w)= i. Then

P(A1)= P(K = j, L= i) P(σn−1(w)= i)= 1
n(j− 1)(n− 1)

.

Next, pT(v)= n implies that σn−1(v)�K and thus σ (v)= σn−1(v)+ 1. It then follows that A2
occurs when K = i, σn−1(v)= j− 1 and Xj−1 = 1. Therefore

P(A2)= P(K = i, Xj−1 = 1) P(σn−1(v)= j− 1)= 1
n(j− 1)(n− 1)

.

For the last case, since u, v< n, it follows that K /∈ {i, j}. For each k ∈ [n] \ {i, j}, let
A3,k = {pT(v)=w, σ (v)= j, σ (w)= i, K = k}.

In computing the probabilities P(A3,k) we use that (Tn−1, σn−1) is uniformly random in RDn−1. If
K > j, then both σn−1(v)= σ (v) and σn−1(w)= σ (w); in addition, pT(v)=w only if pTn−1 (v)=w.
Therefore, if k> j, then

P(A3,k)= P(K = k) P(pTn−1 (v)=w, σn−1(v)= j, σn−1(w)= i)

= 1
n(n− 1)(n− 2)(j− 1)

.

Similarly, if K < j, then σn−1(v)= σ (v)− 1, σn−1(w)= σ (w)− 1[K<i] and additionally Xj−1 = 0.
It then follows that if k< j,

P(A3,k)= P(K = k, Xj−1 = 0) P(pTn−1 (v)=w, σn−1(v)= j− 1, σn−1(w)= i− 1[K<i])

= 1
n

· j− 2
j− 1

· 1
(n− 1)(n− 2)(j− 2)

.

We have shown that P(A3,k) is uniform for all k ∈ [n] \ {i, j}, and we get

P(A3)=
∑
k�=i,j

P(A3,k)= 1
n(n− 1)(j− 1)

.

Altogether, we have shown that condition (iii) is satisfied and so the proof is complete.

4. The Poisson approximation
Recall that (Tn, σn) is a uniform decorated tree and that Tn has the shape of a recursive tree. In
fact Proposition 1.2 implies that the following distributional identity holds, for all n ∈N,

(dTn(σ
−1
n (i)); i ∈ [n]) dist= (dRn(i); i ∈ [n]).

It follows that the distribution of (Z(n)
m , m� 1) and �n does not change if we redefine them

as Z(n)
m = #{v ∈ [n] : dTn(v)�m} and � =max{dTn(v) : v ∈ [n]}. However, the correlations in

(dTn(v); v ∈ [n]) have a subtle difference in comparison with those in (dRn(i); i ∈ [n]). To see this,
observe that (dRn(i), i ∈ [n]) is negative orthant-dependent; for a definition see [8]. This fact can
be proved by induction from the two-vertex case (dRn(i), dRn(j)), which, in turn, follows essentially
from the negative orthant dependence of multinomial distributions; see e.g. [7, Lemma 1]. As a
consequence, for all i, j ∈ [n],

P(dRn(i)�m, dRn(j)�m)� P(dRn(i)�m) P(dRn(j)�m). (4.1)
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On the other hand, the following proposition gives conditions onm for the degrees in Tn to have
a pairwise ‘almost’ negative correlation.

Proposition 4.1. For any c ∈ (0, 2) there exists α = α(c)> 0 such that, uniformly for m=
m(n)< c ln n and distinct v,w ∈ [n],

P(dTn(v)�m, dTn(w)�m)� P(dTn(v)�m) P(dTn(w)�m)+O(2−2m−α log n). (4.2)

Moreover, α < 1
4 (1− c+ √

1+ 2c− c2)< 1.

We make the constraints on α precise as this is crucial to Theorem 1.5. A weaker version of
Proposition 4.1, without explicit error bounds, was proved in [2, Proposition 4.2]; a complete
proof of Proposition 4.1 appears in Appendix A.

Although we do not claim the bounds in Proposition 4.1 are optimal, it seems that the property
in (4.1) is lost when randomizing the vertex labels of Rn to obtain Tn. The bound in (4.2) will be
an important input to the Chen–Stein method.

Briefly explained, our application of the Chen–Stein method compares, in total variation dis-
tance, the sum Z(n)

m with respect to a Poisson variable with mean E[Z(n)
m ]. The strength of the

bounds depend on finding suitable couplings between (1[dTn (v)�m]; v ∈ [n]) and conditional ver-
sions of such variables. More precisely, we use the pruning procedure to obtain Tn and Fact 5.1
describes (dTn(i), i ∈ [n]) in terms of the independent elements (dTn−1 (i), i ∈ [n− 1]) and dTn(n).
This allows us to analyse the conditional law of (dTn(i), i ∈ [n− 1]) given {dTn(n)�m}.

Before going into further details we lay out the necessary notation. Given probability measures
μ and ν, a coupling of μ and ν is a pair (X, Y) of random variables (either real- or vector-valued)
with X ∼ μ and Y ∼ ν. Let I = (Ia, a ∈ A ) be a collection of {0, 1}-valued random variables.
Let μ be the law of W = ∑

a∈A Ia and for a ∈ A let νa be the conditional law of W given that
Ia = 1, so

νa(B)= P(Wa ∈ B)= P(W ∈ B | Ia = 1).

We use the Chen–Stein method stated below.

Theorem 4.2 ([14, Theorem 3.7]). Let I = (Ia, a ∈ A ) be a collection of {0, 1}-valued random
variables and let W = ∑

a∈A Ia. For each a ∈ A fix a coupling (W,Wa) of μ and νa. Then, with
λ =E[W], we have

dTV(W, Poi (λ))�min{λ−1, 1}
∑
a∈A

E[Ia]E[|W − (Wa − 1)|].

To apply Theorem 4.2 with bounds as tight as possible, one can exploit properties of the
variables Ia or construct couplings of μ and ν with specific properties.

Corollary 4.3. Let I = (Ia, a ∈ A ) be a collection of {0, 1}-valued random variables and let W =∑
a∈A Ia. If the variables I = (Ia, a ∈ A ) are exchangeable, then for any fixed a ∈ A and coupling

(W,Wa) of μ and νa, we have

dTV(W, Poi (λ))�E[|W − (Wa − 1)|]. (4.3)

If, moreover, Wa = (Jab, b ∈ A ) and there is a coupling (W,Wa) of μ and νa satisfying Jab � Ia for
all b ∈ A \ {a}, then

dTV(W, Poi (λ))�E[Ia]+
∑

b∈A \{a}
E[Ia − Jab]. (4.4)
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Now, for the remainder of the section, fix m and, for all v ∈ [n], let Iv = 1[dTn (v)�m], so that

Z(n)
m

dist= ∑
v∈[n] Iv. Let (I, J)= ((Iv, v ∈ [n]), (Jv, v ∈ [n])) be a coupling of μ and ν = νn where μ is

the law of (I1, . . . , In) and ν = νn is the conditional law of (I1, . . . , In) given that In = 1.
If we had orthant negative correlation for (dTn(v), v ∈ [n]), then it would follow that for all

v ∈ [n− 1], E[InIv]−E[In]E[Iv]� 0 and so the conditions for (4.4) would be satisfied. Although
such a strong property has not been yet established, Proposition 4.1 implies, for each v ∈ [n− 1],

E[InIv]−E[In]E[Iv]�O(2−2m−α log n).

This suggests that there are couplings of μ and ν for which, with high probability, Iv � Jv for all
v ∈ [n− 1]. The existence of such couplings is delicate as the inequality Iv � Jv has to hold for all
v ∈ [n− 1] simultaneously.

The next proposition is the key ingredient in applying the Chen–Stein method to prove
Theorem 1.8. The coupling is based on the Robin Hood pruning and its proof is the content
of Section 5.

Proposition 4.4. Let c ∈ (1, 2). There is β = β(c)> 0 such that, for any m=m(n)> c ln n, there
exists a coupling (I, J)= ((I1, . . . , In), (J1, . . . , Jn)) of μ and ν, in which, for all v ∈ [n− 1],

P(Iv < Jv)�O(n−1−β).

In the next section we assume Proposition 4.4 and complete the proofs of the results on high-
degree vertices of Rn.

4.1 Proofs for high-degree vertices
Proof of Theorem 1.8. Fix 1< c′ < c< 2 and let c′ ln n<m=m(n)< c ln n. We apply the Chen–
Stein method to Z(n)

m
dist= ∑

v∈[n] Iv. First we use the coupling (I, J)= ((I1, . . . , In), (J1, . . . , Jn)) of
μ and ν given in Proposition 4.4. By (4.3), we have

dTV(Z(n)
m , Poi (E[λn,m]))�E[|W − (Wn − 1)|]�E[In]+

∑
v∈[n−1]

E[|Iv − Jv|].

It thus remains to show that the terms in the bound above areO(2−m+(1−α) log n)+O(n−β), where
α = α(c) ∈ (0, 1) and β = β(c′)> 0 are defined as in Propositions 4.1 and 4.4 respectively. For any
v ∈ [n− 1],

E[In]E[|Jv − Iv|]=E[In]E[Iv − Jv]+ 2E[In]E[(Jv − Iv)1[Iv<Jv]]

= (E[In]E[Iv]−E[InIv])+ 2E[In] P(Iv < Jv).
The terms in the last line are bounded by (4.2) and Proposition 4.4, respectively. Since (1.1) gives
E[In]= 2−m(1+ o(1)), we get∑

v �=n
E[|Iv − Jv|]= (n− 1)

[
E[In]E[Iv]−E[InIv]

E[In]
+ 2P(Iv < Jv)

]

=O(2−m+(1−α) log n)+O(n−β).

Finally, (1.1) together with α < 1 also gives E[In]=O(2−m+(1−α) log n).

Proof of Theorem 1.5. Fix c ∈ (1, log e) and let α = α(c) be as in Theorem 1.8. Using the upper
bound for α in Proposition 4.1 and simple computations yields (1− α) log e< c. Thus we can
choose c′ ∈ ((1− α) log e, c). Let m=m(n) be such that c′ ln n<m< c ln n. By the choice of c
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and c′, we have that, as n→ ∞, (1− α) log n−m< 0, while (1.1) implies

E[Z(n)
m ]= 2−m+log n(1+ o(1))→ ∞.

The result then follows by Theorem 1.8 and the central limit theorem of Poisson variables; see e.g.
[9, Exercise 3.4.4].

Proof of Corollary 1.11. Recall that εn = log n− 
log n�. Let i= i(n) satisfy

0< i< log e ln ln n− C,

where C > 0 is a constant to be determined below, and note that

2i+εn � 2i+1 < 2−C+1 ln n.

Letm= 
log n� − i and Z dist= Poi (λm,n).
We have that {�n < 
log n� − i} if and only if {Z(n)

m = 0}. Therefore
P(�n < 
log n� − i)= P(Z(n)

m = 0)� P(Z = 0)+ dTV(Z(n)
m , Z). (4.5)

We deal with the two terms on the right-hand side of (4.5) separately. First, using the lower bound
on i, there is a constant c ∈ ( log e, 2) such that, for n large enough,m− i< c ln n. Therefore (1.1)
gives γ > 0 such that λn,m = 2i+εn + o(n−γ ln n). Consequently

P(Z = 0)= exp{−λn,mx} = exp{−2i+εn}(1+ o(1)).

For the second term in (4.5), Theorem 1.8 gives α, β > 0 such that

dTV(Z(n)
m , Z)=O(2−m+(1−α) log n)+O(n−β).

It remains to deal with these two error terms. Note that exp{2i+εn}� exp{2−C+1 ln n}. Therefore,
if C > 1+ log (1/β), then

exp{2i+εn}O(n−β)=O( exp{(2−C+1 − β) ln n})→ 0;

similarly, for C large enough,

exp{2i+εn}O(2−m+(1−α) log n)= exp{2i+εn}O(2i−α log n)→ 0.

The two limits above imply that dTV(Z(n)
m , Z)= o( exp{−2i+εn}), completing the proof.

5. The coupling for the Chen–Stein method
In this section we define and analyse the auxiliary coupling used in Proposition 4.4. The coupling
is based on the following straightforward property of the deterministic pruning.

Fact 5.1. Fix n� 2. For hn((T, σ ), (k, l, x))= (T′, σ ′), we have dT′(n)= ∑n−1
i=k xi, and for

v ∈ [n− 1],

dT′(v)= dT(v)+ 1[l=σ (v)] −
n−1∑
i=k

xi1[v=pT (σ−1(i))].

In words, Fact 5.1 specifies when the degree of a vertex v< n changes: either by gaining n as a
new child, or by losing children that are rewired towards n. Moreover, the degree of n in T′ equals
the total number of such rewirings.

The heuristic for the almost negative relation obtained in Proposition 4.4 is as follows. Start
with (Tn−1, σn−1) and apply the Robin Hood procedure. If the degree of vertex n is large, Fact 5.1
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implies that a large number of vertices in Tn−1 were rewired towards n in the new tree; thus, many
(parent) vertices decreased their degree by at least one. In short, conditioning on degTn (n)�m
implies that other vertices are (slightly) less likely to satisfy degTn (v)�m.

For the remainder of the section, fix n ∈N, c ∈ (1, 2) and m=m(n)> c ln n. Let (Tn−1, σn−1)
be uniformly random in Dn−1, let (K, L, X) be an Hn-set, and let (K ′, L′, X′) be distributed as an
Hn-set conditioned to satisfy

∑n−1
i=K X′

i �m. Now write

(Tn, σn)= h((Tn−1, σn−1), (K, L, X)), (5.1)

(T, σ )= h((Tn−1, σn−1), (K ′, L′, X′)). (5.2)

To avoid cluttered notation, we omit the dependence on m of the conditional random variables
(K ′, L′, X′) and (T, σ ). By Fact 5.1 and Theorem 1.1, the distribution of (T, σ ) is a uniform ele-
ment (Tn, σn) conditioned on the event that dTn(n)�m. Consequently, if Iv = 1[dTn (v)�m] and
Jv = 1[dT (v)�m] for all v ∈ [n], then any coupling between (K, L, X) and (K′, L′, X′) yields a coupling
for the measures μ and ν in Proposition 4.4.

Our goal is then to couple (K, L, X) and (K ′, L′, X′) in such a way that the negative relation
between Iv and Jv fails on a negligible set. More precisely, we construct a coupling so that there is
β = β(c)> 0 satisfying

P(Iv < Jv)= P(dTn−1 (v)<m� dT(v))=O(n−1−β). (5.3)

Lemmas 5.2–5.4 provide the coupling between (K, L, X) and (K ′, L′, X′), while Proposition 5.5
gives necessary conditions, under the coupling, for Iv < Jv to hold. The proof of Proposition 4.4
then follows from bounding the probability that such necessary conditions occur.

5.1 Construction of the coupling
For any integer n−m� k< n, let Xk = (Xk

i , i ∈ [n− 1]) be a conditional version of X given that∑n−1
i=k Xi �m. The following observation is quite standard but we include a proof for complete-

ness. For a= (a1, . . . , ad) and b= (b1, . . . , bd) ∈ {0, 1}d, a� b only if ai � bi for all i ∈ [d]. We say
that S⊂ {0, 1}d is monotone if a� b and a ∈ S imply b ∈ S.

Lemma 5.2. For each k< n, there exists a coupling of Xk and X such that Xi � Xk
i for all i ∈ [n− 1].

Proof. Fix k< n. Note that Sk = {a ∈ {0, 1}n−1 : ak + . . . + an−1 �m} is a monotone increasing
subset of {0, 1}n−1. Harris inequality implies P(X ∈ S∩ Sk)� P(X ∈ Sk) P(X ∈ S), for any mono-
tone subset S ∈ {0, 1}n−1. Dividing through by P(X ∈ Sk) yields P(Xk ∈ S)� P(X ∈ S). Therefore
Xk stochastically dominates X. The existence of the coupling is then guaranteed by Strassen’s
theorem [19].

Before the next coupling, we gather two observations. First, for fixed (k, l), we have P(L= l |
K = k)= P(L′ = l |K ′ = k). To see this, observe that P(L′ = l |K ′ = k) can be rewritten as

P(L= l, K = k,
∑n−1

i=K Xi �m)
P(K = k,

∑n−1
i=K Xi �m)

= P(L= l, K = k,
∑n−1

i=k Xi �m)
P(K = k,

∑n−1
i=k Xi �m)

.

The claim then follows by the independence between X and (K, L). Second, the sequence pk =
P(K = k | ∑n−1

i=K Xi �m) is proportional to P(
∑n−1

i=k Xi �m) and thus it is decreasing in k. Clearly
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98 L. Eslava

the latter sequence of probabilities is decreasing in k, while both are proportional with a factor
Z = nP(

∑n−1
i=K Xi �m). To see this, use the independence between X and K to obtain

P

(
K = k

∣∣∣ n−1∑
i=K

Xi �m
)

= P(K = k,
∑n−1

i=k Xi �m)
P(

∑n−1
i=K Xi �m)

= 1
Z
P

(n−1∑
i=k

Xi �m
)
.

Lemma 5.3. There exists a coupling of (K, L) and (K ′, L′) such that K ′ �K and L′ � L.

Proof. Let X = (X1, . . . , Xn−1) be independent with Xi
dist= Bernoulli (1/i) and independently, let

U1,U2 be i.i.d. Unif (0, 1). By a slight abuse of notation we redefine the variables (K, L) and (K′, L′)
using the variables U1,U2 and argue that the original law is preserved.

Let (K, L)= (�nU1�, �(K − 1)U2�) and (K ′, L′)= (K ′, �(K ′ − 1)U2�) with

K ′ =max
{
k : U1 >

k−1∑
j=1

pj
}
.

It is straightforward that (K, L) and K ′ have the correct law by construction, while L′ has the
correct law since P(L= l |K = k)= P(L′ = l |K ′ = k) for each 0� l< k� n. Moreover, since pk is
decreasing, it follows that K ′ = j implies

U1 >

j−1∑
i=1

pi �
j− 1
n

.

It follows that K � j=K ′, and so L= �(K − 1)U2�� �(K ′ − 1)U2� = L′.

Lemma 5.4. There exists a coupling of (K, L, X) and (K′, L′, X′) such that K ′ �K, L′ � L′ and
Xi � X′

i for all i ∈ [n− 1].

Proof. Let U1,U2 be i.i.d. Unif (0, 1) and independently, let X = (X1, . . . , Xn−1) be indepen-
dent with Xi

dist= Bernoulli (1/i). For each 1� k< n fix a vector Xk coupled with X according to
Lemma 5.2. The dependence structure of X1, . . . , Xn−1 is unimportant to the argument, but for
concreteness we may, for example, take them to be conditionally independent given X. On the
other hand, it is important to insist that the Xk are independent of (K ′, L′). Since we will define
(K ′, L′) using U1,U2, the existence of such joint coupling is straightforward.

Again, by a slight abuse of notation we redefine the variables and argue that the original
law is preserved. Define (K, L),(K ′, L′) as in Lemma 5.3 and let X′ = XK′ . Clearly (K, L, X) is an
Hn-set. It remains to show that (K ′, L′, X′) has the conditional distribution of (K, L, X) given that∑n−1

i=K Xi �m. For any (k, l, x) ∈ Pn, the probability

P

(
(K, L, X)= (k, l, x)

∣∣∣ n−1∑
i=K

xi �m
)

can be rewritten as

P(K = k, L= l, X = x,
∑n−1

i=k xi �m)
P(

∑n−1
i=K xi �m)

= P(K = k, L= l) P(X = x,
∑n−1

i=k xi �m)
P(

∑n−1
i=K xi �m)

.
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Adding two factors of P(
∑n−1

i=k xi �m) and using the independence between (K, L) and X, we can
factorize these probabilities as

P(K = k, L= l,
∑n−1

i=k xi �m)
P(

∑n−1
i=K xi �m)

· P(X = x,
∑n−1

i=k xi �m)
P(

∑n−1
i=k xi �m)

.

These probabilities correspond, respectively, to the distributions of (K ′, L′) and Xk, which are
independent. Therefore

P

(
(K, L, X)= (k, l, x)

∣∣∣ n−1∑
i=K

xi �m
)

= P((K ′, L′)= (k, l)) P(Xk = x)

= P((K ′, L′, X′)= (k, l, x))

as desired. Finally, the variables (K, L, X) and (K′, L′, X′) satisfy the desired inequalities by
Lemmas 5.2 and 5.3.

5.2 Analysis of the coupling
The proof of Proposition 4.4 boils down to understanding necessary conditions for dTn(v)<m�
dT(v) to hold under the coupling of Lemma 5.4.

Proposition 5.5. Consider (K, L, X) and (K′, L′, X′) defined in Lemma 5.4 and their corresponding
decorated trees (Tn, σn), (T, σ ) defined in (5.1) and (5.2). For any v ∈ [n− 1],

{dTn(v)<m� dT(v)} ⊂ {L′ = σn−1(v)} ∩ {dTn−1 (v)�m− 1}.

Proof. From the properties of the coupling in Lemma 5.4,
n−1∑
i=K

Xi 1[v=pTn−1 (σ
−1
n−1(i))]

�
n−1∑
i=K′

X′
i 1[v=pTn−1 (σ

−1
n−1(i))]

. (5.4)

Consequently, using Fact 5.1 we have dT(v)− dTn(v)� 1[L′=σn−1(v)]. On the other hand, if
{dTn(v)<m� dT(v)} holds, then it follows that dT(v)− dTn(v)> 0 and so it is necessary that
{L′ = σn−1(v)} holds. Finally, {m� dT(v)} implies that

m� dT(v)= dTn−1 (v)+ 1[L′=σn−1(v)] −
n−1∑
i=K′

X′
i 1[v=pTn−1 (σ

−1
n−1(i))]

� dTn−1 (v)+ 1,

or equivalently that {dTn−1 (v)�m− 1}.

We can also argue, more specifically, that

{dTn(v)<m� dT(v)} ⊂ {L′ = σn−1(v)} ∩ {dTn−1 (v)=m− 1}.
However, the approach we choose allows us to use uniform bounds for all v ∈ [n− 1]. We will
frame the events {dTn−1 (v)�m− 1} from the perspective of recursive trees where the degree dis-
tributions are distinct for each vertex. Recall the following version of Bernstein inequalities (see
e.g. [18, Theorem 2.8, (2.5)]). For a sum S of {0, 1}-valued variables and ε > 0,

P(S> (1+ ε)E[S])� exp
{
− 3ε2

2(3+ ε)
E[S]

}
.
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100 L. Eslava

By the construction of Rn we have dRn(i)
dist= ∑n

k=i Bk �
∑n

k=1 Bk, where (Bk, k� 1) are indepen-
dent Bernoulli variables with mean 1/k. Therefore

P(dRn(i)>m)� P

( n∑
k=1

Bk > c ln n
)
.

Using the fact that E[
∑n

k=1 Bk]= ln n+O(1)< c ln n, we can apply Bernstein’s inequality with
ε = c− 1+ o(1) and set β = 3ε2/(2(3+ ε)). It follows that there is β = β(c)> 0 such that,
uniformly overm> c ln n, and i ∈ [n],

P(dRn(i)>m)=O(n−β). (5.5)

Proof of Proposition 4.4. Fix c ∈ (1, 2). Let m=m(n)> c ln n and β = β(c)> 0 be as in (5.5). Let
Tn and T be as defined in (5.1) and (5.2) with ((K, L, X), (K ′, L′, X′)) as in Lemma 5.4. Set Iv =
1[dTn (v)�m] and Jv = 1[dT (v)�m] for all v ∈ [n], so that (I, J)= ((I1, . . . , In), (J1, . . . Jn)) is a coupling
of the measures μ and ν.

Our goal is to bound P(Iv < Jv)= P(dTn(v)<m� dT(v)). First, by Proposition 5.5,

P(dTn(v)<m� dT(v))�
n−1∑
j=1

P(L′ = j, σn−1(v)= j, dTn−1 (v)�m− 1).

Next we obtain uniform bounds for the terms on the right-hand side. Recall that σn−1 is a uni-
formly random permutation independent of L′ and that σn−1(Tn−1)

dist= Rn−1. These facts together
with (5.5) give, for each j ∈ [n− 1],

P(L′ = j, σn−1(v)= j, dTn−1 (v)�m− 1)= P(L′ = j)
n− 1

P(dTn1 (v)�m− 1 | σn−1(v)= j)

= P(L′ = j)
n− 1

P(dRn−1 (j)�m− 1)

� P(L′ = j)O(n−1−β).
Combining these bounds, we obtain for any v ∈ [n− 1]

P(Iv < Jv)�
n−1∑
j=1

P(L′ = j, σn−1(v)= j, dTn−1 (v)�m− 1)

=O(n−1−β)
n−1∑
j=1

P(L′ = j)=O(n−1−β).

6. Conclusions and further research
The Robin Hood pruning yields an interesting process ((Tn, σn), n� 1). By Theorem 1.1 and
Proposition 1.2, σn(Tn)

dist= Rn for all n� 1; that is, Tn has the shape of a recursive tree. The nov-
elty of this process is that the Robin Hood pruning is a fairly complex dynamic of trees which
has potential connections to mathematical models of social and economic networks and raises
challenging theoretical questions.

First, only asymptotically about half the time Tn is obtained from Tn−1 by simply attaching n
to a uniformly random vertex. To see this, recall that

dTn(n)
dist= min{Geo (1/2), |S |},
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where |S | → ∞ (see Fact A.1 and Lemma A.2). It follows that with probability tending to 1/2
the newly added vertex will be a leaf. Second, for all n� 1, dRn(n)= 0 a.s., while Fact 5.1 and the
distribution of the H-set yield

E[dTn(n)]=E

[
E

[n−1∑
i=k

Xi |M = k
]]

=
n∑

k=1

n−1∑
i=k

1
n · i =

n−1∑
i=1

i∑
k=1

1
n · i = 1− 1

n
.

Third, from time to time, a large proportion of edges will be rewired towards the newly added
vertex, drastically reshaping the structure of the tree. For example, for any a ∈ [0, 1),

E[dTn(n) |M� na]�E

[ n∑
i=na

Xi

]
= (1− a) ln n.

As for applications, in the context of random networks, the Robin Hood pruning has an inter-
pretation in terms of ‘trends’; for example, a new vertex brings in a new idea to the network which
may drastically rewire the interests or connections of established individuals in the network. The
stamp history σn gives a ranking between the elements of Tn that determines the susceptibility
of changing parents in the tree. Preferential attachment models are considered better models for
real-world networks. It would be interesting to devise a similar pruning procedure that, acting on
preferential attachment trees, preserves their scale-free degree distribution.

In the context of biology, Kingman’s coalescent is usually represented with increasing binary
trees, keeping individuals as external nodes and adding an internal node for each merge between
two lineages. The representation using n-chains breaks the symmetry between the pairs of trees
merging at each step. Thus it is not clear how the Robin Hood pruning process would have a
significant interpretation in terms of the genealogical information.

Regardless of the perspective we use to motivate the process ((Tn, σn), n� 1), there are many
interesting theoretical questions that would be worth pursuing. Here we list just a few.

(1) Understand the process describing how the parent and descendants of a given vertex
change with time.
– Describe how the size of the subtree rooted at a fixed node j evolves.
– How does the maximum size of such subtree grow?

(2) Understand the maximum degree dynamics in both (Rn, n� 1) and (Tn, n� 1).
– How often do vertices attaining the maximum degree change?
– Are these dynamics the same for both processes?

(3) Determine whether there is a coupling for which the sequence (1[dTn (v)], v ∈ [n]) is negative
related (i.e. that conditions for (4.4) are satisfied), or similarly, whether the sequence is
negative orthant-dependent.
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Appendix A. Proof of Proposition 4.1
Weuse the representation of Kingman’s coalescent that consists of a chainC= (Fn, . . . , F1) and write
T(n) for the unique tree contained in F1. By Proposition 1.3 we can work with the tree T(n). The proof
mimics that of [2, Proposition 4.2], but requires a little more care as we wish to obtain explicit error
bounds.

For each v, j ∈ [n], let Tj(v) denote the tree in Fj that contains vertex v. For each v ∈ [n], the
selection set of v is defined as

Sn(v)= {2� j� n : Tj(v) ∈ {T(j)
aj , T

(j)
bj }};

this set keeps record of the times when the tree containing v merges. Finally, for each 2� j� n, we
say that ξj is favourable for vertices in T(j)

aj (resp. vertices in T(j)
bj ) if ξj = 1 (resp. ξj = 0).

The key property of Kingman’s coalescent is as follows. For each j ∈ Sn(v), if ξj favours v, then
r(Tj(v)) increases its degree by one in the process; otherwise r(Tj(v)) attaches to the root of the other
merging tree and the degree of r(Tj(v)) remains unchanged for the rest of the process. Since all
vertices start the process as roots, dT(n) (v) is equal to the length of the first streak of favourable times
for v. Moreover, (ξj, j ∈ [n− 1]) are independent and distributed as Bernoulli (1/2). Therefore we
have the following distributional equivalence.

Fact A.1. Let D be a random variable with distribution Geo (1/2) independent of Sn(v). Then

dT(n) (v) dist= min{D, |Sn(v)|}.
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This fact, together with the next lemma, allows us to get estimates for the tails of dT(n) (v).

Lemma A.2. Let c ∈ (0, 2) and 0< ε � 1− c/2. Writing a= 1− ε − c/2, we have

P(|Sn(v) \ [na]| > c ln n)�O(1)n−ε2/(ε+c/2).

Proof. First, there are j(j− 1) distinct pairs of trees in Fj, exactly j− 1 of such pairs containing Tj(v);
thus P(j ∈ Sn(v))= 2/j. Since the merging trees are chosen independently at each time, for any a ∈
[0, 1) we have

|Sn(v) \ [na]| dist=
n∑

j=na+1

Bj,

where the variables B1, . . . , Bn are independent Bernoulli variables with E[Bi]= 2/i, respec-
tively. The desired bound is then a straightforward application of Bernstein’s inequalities (see
e.g. [18, Theorem 2.8, (2.6)]). For a sum S of {0, 1}-valued variables, we have P(S�E[S]− t)�
exp{−t2/2E[S]}. In this case S= ∑n

i=na Bi and

E[S]=
n∑

i=na

2
i

= 2(1− a) ln n+O(1)= (c+ 2ε) ln n+O(1).

The result follows by setting t = 2ε ln n+O(1).

Proposition A.3. If c ∈ (0, 2) and m< c ln n, then for ε = (2− c)2/4,

2−m(1− o(n−ε))� P(dT(n) (1)�m)� 2−m.

Proof of Proposition A.3. It follows from Lemma A.1 that

P(dT(n) (v)�m)= P(D�m)P(|Sn(v)|�m).

The upper bound on P(dT(n) (1)�m) is then trivial, while the lower bound follows by Lemma A.2
using ε = 1− c/2 and that Sn(v)= Sn(v) \ [1].

Now consider two distinct vertices v,w ∈ [n]. For m ∈N, let Gm ∈ {2, . . . , n}2 contain all pairs of
selection sets that enable vertices v and w to have degree at leastm; that is, (A, B) ∈ Gm only if

P(dT(n) (v)�m, dT(n) (w)�m, (Sn(v),Sn(w))= (A, B))> 0.

Since the ξj are independent of the selection times, we have

P(dT(n) (v)�m, dT(n) (w)�m)� 2−2m
P((Sn(v),Sn(w)) ∈ Gm). (A.1)

To estimate P((Sn(v),Sn(w)) ∈ Gm) we needmore details on the dynamics of themodel.We start
with a simple tail bound for the following random variable; let

τ =max{j : j ∈ Sn(v)∩ Sn(w)}.

Lemma A.4. For a ∈ (0, 1), P(τ > na)� 4n−a.

Proof. Vertices in T(n) are exchangeable, so we can take v= 1,w= 2; these vertices belong to distinct
trees in Fj for all j� τ . Additionally, by the ordering convention of trees in Fj, it follows that Tj(1)= 1
and Tj(2)= 2 for all j� τ .

We claim that, for all 2< k� n,

P(τ � k)=
n∏

j=k+1

(
1− 2

j(j− 1)

)
.
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This follows by induction on n− k. Clearly τ = n only if {an, bn} = {1, 2}, which occurs with
probability 2/(n(n− 1)). Thus P(τ � n− 1) satisfies the equation above. For k< n, we have

P(τ � k)
P(τ � k+ 1)

= P(τ � k | τ � k+ 1)= P({ak+1, bk+1} �= {1, 2})= 1− 2
(k+ 1)k

.

Next, for k large enough,
n∏

j=k+1

(
1− 2

j(j− 1)

)
�

n−1∏
j=k

(
1− 2

j2

)
> 1−

∞∑
j=k

2
j2

> 1− 4
∫ ∞

k
x−2dx= 1− 4/k.

The second inequality uses that 1− x> e−2x for x> 0 sufficiently small, followed by the fact that
e− ∑

2xj > 1− ∑
2xj. The result follows with k= na.

Lemma A.5. If c ∈ (0, 2) and m< c ln n, then for any γ < 1
4 (1− c+ √

1+ 2c− c2),

P((Sn(v),Sn(w)) ∈ Gm)� 1− o(n−γ ).

Proof. For each ε ∈ (0, 1− c/2] write a= a(ε)= 1− ε − c/2. Then

P((Sn(v),Sn(w)) /∈ Gm)� P(τ > na)+ 2P(|Sn(v) \ [na]| < c ln n). (A.2)

Before establishing (A.2), we note that the terms on the right-hand side of (A.2) are bounded by
Lemmas A.4 and A.2, respectively. Since such bounds depend on the choice of ε, we can use

γ < max
0<ε�1−c/2

{
min

(
1− ε − c

2
,

ε2

ε + c/2

)}
= 1

4
(
1− c+ √

1+ 2c− c2
)
.

The last equality is valid since the functions to be minimized are decreasing and increasing,
respectively, on the (0, 1) interval. It then follows that the maximum is attained when 0< ε <

1− c/2 satisfies 1− ε − c/2= ε2/(ε + c/2).
We now proceed to establish equation (A.2). At step τ , exactly one of v and w is favoured by ξτ .

Thus at least one of v or w gets its degree fixed for the remainder of the process. Therefore

{(Sn(v),Sn(w)) ∈ Gm} ⊂ {|Sn(v) \ [τ ]|�m} ∪ {|Sn(w) \ [τ ]|�m}.
By intersecting with the event τ > na, and the exchangeability of vertices in T(n), we get

P((Sn(v),Sn(w)) /∈ Gm)� P(τ > na)+ 2P((Sn(v),Sn(w)) /∈ Gm, τ � na)
� P(τ > na)+ 2P(|Sn(v) \ [τ ]| <m, τ � na)
� P(τ > na)+ 2P(|Sn(v) \ [na]| <m, τ � na),

from which (A.2) follows.

Proof of Proposition 4.1. Fix c ∈ (0, 2), m=m(n)< c ln n and let Iv, Jv be defined as in
Proposition 4.1. By Proposition 1.3, it follows that E[Iv]= P(dT(n) (v)�m) and

E[Iv]E[Jv]=E[IvIn]= P(dT(n) (v)�m, dT(n) (n)�m)
= 2−2m

P((Sn(v),Sn(n)) ∈ Gm),

the last equality by (A.1). Lemmas A.5 and A.3 then give that, for α < 1
4 (1− c+ √

1+ 2c− c2),

E[Iv]E[In]−E[Iv]E[Jvn]� 2−2m − 2−2m(1+ o(n−α))= 2−2mo(n−α).
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