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ABSTRACT

We propose a generative model and an inference scheme for epidemic processes on dynamic, adaptive
contact networks. Network evolution is formulated as a link-Markovian process, which is then coupled to
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an individual-level stochastic susceptible-infectious-recovered model, to describe the interplay between

the dynamics of the disease spread and the contact network underlying the epidemic. A Markov chain
Monte Carlo framework is developed for likelihood-based inference from partial epidemic observations,
with a novel data augmentation algorithm specifically designed to deal with missing individual recovery
times under the dynamic network setting. Through a series of simulation experiments, we demonstrate the
validity and flexibility of the model as well as the efficacy and efficiency of the data augmentation inference
scheme. The model is also applied to a recent real-world dataset on influenza-like-illness transmission with
high-resolution social contact tracking records. Supplementary materials for this article are available online.

1. Introduction

The vast majority of epidemiological models, such as the well-
known susceptible-infectious-recovered (SIR) model, rely on
compartmentalizing individuals according to their disease sta-
tus (Kermack and McKendrick 1927). Classically, such models
describe population-level behavior under a “random mixing”
assumption that an infectious individual can spread the dis-
ease homogeneously to any susceptible individual (Kermack
and McKendrick 1927; Bailey 1975; Anderson and May 1992).
In the last two decades, an alternative assumption—that the
disease is transmitted through links in a contact network—has
gradually gained popularity. It has been found that the contact
network structure can fundamentally impact the behavior of
epidemic processes (Edmunds, O’Callaghan, and Nokes 1997;
Wallinga, Edmunds, and Kretzschmar 1999; Edmunds et al.
2006; Mossong et al. 2008; Volz and Meyers 2008; Melegaro et
al. 2011; Cui, Zhang, and Feng 2019); on the other hand, the
network structure can in turn be influenced by disease status
of individuals as well (Bell et al. 2006; Eames et al. 2010; Funk,
Salathé, and Jansen 2010; Van Kerckhove et al. 2013).

This growing interest—alongside technological advances in
mobile data—has spurred efforts on collecting high-resolution
data that inform the dynamics of the contact network (Van-
hems et al. 2013; Barrat et al. 2014; Voirin et al. 2015; Aiello
et al. 2016; Kiti et al. 2016; Ozella et al. 2018). Data of this
type has most recently been collected by Ministry of Health,
State of Israel (2020) and Korea Centers for Disease Control
and Prevention (2020). However, there is a gap between the
demand to analyze such emergent data and available methods:
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model

a recent review by Britton (2020) outlines possible approaches
to inference for epidemic models on networks and calls to
attention considerable challenges—in particular, key terms such
as transition probabilities that appear in central quantities such
as likelihood expressions are unavailable. Accounting for the
relationship between disease spread and the underlying contact
network during inference is crucial to accurately estimating
parameters describing the inherent properties of the disease,
and moreover has direct practical implications on epidemic con-
trol and intervention. Policies such as quarantine or suppression
are naturally described as changes to the contact network, and
yet modeling approaches are largely restricted to prospective
simulations and/or analysis based on static networks in lieu of
direct inference from modern data. Recent examples can be seen
in analyses for COVID-19 (Ferguson et al. 2020) and for MERS-
CoV transmissions (Yang and Jung 2020).

To address this methodological gap, we develop a statistical
model that describes the mutual interplay between SIR-type
epidemics and an underlying dynamic network, together with
a tractable inferential framework to fit such models to modern
time-resolved datasets. In particular, we propose a stochastic
generative model that can be fit to data using likelihood-based
methods. We present a Bayesian data augmentation scheme that
accommodates partial observations such as missing recovery
times that are common in real data while quantifying uncer-
tainty in estimated parameters.

The majority of existing work on epidemic processes over
networks adopt a deterministic approach based on ordinary
differential equation (ODE) models (WHOW Group 2006; Volz
and Meyers 2007; Shaw and Schwartz 2008; Volz 2008; Van
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Segbroeck, Santos, and Pacheco 2010; Kiss et al. 2012; Tunc,
Shkarayev, and Shaw 2013; Ogura and Preciado 2017). Such
approaches do not provide a measure of uncertainty, and do
not offer probabilistic interpretations. Our framework builds
upon previous stochastic (and likelihood-based) methods that
either do not consider network dynamics (Britton and O’Neill
2002; Dong, Pentland, and Heller 2012; Fan et al. 2015; Fan, Li,
and Heller 2016), or do not model the contact network at all
(Cauchemez et al. 2006; Hoti et al. 2009; Britton 2010; Fintzi
et al. 2017; Ho et al. 2018). Moreover, the proposed inference
scheme accommodates partially observed data, with a focus on
unknown recovery times in this article. Handling missing data
even without network constraints is already challenging, and
often requires simplifying model assumptions (Finkenstadt and
Grenfell 2000; Cauchemez and Ferguson 2008) or computation-
ally intensive simulation-based inference (Andrieu, Doucet, and
Holenstein 2010; He, Ionides, and King 2010; Ionides et al. 2015;
Pooley, Bishop, and Marion 2015).

The rest of the article is organized as follows: Section 2
reviews background on epidemic models (focusing on the
stochastic SIR model) and dynamic network processes. Sec-
tion 3 formulates the generative model and derives maximum
likelihood estimators as well as Bayesian posterior distributions
based on the complete data likelihood. Section 4 describes
a Bayesian inference scheme that deals with incomplete
observations on individual recovery times. Sections 5 and 6
present experiment results on simulated datasets and a real-
world dataset. Finally Section 7 provides further discussions.

2. Background
2.1. Compartmental Epidemiological Models

Compartmental models divide individuals into non-overlapping
subsets according to their disease statuses. In classical models,
the changes in these subpopulations over time are described
by ODEs (Hethcote 2000). One widely used model is the SIR
model, which assumes three disease statuses—susceptible (S),
infectious (I), and recovered (or removed, R). On a closed
population of N individuals (with N sufficiently large), the
dynamics of the deterministic SIR model can be expressed as

dsi) dl(1)
—— = —BSHIQ®), e

= = ,BS(t)I(t) - J/I(t), (1)

where S(t) and I(t) refer to the number of susceptible and
infectious individuals at time t, respectively, and the number
of recovered individuals satisfies R(t) = N — [S(t) + I(¥)].
The parameters describe the epidemic mechanistically: here
is interpreted as the rate of disease transmission per contact
between an S individual and an I individual, and y is the rate
of recovery for an I individual.

By setting the growth rate of infection to be proportional
to S(t)I(t), the model in (1) implicitly assumes that any two
members can interact with each other. This assumption is easily
violated in reality, where an individual only maintains contact
with a limited number of others. Moreover, the differential
equations can only account for the average, expected behavior
of the process, but the transmission of an infectious disease
exhibits randomness and uncertainty by nature.

To account for the underlying network structure of a popu-
lation as well as the random nature of an epidemic process, we
adopt an individual-level, stochastic variation of the SIR model,
similar to that used in Auranen et al. (2000). An individual of
status S (susceptible) at time ¢ (> 0) changes disease status
to I (infectious) at time t + h (h is an infinitesimal quantity)
with a probability that is dependent on both the infection rate
B and his/her contacts at time t. An infectious individual at
time t becomes a member of the R (recovered) subpopulation
at time ¢ + h with a probability determined by the recovery rate
y. Specifically, for any susceptible individual p; and infectious
individual p, in the population at ¢, conditioned on the current
overall state of the process, Z;, then

Pr(p; gets infected by po att + h | Z;) = Bh + o(h) (2)
if p1 and p, are in contact at ¢, and
Pr(p, recoversatt + h | Z;) = yh + o(h). (3)

2.2. Basic Network Concepts

A network, or a graph, is a two-component set, G = {V,£},
where V is the set of N nodes and £ is the set of links. A network
can be represented by its “adjacency matrix,” A, where A;; = 1
indicates there is a link from node i to j. Since most infectious
diseases can be transmitted in both directions through a contact,
we assume that the adjacency matrix is symmetric, Ajj = Aj.

A special network structure is the fully connected network
(or the complete graph), Ky, and its adjacency matrix A satisfies
Ajj = 1forany i # j. This network structure corresponds to the
widely adopted “random mixing” assumption in epidemiologi-
cal models, which, as stated before, may be restrictive and unre-
alistic. Therefore, in the rest of the article, we instead consider
arbitrary network structures underlying the population.

2.3. Temporal and Adaptive Networks

Interactions between individuals are dynamic in nature, and
such dynamics are important when modeling epidemic pro-
cesses (Masuda and Holme 2017; also as demonstrated later in
Section 5.1). We consider a continuous-time link-Markovian
model for temporal networks (Clementi et al. 2010; Ogura and
Preciado 2016). Following the symmetric network assumption
stated above, two individuals i and j (i < j) who are not in
contact at time ¢ form a link at time t + h (h < 1) with
probability ah, where o is the link activation rate. Similarly,
if there is an edge between i and j at time ¢, then the edge is
deleted at time t 4 h with probability wh, where w is some link
termination rate.

If, instead, individuals establish and dissolve their social links
with rates that vary according to their disease statuses, then the
evolution of the network is coupled to the epidemic process and
thus becomes adaptive. This mechanism can be described via
instantaneous rates of single-link changes. For any two individ-
uals 7 and j, their corresponding entry in the adjacency matrix
is modeled as a {0, 1}-valued Markov process, A;(t),t > 0.
Suppose that at time ¢, i is of status A, j is of status B,! then for

"Here A, B € {S,1,R}, and we only consider i < j since the network is assumed
symmetric.



an infinitesimal quantity h,

Pr(A(t +h)= Aji(t+h) =1 A;(t) =0) = asgh + o(h);
(4)

Pr(A(t +h)= Aji(t+h) =0 | Ajj(t) = 1) = waph + o(h).
(5)

Here asp(= apa) is the activation rate for an A-B type link,
and similarly, wsp(= wpa) is the termination rate for an A-B
type link.

3. Epidemic Processes Over Adaptive Networks
3.1. The Generative Model

In this subsection, we lay out a stochastic data generative process
(referred to as the “generative model”) for the joint evolution of
an individualized SIR process on a networked population and
the dynamics of the contact network. In contrast to the ODE lit-
erature and existing network models described in Section 1, the
key feature of the model is the interplay between epidemic pro-
gression and network adaptation. On one hand, transmission
of infection depends on the existence of susceptible-infectious
links, which may change through time; on the other hand, net-
work links temporally update in a manner that in turn depends
on individual disease status.

We formulate this complex process as a continuous-
time Markov chain that comprises all individual-level events
described in Section 2. The joint evolution of the individual
Poisson processes described by (2)-(5) can be described via
a competing risks construction. By the Markov property, the
time until each type of event has an exponential waiting time,
and thus the time to next event in the joint process remains
exponentially distributed (Guttorp and Minin 2018). Events
occur stochastically and are of one of the four types:

o Infection: The disease is transmitted through a link between
an S (susceptible) and an I (infectious) individual (S-I link)
with rate B;

o Recovery: Each I individual recovers with rate y indepen-
dently;

o Link activation: A link is formed at rate aag(= apa) between
an individual of status A and another of status B who are not
connected, where A, B € {S,I,R};

o Link termination: An existing link is removed at rate wag(=
wga) between an individual of status A and another of status
B, where A,B € {S,I,R}.

This formulation will allow for joint inference of both disease
spread and network evolution. As illustrated in the next subsec-
tion, inference is straightforward when all the events are fully
observed. Furthermore, this formulation implies a relatively
simple generative process at the population level. Conditioned
on the current state of the process Z; at time t (> 0), the very
next event of the entire process is the earliest event that occurs
among the four competing processes by the superposition prop-
erty:

o Infection: An infection occurs with rate 8SI(t), where SI(t) is
the number of S-I links at time ¢;
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Table 1. Table of parameters and notation.

Parameter  Description
Infection rate
y Recovery rate
a Link activation rate for a currently disconnected pair
® Link termination rate for a currently connected pair
apg Link activation rate for a currently disconnected A-B pair
wAB Link termination rate for a currently connected A-B pair
Notation Description
N Total population size (assumed to remain fixed throughout the
process)
Tmax Maximum observation time
Zt State of the process at time t (including the epidemic status
of every individual and the social network structure at time t)
Gt Social network structure (a graph) at time t
S(0), 1(t) Numbers of susceptible/infectious individuals in the population
attimet
H(t) Number of healthy (not infectious) individuals in the population
attimet
I (t) Number of infectious individuals in person k’s neighborhood at
time t
SI(t) Number of $-/ links in the network at time t
M(t) Total number of edges in the network at time t
Myg(t) Number of A-B links at time t
MZB(t) Number of disconnected A-B pairs at time t
ng, R Counts of infection events and recovery events in the process
ny Count of network events in the process
(each event is the activation or termination of a single link)
C,D Total counts of link activation/termination
Cag/ Das Counts of link activation/termination events for A-B pairs

o Recovery: A recovery occurs with rate y I(t), where I(t) is the
number of infectious individuals at time £;

o Link activation: An A-B link is established with rate
otABMj{B(t), where MgB(t) is the number of disconnected
A-B pairs at time £;

o Link termination: An A-B link is dissolved with rate
wagMapg(t), where Mag(t) is the number of connected A-
B pairs at time £.

We may interpret this generative model as a generalization of
two simpler models. If we set wap = « and wap = o for
any status A and B, the coupled process reduces to a decoupled
process, where network evolution is independent of individual
disease status. Moreover, if we fix ¢ = w = 0, the process is
further reduces to an SIR process over a static network.

Here we assume that the population size N is fixed, and that
at t = 0, the initial network Gy as well as I(0) initial infection
cases are observed. We summarize a list of model parameters
and notation in Table 1.

3.2. Complete Data Likelihood and Parameter Inference

3.2.1. Derivation of Complete Data Likelihood

Suppose ng infection events and ng recovery events are observed
in total. Let i, be the infection time for individual k (k =
1,2,...,ng), i be K’s recovery time (if 7y > Tax, k’s recovery
is not observed), and without loss of generality, set iy = 0.
Recall that the widely used “random mixing” assumption in
classical epidemiological models is equivalent to assuming that
the contact network is a complete graph, 'y, and the individual-
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based complete data likelihood under this assumption is

L(B,y) = p(epidemic events|S, y)
=y [ ] 1BIGo)]

k=2
Tmax
X exp (—/ (BSW)I(w) + yI(u)] du) .
0

To account for the contact network, let G; be an arbitrary
network, and begin by assuming that the entire network process
{G: 1 0 < t < Tmax} is fully observed. Explicitly accounting for
the number of infectious contacts per individual at the time of
infection as well as the total number of S-I links in the system,
the complete data likelihood becomes

ng

LBy19) =y™ | | [Bl()]

k=2
Tmax
X exp (—/ [BSI(u) + yI(u)] du) . (6)
0

Here I (ix) denotes the number of infectious neighbors of person
k at his time of infection i and SI(¢t) denotes the number of S-I
links in the system at time ¢. We see that the dynamic nature
of the network is implicitly subsumed into the terms I;(ix)’s
and SI(u). To clarify this point, note that the same likelihood
holds for a static network G. As neighborhoods Iy (ix) are fixed
in the static case, one could further simplify (6) using a constant
It (i) = I for all times if.

Equation (6) serves as a point of departure toward network
dynamics. As a stepping stone, we first consider the simpler
decoupled case in which the network and epidemic evolve inde-
pendently. Here the edge activation rate oz and deletion rate w, as
well as total number of activated and terminated edges denoted
C and D, do not depend on disease status. Given an initial
network Gy, the network process likelihood can be easily written
as

Lo, w|Goy) = p(network events|a, w, Go)

1-D,
CDH[(N(N —M(s@) eM(son}

( N(N-1)
X exp | —o————

Tmax

max + (@ — w)

M(u) du) .
(7)

Here s; is the time of the £th network event, and D; = 1
if this event is a link termination and otherwise Dy = 0. By
independence, the complete data likelihood in this decoupled
case is simply a product of Equations (6) and (7):

L(B,y,a,w|Go) = p(epidemic events|B, y, Gr)
- p(network events|a, w, Go)

— ﬂng—lynRanD

2Note that this expression differs from the population-level complete likeli-
hood (Becker and Britton 1999). When epidemic events are tied to individ-
uals, that is, a recovery time is associated to a specific infection event, we
must use the individual-based likelihood instead (similar to that in Auranen
et al. (2000)).

1-Dy

1‘[ Ikok)]]"[ {(N il —M(se))

Tmax
X exp (— f [BSI(w) + yI(w) + (0 — a)M(u)] du
0

M(so”f}

—a M Tmax) ) (8)

2
Finally, we allow link activation and termination to be depen-
dent on individual disease status, yielding an adaptive network.
We introduce some notation; it is natural to assume that the S
and R populations behave identically from the perspective of the
network process:

ara = a5, and wra = wsa, YA € {S, IR}

Let H(t) = R(t) + S(t) = N — I(t) denote the number of
such “healthy” individuals at time t. Naturally the term “H-H
link” represent an S-S link, an S-R link, or an R-R link, and
the term “H-I link” represents an S-I link or R-I link. We also
define g(p, t) as the indicator function of infectiousness, that is,
g(p,t) = 1if person p is infected at time ¢t and g(p,t) =
otherwise.

Denote the ordered epidemic and network events together
as {ej = (t,pj1.pj2)}i;> with n = ng + ng + ny. Here ¢;
(G = 1,2,...,n) denote the event times and t; = 0 is the
infection time of the first patient. If ¢; is a network event, p;; and
pj2 are the two individuals getting connected or disconnected,
and if ¢; is an epidemic event, let p;; be the person getting
infected or recovered and set pj, = 0. Furthermore let event type
indicators Fj, Cj, D; take the value 1 only if ¢; is an infection, a
link activation, and a link deletion, respectively, and 0 otherwise.

The contribution of all network events to the complete data
likelihood is in essence of the same form as (7), except that
for every activation or termination event the link type has to
be considered. Then the likelihood component of the adaptive
network process is

Cuy . ,Chr  Cn DHu DHI Dy
Ogg™ Qgp Oy g™ Wgr™ Wry HM(tJ

j=2
Tmax
X exp (— / [&" Minax (£) + (@ — @) "M(8)] dt) :
0

where

(1 g(le t]))(l g(P;z t}))
M(t) = [(@ssMity () @ssMar (1))

. 118@j1t)—g(Pj2:tj)|
x [(“SIM?H(tj))C’ (wSIMHI(tj))D’]

9)
X [(“HM?I(tj))Cj (onMp ()" ]g(le’tj)g(PjZ)tj) ,
& =(ass asnam)’, (10)
& =(wss, ws, o), (11)
Musn(t) = (H(r)(H;t) =D poe, I(t>(1<2t> - 1>)T,
(12)
M(t) =(Mpn(t), Mur(t), M ()" (13)



Therefore, given the initial network structure Go and one infec-
tious case at time 0, the complete data likelihood of the coupled
process can be expressed as®

L(B,y,&, d|Gy) = p(epidemic events,
network events|S, y, &, @, Go)

_ . nrang—1 CI-IH Cnr, Cr DHH DHI DH
=y"B Ogg™ Qgp O Wgg™ Wgr™ Wry

<[] [Maj) (1, ) j]
j=2
Tmax
X exp ( - / [BSI() + yI(t) + & Mpmax (1)
0

+ (@ — d)TM(t)]dt). (14)

3.2.2. Inference Given Complete Event Data

The likelihood function (14) will be used toward inference
under missing data, but immediately suggests straightforward
procedures when the process is fully observed. Given the com-
plete event data {ej}]”:1 and the initial conditions of the process
Go and 1(0), the only unknown quantities in (14) are the model
parameters ® = {B,y,ass, asr, ogp, wss, wsr, wir}. The follow-
ing Theorems state results on maximum likelihood estimation
as well as Bayesian estimation.

Theorem 3.1 (Maximum likelihood estimation). Following the
likelihood function in (14), given Gy and complete event data
{ej}, the MLEs of the model parameters are given as follows:

A ng—1
h= YL SIE @G — 1)
. ng
ST YL IG5
dss = Chn ,
Sy [0 — My ] 5 — 1)
wss = Drin ,
i Mun () (4 — ti-1)
asr = Crn ,
Z}Ll [Ht)I(t) — Mur(t)] (4 — tj—1)
ws1 = D ;
i Mur ()t — tj—1)
a = Cn ,
Y [I(tj)a;—t’)ﬂ) - MH(tj)] (t — tji-1)
o = = .
2 M)t — tj-1)

The above results can be directly obtained by setting all
partial derivatives of the log-likelihood to zero. The detailed
proof is provided in Supplement S2.

3The likelihood derived here can be slightly modified to describe an SIS-type
epidemic instead; see Supplement S1.
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Theorem 3.2 (Bayesian inference with conjugate priors). Under
Gamma priors

:B ~ Ga(aﬂ) bﬁ)) V ~ Ga(a]/) b)/))
w.. ~ Ga(ay, by,)

a.. ~ Ga(ag, by),

and given initial network Gy and complete data {e;j}, the poste-
rior distributions of model parameters under likelihood (14) are
given by
Bllej} ~ Ga(ag + (ng — 1), bg + (n — D/B),
vIle} ~ Ga(ay + np, b, +nr/7),
assl{ej} ~ Ga (aq + Chu, bo + Chp/dss) »
Ga (e + DhH, b + Dp/dss) »
(aq + Cr by + Chi/dsi) »
wsil{ej} ~ Ga (aw + D, b + Dur/dsi) »
arl{ej} ~ Ga (ay + Cip, bo + Cr/éur) »
wil{ej} ~ Ga (aw + Dir, b + Dit/on) »

wss|{ej} ~

(15)
agr|{ej} ~ Ga

where B, 7, é&ss, &sr, A1, @ss, wst, @p are the MLEs defined in
Theorem 3.1.

Equation (14) is consistent with the general form of likeli-
hood of a continuous-time Markov chain with Exponentially
distributed dwell times. Applying the Gamma-Exponential con-
jugacy leads to the posterior distributions in (15).

3.2.3. Relaxing the Closed Population Assumption

Above, the host population was implicitly assumed to be closed
by fixing N. If in reality the observed population of size N is a
subset of a larger unobserved population, then it is possible for
an individual to get infected by an external source. This is not
reflected in the likelihood above as there is no corresponding
S-I link within the observed population, so we introduce an
“external infection” rate & describing the rate for each suscep-
tible individual to contract the disease from an external source.
In other words, £ can be thought of as the constant rate for any
S individual to enter status I independently of interaction with
infectious members in the observed population. In this scenario,
the complete data likelihood becomes

~ o~ C C Cinp D D D
L(B,&,y,a,d|Gy) = VnRaSSHHastIO‘H”wssHstjmeH

I [Mtj) (Bl ) +¢) j]

j=2
Tmax
X exp ( — / [BSI(£) + £S(t) + yI(H) + & Max (1)
0
+ (& — &)TM(t)]dt>.

The MLEs for {y,a,®} remain unchanged, and though there
is no longer a closed-form solution to the MLEs for 8 and
&, numerical solutions can be easily obtained as detailed in
Supplement S3. In particular, if we have information on which
infection cases are caused by internal sources (described by B)
and which are caused by external sources (described by &), we
can directly obtain the MLEs (and posterior distributions) for
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all the parameters. In this case, estimation for all parameters
except B and £ remains unchanged. When there is missingness
in recovery times, the Bayesian inference procedure proposed
in the next section can still be carried out with only minor
adaptations.

4. Inference With Partial Epidemic Observations

Though likelihood-based inference is straightforward when all
events are observed, complete event data are rarely collected
in real-world epidemiological studies. Even in epidemiologi-
cal studies with very comprehensive observations (Aiello et al.
2016), there still exists some degree of missingness in the exact
individual recovery times. In these data, infection times are
recorded when a study subject reports symptoms, but recoveries
are aggregated at a coarse time scale rather than immediately
recorded when a subject becomes disease-free.

Incomplete observations on epidemic paths have long been
a major challenge for inference, even when assuming a ran-
domly mixing population or a simple, fixed network structure.
With the exact times of infections and/or recoveries unknown,
it essentially requires integrating over all possible individual
disease episodes to obtain the marginal likelihood of the param-
eters comprised of finite-time transition probabilities. While
this can be done for some classes of processes (Xu et al. 2015;
Xu and Minin 2015; Ho, Crawford, and Suchard 2018; Tavaré
2018), in most cases it is computationally intractable. Instead,
our strategy is to bypass the need for direct marginalization
through data augmentation. This entails treating the unknown
quantities in data as latent variables, iteratively imputing their
values, and then estimating parameters given the current set-
ting of latent variables. By augmenting the data via latent vari-
ables, the parameter estimation step makes use of the com-
putationally tractable complete-data likelihood. This class of
methods has proven successful for related problems based on
individual-level data (Auranen et al. 2000; Hohle and Jorgensen
2002; Cauchemez et al. 2006; Hoti et al. 2009; Tsang et al.
2019), population-wide prevalence counts (Fintzi et al. 2017),
and observations on a structured but static population (Neal
and Roberts 2004; O’'Neill 2009; Tsang et al. 2019), but has
not yet been designed for an epidemic process coupled with
a dynamic network. The time-varying nature of social inter-
actions imposes complex constraints on the data augmenta-
tion. Though network dynamics complicate the design of data-
augmented samplers, the information they provide on possible
infection sources and transmission routes allow us to exploit
additional structure, effectively reducing the size of the latent
space.

We derive a data augmentation method specifically designed
to enable inference under missing recovery times. The algo-
rithm utilizes the information presented by the dynamic contact
structure. In contrast to existing methods (such as Fintzi et al.
(2017) and Hoti et al. (2009)), it is able to efficiently impute
unobserved event times in parallel instead of updating individ-
ual trajectories one by one. We focus on the case when recovery
times are missing, directly motivated by the case study data in
Section 6, but note that the proposed framework applies to other
sources of missing data; see Section 7 for discussion.

4.1. Method Overview

4.1.1. Problem Setting
Throughout the observation period (0, Tmax], suppose
{(ug,wg]}%:l (u¢ < vg and vy < wyyq) is the collection of
disjoint time intervals in which a certain number of recoveries
occur, but the exact times of those recoveries are unknown.
That is, for each £ = 1,2,..., L, some individuals are reported
as infectious up to time u,, and they are reported as healthy
again starting from time v,. Within one particular interval
(ug, ve], let ng) be the number of infections, and nl(f) the
number of recoveries for which the exact times are known,
so the number of unknown recovery times for this interval is
Ry = I(ug) — I(vp) + ng) — ng). Denote these recovery times
by latent variables rp = {r¢1,...,r¢r,}. Our goal is to conduct
inference despite the absence of all the exact recovery times
r = {r¢}¢—1.1 in the observed data.

Further assume that we have a health status report (indicating
ill or healthy) of each individual periodically during (0, Trmax]-
Access to such information is usually granted in epidemiolog-
ical studies where every study subject gives updates on health
statuses through regular surveys (e.g., weekly surveys).

4.1.2. Inference Scheme

We propose to address the problem of missing recovery times
through data-augmented Markov chain Monte Carlo. Given an
initial guess of parameter values ®© and the observed data
x = {ej} U {health status reports} U Zy, at each iteration s
the algorithm samples a set of values for the missing recovery
times 'Y = {r((;)}gzu from their probability distribution
conditioned on x and the current draw of parameter values.
It then samples a new set of parameter values @ from their
posterior distributions conditioned on the augmented data. In
summary, for s = 1 : S where S is the maximum iteration count:

1. Data augmentation: Draw r® = {r?)}zzu from the joint
conditional distribution

p(r|OC™D x, ps7D), (16)

2. Parameter update: Combine x and r® to form the aug-
mented, complete data. Sample parameters @ | x,r®
according to (15).

4.2. Data Augmentation via Endpoint-Conditioned
Sampling

In the inference scheme stated above, the data augmentation
step (Step 1) is challenging because (16) describes the distribu-
tion of missing recovery times conditioned on both historical
events and future events. Thus, drawing from (16) amounts
to sampling unobserved event times from a continuous-time
Markov process with a series of fixed endpoints (Hobolth and
Stone 2009), a challenging task. Even though (3) suggests that,
in forward simulations, the time it takes for an infectious person
to recover only depends on the recovery rate y, when recovery
times need to be inferred retrospectively, there are additional
constraints imposed by the observed data. First, an individual
q cannot recover before a certain time point ¢ if it is observed
that at time t the person is still ill. More subtly, if another



individual p gets infected during his contact with g, then the
associated recovery time for q cannot leave p without a possible
infection source. The first condition is easy to satisfy. The sec-
ond constraint is much more complicated due to the network
dynamics, which a simple forward simulation approach would
fail to effectively accommodate.

We tackle the challenge in data augmentation by first sim-
plifying the expression of (16) and then stating an efficient
sampling algorithm.

Lemma4.1. (16) can be simplified into the following expression:

1_[ p (I'ZW(VD: {ej}tje(u(,w‘]’ Zuz) > (17)

{=1:L

where Z; is the state of the process at time ¢, including the epi-
demic status of each individual and the social network structure.

Proof. Consider the joint density of the complete data given
parameter values @D,

P (X’ {rz}e=1;L|®<S—l>)
= l_[ :P ({ej}tjE(w,qu], rg|Zw,®(s—1))

{=1:L :|
) (=D
X P <{e]}tj§u1 or tj>VL|ZO)ZVL)O )

P ({ej}tje(w,w]h'b Zug) @(S—l)) P l'[lZul, y(S—1)>]

X 1_[ p <{ej}tje(w,uz+1]|Zw, @(51)):|

Lé=1:L
: 24, 2,,067
Xp {e]}tjfulortj>vL| 0> Zvp> .

Examining all terms concerning ry for each ¢ indicates that,
conditioned on y =1, {ej}t;e(ugve1» and 2y, the distribution of
ry does not depend on {ry }¢—¢. Thus,

PO, x, 1) = TT p(rely“’”,{ej}:je<u4,w]’3uz>~
{=1:L

O

The lemma above suggests that imputation of missing recov-
ery times inside an interval (u, v] only depends on the events
that occur in (u,v], the state of the process at the start of the
interval, Z,, and the value of recovery rate y. Further, impu-
tation on disjoint intervals can be conducted separately and in
parallel.

Now consider sampling recovery times within any interval
(u,v]. Let Q denote the group of individuals who recover at
unknown times during (u, v], and for each g € Q, let g’s exact
recovery time be r; (€ (u, v]). Similarly, let 7 denote the group
of individuals who get infected during (u, v]; for p € P, let p’s
infection time be iy, /\fp(ip) be the set of p’s contacts at time
ip, and Z(iy) be the set of known infectious individuals at time
ip (i.e, Z(ip) excludes any individual who may have recovered
before iy).
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Proposition 4.1 (Data augmentation regulated by contact infor-
mation (DARCI)). Following the notation stated above, given a
recovery rate y, the state of the process at time u, Z,,, and all the
observed events in the interval (u, v], { ej}tje(u,v], one can sample

{rq} from the conditional distribution p ({rq} v {ejequms Zu)

in the following steps:

1. Initialize a vector LB of length |Q| with LB; = u for every
q € Q;then for any p € P such that p € O, further set
LB‘I7 = u;

2. Arrange the set P in the order of {p1, ps,...,pp|} such that
ip, < ip, < < ipp» and for each p € P (chosen
in the arranged order), examine the “potential infectious
neighborhood”

Iy = Ny(ip) N (Z(ip) U Q).

IfZ, C Q (ie., potential infection sources are all members of
Q), then randomly and uniformly select one q € 7, and set
LB, = ip.

q P

ind
3. Draw recovery times r4 S TEXP(y, LBy, v), where
TEXP(y,s,t) is a truncated Exponential distribution with
rate y and truncated on the interval (s, t).

Intuitively, this procedure enables a draw of recovery times
that are “consistent with” the observed data. To achieve this
goal, an imputed recovery cannot occur in a way that leaves
a to-be-infected individual without any infectious neighbor at
the time of infection, nor take place before the corresponding
individual gets infected. Effectively there is a “lower bound” for
each missing recovery time conditioned on the observed data,
particularly the dynamic contact structure. An illustration of the
DARCI algorithm is provided in Figure 1.

Combining Lemma 4.1 and Proposition 4.1 enables exact
sampling from the conditional distribution (17) in the data aug-
mentation step: for each £ = 1,2,...,L, applying the DARCI
algorithm to the interval (u¢, v¢] gives an updated set of missing
recovery times, rp = {rg;}i=1.r,. This allows us to carry out
MCMC sampling using a simple Gibbs sampler.

5. Simulation Experiments

In this section, we present results of a series of experiments with
simulated datasets. In all experiments, we employ a forward
simulation procedure that can be seen as a variation of Gillespie’s
algorithm (Gillespie 1976) to sample realizations of the network
epidemic from our generative model. The input consists of
the parameter values ® = {B,y,& @},* an arbitrary initial
network Gy, the number of infectious cases at onset 1(0), and
the observation time length Trax. The output is the complete
collection of all events {¢; = (¢, pj1,pj2, Fj» Cj, Dj)} that occur
within the time interval (0, Timax]. Associated with each event ¢;
is a timestamp (), labels of the individuals involved (pj1, pj2),
and the event-type indicator F;, C;, or D;.

The steps of the simulation procedure are detailed as follows:

“Herea = (ass,aS,,oc”)T and ® = (wss, ws), a)”)T, asdefinedin (10) and (11).
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L. Time  : Time Jy : Time i : Time v :
y and z infected; at least one of y b already has a z must be the y and z recovered;
others and z must be viable infector, a. infector of c. others infected.
susceptible. infector of a.
(randomly assign)
LBy =u LBy =lg LBy = ia LBy =i,
LBZ = LBZ =u LB, =1 LBZ = ic
y y v
V4 , ,
| 1 1 I .
L I I 1 1 >
] ] i time
u . Iy i v

Figure 1. lllustration of DARCl on a N = 5 population. Each circle represents an individual and each solid line represents a link. Disease status is color-coded: dark =
infectious, gray = unknown (possibly infectious or recovered), and white = healthy (susceptible or recovered). Individuals y and z are known to be infectious at time u but
are recovered by time v, and individuals a, b, and ¢ are known to get infected at time points ig, ip, and ic, respectively. For each person p € {a, b, c}, the DARCI algorithm
inspects p's contacts at infection time ip, and updates “lower bounds” (LB) of y and z's recovery times to ensure that p has an infector. The lower bounds that are updated
in each step of the example above are underlined. For example, at time ig, one of y and z has to be a’s infector, so DARCI randomly selects one of y and z (in this example

it's y) and postpones his recovery time until after ig.

1. Initialization: Randomly select which I(0) individuals are
infectious (then the rest of the population are all susceptible).
Set tcyr = 0.

2. Tterative update: While fcyr < Tmax, do:

(a) Bookkeeping: Summarize the following statistics at fcy,:
1) SI(tcyr), the number of S-I links in the population;
2) Mmax(fcur), the possible number of links of each
type defined in (12); 3) M(fcur), the number of existing
links of each type defined in (13). Then set M (teyr) =
Mupax (feur) — M(fcur).

(b) Next event time: Compute the instantaneous rate of

the occurrence of any event, A(tcyr) = BSI(fcur) +
yI(tewr) + @M% (tewr) + @TM(teur), and draw At ~
Exponential (A (fcyr)).

(c) Next event type: Sample Z ~ Multinomial(A(feyr)),
where
)\(tcur)

T
BSI(tcur) yI(teur) &TMd(tcur) 6DTM(tcur)
Altew) ” Altewr)” Altewr) ~ Altewr) )

Then do one of the following based on the value of Z:

If Z = 1 (infection), uniformly pick one S-I link and
infect the S individual in this link.

If Z = 2 (recovery), uniformly pick one I individual
to recover.

If Z=3 (link activation), randomly select Y € {H-H,
H-I, I-I} with probabilities proportional to & o Md(tcu,),
and uniformly pick one de-activated “Y link” to activate.

If Z = 4 (link termination), randomly select Y €
{H-H, H-1,1-I} with probabilities proportional to @ o

M(tcyr), and uniformly pick one existing “Y link” to
terminate.

(d) Replace toyr by teur + At, record relevant information
about the sampled event, and repeat from (a).

« »

In Step 2 (c), “o” refers to the Hadamard product (entrywise
product) for two vectors.

5.1. Experiments With Complete Observations

In this subsection, we first demonstrate the insufficiency of ana-
lyzing disease spread without considering the network structure
or its dynamics. Then we validate our claims on maximum like-
lihood estimation and Bayesian inference given complete event
data (Theorems 3.1 and 3.2). Finally, we show that the model
estimators can detect simpler models such as the decoupled
process and the static network process. Unless otherwise stated,
throughout this section we set the initial network Gp as a random
Erdds-Rényi graph® (undirected) with edge probability p = 0.1,
let I(0) = 1 individual to get infected at onset, and choose the
ground-truth parameters as
B =0.03,y = 0.12;&” = (0.005,0.001,0.005),
®T = (0.05,0.1,0.05). (18)

These settings are chosen to produce simulated datasets with a
population size and event counts that are comparable to our real
data example.

>We note that the form of the initial network does not necessarily predict
the behavior of the epidemic. Specifically, asymptotic qualities, such as
the Poisson degree distribution of Erdés—Rényi graphs, do not hold when
the network dynamically reacts to an epidemic, detailed empirically in
Supplement S4.



For Bayesian inference, we adopt the following Gamma pri-
ors for the parameters:

B ~ Ga(1,1/0.02),y ~ Ga(1,1/0.1);c.. ~ Ga(1,1/0.004),
w.. ~ Ga(l,1/0.06). (19)

We intentionally choose prior means different from the true
parameter values; experiments show that inference is insensitive
to prior specifications as long as a reasonable amount of data is
available. For each parameter, 1000 posterior samples are drawn
after a 200-iteration burn-in period.

5.1.1. The Danger of Neglecting Networks or Network
Dynamics

Adopting the “random mixing” assumption about an actually
networked population can lead to severe under-estimation of
the infection rate. Erroneous estimation can also happen if
contacts are in fact dynamic but are mistaken as static during
inference. Table 2 displays the MLEs of the infection rate
(under true value 0.05, chosen to generate nontrivial epidemics
to illustrate inference) obtained by methods under three dif-
ferent assumptions regarding the network structure (assuming
a dynamic network, assuming a static network, and assuming
random mixing without any network). The population size is
N = 50, and results are summarized over 50 different simulated
datasets.

These results make clear that neglecting the effects of the
contact network, even when the quantity of interest is the dis-
ease transmission rate, is dangerously misleading. Resulting
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Table 2. Maximum likelihood estimates of B, the per link infection rate (true
value 0.05), using dynamic network information, the initial static network, and no
network structure (random mixing), respectively.

Method Dynamic network Static network No network
Estimate 0.0540 0.0278 0.00219
Standard deviation 0.0158 0.0081 0.000821
2.5% quantile 0.0230 0.00825 0.000614
97.5% quantile 0.0817 0.0553 0.00425

NOTE: The standard deviations as well as the 2.5% and 97.5% quantiles of the
estimates are obtained from outcomes across 50 different simulated datasets on
a N = 50 population.

estimates that are far from the truth with significantly under-
estimated uncertainty measures. Incorporating the initial net-
work structure statically throughout the process helps—the 95%
confidence interval now includes the truth—but disregarding
the time-evolution of the network remains a noticeable model
misspecification leading to biased inference.

5.1.2. Validity and Efficacy of Parameter Estimation
Complete event data are generated using the simulation
procedure stated in above, and maximum likelihood estimates
(MLEs) as well as Bayesian estimates are obtained for param-
eters ® = {B,y,a,w»}. Here we set the population size as
N = 100 and the infection rate as § = 0.03 while keeping
the other parameter values the same as stated in (18).

Figure 2 shows the results of maximum likelihood estima-
tion in one simulated dataset. The MLEs for each parameter

MLE for gamma v.s. # events
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&
g o
g o s
o o
o
o
C)_ ]
S T T T
500 1000 1500
# events
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Figure 2. MLEs versus number of events used for inference. Dashed gray lines show the lower and upper bounds for 95% frequentist confidence intervals, and red lines mark
the true parameter values. Results are presented for 8, v, ass and «s;. In this realization ng = ng = 48, Cyy = 621, Cyyy = 35,Cyy = 13,Dyy = 573, Dy = 189,Dy = 17.
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Figure 3. Posterior sample means versus number of total events used for inference. True parameter values are marked by bold dark horizontal lines, along with 95% credible
bands. Results are presented for four different complete datasets and for parameters 8, v, wss, and wg;.

(dark solid line) are computed using various numbers of events,
and are compared with the true parameter value (red horizontal
lines). The lower and upper bounds for 95% confidence inter-
vals are also calculated (dashed gray lines). Only the MLEs
for parameters B,y,ass, and ag; are shown, but results for
all parameters are included in Supplement S5. Estimation is
relatively accurate even when observation ends earlier than the
actual process (thus leaving later events unobserved). When
more events are available for inference, accuracy is improved
and the uncertainty is reduced.

Figure 3 presents the posterior sample means (solid lines)
and 95% credible bands (shades) for each parameter inferred
using various numbers of events, with the true parameter values
marked by bold, dark horizontal lines. The results are shown
for 4 different simulated datasets (each dataset represented by a
distinct color) and for parameters S, y, wss, and wgy (complete
results are in Supplement S5). When more events are utilized
in inference, the posterior means tend to be closer to the true
parameter values, while the credible bands gradually narrow
down.

It is worth noting that the proposed inferential framework
is capable of handling large-scale networks as well as arbitrary
network structures. Additional results with larger values of N
and different configurations of G are provided in Supplement
S5.

5.1.3. Assessing Model Flexibility

Our proposed framework is a generalization of epidemics over
networks that evolve independently (the “decoupled” process),
which in turn generalize epidemic processes over fixed networks
(the “static network” process). Thus, our model class contains

these simpler models: if events are generated from the decoupled
process, we would expect all the link activation and termination
rates to be estimated as the same. Likewise, if the true network
process is static, then we expect all link rates to be estimated as
zero.

To confirm this, experiments are conducted on complete
event datasets generated from the two simpler models. Here we
only show select results of Bayesian inference on datasets gen-
erated from static network epidemic processes (Figure 4) and
relegate other results to Supplement S5. We see that information
from a moderate number of events is sufficient to accurately
estimate the epidemic parameters 8 and y and learn the static
nature of the network—note how quickly the posterior credible
bands for «g; and wg; shrink toward zero.

5.2. Experiments With Incomplete Observations

Upon validating the model and inference framework, we now
assess the performance of our proposed inference scheme in the
more realistic setting where epidemic observations are incom-
plete. In this subsection, we first verify that the MCMC sampling
scheme in Section 4 is able to retrieve the parameter values
despite missing recovery times in the observed data. Then we
compare our DARCI algorithm (Proposition 4.1) with two base-
lines and show that it produces posterior samples of higher
quality and with higher efficiency.

5.2.1. Simulating Partially Observed Data

We first generate complete event data using the simulation
procedure stated earlier in this section, and then randomly
discard n x 100% of the exact recovery times and treat them
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Figure 4. Posterior sample means versus number of total events used for inference, with data generated from static network epidemic processes. True parameter values
are marked by bold dark horizontal lines, along with 95% credible bands. Results are presented for four different complete datasets and for parameters 8, y, ag;, and ws;.
With a moderate number of events, the epidemic-related parameters, 8 and y, are accurately estimated, and the posteriors for the edge rates quickly shrink toward zero

(the truth).

as unknown. Meanwhile, a periodic status report (as described
in Section 4.1) is produced every 7 time units throughout the
entire process so that individual disease statuses are informed
at a coarse resolution. If one regards 1 time unit as a day, the
periodical disease statuses correspond to weekly reports.

5.2.2. Efficacy of the Inference Scheme
We validate the method outlined in Section 4.1 through experi-
ments on an example dataset, where the settings and parameters
are the same as those in (18) and the population size is fixed at
N = 100. In this particular realization, there are 26 infection
cases spanning over approximately 37 days (less than 6 weeks),
and there are 767 and 893 instances of social link activation and
termination, respectively.®

First set n = 50, that is, randomly select 50% of exact
recovery times to be taken as missing. Figure 5 plots 1000
consecutive MCMC samples (after a 200-iteration burn-in) for
each parameter {8, y, ass, wss}, as well as the 2.5% and 97.5%
quantiles of the posterior samples (gray, dashed lines) compared
with the true parameter value (red horizontal line). We can see
that for every parameter, the 95% sample credible interval covers
the true parameter value, suggesting that the proposed inference
scheme is able to estimate parameters from incomplete data
reasonably well.

We then set n = 100, discarding all exact recovery times.
Figure 6 presents outcomes of the inference algorithm in this

5The event time scales in the example dataset are chosen to be comparable
to, though not exactly the same as, those in the real-world data used in
Section 6.

case. Understandably, parameter estimation is affected by the
total unavailability of exact recovery times, but the drop in
accuracy is marginal. Moreover, the credible bands are slightly
wider, reflecting increased uncertainty with more missingness.

5.2.3. Efficiency of the DARCI Algorithm
We compare performance of the data augmentation algorithm

stated in Proposition 4.1 with two conventional sampling meth-
ods:

1. Rejection sampling: Carry out Step 1 of the inference scheme
via rejection sampling. For £ = 1 L, keep proposing

recovery times ry ={rj }i=1:r, ad TEXP(y“~D, up, v¢) until
the proposed r; are compatible with the observed event data
in (ug, v¢]. We label this method by “Reject”

2. Metropolis-Hastings: Modify Step 1 of the inference scheme
into a Metropolis-Hastings step. For £ = 1 : L, propose r; =
{”Zi}i:hRe i TEXP(y©~D, ug, v¢), and accept them as r?)
with probability

-1 _
p(x,r’;,{r(f 20|06 1))
xpTEXP (rf*l); Y&, uy, w)

min | 1, D)
S— —
p (X’ {ry” Yoz |©C7D

xpTEXP (r}5y 7Y, ug, ve)

which equals to 1 when the proposed r} are consistent with
the observed event data in (u¢,v¢] and 0 otherwise. If the
proposal is not accepted, then set r?) = r?_l). We label this
method by “MH”
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Figure 5. Inference results for parameters 8, v, ass, wss with 50% recovery time missingness. The uncertainty in exact recovery times does affect the estimation of the

type-dependent edge rates, but not detrimentally (all the true parameter values fall into the 95% credible intervals of the posteriors).
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Figure 6. Inference results for parameters B, y, ass, wss with complete (100%) missingness in exact recovery times. The y-axis scale for each plot is the same as that in
Figure 5 for easier comparison. Wider credible intervals are seen for 8 and y, but still, all the true parameter values fall into the 95% credible intervals of the posteriors,
suggesting the capability of the inference algorithm to estimate parameters even when there is uncertainty in individual epidemic histories.
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Table 3. MCMC diagnostics for three data augmentation sampling methods, labeled as “DARCI," “Reject, and “MH."

Method

Statistic B y ass ag) o7 wss ws) wy
ESS 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00
DARCI Z-score —0.90 —0.20 —0.56 —1.32 —0.22 0.84 —0.02 —1.24
Pr(> |Z]) 0.37 0.84 0.58 0.19 0.82 0.40 0.99 0.22
ESS 1000.00 1160.17 1000.00 955.29 1000.00 1000.00 926.63 1000.00
Reject Z-score 0.48 —1.01 0.44 0.28 1.08 —2.18 —0.16 0.31
Pr(> |Z]) 0.63 0.31 0.66 0.78 0.28 0.03 0.87 0.76
ESS 566.43 1000.00 1000.00 1000.00 538.12 907.14 72933 1000.00
MH Z-score —1.25 —1.83 —0.48 —0.59 —2.09 —0.24 —1.52 —0.57
Pr(> |Z]) 0.21 0.07 0.63 0.55 0.04 0.81 0.13 0.57

NOTE: “ESS” stands for “effective sample size.” The “Z-score” is the test statistic for MCMC convergence proposed by Geweke (1991), and the two-sided p-value for each
standard Z-score is also computed. Samples acquired by MH tend to have higher autocorrelations and thus smaller effective sample sizes.

The “MH” method employs the same principle as existing agent-
based data augmentation methods (Cauchemez et al. 2006; Hoti
et al. 2009; Fintzi et al. 2017) that propose candidates of individ-
ual disease histories and accept them with probabilities com-
puted through evaluating the likelihood (or an approximation
of it) and the proposal density. In our case the implementation
of “MH” is actually simpler and computationally lighter because
the proposal is conditioned on known infection times and the
current posterior draw of y. The acceptance step is reduced
to inspecting compatibility with known data, thus avoiding the
intensive computation of likelihood evaluation.

Although the three methods give the same inference results
since they all sample from the same posterior distributions,
our data augmentation algorithm (labeled by “DARCI”) is more
efficient than the others in two aspects. First, by drawing a
new sample of recovery times from the conditional distribution
in (16) in each iteration, the resulting Markov chain exhibits
lower autocorrelation, which leads to better mixing and fewer
iterations needed to achieve a certain effective sample size. This
is especially so when compared with “MH” Second, the DARCI
algorithm typically draws from the conditional distribution (16)
much more efficiently than “Reject,” because it parses out a
configuration of lower bounds for imputing missing recovery
times while accounting for the constraints imposed by conta-
gion spreading and the dynamics of social links.

Three MCMC samplers are run using the three methods
on the dataset showcased above. Again 1000 consecutive sam-
ples are retained for each parameter after a 200-iteration burn-
in period in each case. For each parameter, we calculate the
effective sample size (ESS), the Geweke Z-score (Geweke 1991),
and the two-sided p-value for the Z-scores of the resulting
chains. These results are presented in Table 3. Among the three
methods, “MH” suffers the most from the correlation between
two successive samples, while “DARCI” seems to produce high-
quality MCMC samples.

We then compare “DARCI” and “Reject” in their running
times (see Table 4). A dataset is simulated where there are
different numbers of recoveries with unknown times within
five time intervals. The two sampling methods are applied to
draw a set of recovery times for each of those five intervals, and
over multiple runs, the minimum and median times they take
are recorded. Although the two methods draw samples from
the same conditional distribution, “DARCI” tends to take less
time than “Reject” in one iteration. Further results suggesting
scalability to larger outbreaks are available in Supplement S5.

Table 4. Comparison between the two sampling methods (“DARCI" and “Reject”)
for imputing missing recovery times.

Min time Median time
Interval #(To recover) Reject DARCI Reject DARCI
1 1 227 psec 224 psec 484 psec 245 psec
2 8 285 psec 287 psec 563 psec 319 psec
3 15 163 usec 161 psec 279 psec 181 usec
4 2 138 psec 138 psec 153 psec 156 psec
5 1 133 psec 133 psec 146 psec 147 psec

NOTE: Overall, the DARCI algorithm is more efficient, especially when the number
of missing recovery times is relatively large (e.g., Interval 3), or there are special
constraints on viable recovery times (e.g., Interval 1, where the observed events
suggest that the recovery cannot occur until half way through the time interval).

6. Influenza-Like-llinesses on a University Campus

In this section, we apply the proposed model and inference
scheme to a real-world dataset on the transmission of influenza-
like illnesses among students on a university campus.

6.1. Data Overview

The data we analyze in this section were collected in a 10-
week network-based epidemiological study, eX-FLU (Aiello et
al. 2016). The study was originally designed to investigate the
effect of social intervention on respiratory infection transmis-
sion. 590 university students enrolled in the study and were
asked to respond to weekly surveys on influenza-like illness
(ILI) symptoms and social interactions. 103 individuals further
participated in a sub-study in which each study subject was
provided a smartphone equipped with an application, iEpi. The
application pairs smartphones with other nearby study devices
via Bluetooth, recording individual-level social interactions at
5-min intervals.

The sub-study using iEpi was carried out from January 28,
2013 to April 15, 2013 (from week 2 until after week 10).
Between weeks 6 and 7, there was a one-week spring break
(March 1 to March 7), during which the volume of recorded
social contacts dropped noticeably. In our experiments, we use
data collected on the N = 103 sub-study participants from
January 28 to April 4 (week 2 to week 10), and treat the two
periods before and after the spring break as two separate and
independent observation periods (Tmax = 31 days for period 1
and Trmax = 28 days for period 2).

Summary statistics of the data are provided in Table 5. Over-
all, infection instance counts peaked in the middle of each
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Table 5. Summary statistics of the real data (processed) by week: number of new
infection cases (top row), maximum network density (middle row), and minimum
network density (bottom row).

Week Wk 2 Wk 3 Wk 4 Wk 5 Wk 6
# (infections) 0 3 5 4 2

Max. density 0.0053 0.2048 0.0040 0.0038 0.0044
Min. density 0.0000 0.0000 0.0000 0.0002 0.0000
Week (break) Wk 7 Wk 8 Wk 9 Wk 10
# (infections) N.A. 1 3 5 1

Max. Density N.A. 0.0032 0.0032 0.0032 0.0023
Min. Density N.A. 0.0000 0.0000 0.0000 0.0000

NOTE: No new infection cases took place in week 2, but two participants were
already ill at the beginning of the week. The dynamic network remained sparse
throughout the duration of the sub-study, except for one instance in week 3—the
unusually high network density only occurred on the night of February 4, possibly
due to a large-scale on-campus social event.

Table 6. Posterior sample means and 95% credible intervals of select parameters
(first 3 columns) obtained by the Bayesian inference scheme modified from that in
Section 4.

Posterior 2.5% 97.5%

Parameter mean quantile quantile Multi-SD

B (internal infection) 0.0695 0.0247 0.1500 0.0074

& (external infection) 0.00331 0.00208 0.00494 1.797x105
y (recovery) 0.294 0.186 0.428 0.0108

ass (S-S link activation) 0.0514 0.0499 0.0529 0.0002

wss (S-S link termination)  38.26 33.55 40.62 0.2522

ag; (S-/ link activation) 0.130 0.0785 0.194 0.0097

ws; (S-link termination) 535 225 231.7 31.4092

NOTE: Inference is carried out jointly on the two periods before and after the spring
break. The final column summarizes the standard deviations of posterior sample
means across 10 versions of data, in which infection times are sampled randomly
(and randomly) between 0 to 3 days prior to symptom onset.

observation period and dropped at the end, and the dynamic
social network was quite sparse; more activity (in both the
epidemic process and network process) was observed in the
weeks before the spring break. Further details on data cleaning
and preprocessing are provided in Supplement S6.

6.2. Analysis

Since the 103 individuals are sub-sampled from the 590 study
participants, which are also sub-sampled from the university
campus population, we treat the real data as observed on an
open population. Following the parameterization introduced at
the end of Section 3.2, we include the parameter £ to denote the
rate of infection from an external source for each susceptible
individual. Every infectious individual that came into contact
with any infectives within 3 days prior to the onset of symptoms
is regarded as an internal case (governed by parameter f);
otherwise the infection is labeled as an external case (governed
by parameter £). This enables the inference procedure stated at
the end of Section 4.

The data collected during the two observation periods are
considered as independent realizations of the same adaptive net-
work epidemic processes. For each parameter, samples drawn in
the first 500 iterations are discarded and then every other sample
is retained in the next 2000 iterations, resulting in 1000 posterior
samples. Table 6 summarizes the posterior sample means and
the lower and upper bounds of 95% sample credible intervals
for a selection of parameters. The output from one chain is

presented here; repeated runs (with different initial conditions
and random seeds) yield similar results.

The data provide symptom onset times for flu-like illnesses,
which can serve as proxies for the actual infection times, but
the former are on average 2 days later than the latter (U.S.
Centers for Disease Control and Prevention (CDC) 2018). To
address this issue, we assume that the real infection times may
be somewhere between 0 and 3 days prior to symptom onset
(see Supplement S5.1) and thus randomly sample the latent
infection times to generate multiple data versions for inference.
Results are similar across different versions of data, suggest-
ing that inference is robust to this choice of handling possible
latency periods (this is summarized by the “Multi-SD” column
of Table 6).

Our findings suggest that flu-like symptoms spread slowly
but recoveries are made rather quickly. For instance, if a
susceptible person maintains one infectious contact, then he
has a probability of approximately 6.71% to contract infection
through such contact within one day, and yet it takes (on
average) a little more than 3 days for someone to no longer feel
ill after infection. The external infection force is nonnegligible:
given the number of susceptibles in the population (typically
about 100), the population-wide external infection rate is
approximately 100 x 0.0033 = 0.33, implying that an external
ILI case is expected to occur every other three days. This
is a reasonable estimate consistent with having observed 9
external infection cases within 28 days during the second
period.

The inferred link rates reflect an interesting pattern in social
interactions in this particular population: individuals are reluc-
tant to establish contact and active contacts are broken off
quickly—an average pair of healthy people initiate/restart their
interaction after waiting 20 days and then end it after spend-
ing less than 40 minutes together. Moreover, it seems that on
average a healthy-ill link is activated more frequently than a
healthy-healthy link, but the former is also terminated faster—
this might be because those students who fell ill in the dura-
tion of the study happen to be more socially proactive, but
once their healthy social contacts realize they are sick and thus
potentially infectious, the contact is cut short to avoid disease
contraction.

It is also notable that the sample 95% credible intervals for §,
asr, and wgy are relatively wide, indicating a high level of uncer-
tainty in the estimation for these parameters. It is challenging to
estimate the internal infection rate 8 because dataset contains
only six cases of internal infection in total (five in period 1,
one in period 2), providing limited information on the rate of
transmission. Similar issues are present for the estimation of as
and wgy; since there were no more than five infectious individ-
uals at any given time, network events related to them were few
and far between. Moreover, since their exact recovery times are
unknown, there is additional uncertainty associated with their
exact disease statuses when they activated or terminated social
links. Such measure of uncertainty, readily available through
stochastic modeling and Bayesian inference, provides valuable
insights into the amount of information the data contain and
the level of confidence we possess when making conclusions and
interpretations. The inference outcomes imply that, for example,
the real data sufficiently inform the contact patterns among



healthy individuals in this population but are limited toward
understanding how long a healthy person and a symptomatic
person typically maintain their contact.

7. Discussion

This article has focused on enabling inference for partially
observed epidemic processes on dynamic and adaptive net-
works. We formulated a continuous-time Markov process model
to describe the epidemic-network interplay and derived its
complete data likelihood. This leads to the design of conditional
sampling techniques that enable data augmented inference
methods to accommodate missingness in individual recovery
times.

There are several limitations and natural extensions of our
model. First, we address the issue of a latency period here
by using a sensitivity analysis of the symptom onset time. As
infectiousness is the focus of inference, we prefer this approach
over, for instance, modeling an additional compartment (i.e., an
SEIR model) in favor of model parsimony. We note that the latter
is possible by extending our proposed likelihood framework,
but introduces additional parameters that are often hard to
identify without additional data directly informative of latency
or modeling assumptions regarding the latency period (e.g.,
noninfectious or less infectious when latent).

A second extension of the model pertains to the handling
of other missing data types. Motivated by our case study in
which infection-related events (symptom onset) are updated
daily, whereas recoveries are only provided at a much coarser
resolution (in weekly summaries), our current method focuses
on imputing missing recovery times. While it is common in
real-world data to focus on new cases (WHO 2004, 2020),
one may be provided with such incidence data at coarser time
resolution so that infection times must also be imputed. Our
framework applies in principle to such settings where missing
infection times should be accounted for explicitly. One may
derive analogous conditional samplers to DARCI, or at worst
incur a computational tradeoft. Even without access to sampling
from the exact conditional distributions, we can replace the
Gibbs step to impute infection times by a Metropolis proposal
within each iteration of the MCMC scheme (Gibson and Ren-
shaw 1998; Britton and O’Neill 2002).

Our contributions leverage network information to avoid
a common model misspecification, but the current methods
are limited to scenarios where such information is completely
informed. If network dynamics are only partially observed—for
instance link events are missing or exist only on a weekly survey
basis—our proposed methods do not immediately apply, but
can be extended via further data augmentation over unobserved
network event times. Doing so falls under the same likelihood-
based framework, yet practical challenges related to mixing of
the Markov chain may arise due to the increased latent space.
Another viable strategy is to adopt a discrete time model for
network evolution that can be seen either as an alternative or an
approximation to the link-Markovian jump process we propose.
These directions remain open for future work.

We have demonstrated that accounting for changes in the
contact structure is critical to accurately estimate disease param-
eters such as infection and recovery rates. Because our model is
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a generalization of existing compartmental models, such rates
are consistent with their definitions and interpretation in exist-
ing literature. Other quantities such as the basic reproductive
number Ry, defined as the average number of infections caused
by an infectious individual, do not translate as readily (Van Seg-
broeck, Santos, and Pacheco 2010; Tunc, Shkarayev, and Shaw
2013). This is the case when disease and network properties
are conflated: the basic reproductive number depends on the
product of infection rate 8 and number of contacts. The effect
of interventions such as quarantine are often incorporated sim-
ilarly, for instance by way of a change-point in 8 (Ho, Crawford,
and Suchard 2018), yet such policies should naturally translate
to changes in the contact network rather than the inherent
infectivity of the disease. Because our model mechanistically
describes the joint dynamics of the network and the disease
spread, such phenomena can now be modeled explicitly in
terms of network parameters rather than indirectly through
disease parameters, leading to more accurate and interpretable
inference. The proposed framework thus serves as a point of
departure to further explore these promising extensions.

Supplementary Materials

Supplementary information: Supplementary proofs and derivations,
inference details on open population epidemics, and more results
from simulation experiments and real data experiments. (.pdf file:
supplement .pdf)

Codes and examples: R codes for all simulation experiments, accompa-
nied by example synthetic datasets. (Github repository: https://github.
com/fanbudukel7/CoEpiNet.git)
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