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Abstract: In this work, we explore the performance of plasmonic biosensor designs that integrate
metamaterials based on machine learning algorithms. The meta-plasmonic biosensors were designed
for optimized detection of DNA with a layer of double negative metamaterial modeled by an effective
medium. An iterative transfer matrix approach was employed to generate training and test sets of
resonance characteristics in the parameter space for machine learning. As a machine learning-based
prediction of optical characteristics of a meta-plasmonic biosensor, multilayer perceptron and
autoencoder (AE) were used as an algorithm, while the clustering algorithm was constructed by
dimensional reduction based on AE and t-Stochastic Neighbor Embedding (t-SNE) as well as k-means
clustering. Use of meta-plasmonic structure with analysis based on machine learning has found that
enhancement of detection sensitivity by more than 13 times over conventional detection should be
achievable with excellent reflectance curves. Further enhancement may be attained by expanding the

parameter space.
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1. Introduction

Plasmonic sensors detect resonance shifts when surface plasmon (SP) is excited as a result of
target biomolecular interactions. Despite many advantages of plasmonic sensing, plasmonic detection
suffers from moderate sensitivity due to the label-free nature. For this reason, most of the research in
plasmonic detection has been largely focused on improving sensor characteristics such as sensitivity
and limit of detection using various approaches, which include amplification of optical signatures (He
et al., 2000; Moon et al., 2010; Moon et al., 2012), phase detection (Halpern et al., 2011; Kabashin et
al., 2009; Markowicz et al., 2007; Wu et al., 2004), multimodal integration (Oh et al., 2010; Sepulveda
etal., 2006), localization of electromagnetic waves (Byun et al, 2007; Kim et al., 2009; Lee et al., 2015),
and colocalization with interactions (Kim et al., 2017; Kim et al., 2012; Oh et al., 2011; Oh et al., 2014).
Enhanced sensor performance is achieved by introducing effective metamaterials to a typical SP
resonance (SPR) sensor structure. Metamaterials are often implemented by a double negative (DNG)
layer which is characterized with both negative permittivity and permeability. It was shown theoretically
that negative index metamaterial in itself can excite and support SP modes (Ishimaru et al., 2005). The
possibility of metamaterials to produce improved detection characteristics of SPR biosensors has been
explored in the past: most of these studies, however, have been limited either to theoretical analysis
(Chen et al., 2012; Prajapati et al., 2013) and measuring a simple ambient or binding interaction model
(Kabashin et al., 2009).

In this paper, machine learning techniques are applied to the design of metamaterials for
enhanced plasmonic sensor structures, while allowing efficient and robust determination of meta-
plasmonic structure without extensive experimental or theoretical investigation. Machine learning has
drawn significant interests for the possibilities of finding patterns and offering validation in the data
that are often too complex and massive for human experts (Henriques et al., 2015; loffe et al., 2015;
Srivastava et al., 2014). Machine learning techniques have been extended to the detection of biological
and chemical compounds (Erzinaab et al., 2020; Guselnikova et al., 2019; Pereira et al., 2019; Reza et
al., 2010; Seifert et al., 2016) and were also used to optimize an LED array in mobile plasmonic sensing

(Ballard et al., 2017). We explore plasmonic detection characteristics based on DNG metamaterials



using machine learning for enhanced detection sensitivity and resonance characteristics. Considering
that metamaterials are not something readily available, we have employed machine learning to screen
out underperforming metamaterial designs. As a machine learning-based approach, multilayer
perceptron (MLP) and autoencoder (AE) were used as an algorithm to predict and cluster optical
characteristics for modeling of a meta-plasmonic biosensor. Although we employ meta-plasmonic
structures to achieve improved detection sensitivity, this work is intended to be more than a presentation
of novel meta-material structures that may give rise to enhanced SPR detection characteristics: rather,
an approach per se by which metamaterials may be customized for specific target performance. The
results suggest that DNG metamaterials can provide enhanced detection performance by more than an
order of magnitude, to a degree that plasmonic single molecule sensing may be more feasible, and

simultaneously widen the applicability of machine learning to achieve optical label-free detection.

2. Numerical method and model

2.1 Overall flow

The schematic of metamaterial-based plasmonic biosensors that we consider in this study is
shown in Figure 1(a). The overall design process consists largely of two steps, as described in Figure
1(b). The first step involves the pre-processing classical calculation prior to machine learning, which
starts with metamaterials using an effective medium with negative-index. Far-field optical
characteristics were calculated by iterative application of transfer matrices in what we call iterative
transfer matrix algorithm (ITMA). The metamaterial structure was simplified using effective medium
theory (EMT). The performance of various detection scenarios was tested with detection of DNA
oligomers. The procedure is iterated to generate training and test sets. We have then assigned random
variable parameters in the multi-dimensional parameter space spanned by the metamaterial structure.
The results were employed to generate both training and test sets for the second step in which machine

learning algorithm was applied to predict the performance of metamaterial-based plasmonic biosensors.



2.2 Numerical methods

Consider a metamaterial shown in Figure 1(c) with effective permittivity e,rr = e¢rf + jegs
= (ney + jrey)’ and permeability Uesf» Where ney and ke refer to refractive index and absorption
coefficient. The metamaterials may consist of underlying 2D periodic structures to give rise to the
desired effective index using, for example, the second-order EMT (Haggans et al., 1993; Kim et al.,
2007; Lalanne et al., 1998; Moon et al., 2006; Rytov, 1956). The detail of approximate model estimation

of the meta-material biosensor described in Supporting Information S1.

2.3 Numerical model for meta-plasmonic detection
The schematic of the numerical model that we used to assess molecular detection with the
ITMA is presented in Figure 1(b). The five-layer thin film-based structure consists of buffer ambience

(nam» = 1.33) and layers of target binding (7,), negative-index effective medium with &.5¢, and metal

(gold) with ,, = (0.18 + 3j)? on a dielectric glass substrate (SF10, n, = 1.723). The ambience was
assumed to be distilled water lacking electrolytes, therefore the influence of ionic strength is negligible
and use of other ambient solvents may be handled by a refractive index change in the machine learning
algorithm. Effect of ambience on the detection sensitivity is discussed in Supporting Information S2.
We have evaluated immobilization of 28-mer single-stranded DNA (ssDNA) and hybridization with
complementary ssDNA into double-stranded DNA (dsDNA) as reference biomolecular interactions to
assess the performance of metamaterial-based plasmonic biosensors. Immobilized and hybridized DNA
oligonucleotides were modeled to form a 9.32-nm thick dielectric film with refractive index n, = 1.449
(ssDNA) and 1.517 (dsDNA) (Elhadj et al., 2004). The reliability of machine learning may be affected
by the specific hybridization procedure and environmental uncertainties, which can be predicted by the
learning model framework and was shown to be within the typical range of experimental errors (Xue et
al., 2019). Control data were obtained as resonance shifts produced on 50-nm thick gold thin film and
glass substrate. Incident light is assumed to be monochromatic with 4 = 632.8 nm with the direction of
electric field oscillation contained in the plane of incidence. The calculation is based on angle-scanning

with p-polarized light incidence varied in 8, = 40 ~ 89°.
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Figure 1 (a) Schematics of metamaterial-based DNA biosensing in immobilization in which 24-mer
ssDNA attaches to the metamaterial surface and hybridization of ssDNA to form dsDNA. (b) Workflow
of pre-processing classical calculation of metamaterial-based plasmonic detection using simplified
effective medium model by the ITMA, which is followed by machine learning for analysis of SPR
characteristics. (c¢) Cross-section of metamaterial-based plasmonic detection of an interaction layer and

simplified model using EMT. (d) Machine learning algorithm that consists of three modalities: an AE



to reduce dimensions (10,000 x 197 — 10,000 x 8) of each reflectance curve, a t-SNE for additional
reduction of dimension (10,000 x 8 — 10,000 x 2) to derive an analytical dimensional level and a -

means clustering for grouping angular reflectance curves.

2.4 Machine learning

The machine learning algorithm is described in Figure 1(b,d) along with the ITMA. The results
of the ITMA were fed into the models of machine learning. Detection characteristics of DNA
immobilization and hybridization were computed by 375,000 runs in the parameter space. Among these
runs, 10,000 data sets were selected for reflection curves and sensitivity enhancement, out of which
8,500 were used for training and 1,500 for the test in the MLP network. The data sets were not divided
in the case of using AE, which is unsupervised learning.

MLP network was employed as a method for prediction of reflectance with respect to the
incident angle (). The structure of the MLP network illustrated in Supporting Information S3 consists
of functional components of layers: input layer, fully connected (FC), rectified linear unit (Relu), and
output layer. Mean squared error (MSE) was used as a loss function in the regression task to train the
MLP network. Structure parameters, €, 77 and Uegr, and the metal thickness, Zgo , Were taken as the
input, while angular reflectance was taken as the output of the MLP network. Each of the structure
parameters was normalized to range between 0 and 1 for faster learning and reduced likelihood of
converging into local minima. Reflection was calculated in 6, = 40 ~ 89°, at a 0.1° interval, which
results in 491 points for each parameter set. Adam, an adaptive learning rate optimization algorithm
(Kingma et al., 2014), was employed as the method for stochastic optimization with an initial learning
rate of 0.001, a mini-batch size of 85, and the number of epochs at 10,000. The MLP networks were
trained separately for the three cases, i.e., bare substrate, DNA immobilization, and hybridization with
complementary strands.

Note that AE and t-Stochastic Neighbor Embedding (t-SNE) were also employed to cluster
optical characteristic of meta-plasmonic structure and find an appropriate candidate for modeling

biosensing by reducing the dimension of reflectance curves and visualizing the data. Visualization with



dimensional reduction allows effective and insightful analysis of high dimensional and big data. AE is
an artificial neural network to learn features from unlabeled data and to provide effective representation
in the lower dimensional space than the original data (Hinton and Salakhutdinov, 2006). AE consists of
two parts: an encoder which maps an input to lower dimensional data and a decoder which reconstructs
the input from the lower dimensional data. AE was trained using gradient descent with RMSProp, mini-
batch size of 100, and the number of epochs of 300. The structure of the AE used in this study is
illustrated in Supporting Information S3. t-SNE also performs dimensional reduction by arranging high-
dimensional data to be near in the embedding space and allows visualization based on the conversion
of distance between data points to joint probability and minimization of the Kullback—Leibler
divergence between the joint probabilities (Maaten and Hinton, 2008).

The overall workflow for clustering is illustrated in Figure 1(d). Reflectance curves for bare
substrate were used for training AE and calculated for 8, = 40 ~ 89°, at a 0.25° interval, which results
in 197 points. The primary requirement for intuitive clustering is to lower dimensions of each
reflectance curve, for which two consecutive processes using AE and t-SNE were performed. 8,500
reflectance curves in the training data sets with 197 dimensions were compressed to 8 dimensions by

AE. Compressed curves by AE were then mapped into 2 dimensions using t-SNE

2.5 Metrics

Meta-plasmonic detection performance was evaluated mainly by sensitivity S, which is defined
as SMM = (66 /61) immonbitization and S,’g,M = (80/6M) hybridgization- Enhancement En was measured
as a ratio of sensitivity using metamaterials to that of conventional detection, i.e., En;,, = SmM /scon
and Eny,, = S,%M /S hy > Where ST and SpP™ represent the sensitivity corresponding to conventional
thin film-based detection of DNA immobilization and hybridization. Significant enhancement was
defined as the one exceeding an order of magnitude, i.e., En;y, Eng, > 10. For simplification, a

geometric average of the enhancement that occurs as a result of DNA immobilization and hybridization

is defined as En = ,/En,;, * Eny,, and used as a main performance measure of sensitivity enhancement.



As a quantitative measure of resonance achieved in a meta-plasmonic structure, we have also
defined a quality factor a as the difference between reflectance average and minimum at SPR (see
Supporting information S4 for rigorous definition of o). Large oo may represent good resonance contrast

and be an indicator of efficient sensor characteristics.

3. Results and discussion

3.1 Enhancement characteristics of meta-plasmonic detection

Before we explore machine learning approaches, the distribution of Ex in the parameter space
is shown Figure 2(a) with £n > 0 ~ 60. The histogram of resonance enhancement En produced by meta-
plasmonic detection of DNA immobilization and hybridization is presented in Figure 2(b). Linearity of
detected signals in the dynamic range is important under the experimental circumstances, therefore
parameter sets that incur disparate polarity of signals in DNA immobilization and hybridization, i.e.,
with Eng,, - Enp,, < 0, were excluded. The results clearly confirm that significant enhancement of
detection sensitivity by more than 20 times can be produced on DNG metamaterials. For example, when
Eefr = —1.82957 — 0.001j and perr = —0.866808 at fyew = 125 nm, E, = 20.4824. DNG
metamaterials with specific effective parameters can be designed based on metallic hole arrays, double
stripes, closed ring resonators, and fishnet structures (Chettiar et al., 2008), as discussed in Supporting

Information S5.

3.2 Machine learning based estimation of resonance characteristics

In addition to the sensitivity that En represents, resonance characteristics such as reflectance
curves serve as a measure of the quality of detection. Because of the prohibitively large amount of data
that direct and deterministic investigation of resonance characteristics involves, we have applied
machine learning to estimate reflectance curves corresponding to a specific metamaterial-based

plasmonic biosensor. In this process, the accuracy of a machine learning platform was also verified. An



estimated reflectance curve was compared with one that was obtained from interpolation of the training
data set. For interpolation, we have used nearest interpolation and linear tetrahedral interpolation.
Nearest interpolation returns the value of the nearest point in the training set, while, in linear tetrahedral
interpolation method, an approximated value is returned by tetrahedralization of the training set
(Amidror, 2002). Two measures have been employed to assess quantitative accuracy: a mean-square
error (MSE), determined as an average of the difference between an angular reflection response and an
error of resonance angle (ERA) which is an average of the difference between resonance angles of exact
reflectance and estimated or interpolated result. With more rigorous definition of MSE and ERA that
appears in Supporting Information S6, we have assessed MSE and ERA predicted by machine learning
(MSEy; and ERAwz) and estimated by nearest (MSEn. and ERAw.) and linear tetrahedral interpolation
(MSE}, and ERAp,).

Figure 2(c) shows reflectance curves corresponding to the parameter set €5 = —2.6305 —
0.001j and perr = —0.8524 at tyew = 70 nm: exact calculation in black (ITMA), one predicted by MLP

in red, and those calculated by the neaerest and the linear tetrahedral interpolation, respectively in blue
and green. The reflection curve predicted by MLP resembles exact one, while interpolated curves show
visible disparity in the resonance characteristics. MSE and ERA obtained for DNA biosensing in bare
control measurements, immobilization, and hybridization using 1,500 parameter sets of metamaterials
as test datasets are presented in Figure 2(d) and (e), where average values are shown above the bars
with standard deviation provided in Supporting Information S6. The results of MSE compared in Figure
2(d) show clearly that machine learning predicts angular resonance characteristics most accurately. The
ratios of MSEs and ERAs suggest that MSE be reduced significantly by an order-of-magnitude with the
prediction based on machine learning, while the degree of improvement in accuracy for the case of
machine learning is slightly less if measured in terms of ERA. These results were confirmed
experimentally using meta-plasmonic structures based on metallic gratings for immobilized probe DNA
oligomers (see Supporting Information S7). In other words, prediction of resonance characteristics
based on machine learning may well establish the highest accuracy. Between nearest and linear

tetrahedral interpolation, the latter performs slightly better in the sense that the MSE is notably lower



while the performance is commensurate in terms of ERA.
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Figure 2 (a) Distribution of En in the parameter space spanned by permittivity (e, 7r)» permeability

(Mesr), and metal thickness (Zgo). (b) Histogram of enhancement En associated with meta-plasmonic
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detection. Inset shows magnification of the dotted box for En > 5. (¢) Reflectance curves produced with
the training data sets using the ITMA (black), prediction with MLP (red), nearest interpolation (green)
and linear tetrahedral interpolation. Inset: reflectance magnified around the resonance between 6, =
50° and 53° (d) MSE and (e) ERA of the three methods (MLP and nearest and linear tetrahedral

interpolation) for 1,500 test sets. Average values are shown above the bars.

3.3 Clustering of SPR characteristics based on machine learning

The results described in Section 3.1 and 3.2 suggest that the ITMA combined with machine
learning may be used to find the parameter sets of metamaterial-based plasmonic biosensors that attain
enhanced sensitivity with resonance characteristics tailored to specific patterns. In this section, we apply
the algorithm to enforce selectivity, which is often associated with the width of resonance
characteristics, in addition to enhanced sensitivity.

With the ITMA, some parameter sets of metamaterials were found to offer an extremely large
resonance angle shift, thus exceptionally high detection sensitivity, such as 50 degrees. Oftentimes, the
measured shift does not arise from the formation of SP in the range of light incidence and may rather
reflect changes of absorption. Therefore, clustering and analysis of reflectance characteristics are

required to ensure the resonance to be useful for implementing efficient metamaterial-based biosensors.
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Results of k-mean clustering into 20 clusters. The centroids of each cluster are marked with X. (c-¢)
Reflectance curves corresponding to three clusters taken from (b). (f) Results of k-means clustering of
Cs. (g) Reflection curves in subgroup Cs.1, Cs.2, Cs.3, and Cs.4. Among the four subgroups, the reflectance
curve belonging to Cs. showed the best SPR characteristics with the largest a = 0.58. (h) Reflectance
curves in Cio.1, Cis3, and Cisa. (1) Histogram of En for the case of Cs., Cio.1, Cis-3, and Cis4. Inset

presents three reflectance curves that correspond to £n = 7.95, 12.26, and 13.82.

Figure 3(a) shows the result of embedding compressed 8 dimensional data in the two-
dimensional space by t-SNE. Each point corresponds to one reflectance curve. The distribution of the
embedded two-dimensional data points was partitioned into clusters by k-means clustering, which
determines a cluster by minimizing the distance between centroids of clusters the data belong to (Lloyd,
1982). Note that the number of groups (k) can be determined by several algorithms (Kodinariya, 2013).
Figure 3(b) presents the result after ~~-means clustering when k was defined as 20, where each cluster is
named as Cj, C,, ... and Cy. Points which belong to the same cluster are represented in an identical
color. Reflectance curves of three clusters Cs, Ci4, and C; are plotted in Figure 3(c-e). Reflectance
curves of Cs shown in Figure 3(c) tend to have well-defined SPR dips with an average of a in Cs found
to be a(Cs) = 0.13. In contrast, reflectance curves of Cis4 in Figure 3(d) were found to have less
pronounced resonance characteristics with a(Ci4) = 0.1, On the other hand, C; consists of curves with
no trace of resonance, as shown in Figure 3(e), with very small a, i.e., a(C7) = 0.003, and thus does
not render practical uses as a sensor despite fairly high En. For reference, reflectance curves that belong
to other clusters and a are presented in Supporting Information S8.

Note that even Cs shown in Figure 3(c) contains reflectance curves without well-defined
resonance dips. This necessitates secondary clustering, for which we conducted k-means clustering.
Figure 3(f) shows the result of k-means clustering for Cs with k£ =4 (see Supporting Information S9 for
optimization of k). Each of the secondary clustered groups was named as Cs.j (j = 1 ~ k). Figure 3(g)
presents the reflectance curves of Cs.j and it was confirmed that reflectance curves that belong to Cs.»

show the best SPR features. Cio and C4, with SPR features similar to Cs, were also performed with .-
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means clustering for £ = 5. Among the subgroups, reflectance curves of Cio.1, Ci4.3, and Ci4.4, which
have well-defined SPR dips and high a, are plotted in Figure 3(h). In total, there were 393 reflectance
curves in these groups, including Cs.,. En associated with these curves was presented in the histogram
in Figure 3(i). Reflection curves with high En are also provided with the highest En reaching 13.82
found in Ci43. The results suggest that highly enhanced detection sensitivity can be obtained while
optimizing resonance characteristics based on machine learning algorithm. We emphasize that the
machine learning-based procedure described in this study can be used to select and keep only those
meta-plasmonic structures that may be practical while achieving sensitivity that is enhanced by more

than an order of magnitude over conventional detection.

3.4 Discussion

A machine learning-based approach can be extended beyond the prediction of the performance
in terms of sensitivity enhancement and resonance characteristics. For example, the algorithm may
reflect fabrication of a metamaterial-based biosensor design. Note that metamaterials have been
constructed with, for instance, split-ring resonators (Gwinner et al., 2009; Papasimakis et al., 2010;
Tobing et al., 2014), helical nanostructures (Johannes and Wegener, 2016), and multilayer fishnet
structures (Garcia-Meca et al., 2011; Jia and Wang, 2019; Valentine et al., 2011), which can be
considered in the design process. Also, wider ranges of metamaterial parameters can be studied to
achieve higher sensitivity enhancement. Another metric to use is the robustness or tolerance of a
parameter set, i.e., a large volume of a group in the parameter space, with which sensitivity exceeds a
target, makes a design immune to fabrication errors.

One may wonder about the case without machine learning. We stress that machine learning-
based design principles allow extraction of features for required task and show highly adaptive class of
objects. Even in conventional methods without machine learning, a massive search in the full parameter
space may eventually find an optimum set of parameters with which the sensor performance may reach
an optimum. With machine learning, optimum parameter sets can be found without consuming much

computational resources in an N dimensional parameter space (N >> 3) as well as more systematic
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understanding of feature effects.

4. Conclusions

In this study, we report machine learning-based design of metamaterials for highly sensitive
SPR biosensing. After classical calculation using ITMA to generate training and test data sets, machine
learning was performed sequentially in two layers, to explore optimal detection sensitivity for DNA and
to achieve SPR characteristics for applications in practice. By evaluating the error in terms of MSE and
ERA, machine learning produced much smaller error with higher accuracy for prediction of reflectance
curves and resonance angles than interpolation methods. The clustering algorithm was constructed by
dimensional reduction based on AE and t-SNE as well as k-means clustering. Machine learning was
shown to allow use of metamaterial to improve the detection sensitivity by more than 13 times over
conventional SPR biosensing with useful resonance characteristics. The results can be extended to

achieving desired optical characteristics beyond metamaterial-based SPR biosensors.
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