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Abstract: In this work, we explore the performance of plasmonic biosensor designs that integrate 

metamaterials based on machine learning algorithms. The meta-plasmonic biosensors were designed 

for optimized detection of DNA with a layer of double negative metamaterial modeled by an effective 

medium. An iterative transfer matrix approach was employed to generate training and test sets of 

resonance characteristics in the parameter space for machine learning. As a machine learning-based 

prediction of optical characteristics of a meta-plasmonic biosensor, multilayer perceptron and 

autoencoder (AE) were used as an algorithm, while the clustering algorithm was constructed by 

dimensional reduction based on AE and t-Stochastic Neighbor Embedding (t-SNE) as well as k-means 

clustering. Use of meta-plasmonic structure with analysis based on machine learning has found that 

enhancement of detection sensitivity by more than 13 times over conventional detection should be 

achievable with excellent reflectance curves. Further enhancement may be attained by expanding the 

parameter space.  
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1. Introduction 

Plasmonic sensors detect resonance shifts when surface plasmon (SP) is excited as a result of 

target biomolecular interactions. Despite many advantages of plasmonic sensing, plasmonic detection 

suffers from moderate sensitivity due to the label-free nature. For this reason, most of the research in 

plasmonic detection has been largely focused on improving sensor characteristics such as sensitivity 

and limit of detection using various approaches, which include amplification of optical signatures (He 

et al., 2000; Moon et al., 2010; Moon et al., 2012), phase detection (Halpern et al., 2011; Kabashin et 

al., 2009; Markowicz et al., 2007; Wu et al., 2004), multimodal integration (Oh et al., 2010; Sepúlveda 

et al., 2006), localization of electromagnetic waves (Byun et al, 2007; Kim et al., 2009; Lee et al., 2015), 

and colocalization with interactions (Kim et al., 2017; Kim et al., 2012; Oh et al., 2011; Oh et al., 2014). 

Enhanced sensor performance is achieved by introducing effective metamaterials to a typical SP 

resonance (SPR) sensor structure. Metamaterials are often implemented by a double negative (DNG) 

layer which is characterized with both negative permittivity and permeability. It was shown theoretically 

that negative index metamaterial in itself can excite and support SP modes (Ishimaru et al., 2005). The 

possibility of metamaterials to produce improved detection characteristics of SPR biosensors has been 

explored in the past: most of these studies, however, have been limited either to theoretical analysis 

(Chen et al., 2012; Prajapati et al., 2013) and measuring a simple ambient or binding interaction model 

(Kabashin et al., 2009).  

In this paper, machine learning techniques are applied to the design of metamaterials for 

enhanced plasmonic sensor structures, while allowing efficient and robust determination of meta-

plasmonic structure without extensive experimental or theoretical investigation. Machine learning has 

drawn significant interests for the possibilities of finding patterns and offering validation in the data 

that are often too complex and massive for human experts (Henriques et al., 2015; Ioffe et al., 2015; 

Srivastava et al., 2014). Machine learning techniques have been extended to the detection of biological 

and chemical compounds (Erzinaab et al., 2020; Guselnikova et al., 2019; Pereira et al., 2019; Reza et 

al., 2010; Seifert et al., 2016) and were also used to optimize an LED array in mobile plasmonic sensing 

(Ballard et al., 2017). We explore plasmonic detection characteristics based on DNG metamaterials 
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using machine learning for enhanced detection sensitivity and resonance characteristics. Considering 

that metamaterials are not something readily available, we have employed machine learning to screen 

out underperforming metamaterial designs. As a machine learning-based approach, multilayer 

perceptron (MLP) and autoencoder (AE) were used as an algorithm to predict and cluster optical 

characteristics for modeling of a meta-plasmonic biosensor. Although we employ meta-plasmonic 

structures to achieve improved detection sensitivity, this work is intended to be more than a presentation 

of novel meta-material structures that may give rise to enhanced SPR detection characteristics: rather, 

an approach per se by which metamaterials may be customized for specific target performance. The 

results suggest that DNG metamaterials can provide enhanced detection performance by more than an 

order of magnitude, to a degree that plasmonic single molecule sensing may be more feasible, and 

simultaneously widen the applicability of machine learning to achieve optical label-free detection.  

 

 

2. Numerical method and model  

2.1 Overall flow 

The schematic of metamaterial-based plasmonic biosensors that we consider in this study is 

shown in Figure 1(a). The overall design process consists largely of two steps, as described in Figure 

1(b). The first step involves the pre-processing classical calculation prior to machine learning, which 

starts with metamaterials using an effective medium with negative-index. Far-field optical 

characteristics were calculated by iterative application of transfer matrices in what we call iterative 

transfer matrix algorithm (ITMA). The metamaterial structure was simplified using effective medium 

theory (EMT). The performance of various detection scenarios was tested with detection of DNA 

oligomers. The procedure is iterated to generate training and test sets. We have then assigned random 

variable parameters in the multi-dimensional parameter space spanned by the metamaterial structure. 

The results were employed to generate both training and test sets for the second step in which machine 

learning algorithm was applied to predict the performance of metamaterial-based plasmonic biosensors.  
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2.2 Numerical methods 

Consider a metamaterial shown in Figure 1(c) with effective permittivity 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒′ + 𝑗𝑗𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒′′  

= (neff + jκeff)2 and permeability 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 , where neff and κeff refer to refractive index and absorption 

coefficient. The metamaterials may consist of underlying 2D periodic structures to give rise to the 

desired effective index using, for example, the second-order EMT (Haggans et al., 1993; Kim et al., 

2007; Lalanne et al., 1998; Moon et al., 2006; Rytov, 1956). The detail of approximate model estimation 

of the meta-material biosensor described in Supporting Information S1. 

 

2.3 Numerical model for meta-plasmonic detection 

The schematic of the numerical model that we used to assess molecular detection with the 

ITMA is presented in Figure 1(b). The five-layer thin film-based structure consists of buffer ambience 

(namb = 1.33) and layers of target binding (nt), negative-index effective medium with 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒, and metal 

(gold) with 𝜀𝜀𝑚𝑚 = (0.18 + 3𝑗𝑗)2 on a dielectric glass substrate (SF10, ns = 1.723). The ambience was 

assumed to be distilled water lacking electrolytes, therefore the influence of ionic strength is negligible 

and use of other ambient solvents may be handled by a refractive index change in the machine learning 

algorithm. Effect of ambience on the detection sensitivity is discussed in Supporting Information S2. 

We have evaluated immobilization of 28-mer single-stranded DNA (ssDNA) and hybridization with 

complementary ssDNA into double-stranded DNA (dsDNA) as reference biomolecular interactions to 

assess the performance of metamaterial-based plasmonic biosensors. Immobilized and hybridized DNA 

oligonucleotides were modeled to form a 9.32-nm thick dielectric film with refractive index nt = 1.449 

(ssDNA) and 1.517 (dsDNA) (Elhadj et al., 2004). The reliability of machine learning may be affected 

by the specific hybridization procedure and environmental uncertainties, which can be predicted by the 

learning model framework and was shown to be within the typical range of experimental errors (Xue et 

al., 2019). Control data were obtained as resonance shifts produced on 50-nm thick gold thin film and 

glass substrate. Incident light is assumed to be monochromatic with λ = 632.8 nm with the direction of 

electric field oscillation contained in the plane of incidence. The calculation is based on angle-scanning 

with p-polarized light incidence varied in θin = 40 ~ 89°. 
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Figure 1 (a) Schematics of metamaterial-based DNA biosensing in immobilization in which 24-mer 

ssDNA attaches to the metamaterial surface and hybridization of ssDNA to form dsDNA. (b) Workflow 

of pre-processing classical calculation of metamaterial-based plasmonic detection using simplified 

effective medium model by the ITMA, which is followed by machine learning for analysis of SPR 

characteristics. (c) Cross-section of metamaterial-based plasmonic detection of an interaction layer and 

simplified model using EMT. (d) Machine learning algorithm that consists of three modalities: an AE 
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to reduce dimensions (10,000 × 197 → 10,000 × 8) of each reflectance curve, a t-SNE for additional 

reduction of dimension (10,000 × 8 → 10,000 × 2) to derive an analytical dimensional level and a k-

means clustering for grouping angular reflectance curves. 

 

2.4 Machine learning 

The machine learning algorithm is described in Figure 1(b,d) along with the ITMA. The results 

of the ITMA were fed into the models of machine learning. Detection characteristics of DNA 

immobilization and hybridization were computed by 375,000 runs in the parameter space. Among these 

runs, 10,000 data sets were selected for reflection curves and sensitivity enhancement, out of which 

8,500 were used for training and 1,500 for the test in the MLP network. The data sets were not divided 

in the case of using AE, which is unsupervised learning. 

MLP network was employed as a method for prediction of reflectance with respect to the 

incident angle (θin). The structure of the MLP network illustrated in Supporting Information S3 consists 

of functional components of layers: input layer, fully connected (FC), rectified linear unit (Relu), and 

output layer. Mean squared error (MSE) was used as a loss function in the regression task to train the 

MLP network. Structure parameters, 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒′  and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒, and the metal thickness, tgold , were taken as the 

input, while angular reflectance was taken as the output of the MLP network. Each of the structure 

parameters was normalized to range between 0 and 1 for faster learning and reduced likelihood of 

converging into local minima. Reflection was calculated in θin = 40 ~ 89°, at a 0.1° interval, which 

results in 491 points for each parameter set. Adam, an adaptive learning rate optimization algorithm 

(Kingma et al., 2014), was employed as the method for stochastic optimization with an initial learning 

rate of 0.001, a mini-batch size of 85, and the number of epochs at 10,000. The MLP networks were 

trained separately for the three cases, i.e., bare substrate, DNA immobilization, and hybridization with 

complementary strands. 

Note that AE and t-Stochastic Neighbor Embedding (t-SNE) were also employed to cluster 

optical characteristic of meta-plasmonic structure and find an appropriate candidate for modeling 

biosensing by reducing the dimension of reflectance curves and visualizing the data. Visualization with 
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dimensional reduction allows effective and insightful analysis of high dimensional and big data. AE is 

an artificial neural network to learn features from unlabeled data and to provide effective representation 

in the lower dimensional space than the original data (Hinton and Salakhutdinov, 2006). AE consists of 

two parts: an encoder which maps an input to lower dimensional data and a decoder which reconstructs 

the input from the lower dimensional data. AE was trained using gradient descent with RMSProp, mini-

batch size of 100, and the number of epochs of 300. The structure of the AE used in this study is 

illustrated in Supporting Information S3. t-SNE also performs dimensional reduction by arranging high-

dimensional data to be near in the embedding space and allows visualization based on the conversion 

of distance between data points to joint probability and minimization of the Kullback–Leibler 

divergence between the joint probabilities (Maaten and Hinton, 2008). 

The overall workflow for clustering is illustrated in Figure 1(d). Reflectance curves for bare 

substrate were used for training AE and calculated for θin = 40 ~ 89°, at a 0.25° interval, which results 

in 197 points. The primary requirement for intuitive clustering is to lower dimensions of each 

reflectance curve, for which two consecutive processes using AE and t-SNE were performed. 8,500 

reflectance curves in the training data sets with 197 dimensions were compressed to 8 dimensions by 

AE. Compressed curves by AE were then mapped into 2 dimensions using t-SNE 

 

2.5 Metrics 

Meta-plasmonic detection performance was evaluated mainly by sensitivity S, which is defined 

as 𝑆𝑆𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀 = (𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿⁄ )𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑆𝑆ℎ𝑦𝑦𝑀𝑀𝑀𝑀 = (𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿⁄ )ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. Enhancement En was measured 

as a ratio of sensitivity using metamaterials to that of conventional detection, i.e., 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀 𝑆𝑆𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐⁄  

and 𝐸𝐸𝐸𝐸ℎ𝑦𝑦 = 𝑆𝑆ℎ𝑦𝑦𝑀𝑀𝑀𝑀 𝑆𝑆ℎ𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐� , where 𝑆𝑆𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑆𝑆ℎ𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 represent the sensitivity corresponding to conventional 

thin film-based detection of DNA immobilization and hybridization. Significant enhancement was 

defined as the one exceeding an order of magnitude, i.e., 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖,𝐸𝐸𝐸𝐸ℎ𝑦𝑦 > 10 . For simplification, a 

geometric average of the enhancement that occurs as a result of DNA immobilization and hybridization 

is defined as 𝐸𝐸𝐸𝐸 = �𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∙ 𝐸𝐸𝐸𝐸ℎ𝑦𝑦 and used as a main performance measure of sensitivity enhancement.  



 8 

 As a quantitative measure of resonance achieved in a meta-plasmonic structure, we have also 

defined a quality factor α  as the difference between reflectance average and minimum at SPR (see 

Supporting information S4 for rigorous definition of α). Large α may represent good resonance contrast 

and be an indicator of efficient sensor characteristics.  

 

 

3. Results and discussion 

3.1 Enhancement characteristics of meta-plasmonic detection 

  Before we explore machine learning approaches, the distribution of En in the parameter space 

is shown Figure 2(a) with En > 0 ~ 60. The histogram of resonance enhancement En produced by meta-

plasmonic detection of DNA immobilization and hybridization is presented in Figure 2(b). Linearity of 

detected signals in the dynamic range is important under the experimental circumstances, therefore 

parameter sets that incur disparate polarity of signals in DNA immobilization and hybridization, i.e., 

with 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∙ 𝐸𝐸𝐸𝐸ℎ𝑦𝑦 < 0 , were excluded. The results clearly confirm that significant enhancement of 

detection sensitivity by more than 20 times can be produced on DNG metamaterials. For example, when 

𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 = −1.82957− 0.001𝑗𝑗  and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = −0.866808  at tmeta = 125 nm, En = 20.4824. DNG 

metamaterials with specific effective parameters can be designed based on metallic hole arrays, double 

stripes, closed ring resonators, and fishnet structures (Chettiar et al., 2008), as discussed in Supporting 

Information S5. 

 

3.2 Machine learning based estimation of resonance characteristics 

  In addition to the sensitivity that En represents, resonance characteristics such as reflectance 

curves serve as a measure of the quality of detection. Because of the prohibitively large amount of data 

that direct and deterministic investigation of resonance characteristics involves, we have applied 

machine learning to estimate reflectance curves corresponding to a specific metamaterial-based 

plasmonic biosensor. In this process, the accuracy of a machine learning platform was also verified. An 
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estimated reflectance curve was compared with one that was obtained from interpolation of the training 

data set. For interpolation, we have used nearest interpolation and linear tetrahedral interpolation. 

Nearest interpolation returns the value of the nearest point in the training set, while, in linear tetrahedral 

interpolation method, an approximated value is returned by tetrahedralization of the training set 

(Amidror, 2002). Two measures have been employed to assess quantitative accuracy: a mean-square 

error (MSE), determined as an average of the difference between an angular reflection response and an 

error of resonance angle (ERA) which is an average of the difference between resonance angles of exact 

reflectance and estimated or interpolated result. With more rigorous definition of MSE and ERA that 

appears in Supporting Information S6, we have assessed MSE and ERA predicted by machine learning 

(MSEML and ERAML) and estimated by nearest (MSENe and ERANe) and linear tetrahedral interpolation 

(MSEIn and ERAIn). 

 Figure 2(c) shows reflectance curves corresponding to the parameter set 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 = −2.6305−

0.001𝑗𝑗 and 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = −0.8524 at tmeta = 70 nm: exact calculation in black (ITMA), one predicted by MLP 

in red, and those calculated by the neaerest and the linear tetrahedral interpolation, respectively in blue 

and green. The reflection curve predicted by MLP resembles exact one, while interpolated curves show 

visible disparity in the resonance characteristics. MSE and ERA obtained for DNA biosensing in bare 

control measurements, immobilization, and hybridization using 1,500 parameter sets of metamaterials 

as test datasets are presented in Figure 2(d) and (e), where average values are shown above the bars 

with standard deviation provided in Supporting Information S6. The results of MSE compared in Figure 

2(d) show clearly that machine learning predicts angular resonance characteristics most accurately. The 

ratios of MSEs and ERAs suggest that MSE be reduced significantly by an order-of-magnitude with the 

prediction based on machine learning, while the degree of improvement in accuracy for the case of 

machine learning is slightly less if measured in terms of ERA. These results were confirmed 

experimentally using meta-plasmonic structures based on metallic gratings for immobilized probe DNA 

oligomers (see Supporting Information S7). In other words, prediction of resonance characteristics 

based on machine learning may well establish the highest accuracy. Between nearest and linear 

tetrahedral interpolation, the latter performs slightly better in the sense that the MSE is notably lower 
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while the performance is commensurate in terms of ERA.   

 

 
 

Figure 2 (a) Distribution of En in the parameter space spanned by permittivity (𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒′ ), permeability 

(𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒), and metal thickness (tgold). (b) Histogram of enhancement En associated with meta-plasmonic 
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detection. Inset shows magnification of the dotted box for En > 5. (c) Reflectance curves produced with 

the training data sets using the ITMA (black), prediction with MLP (red), nearest interpolation (green) 

and linear tetrahedral interpolation.  Inset: reflectance magnified around the resonance between θin = 

50° and 53° (d) MSE and (e) ERA of the three methods (MLP and nearest and linear tetrahedral 

interpolation) for 1,500 test sets. Average values are shown above the bars. 

  

3.3 Clustering of SPR characteristics based on machine learning 

  The results described in Section 3.1 and 3.2 suggest that the ITMA combined with machine 

learning may be used to find the parameter sets of metamaterial-based plasmonic biosensors that attain 

enhanced sensitivity with resonance characteristics tailored to specific patterns. In this section, we apply 

the algorithm to enforce selectivity, which is often associated with the width of resonance 

characteristics, in addition to enhanced sensitivity. 

With the ITMA, some parameter sets of metamaterials were found to offer an extremely large 

resonance angle shift, thus exceptionally high detection sensitivity, such as 50 degrees. Oftentimes, the 

measured shift does not arise from the formation of SP in the range of light incidence and may rather 

reflect changes of absorption. Therefore, clustering and analysis of reflectance characteristics are 

required to ensure the resonance to be useful for implementing efficient metamaterial-based biosensors.  
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Figure 3 (a) 10,000 reflectance curves mapped into a two-dimensional plane through AE and t-SNE. (b) 
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Results of k-mean clustering into 20 clusters. The centroids of each cluster are marked with X. (c-e) 

Reflectance curves corresponding to three clusters taken from (b). (f) Results of k-means clustering of 

C5. (g) Reflection curves in subgroup C5-1, C5-2, C5-3, and C5-4. Among the four subgroups, the reflectance 

curve belonging to C5-2 showed the best SPR characteristics with the largest α = 0.58. (h) Reflectance 

curves in C10-1, C14-3, and C14-4. (i) Histogram of 𝐸𝐸𝐸𝐸 for the case of C5-2, C10-1, C14-3, and C14-4. Inset 

presents three reflectance curves that correspond to En = 7.95, 12.26, and 13.82.  

 

 Figure 3(a) shows the result of embedding compressed 8 dimensional data in the two-

dimensional space by t-SNE. Each point corresponds to one reflectance curve. The distribution of the 

embedded two-dimensional data points was partitioned into clusters by k-means clustering, which 

determines a cluster by minimizing the distance between centroids of clusters the data belong to (Lloyd, 

1982). Note that the number of groups (k) can be determined by several algorithms (Kodinariya, 2013). 

Figure 3(b) presents the result after k-means clustering when k was defined as 20, where each cluster is 

named as C1, C2, … and C20. Points which belong to the same cluster are represented in an identical 

color. Reflectance curves of three clusters C5, C14, and C7 are plotted in Figure 3(c-e). Reflectance 

curves of C5 shown in Figure 3(c) tend to have well-defined SPR dips with an average of α in C5 found 

to be α(C5) = 0.13. In contrast, reflectance curves of C14 in Figure 3(d) were found to have less 

pronounced resonance characteristics with α(C14) =  0.1. On the other hand, C7 consists of curves with 

no trace of resonance, as shown in Figure 3(e), with very small α, i.e., α(C7) =  0.003, and thus does 

not render practical uses as a sensor despite fairly high En. For reference, reflectance curves that belong 

to other clusters and α are presented in Supporting Information S8.  

 Note that even C5 shown in Figure 3(c) contains reflectance curves without well-defined 

resonance dips. This necessitates secondary clustering, for which we conducted k-means clustering. 

Figure 3(f) shows the result of k-means clustering for C5 with k = 4 (see Supporting Information S9 for 

optimization of k). Each of the secondary clustered groups was named as C5-j (j = 1 ~ k). Figure 3(g) 

presents the reflectance curves of C5-j and it was confirmed that reflectance curves that belong to C5-2 

show the best SPR features. C10 and C14, with SPR features similar to C5, were also performed with k-
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means clustering for k = 5. Among the subgroups, reflectance curves of C10-1, C14-3, and C14-4, which 

have well-defined SPR dips and high α, are plotted in Figure 3(h). In total, there were 393 reflectance 

curves in these groups, including C5-2. En associated with these curves was presented in the histogram 

in Figure 3(i). Reflection curves with high En are also provided with the highest En reaching 13.82 

found in C14-3. The results suggest that highly enhanced detection sensitivity can be obtained while 

optimizing resonance characteristics based on machine learning algorithm. We emphasize that the 

machine learning-based procedure described in this study can be used to select and keep only those 

meta-plasmonic structures that may be practical while achieving sensitivity that is enhanced by more 

than an order of magnitude over conventional detection. 

 

3.4 Discussion 

  A machine learning-based approach can be extended beyond the prediction of the performance 

in terms of sensitivity enhancement and resonance characteristics. For example, the algorithm may 

reflect fabrication of a metamaterial-based biosensor design. Note that metamaterials have been 

constructed with, for instance, split-ring resonators (Gwinner et al., 2009; Papasimakis et al., 2010; 

Tobing et al., 2014), helical nanostructures (Johannes and Wegener, 2016), and multilayer fishnet 

structures (García-Meca et al., 2011; Jia and Wang, 2019; Valentine et al., 2011), which can be 

considered in the design process. Also, wider ranges of metamaterial parameters can be studied to 

achieve higher sensitivity enhancement. Another metric to use is the robustness or tolerance of a 

parameter set, i.e., a large volume of a group in the parameter space, with which sensitivity exceeds a 

target, makes a design immune to fabrication errors.  

 One may wonder about the case without machine learning. We stress that machine learning-

based design principles allow extraction of features for required task and show highly adaptive class of 

objects. Even in conventional methods without machine learning, a massive search in the full parameter 

space may eventually find an optimum set of parameters with which the sensor performance may reach 

an optimum. With machine learning, optimum parameter sets can be found without consuming much 

computational resources in an N dimensional parameter space (N >> 3) as well as more systematic 
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understanding of feature effects. 

 

 

4. Conclusions 

 In this study, we report machine learning-based design of metamaterials for highly sensitive 

SPR biosensing. After classical calculation using ITMA to generate training and test data sets, machine 

learning was performed sequentially in two layers, to explore optimal detection sensitivity for DNA and 

to achieve SPR characteristics for applications in practice. By evaluating the error in terms of MSE and 

ERA, machine learning produced much smaller error with higher accuracy for prediction of reflectance 

curves and resonance angles than interpolation methods. The clustering algorithm was constructed by 

dimensional reduction based on AE and t-SNE as well as k-means clustering. Machine learning was 

shown to allow use of metamaterial to improve the detection sensitivity by more than 13 times over 

conventional SPR biosensing with useful resonance characteristics. The results can be extended to 

achieving desired optical characteristics beyond metamaterial-based SPR biosensors.  
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