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Jahan Claes and Taylor L. Hughes
Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign,

Urbana, Illinois 61801, USA

(Received 6 July 2020; accepted 18 September 2020; published 28 September 2020)

Boundary obstructed topological insulators are an unusual class of higher-order topological insulators with
topological characteristics determined by the so-called Wannier bands. Boundary obstructed phases can harbor
hinge/corner modes, but these modes can often be destabilized by a phase transition on the boundary instead of
the bulk. While there has been much work on the stability of topological insulators in the presence of disorder, the
topology of a disordered Wannier band, and disorder-induced Wannier transitions have not been extensively stud-
ied. In this Rapid Communication, we focus on the simplest example of a Wannier topological insulator: a mirror-
symmetric π -flux ladder in one dimension.We find that the Wannier topology is robust to disorder, and derive a
real-space renormalization group procedure to understand a different type of strong disorder-induced transition
between nontrivial and trivial Wannier topological phases. We also establish a connection between the Wannier
topology of the ladder and the energy band topology of a related system with a physical boundary cut, something
which has generally been conjectured for clean models, but still needs to be studied in the presence of disorder.
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I. INTRODUCTION

Topological insulators (TIs) are phases of matter that can-
not be deformed to a trivial atomic limit without closing the
energy gap or breaking a protecting symmetry [1–3]. Topolog-
ical insulators can be protected by internal symmetries [4–9],
which results in the periodic classification table of topolog-
ical insulators and superconductors [6–9]. They can also be
protected by spatial symmetries such as reflection or rotation,
leading to topological crystalline insulators (TCIs) [[10–16].
One important characteristic of topological insulators is the
spectroscopy of their boundary states. TIs protected by in-
ternal symmetries display protected surface modes on any
boundary, while TCIs can typically display protected surface
modes on only boundaries that respect the spatial symmetry.

Recently, there has been interest in so-called higher-order
topological insulators (HOTIs) [17–20]. HOTIs are crystalline
insulators that display protected modes on certain corners or
hinges determined by spatial symmetries. Some of these HO-
TIs [17,19] are TCIs in the usual sense, in that they cannot be
deformed to a trivial atomic limit without closing the energy
gap or breaking the spatial symmetry. However, there also
exist HOTIs that can be symmetrically deformed to a trivial
atomic limit without closing the bulk gap [18–20]. These
HOTIs have been dubbed boundary obstructed topological
insulators (BOTIs) in Ref. [20]. A key characteristic of a BOTI
is that, rather than having properties protected by an energy
gap, they have properties protected by a Wannier gap (see
Sec. II).

An important question is if topological properties are ro-
bust to disorder. In the case of TIs protected by an internal
symmetry, one can generally define topological invariants
that are robust to symmetry-preserving disorder, which can
change only when delocalized states appear at the Fermi level

[21–28]. Naively, TCIs and BOTIs should not be robust to
disorder, since disorder breaks the spatial symmetry. How-
ever, provided the disorder respects the spatial symmetry on
average, one can still define robust topological invariants for
TCIs [29–33] which are stable provided the system is gapped
[29]. However, studies of the effects of disorder on the BOTIs
are lacking.

In this Rapid Communication, we take an approach at
characterizing BOTIs in the presence of disorder. We study
a minimal model of a BOTI, what we might call a topo-
logical Wannier insulator. Our model is a one-dimensional
(1D) π -flux ladder having Wannier band topology protected
by reflection symmetries M̂x, M̂y. This model originated in
Ref. [18] where it was used as a building block for the 2D
quadrupole BOTI phase. Since our model is one dimensional,
the Wannier topology does not indicate the existence of corner
or hinge modes. However, the simplicity of the model allows
us to study a different type of phase transition, a disorder-
induced Wannier transition, in detail. Furthermore, since this
model is a single layer of the 2D quadrupole BOTI, our work
serves as a starting point for more computationally intensive
studies of disordered 2D BOTIs.

We find the Wannier topology is stable to symmetry-
breaking disorder provided the symmetries are obeyed on
average, and there is a sharp Wannier transition at a critical
value of the disorder at which the Wannier gap closes. This
transition is distinct from the usual disorder-induced topo-
logical transitions, in that it occurs without delocalized states
crossing the Fermi level; in fact, the system remains gapped
throughout. In addition, we find the Wannier topology is con-
nected to the energy band topology of an artificial “edge”
introduced by cutting the ŷ bonds of the ladder to separate the
two legs of the ladder. This represents evidence the Wannier
topology gives a robust signature for the boundary topology
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FIG. 1. (a) The clean π -flux chain. Dotted lines denote negative
hoppings. The pattern of negative hoppings implies a magnetic flux
of π per plaquette. (b) Cutting the ŷ bonds gives two disconnected
Su-Schrieffer-Heeger chains.

in the presence of disorder. Finally, we introduce a real-space
renormalization group approach that explains the robustness
of the Wannier topology, and the connection between the
Wannier gap closing and the Wannier transition. Importantly,
our model can be realized in a number of experimental sys-
tems including mechanical resonator arrays [34], microwave
resonator arrays [35], circuit resonators [36], and cold atoms
[34–37]. Hence we anticipate that our results will be immedi-
ately relevant for experiments in higher-order topology.

II. THE CLEAN π-FLUX LADDER

The π -flux ladder model we use is shown in Fig. 1(a). The
model has four sites per unit cell, and a magnetic flux of π

through each plaquette. In terms of the intercell hopping λ

and intracell hoppings γx, γy, the Bloch Hamiltonian is

Ĥ (k) = [γx + λ cos(k)]τ0σ1 + λ sin(k)τ0σ2 + γyτ1σ3, (1)

where τi (σi) are the Pauli matrices acting on the vertical (hor-
izontal) degrees of freedom. The model has anticommuting
reflection symmetries M̂x = τ3σ1, M̂y = τ1σ0, and the energy
spectrum is

Ek = ±
√

γ 2
x + 2γxλ cos(k) + λ2 + γ 2

y , (2)

with each energy level doubly degenerate. The spectrum is
gapped provided γy �= 0 or |γx| �= |λ|. The gapped phases of
the model maintain the reflection symmetry M̂x, and are clas-
sified (in 1D) by an index ν ∈ Z. Furthermore, they display
a quantized electric polarization p given by 2p = ν mod 2
[11,38]. However, all gapped phases of our model are con-
nected by some gapped path in (γx, γy, λ), thus Ĥ can only
describe a single topological phase. Indeed, the index ν of this
model is zero, and p = 0, for any values of the parameters. We
would thus classify this model as a trivial TCI.

To uncover the topological properties of this model we
need a refined approach. References [18,19] recently intro-
duced the idea of Wannier band topology, a topological
characterization that can change while the energy gap remains
open. The idea is to divide the occupied subspace of the
Hamiltonian into two separate subspaces, each of which is
localized in a different part of the unit cell; these individual
subspaces then have their own topological invariants. Con-

cretely, we define the projection operator onto the occupied
states, and the y-position operator,

P̂k =
∑

i

∣∣ui
k

〉〈
ui

k

∣∣, Ŷ |a〉 =
{

y0|a〉, a = 1, 2,

−y0|a〉, a = 3, 4,
(3)

where |u1,2
k 〉 are the two occupied eigenstates of Ĥk at half

filling, and ±y0 is the vertical position of the upper/lower
sites. We find P̂kŶ P̂k has two nonzero eigenvectors, |w±

k 〉, with
eigenvalues ν±

k . We call P̂kŶ P̂k the Wannier Hamiltonian and
|w±

k 〉 the Wannier bands. Provided g > 0, |w±
k 〉 is a smooth

function of k. We can then associate a polarization to each
Wannier band,

p± ≡ i
∫

dk

2π
〈w±

k |∂kw
±
k 〉. (4)

Due to M̂x symmetry, p± is quantized to 0 or 1/2 [18,19],
and serves as a topological invariant for the Wannier bands.
Note p+ = p− due to M̂y symmetry. In terms of (γx, γy, λ),
we have p± = 1/2 for |λ| > |γx|, and p± = 0 for |λ| < |γx|.
Exactly at |λ| = |γx|, the Wannier gap closes. We see while
our model is topologically trivial with respect to the usual
topological invariant, it describes two topological Wannier
phases separated by a Wannier gap closing.

In higher-dimensional models, the Wannier bands have
been related to the edge Hamiltonian for a system with
boundary [17–20,39]. For our system, we can give a similar
interpretation. Note that cutting the ŷ bonds of the chain re-
sults in two isolated Su-Schrieffer-Heeger (SSH) chains [40]
[Fig. 1(b)]. The topology of the upper/lower Wannier band is
identical to the topology of the upper/lower SSH chain that
results when γy is set to zero. This follows because tuning γy

to zero cannot close the Wannier gap or the energy gap, thus
the Wannier polarizations cannot change during the transition.
When γy = 0, the upper/lower Wannier bands are precisely
the ground states of the upper/lower SSH chains. Therefore,
the polarization of the Wannier bands is identical to the polar-
ization of the corresponding SSH chains.

III. DISORDER-INDUCED TRANSITIONS
IN THE π-FLUX LADDER

To study the effect of disorder on Wannier band topology,
we randomly perturb each link in our Hamiltonian,

γ n
x,y = γx,y + Wγ ωn

x,y, λn = λ + Wλω
n, (5)

where the ωn
(x,y) ∈ [0, 1] are uniformly distributed random

variables, and (Wγ ,Wλ) parametrize the disorder strength.
Note that we choose the link disorder to be positive rather
than symmetric about zero; this ensures the disordered model
still has π flux through each plaquette. While maintaining π

flux is not essential for our conclusions, this choice separates
transitions where the Wannier gap closes from the ones where
the energy gap closes, thus allowing us to isolate the Wannier
transition. While our disorder breaks M̂x and M̂y symmetries,
there is still a sense in which it approximately respects these
symmetries. We say a symmetry Ŝ is respected on average if
a disordered Hamiltonian H occurs with equal probability as
Ŝ†Ĥ Ŝ [33]. We see that our disordered Hamiltonians indeed
respect these symmetries on average.
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FIG. 2. (a) p± as a function of Wγ . (b) The Wannier gap as a
function of Wγ . We find that p± changes exactly when the Wannier
gap closes. (c) The bulk energy gap, which we find remains open,
allowing us to study only the Wannier topology. (d) The polarization
of one of the SSH chains obtained by removing the vertical links
(rungs), as in Fig. 1(b). We see the SSH polarization and the Wan-
nier polarization agree. Each panel has Lx = 300 and 20 disorder
realizations at each Wγ .

In the presence of disorder we can define Wannier topology
by introducing the analogous operators

P̂ =
∑

n

|ψn〉〈ψn|, Ŷ |x, a〉 =
{

y0|x, a〉, a = 1, 2,

−y0|x, a〉, a = 3, 4,

(6)
where |ψn〉 are the occupied states of H . The upper/lower
Wannier bands are the eigenstates |w±

n 〉 of the Wannier Hamil-
tonian P̂Ŷ P̂ with corresponding Wannier values ν±

n . We can
define the polarization of the upper/lower Wannier band p±
either by the method of Refs. [29,41], or the method of
Ref. [42]. For simplicity, we follow Ref. [42] and define

z± ≡ det(P̂±eiαX̂ P̂±), p± = 1

2π
arg(z±), (7)

where P̂± is the projector onto the upper/lower Wannier band,
α ≡ 2π/Lx, and Lx is the length of the system in the x direc-
tion. We can also define the localization length of states in the
Wannier bands [43]

�± = 1

2π

√
−Lx log |z±|2. (8)

It has been proven that as long as a Hamiltonian is local,
gapped, and respects M̂x and translation symmetry on average,
the x polarization is self-averaging and quantized to 0 or 1/2
[29]. This result, applied to the Wannier Hamiltonian P̂Ŷ P̂,
implies that the Wannier polarizations are self-averaging and
quantized to 0 or 1/2 in the presence of a Wannier gap. To see
this, we note that the Wannier Hamiltonian P̂Ŷ P̂ is local pro-
vided our original Hamiltonian is gapped, and that a projector
P̂ is equally likely to occur as its symmetry-related counter-
part M̂xP̂M̂x. Finally, since P̂Ŷ P̂ respects M̂y symmetry on
average, we can also conclude p+ = p− even with disorder.

An example of this characteristic behavior is shown in
Fig. 2. Here, we set (γx, γy, λ) = (.5, 1, 1), and tune only
Wγ . In Figs. 2(a) and 2(b), we plot p± as a function of Wγ .
In Fig. 2(b), we plot the Wannier gap as a function of Wγ .
We see that, as predicted, p± are quantized to 0 or 1/2, and

FIG. 3. p+ as a function of (Wγ ,Wλ). The color denotes the direct
calculation of p+ for Lx = 300, while the overlaid line is the analyti-
cally predicted topological transition of the corresponding SSH chain
[26]. We see that the Wannier transition occurs exactly when the SSH
chain has a topological transition.

they change at only the point where the Wannier gap closes.
For comparison, we show the energy gap in Fig. 2(c), which
remains open during this process.

Intriguingly, we also find that the Wannier band polariza-
tion and the polarization of the isolated upper/lower SSH
chains agree even with disorder, as shown in Fig. 2(d) where
we plot the polarization of the upper chain as a function of Wγ .
Here, we are comparing the polarization of the Wannier bands
with the polarization of our model at the same parameter val-
ues with the vertical bonds (rungs) turned off. For our model,
with only bond disorder, we can use the results of Ref. [26]
to analytically predict the phase diagram of the decoupled
upper/lower SSH chains, and compare it to the calculated
nested Wannier polarizations. The result is shown in Fig. 3.
Here, the line denotes the exact phase boundary for a single
SSH chain, while the color indicates the nested polarization
for the π -flux ladder. We see that the transition of the upper
SSH chain exactly agrees with the Wannier transition, and
thus we can analytically predict the location of the Wannier
transition when the chains are coupled. We find this result
actually holds for more general Hamiltonians, such as those
including random on-site disorder or next-nearest-neighbor
hoppings that preserve the symmetries on average, though we
cannot analytically determine the phase diagram of the decou-
pled chains in these cases. From this we can conclude that,
even in the presence of disorder, the Wannier Hamiltonian
describes the topological properties of the physical system
with a spatial cut.

IV. RENORMALIZATION GROUP PICTURE
OF THE TRANSITION

We can gain additional insight into the nature of the Wan-
nier transition through a real-space renormalization group
(RG) procedure. Our RG procedure is illustrated in Fig. 4(a),
and is based on the real-space RG introduced in Ref. [44]
to study random spin chains. Indeed, a similar method has
been applied to disordered 1D topological insulators (SSH
chains with chiral symmetry) in Ref. [26]. To construct the RG
procedure we first define the strength s of a single plaquette,
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FIG. 4. (a) The RG procedure. We take the strongest plaquette
of the ladder, and project into its local ground state. This generates
new effective couplings between previously unconnected sites in a
way that preserves the structure of the ladder. (b) At the end of the
RG procedure, the system is approximated by disconnected π -flux
plaquettes.

which we consider to be the ratio of its energy gap to the
largest x bond connected to it. The RG step is to choose the
strongest plaquette, and project onto its local ground state. To
lowest order, the projection generates the new (weaker) effec-
tive hoppings shown in Fig. 4(a). Because of the sublattice
symmetry, the RG does not generate diagonal couplings. In
addition, the signs of the effective couplings preserve the π

flux around the remaining plaquettes. We note that this is true
for all relevant π -flux gauge choices, not just the gauge shown
(see Supplemental Material [45] for details). Thus, after one
RG step we are left with another π -flux ladder with four fewer
sites. Iterating, we eventually reach a point where our system
consists entirely of disconnected plaquettes [Fig. 4(b)]. Each
step of the RG is valid provided the plaquette strength is large;
we expect that at strong disorder, the distribution of hoppings
is broad enough that at every step there will be a plaquette
with s � 1.

Once our system is approximated by disconnected plaque-
ttes, we can compute the Wannier polarization p± via Eq. (7).
At half filling, direct calculation shows that each plaquette
has a Wannier gap unless the horizontal bonds are both zero,
and the Wannier functions |w±

n 〉 have equal weight on the left
and right sides of the plaquette. It follows that a plaquette
that stretches between unit cells a and b contributes a phase
of e

iα(a+b)
2 to z±. In Fig. 5(a), we schematically illustrate the

plaquettes for a clean system in the topological phase and the
contribution of each plaquette to arg(z±). Introducing disorder
locally rearranges the plaquettes, as in Fig. 5(b), but local
rearrangements do not change arg(z±). The only way for a
rearrangement to change p± is for a plaquette to grow to
length Lx/2, which can change the sign of z± and thus change
p± by 1/2, as in Fig. 5(c). The RG also demonstrates the crit-
ical point is characterized by a diverging Wannier localization
length �±. From Eq. (8), if our plaquettes span sites a j and
bj , the localization length is

�± = 1

2π

√√√√Lx

∑
j

log
[
csc2

(
π

a j − b j

Lx

)]
, (9)

which diverges when one of the (aj − bj ) = Lx/2.

FIG. 5. (a) A schematic illustration for the plaquettes after RG
for a clean eight-site system with p± = 0.5. Each circle represents
two sites and each bond represents a plaquette. The number near each
bond is the plaquette’s contribution to arg(z±). (b) A local rearrange-
ment of plaquettes changes the amount each plaquette contributes to
arg(z±), but cannot change the total arg(z±). (c) A bond of length
∼L/2 can be locally rearranged to change arg(z±) by π . This is the
only way for p± to change.

Heuristically, because of the nature of the RG, plaquettes
spanning a larger width have weaker bonds in the x direction.
In the thermodynamic limit, a plaquette of width Lx/2 will
have vanishing hopping in the x direction, and the plaquette
will effectively have only vertical bonds. This configuration
makes the Wannier gap vanish (electrons are exactly halfway
between the upper and lower chains). The RG establishes
a clear connection between the Wannier gap closing and
the topological phase transition; the phase transition hap-
pens when long-range plaquettes form, which have vanishing
Wannier gap.

V. DISCUSSION

The π -flux ladder possesses a robust Wannier topological
invariant p± protected by the mirror symmetries M̂x, M̂y. With
disorder, the Wannier topological invariant remains quantized
provided the energy and Wannier gaps remain open. The
physical interpretation of the Wannier topological invariant
in 1D is subtle, since, for example, there are no corners to
display robust midgap modes or fractional charges. However,
we have seen that introducing an artificial “edge” into the
system connects the Wannier topology and the edge topology
for both clean and disordered systems. This conclusion holds
numerically for general local symmetry-preserving disorder,
and not just the link disorder presented here. We conjecture
that this is because tuning the y bonds to zero cannot close
the energy or Wannier gap provided the Hamiltonian obeys
M̂x and M̂y symmetries on average. This Rapid Communica-
tion thus provides evidence of a robust connection between
Wannier and edge topology in the presence of disorder. We
anticipate that our results can be immediately tested in meta-
material or cold-atom experiments [34–37].

Because of the simplified nature of our model, we can
predict the behavior of the “edge” from first principles and
confirm the connection between Wannier and edge topology.
We can also understand the Wannier transition through a
real-space RG, which offers a qualitative explanation of the
local stability to disorder and the connection between the
Wannier transition, Wannier delocalization, and Wannier gap
closing.
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While these results form an example of the stability of
Wannier topology to disorder, ultimately it will be useful to
generalize these results to higher-dimensional models, where
nontrivial Wannier topology implies protected corner or hinge
modes. It will be especially interesting to see if the connection
between Wannier topology and edge topology remains for
higher-dimensional models.
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