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Xia J, Marks TD, Goard MJ, Wessel R. Diverse coactive neu-
rons encode stimulus-driven and stimulus-independent variables. J
Neurophysiol 124: 1505-1517, 2020. First published September 23,
2020; doi:10.1152/jn.00431.2020.—Both experimenter-controlled
stimuli and stimulus-independent variables impact cortical neural
activity. A major hurdle to understanding neural representation is
distinguishing between qualitatively different causes of the fluctuat-
ing population activity. We applied an unsupervised low-rank ten-
sor decomposition analysis to the recorded population activity in
the visual cortex of awake mice in response to repeated presenta-
tions of naturalistic visual stimuli. We found that neurons covaried
largely independently of individual neuron stimulus response reli-
ability and thus encoded both stimulus-driven and stimulus-inde-
pendent variables. Importantly, a neuron’s response reliability and
the neuronal coactivation patterns substantially reorganized for dif-
ferent external visual inputs. Analysis of recurrent balanced neural
network models revealed that both the stimulus specificity and the
mixed encoding of qualitatively different variables can arise from
clustered external inputs. These results establish that coactive neu-
rons with diverse response reliability mediate a mixed representa-
tion of stimulus-driven and stimulus-independent variables in the
visual cortex.

NEW & NOTEWORTHY VI neurons covary largely independ-
ently of individual neuron’s response reliability. A single neuron’s
response reliability imposes only a weak constraint on its encod-
ing capabilities. Visual stimulus instructs a neuron’s reliability
and coactivation pattern. Network models revealed using clustered
external inputs.

neural encoding; neural ensemble; neuronal coactivation

INTRODUCTION

Neural variability is a key feature of neocortical neuronal
responses. During repeated sensory stimulation, most neurons
exhibit high trial-to-trial variability, whereas only a small num-
ber of neurons display reliable responses across trials (Softky
and Koch 1993; Stringer et al. 2019a). Here, by “reliable
responses,” we refer to neural responses that have similar tem-
poral profiles across trials. The abundance of unreliable neurons
in the cerebral cortex raises the question of to what extent these
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neurons contribute to the representation of stimulus-driven and
stimulus-independent variables (Olshausen and Field 2006).
Possible answers to this question arise from multiple sources.
First, neural variability is correlated across neurons (Cohen and
Kohn 2011) such that untuned/unreliable neurons enhance sen-
sory information coding (Leavitt et al. 2017; Safaai et al. 2013).
Second, the sensory cortex encodes not only stimuli but also be-
havioral variables (Dipoppa et al. 2018; McGinley et al. 2015;
Niell and Stryker 2010; Stringer et al. 2019b; Vinck et al. 2015)
or internal state variables (Allen et al. 2019; Vinck et al. 2015).
Thus, neural response variability to sensory stimuli can be par-
tially explained by experimentally observed stimulus-independ-
ent variables (Stringer et al. 2019b). These observations suggest
that unreliable neurons may play a role in encoding both stimu-
lus-driven and stimulus-independent unobserved variables.
There is a growing consensus in neuroscience that coactive
ensembles of neurons, as opposed to single neurons, are the
underpinning of cognition and behavior (Buzsdki 2010; Saxena
and Cunningham 2019; Yuste 2015). How then do neurons in
sensory cortex covary and encode stimulus-driven or stimulus-
independent variables? We assume that single-trial neuronal
responses consist of additive modulations of distinct latent fac-
tors. Furthermore, each latent factor is modulated by the gain
specific to the neuron and the trial (Fig. 1A). The question of
encoding stimulus-driven and stimulus-independent variables is
usefully illustrated by considering the extreme ends of a spec-
trum of possibilities (Fig. 1B). At one extreme, reliable neurons
covary and encode stimulus-driven variables, whereas unreli-
able neurons covary and encode stimulus-independent variables.
At the other extreme, neurons covary and encode both stimulus-
driven and stimulus-independent variables regardless of their
reliability. Identifying where along this spectrum cortical encod-
ing operates is fundamentally challenging because the stimulus-
driven and the stimulus-independent variables are unobserved
(Keemink and Machens 2019). These unobserved variables
must be inferred from observed neuronal population activity,
which, however, is highly variable across trials of repeated stim-
ulus presentation. Supervised methods, such as demixed princi-
pal component analysis (Kobak et al. 2016) and targeted
dimensionality reduction (Mante et al. 2013), can only partially
solve this problem by inferring unobserved variables that are
correlated to observed behavioral or task-related variables. A
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Fig. 1. Response reliability has a skewed distribution. A: we decompose single trial neural responses into stimulus (Stim)-driven latent factors (green) that are consist-
ent across trials and stimulus-independent (Stim-indep) latent factors (black) that are inconsistent across trials. B: schematic shows two extremes of a spectrum of
possibilities for the encoding of stimulus-driven and stimulus-independent variables: /eft, reliable neurons covary and encode stimulus-driven variables, whereas
unreliable neurons covary and encode stimulus-independent variables; right, neuron’s reliability does not constrain its encoding capability, and thus, neurons covary
and encode both kinds of variables regardless of their reliability. C: experimental setup. We performed two-photon calcium imaging of excitatory neurons in the pri-
mary visual cortex of awake, head-fixed mice during visual stimulation with periodic drifting gratings and repeated identical naturalistic movie clips. D: visual cortex
(contralateral to visual stimulus delivery) is retinotopically mapped in Emx1-Cre:: TITL-GCaMP6s mice. V1 fields are chosen from the region selective for the center
of the presentation screen. Widefield scale bar = 1 mm; two-photon scale bar = 100 um. E: AF/F responses of one example neuron with high reliability (top) and one
example neuron with low reliability (bottom) during the same naturalistic movie clip for 30 trials (movie starts at 5 s and lasts for 30-s duration). F: distribution of
response reliability for 545 recorded neurons in one example imaging field. G: schematic of tensor component analysis (TCA). Neural data are organized into a third-
order tensor with dimensions N x T x K (N denotes number of neurons, T represents number of time points in the trial, K represents number of trials). TCA approxi-
mates the data as a sum of outer products of three vectors from R components: neuron factors describe the weights of each neuron, temporal factors describe the tem-
poral dynamics of each latent factor, and trial factors describe the modulation across trials. H: cross-validation of TCA (Williams et al. 2018) on one example data set
(545 neurons x 350 frames x 30 trials). Cross-validated normalized reconstruction error (see METHODs) plotted against the number of components of TCA for training
set (blue) and test set (orange). Dashed line denotes the TCA model with 20 components. /: one example component is displayed in the form of three vectors: neuron
factor, temporal factor, and trial factor. J: all the components are displayed in the form of three heatmaps. Each row corresponds to one component (in this example
R=5).

promising direction is to solve the problem by using unsuper-
vised methods, as shown by recent works on the visual cortex
(Stringer et al. 2019b) and the frontal cortex (Hirokawa et al.
2019). Here, we used an unsupervised method, tensor compo-
nent analysis (TCA) (Williams et al. 2018), which allowed us to
identify stimulus-driven and stimulus-independent unobserved
variables in an unbiased fashion from observed neuronal popu-
lation activity in response to repeated stimulus presentations.

We performed two-photon calcium imaging of excitatory neu-
rons in the primary visual cortex of awake, head-fixed mice dur-
ing visual stimulation with repeated identical naturalistic movie
clips (Nat Mov) or periodic drifting gratings (PDG). We identi-
fied unobserved variables, or “latent factors,” representing either
stimulus-driven variables or stimulus-independent variables. Our
results show that neurons with a range of reliabilities covary and
encode both stimulus-driven and stimulus-independent variables.
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Moreover, we found that the neuronal coactivation pattern is ran-
domly redistributed across different stimuli. This suggests that
feedforward inputs to neurons in the visual cortex have a signifi-
cant influence on neuronal coactivation patterns. Finally, simula-
tion of a neural network model revealed possible input structures
underlying the observed encoding paradigm in the visual cortex.

MATERIALS AND METHODS
Lead Contact and Material Availability

Further information and requests for resources should be directed to
and will be fulfilled by the lead contact, Ji Xia (xiaji@wustl.edu). We
used tools for fitting TCA in https://github.com/ahwillia/tensortools.

Experimental Model and Subject Details

Animals. For imaging visual cortical responses, a Emx1-Cre (Jax
Stock #005628) x ROSA-LNL-tTA (Jax Stock #011008) x TITL-
GCaMP6s (Jax Stock #024104) triple transgenic mouse line (n = 7)
was bred to express GCaMP6s in cortical excitatory neurons (Madisen
etal. 2015). Mice ranging in age from 6 to 20 wk of both sexes (3 males
and 4 females) were implanted with a head plate and cranial window
and imaged starting >2 wk after recovery from surgical procedures and
up to 10 mo after window implantation. The animals were housed on a
12-h light/dark cycle in cages of up to five animals before the implants
and individually after the implants. All animal procedures were
approved by the Institutional Animal Care and Use Committee at
University of California, Santa Barbara.

Surgical procedures. All surgeries were conducted under isoflurane
anesthesia (3.5% induction, 1.5%—2.5% maintenance). Prior to inci-
sion, the scalp was infiltrated with lidocaine (5 mg/kg, sc) for analgesia,
and meloxicam (1 mg/kg, sc) was administered preoperatively to
reduce inflammation. Once anesthetized, the scalp overlying the dorsal
skull was sanitized and removed. The periosteum was removed with a
scalpel, and the skull was abraded with a drill burr to improve adhesion
of dental acrylic. A 4-mm craniotomy was made over the visual cortex
(centered at 4.0 mm posterior, 2.5 mm lateral to bregma), leaving the
dura intact. A cranial window was implanted over the craniotomy and
sealed first with silicon elastomer (Kwik-Sil, World Precision
Instruments) and then with dental acrylic (C&B-Metabond, Parkell)
mixed with black ink to reduce light transmission. The cranial windows
were made of two rounded pieces of coverglass (Warner Instruments)
bonded with a UV-cured optical adhesive (Norland, NOA61). The bot-
tom coverglass (4 mm) fit tightly inside the craniotomy, whereas the
top coverglass (5 mm) was bonded to the skull using dental acrylic. A
custom-designed stainless-steel head plate (eMachineShop.com) was
then affixed using dental acrylic. After surgery, mice were administered
carprofen (5-10 mg/kg, oral) every 24 h for 3 days to reduce inflamma-
tion. The full specifications and designs for head fixation hardware can
be found on the Goard laboratory website (https://goard.mcdb.ucsb.
edu/resources).

Two-photon imaging. After >2 wk of recovery from surgery,
GCaMP6s fluorescence was imaged using a Prairie Investigator 2-pho-
ton microscopy system with a resonant galvo scanning module
(Bruker). For fluorescence excitation, we used a Ti:Sapphire laser
(Mai-Tai eHP, Newport) with dispersion compensation (Deep See,
Newport) tuned to A = 920 nm. For collection, we used GaAsP photo-
multiplier tubes (PMTs; Hamamatsu). We used a x16/0.8 NA micro-
scope objective (Nikon) at X1 or x2 magnification, obtaining a square
field of view with width ranging from 414 to 828 um. Laser power
ranged from 40 to 75 mW at the sample depending on GCaMP6s
expression levels. Photobleaching was minimal (<1%/min) for all laser
powers used. A custom-made stainless-steel light blocker (https://
goard.mcdb.ucsb.edu/resources) was mounted to the head plate and
interlocked with a tube around the objective to prevent light from the
visual stimulus monitor from reaching the PMTs. During imaging
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experiments, the polypropylene tube supporting the mouse was sus-
pended from the behavior platform with high-tension springs to reduce
movement artifacts.

Two-photon postprocessing. Images were acquired using PrairieView
acquisition software and converted into TIF files. All subsequent analy-
ses were performed in MATLAB (MathWorks) using custom code
(https://goard.mcdb.ucsb.edu/resources). First, images were corrected
for X-Y movement by registration to a reference image (the pixel-wise
mean of all frames) using two-dimensional cross-correlation.

To identify responsive neural somata, a pixel-wise activity map was
calculated using a modified kurtosis measure. Neuron cell bodies were
identified using local adaptive threshold and iterative segmentation.
Automatically defined regions of interest (ROIs) were then manually
checked for proper segmentation in a graphical user interface (allowing
comparison with raw fluorescence and activity map images). To ensure
that the response of individual neurons was not due to local neuropil
contamination of somatic signals, a corrected fluorescence measure
was estimated according to:

F('or‘rected (l’l) = Fsama (}’l) — O * Fneuropil(n)

where Fpeuropit Was defined as the fluorescence in the region <30 um
from the ROI border (excluding other ROIs) for frame 7 and o was cho-
sen from [0, 1] to minimize the Pearson’s correlation coefficient
between Feorrected AN Freuropil- The AF/F for each neuron was then cal-
culated as:

AF/F = (F, — Fo)/Fo

where F,, is the corrected fluorescence (Fcorrecieq) fOr frame n and F
defined as the mode of the corrected fluorescence density distribution
across the entire time series. We calculated AF/F over windows of 500
samples (50 s). Since the threshold for nonstationarity is <1%/min
across for the recording, this window adequately accounts for any small
baseline drift.

Visual stimuli. All visual stimuli were generated with a Windows
PC using MATLAB and the Psychophysics toolbox (Brainard 1997).
Stimuli used for two-photon imaging were presented on an LCD moni-
tor (17.5 x 13 cm, 800 x 600 pixels, 60 Hz refresh rate) positioned 5
cm from the eye at a horizontal tilt of 30° to the right of the midline and
vertical tilt of 18° downward, spanning 120° (azimuth) by 100° (eleva-
tion) of visual space in the right eye.

For drifting grating visual stimulation, 12 full-contrast sine wave
gratings (spatial frequency: 0.05 cycles/°; temporal frequency: 2 Hz)
were presented full-field, ranging from 0° to 330° in 30° increments.
We presented eight repeats of the drifting grating stimulus; a single
repeat of stimulus consisted of all 12 grating directions presented in
order for 2 s with a 4-s interstimulus interval (gray screen).

For natural movie visual stimulation, we displayed a grayscale 30-s
clip from Touch of Evil (Orson Wells, Universal Pictures, 1958) con-
taining a continuous visual scene with no cuts (https://observatory.
brain-map.org/visualcoding/stimulus/natural_movies). The clip was
contrast-normalized and presented at 30 frames per second. We pre-
sented 30 repeats of the natural movie stimulus; each repeat started
with 5 s of gray screen, followed by the 30 s of movie.

When we compared neural responses across stimuli, we did analyses
on part of the responses so that their trial structure matches. For Nat
Mov, we took the first 240 time points after movie onset and the first
eight trials of the responses. For PDG, we took concatenated neural
responses during PDG without the gray screen periods to get 240 time
points (20 time points x 12 orientations). Thus, two types of neural
responses would have the same trial structure (240 time points X 8
trials).

Nonnegative tensor decomposition with missing data. We organ-
ized our data into a three-way tensor 3 (N x T x K), and let y,,, repre-
sent the activity of neuron »n at time ¢ and trial k. Nonnegative tensor
component analysis (TCA) decomposes 7y into a sum of R rank-one ten-
sors, where each rank-one tensor can be written as an outer product of
three nonnegative vectors:
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T
M (x — Il
while
W>0,B>0A>0
Here, 7 denotes the reconstructed data. || - H; denotes the squared

Frobenius norm of a tensor:

s N T £
[l = anlzlezkzlx"'k

where M denotes a masking tensor with the same shape as y, and *
denotes entrywise multiplication of two tensors. For fitting nonnegative
TCA on AF/F data, we set myg = 0 if 3,4 < O; otherwise, we set n,y =
1. Normalized reconstruction error is the squared reconstruction error
normalized by ||M * x|[7.

Different from matrix decompositions, tensor decompositions are of-
ten unique (Kruskal 1977). However, when R is large or W, B, A have a
low rank, it could be difficult to optimize. To monitor this possibility,
we calculated similarity between different TCA fitting results on the
same data set as described in the article by Williams et al. (2018). We
found that the similarity between fitting results is close to 1 for all the
nonnegative TCA models reported in this work.

Preprocessing of AF/F data. AF/F data were normalized such that
the averaged squared sum of AF/F traces over time equals to 1 for ev-

€ry neuron:
(¥ )

This normalization step is crucial for ensuring TCA fitting is not bi-
ased by high firing rate neurons, since TCA is optimized to minimize
the squared reconstruction error.

Choice of the number of components in TCA. We picked the number
of TCA components such that they captured a significant amount of
neural responses without overfitting, checked with cross-validation as
previously reported (Williams et al. 2018). To perform cross-validation,
we randomly masked out 50% of tensor entries in ¥. The remaining
data were training set, and the masked-out data were test set. We
trained nonnegative TCA with missing values to fit the training set.
And then we used the trained TCA model to fit the test set. As we
increase the number of components in TCA, if the normalized recon-
struction error of the test set went up, the TCA model would overfit the
training set. As previously reported (Williams et al. 2018), TCA is
unlikely to overfit, even with up to 60 components. For this study, we
chose 20 components for TCA, given that 20-component TCA captured
a significant amount of neural responses without overfitting. Note that
all the results in this study were robust to changes in the number of
TCA components (data not shown; we tested TCA with 1040
components).

Balanced network model. Neurons were modeled as binary units.
We simulated 1,600 excitatory neurons and 400 inhibitory neurons.
The spiking s7 of neuron i in population x € {E,I} was given by

2000 20
_s'f(t):@( E - ],']'Sj+l,l"+ E Igm X Kim X N
J= m=

20 )
+ n:ILfﬂ X Z:w - eA)

where O is the Heaviside step function. Jj; is the connectivity weight
from neuron j to neuron i. Each neuron received, on average, 200 exci-
tatory and 200 inhibitory recurrent inputs, thus most matrix elements J;;
were zero. For the nonzero matrix elements Jj;, the synaptic weights
were JEE = J'® = 0.07; J5' = —0.14; J" = —0.13. Bias current was given
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by p® = 1.13; p' = 0.91. Spiking threshold was given by 6% = 1; 0" =
0.7. Choices of parameters are motivated by previous work in the bal-
anced network (Litwin-Kumar and Doiron 2012; van Vreeswijk and
Sompolinsky 1998).

Frozen input pulse trains 1 consisted of 20 pulse trains repeated
over trials, thus imitating the stimulus-driven variables (Supp-
lemental Fig. S4D; all Supplemental material is available at
https://doi.org/10.6084/m9.figshare.12885005). On each trial, each
frozen pulse train contained one burst of three pulses during a random
located time window of 200 ms (Supplemental Fig. S4D). Another set
of 20 different input pulse trains & varied across trials, thus imitating
stimulus-independent variables (Supplemental Fig. S4F). Since stimu-
lus-independent variables are not locked to the trial structure, we gener-
ated trial-varied input pulse trains as Poisson pulse trains with a rate of
0.005 Hz during 500 s, i.e., the duration of the simulation.

K is a 2,000 x 20 matrix, describing synaptic weights between fro-
zen input pulse trains and individual neurons. Each neuron only
received one frozen pulse train, and each frozen pulse train innervated
100 neurons. The nonzero entries of K followed a lognormal distribu-
tion with mean = 2 (Supplemental Fig. S4B). g is a constant gain factor
varying from trial to trial, randomly selected from a uniform distribu-
tion U (0.3, 0.8). L is a 2,000 x 20 matrix, describing synaptic weights
between trial-varied input pulse trains and individual neurons. Each
neuron only received one trial-varied pulse train, and each trial-varied
pulse train innervated 100 neurons. Similar to K, the nonzero entries of
L followed a lognormal distribution (Supplemental Fig. S4B). Both /)
the burst-like temporal structure of the input pulse trains and 2) the
clusters of neurons with identical input pulse trains were chosen to
impose a level of coordinated spiking within the otherwise unstructured
recurrent model neural network.

To simulate neural responses to two different stimuli, we generated
two sets of frozen input pulse trains and trial-varied input pulse trains
as well as the corresponding input synaptic weights independently with
the same statistics as described above.

Simulations were performed with a discrete time step of 10 ms, and
neurons are updated asynchronously with a fixed order. At the begin-
ning of each trial, 20% of neurons were randomly selected to be active,
with the rest of neurons being silent. We simulated 20 trials for each
stimulus. Each trial was simulated for 25 s. We convolved the simu-
lated spike train with a kernel e ~™ — ¢~ similar to GCaMP6s kernel
to generate simulated AF/F traces (rise time t; = 100 ms, decay time
1, =2 s). TCA was fitted on subsampled simulated AF/F traces with a
time resolution of 100 ms.

Quantification and Statistical Analysis

Correlation between reliability of coactive neuron pairs. To inves-
tigate dependency on reliability for neuronal coactivation, we calcu-
lated the Pearson correlation between reliability of significantly
positively correlated neuron pairs in all recorded imaging fields. To
select those neuron pairs, we calculated the Pearson correlation
between pairs of neuronal responses and picked neuron pairs with posi-
tive and significant (P < 0.001) correlations.

Ordering of TCA components. For analysis on responses during Nat
Mov, TCA components were ordered by their consistency over trials.
The consistency of TCA components was quantified as coefficient of
variation (CV) of their trial factors.

For analysis on concatenated responses, TCA components were first
separated into two groups based on whether the sum of trial factors dur-
ing first eight trials (during PDG stimulation) was higher than sum of
trial factors during second eight trials (during Nat Mov stimulation).
Then, within each group, TCA components were ordered by their
consistency.

Sorting neurons by dominant components. Neurons were reordered
by their dominant components. There were two steps for this sorting
method. First, we grouped neurons by their dominant component.
Dominant component was defined as the component with the
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highest neuron factor value for a given neuron. Second, within each
group of neurons with the same dominant component, we sorted
neurons by their neuron factor values of the dominant component in
descending order.

Fitting performance. We used the coefficient of determination
(R*) to quantify the fitting performance of reconstructed responses
by TCA components. Before we calculated R* between normalized
AF/[F traces and reconstructed AF/F traces, we set the negative part
of normalized AF/F and corresponding part of reconstructed AF/F
traces to zero.

Response reliability. Response reliability was defined as the correla-
tion coefficient of neural responses between pairs of trials averaged
over all trial pairs for a given neuron:

2 K K
Reliability, = ———— E E
crapiiy KK —1) k=1 ko =ki+1

RESULTS

Cov(ry,, I,)

Var(ry) Var(ry,)

Response Reliability Has a Skewed Distribution

We recorded from layer 2/3 pyramidal neurons in V1 of awake,
head-fixed mice using two-photon calcium imaging of transgenic
mice expressing the calcium indicator GCaMP6s in excitatory
neurons (see METHODS) (Fig. 1, C and D; Supplemental Fig. S1A).
Mice watched a repeated clip of a 30-s naturalistic movie for 30
trials while being constrained within a tube (see METHODS). We
recorded from 10 imaging fields in seven mice and extracted cal-
cium responses (AF/F) from a total of 4,077 well-isolated somatic
regions of interest (ROIs). Numbers of ROIs from individual
imaging fields were 545, 449, 791, 366, 480, 127, 284, 306, 371,
and 358. Neuronal responses varied across trials. Using previ-
ously described methods (Goard and Dan 2009; Rikhye and Sur
2015), we quantified this response variation in terms of the
“response reliability,” defined as the correlation coefficient of
neural responses between pairs of trials averaged over all trial
pairs for a given neuron (Fig. 1E; see METHODS). Response reli-
ability distributions were skewed, with most neurons exhibiting
low response reliability (Fig. 1F; Supplemental Fig. S1B). Note
that the skewed distribution was not a result from the slow dy-
namics of calcium transients (Supplemental Fig. S1C).
Because of the unimodal distribution, a distinction between
“reliable” and “unreliable” neurons is not useful.

Neurons Covary Significantly with Each Other during Stimulus
Presentation

To quantify the level of coordination among the neurons in
the population activity, we applied nonnegative TCA (see
METHODS) to the normalized AF/F data from recordings organ-
ized into a three-dimensional tensor (Fig. 1, G=J/), as previously
described (Williams et al. 2018). Single neuronal AF/F response
was normalized by a constant so that its L2 norm equaled 1 (see
METHODS). We found that with 20 components, the nonnegative
TCA decomposition captured a significant amount of neural
responses (545 neurons x 350 time points x 30 trials) for neu-
rons with diverse reliability without overfitting (Figs. 1H and
2A). We quantified the fitting performance of individual neurons
by the coefficient of determination (R?) and found that, in gen-
eral, fitting performances on neurons with high reliability were
higher than that of neurons with low reliability (Fig. 2B). Given
that TCA is built to capture responses that are shared across
dimensions (across neurons, time, or trials), it is not surprising
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to see that neurons with high reliability, whose responses are
shared across trials, were better fit. However, for some neurons
with low reliability, fitting performances were also surprisingly
high (Fig. 2B), which suggests that their responses are shared
across neurons. To quantify the extent to which neuronal
responses are shared across neurons, we fitted TCA on neural
responses with randomly shuffled trials for each neuron independ-
ently. Note that the reliability of each neuron after shuffling is still
the same as that in the original data. Fitting performances on the
original data were significantly better than fitting performances on
data with shuffled trials (Fig. 2C), especially for neurons with low
reliability. Furthermore, neurons were coactive largely independ-
ent of their reliability, supported by weak correlation between reli-
ability of coactive neuron pairs (Supplemental Fig. S2D, see
METHODS). In conclusion, this comparison indicates that neuronal
coactivation pattern significantly contributes to population activity
during stimulus presentation from single (Fig. 2C) and combined
experiments (Supplemental Fig. S2, B and C).

Neurons with a Range of Reliabilities Are Coactive and
Encode Stimulus-Driven and Stimulus-Independent Variables

To reveal the encoding paradigm of the neurons, we visual-
ized all 20 TCA components in matrix form, sorted by their con-
sistency across trials (Fig. 3A). Here, neuron factors directly
reflect the coactivation pattern of the neurons (Supplemental
Fig. S2, E and F), and trial factors indicate whether the TCA
components are driven by the stimulus. We quantified the con-
sistency of components by the coefficient of variation (CV) of
their trial factors. Consistent components with low CV represent
stimulus-driven variables, whereas inconsistent components
with high CV represent stimulus-independent variables. In addi-
tion, we sorted the neurons based on their response reliability
when visualizing neuron factors. The sorting by consistency and
reliability revealed two key observations. First, there is a contin-
uous distribution of consistency of components. Second, neu-
rons with diverse reliability covary and encode different
components, as indicated by 10 neurons with the highest neuron
factor values for each component spanning a range of reliabil-
ities (Fig. 3B). In other words, a single neuron’s response reli-
ability imposes only a weak constraint on its encoding
capabilities. This spread of coactivation pattern across reliability
leads to a seemingly paradoxical conclusion that neurons with
low reliability can encode stimulus-driven variables and neurons
with high reliability can encode stimulus-independent variables
(Supplemental Fig. S2, G and H). This apparent paradox is illus-
trated by responses from two example neurons (Fig. 3, C and D).
The neuron with low reliability in Fig. 3C displayed highly vari-
able responses from trial to trial; however, whenever it fired, it
fired at the same time point in the trial. Thus, the neuron with low
reliability had a high neuron factor value (higher than 1 SD above
mean) for the consistent component shown in Fig. 3C. By con-
trast, the neuron with high reliability in Fig. 3D had a high neuron
factor value for the corresponding inconsistent component. This
resulted from the fact that the neuron with high reliability
encoded not only stimulus-driven variables but also stimulus-in-
dependent variables. The findings indicate that one neuron can
covary with different groups of neurons and can encode distinct
variables. The two key observations hold for all the recorded
imaging fields (Supplemental Fig. S3; Fig. 4). In other words, a
single neuron’s response reliability imposes only a weak
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Fig. 2. Neurons covary significantly with each other during stimulus presentation. A: AF/F traces (fop) and reconstructed AF/F traces (bottom) based on 20 TCA com-
ponents for one example neuron with low reliability (/eff) and one example neuron with high reliability (right) across trials in one example imaging field. B: fitting
performance R? plotted against response reliability. Each dot represents one neuron in the example imaging field. C: fitting performance R for original data plotted
against R? for data with shuffled trials. Each dot represents one neuron. Color indicates response reliability. Fitting performance for the original data is significantly

better than for data with shuffled trials (Mann—Whitney rank test, P < 0.001) in the same imaging field as in A and B. TCA, tensor component analysis.

constraint on its encoding capabilities with natural movie stimu-
lation. In addition, the two key observations largely hold for
neural responses to drifting gratings; however, there were fewer
neurons with high reliability encoding stimulus-independent
variables (Supplemental Fig. S3).

Neuronal Coactivation Pattern Randomly Redistributes across
Different Stimuli

Cortical neurons are deeply embedded in a recurrent neural
circuit (Douglas et al. 1995). The recurrent nature of cortical
circuits raises the question of how the observed single-neuron
reliability and the population coactivation patterns are modu-
lated by feedforward visual input. To investigate the impact
of feedforward and recurrent input, we analyzed neural
responses to a naturalistic movie clip (Nat Mov) and periodic
drifting gratings (PDG) stimuli from neurons in the same
imaging field. To make a direct comparison across stimuli,
we matched their trial structure for all analyses (see
METHODS).

First, we compared how single neuron activity changes across
stimuli. The activity level (averaged AF/F over time) of cortical
neurons followed a skewed distribution during both Nat Mov and
PDG stimulation (Fig. 5A). In addition, neurons’ activity level
substantially redistributed across stimuli (Fig. 5B). The response
reliability to both stimuli also followed skewed distributions (Fig.
5C) and extensively redistributed across stimuli (Fig. 5D).

Second, we compared how neuronal ensembles change across
stimuli. Are neurons coactive in the same way during Nat Mov
stimulation and PDG stimulation? To answer this question, we
fited TCA with 20 components on concatenated neural
responses (Fig. 5E). Note that TCA is ignorant to which stimu-
lus is on during each trial. Despite this lack of information about
the trial structure, TCA successfully identified two groups of
components corresponding to the two stimuli (Fig. 5E). As
expected, the consistent components during PDG stimulation
reflect the tuning curves of orientation selective neurons, with
two peaks for their temporal factors corresponding to responses
to orientations separated by 180°. To quantify similarities
between neural ensembles, we calculated the correlation coeffi-
cient (CC) between neuron factors of different components (Fig.

5F). Note that TCA factors are not necessarily orthogonal to
each other, in contrast to principal component analysis (Kruskal
1977; Williams et al. 2018). Thus, the CC between neuron fac-
tors is not expected to be zero or negative. We found that inter-
component CCs within stimuli were predominantly negative,
whereas intercomponent CCs across stimuli centered around
zero (Fig. 5G). A negative CC between two components indi-
cates that if one neuron is recruited by one component, it is
unlikely to be recruited by the other component. Consequently,
different TCA components within stimuli, i.e., Nat Mov or
PDG, tend to be encoded by largely nonoverlapped ensembles
of neurons, whereas different TCA components across stimuli,
ie., Nat Mov versus PDG, tend to be encoded by random
ensembles of neurons. Importantly, the fact that neuronal
ensembles are randomly reorganized for different external vis-
ual inputs raises the question of whether neural ensembles are
formed mainly due to feedforward external inputs instead of
cortical recurrent connections.

A Balanced Model Network with Random Connectivity and
Correlated External Inputs Reproduces Key Features of the
Observed Cortical Activity

To identify a potential mechanism behind the observed corti-
cal dynamics, we simulated a balanced model network (van
Vreeswijk and Sompolinsky 1996, 1998) with random connec-
tivity and clustered external inputs (clustered as defined by
grouping of neuron inputs; note that the model has no spatial or-
ganization, see METHODS and Fig. 6A). In brief, the recurrent
model network consisted of 1,600 excitatory and 400 inhibitory
binary point neurons with uniform random connectivity for each
neuron type (see Supplemental Fig. S4A and METHODS). To
mimic stimulus-driven and stimulus-independent variables in
the model, we constructed two qualitatively different sets of
external input pulse trains (Supplemental Fig. S4, D and E).
One set of 20 different input pulse trains was identical (“fro-
zen”) across trials, thus imitating stimulus-driven variables.
Another set of 20 different input pulse trains varied in a trial-in-
dependent manner, thus imitating stimulus-independent varia-
bles. To mimic coactivation patterns among neurons, we
randomly partitioned the 2,000 model neurons into 20 clusters
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Fig. 3. Neurons with a range of reliabilities are coactive and encode stimulus-driven and stimulus-independent variables. A: neuron, temporal, and trial factors of non-
negative TCA with 20 components. For all three factors, components are ordered by coefficient of variation (CV) of trial factors. In addition, within the neuron fac-
tors, neurons are ordered by their response reliability. Two example components are highlighted by horizontal rectangles: (yellow) A “consistent” component with a
low CV value of trial factors. (red) An “inconsistent” component with a high CV value of trial factors. Color scale units are arbitrary units. B: reliability (abscissa)
and R? values (color and dot diameter) for the top 10 neurons with the largest neuron factor values within a component, shown for all 20 components (ordinate).
Components are in the same order as in A. C: one example component (same as yellow rectangle in D) that is consistent across trials (trial factor has low CV value).
For clarity, here we used the display format of factors as described in Fig. 1/. For one neuron (red dot), the normalized responses and the reconstructed responses are
shown below. As seen from the reconstructed response using this component alone (bottom), this neuron with low reliability has a large contribution from the consist-
ent component. D: one example component (same as red rectangle in D) that is inconsistent across trials (trial factor has high CV value). For one neuron (red dot),
the normalized responses and the reconstructed responses are shown below. As seen from the reconstructed response using this component alone (bottom), this neu-

ron with high reliability has a large contribution from the inconsistent component. TCA, tensor component analysis.

of 100 model neurons each. All neurons within a cluster
received the same “frozen” input pulse train. For another ran-
dom partitioning of the model neurons into 20 clusters of 100
neurons, all neurons within a cluster received the same input
pulse train that, however, varied in a trial-independent manner.
To match with the temporal structure of experimental data, we
mimicked AF/F responses by convolving simulated spike trains
with alpha functions (see METHODS). All of the following analy-
ses were performed on the simulated AF/F responses.

With a choice of appropriate set of parameters, key features
of the observed cortical activity were reproduced by the model
network (Fig. 6). Even though model neurons received highly
correlated external inputs, they operated in an asynchronous
state (Fig. 6B) due to balanced excitatory and inhibitory recur-
rent inputs (Renart et al. 2010). In addition, with lognormal

distributed synaptic weights of external inputs (Supplemental
Fig. S4B), the model exhibited a skewed distribution of response
reliability (Fig. 6C). Furthermore, consistent with experimen-
tal results, simulated activities of model neurons were well
fitted by TCA (Fig. 6D) and they covaried more than
expected by chance (Fig. 6F). Moreover, both consistent and
inconsistent components recruited neurons with a range of
reliabilities (Fig. 6, F' and G). Importantly, when the model
network was presented with two different stimuli (see
METHODS), intercomponent CCs within stimuli were predomi-
nantly negative, whereas intercomponent CCs across stimuli
centered around zero (Fig. 6, H and I).

By reproducing the observed cortical dynamics, the model
revealed several essential insights. First, the clustered structure
in external inputs, instead of the clustered structure in recurrent
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whereas solid line denotes the expected relation under unconstrained extreme. TCA, tensor component analysis.

connections (Fig. 7, A-C), is more likely to support the observed  This spontaneous slow dynamics results in multiple inconsistent
coactivation pattern in neuronal responses. Clustered recurrent components with different temporal factors but the same neuron
connections would lead to spontaneous slow dynamics during factors (Fig. 7C), which is contradictory to the experimental
which neurons within the cluster transiently increased or results. In contrast, TCA components of the model with clustered
decreased their firing rate (Litwin-Kumar and Doiron 2012). external inputs and random connectivity qualitatively resembled
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Fig. 5. Neuronal coactivation pattern randomly redistributes across different stimuli. A: distribution of averaged AF/F (%) over time and trials during Nat Mov and
PDG for one imaging field (opaque color) and the other nine imaging fields (transparent color). B: averaged (Avg) AF/F (%) during Nat Mov plotted against averaged
AF/F (%) during PDG for neurons in one imaging field (black dots) and neurons in the other nine imaging fields (gray dots). Averaged AF/F (%) during Nat Mov is
weakly correlated with averaged AF/F (%) during PDG (4,077 neurons, Pearson’s correlation r = 0.07, P < 0.001). C and D: same as A and B, but for response reli-
ability. Reliability during Nat Mov is weakly correlated with reliability during PDG (4,077 neurons, Pearson’s correlation » = 0.09, P < 0.001). E: 20 TCA compo-
nents for concatenated neural responses to visual stimulation with PDG and Nat Mov. Ordering of components is determined by their trial factors (see METHODS).
Neuron factors are plotted with neurons ordered by their dominant components (see METHODS). F: the correlation coefficient (CC) between neuron factors are dis-
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tered around zeros (one-sample ¢ test, for all 10 imaging fields, P > 0.1). Nat Mov, naturalistic movie clips; PDG, periodic drifting grating; TCA, tensor component
analysis.
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trains and trial-varied input pulse trains. Both inputs have a clustered input structure but with different neuron partitions. Model network consists of 1,600 excitatory
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failed to reproduce key features of neuron fac-
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in the model network with clustered excita-
tory connections. The excitatory population
was partitioned into clusters of 100 neurons 1
each. The connection probability within the
cluster was 1.7 times as much as the connec-
tion probability between clusters. The con-
nection strength between excitatory neurons
from the same cluster was 1.9 times as much
as the connection strength between excitatory
neurons from different clusters. On average,
each neuron received 200 excitatory recurrent
inputs. B: raster plot of 500 randomly sub- 20
sampled neurons during one trial. Blue dashed
line separates inhibitory neurons from excita-
tory neurons. Note that neurons within the
same cluster fire together irregularly. C: 20
TCA components for neural responses or-
dered by consistency of their trial factors.
Here, some inconsistent components have
highly correlated neuron factors, due to the
spontaneous slow dynamics (see B) in the
model network with clustered excitatory con-
nections. D—F: the model network with a
unique input structure failed to reproduce
coactivation patterns independent of reliabil-
ity. D: illustration for input structure to model
network. Frozen input pulse trains and trial-
varied input pulse trains project to different
groups of neurons. E: reliability of 10 neurons
with the largest neuron factor values for dif-
ferent components. Components are in the
same order as in C. F: 20 TCA components.
Components are ordered by CV of trial fac-
tors. In neuron factor, neurons are ordered by
their response reliability. CV, coefficient of
variation TCA, tensor component analysis.
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connections to keep neural activity in the asynchronous regime.
Without the recurrent connections, neural activity would become
synchronous to the external inputs. Moreover, the chaotic nature of
the balanced network (van Vreeswijk and Sompolinsky 1998) con-
tributed to model high trial-to-trial variability in neural activity.

In conclusion, this analysis of recurrent balanced neural net-
work models revealed that both the stimulus specificity and the
mixed encoding of qualitatively different variables can arise
from clustered external inputs.
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DISCUSSION

Neural variability is widely studied as a single-neuron fea-
ture (Faisal et al. 2008; Mainen and Sejnowski 1995) and a
population-wide feature (Cohen and Kohn 2011; Doiron et
al. 2016). Here, we related single-neuron variability to popu-
lation-wide variability by asking how neurons with different
levels of reliability encode unobserved variables. Our work
demonstrated that neurons spanning a range of reliabilities
are coactive and encode a mixture of stimulus-driven and
stimulus-independent unobserved variables. We found that a
neuron’s response reliability and the neuronal coactivation
patterns substantially reorganized for different external vis-
ual inputs. Furthermore, our model suggested clustered exter-
nal inputs underpin the observed coactivation pattern of
neurons. More broadly, this study has made the following
contributions to our understanding of connectivity-mediated
variability in the visual cortex.

First, we found that neural variability is well captured by
additive and multiplicative modulation shared across neuron
ensembles, as shown by the applicability of the linear TCA anal-
ysis (Fig. 2, A and B). Neural variability can be modeled as an
additive modulation (Scholvinck et al. 2015) by summing the
trial-averaged evoked response and some stochastic activity
such as spontaneous activity (Arieli et al. 1996). Alternatively,
neural variability can be modeled as a multiplicative modulation
(Ecker et al. 2014; Goris et al. 2014) by multiplying the trial-
averaged evoked response with a gain factor. Both additive
and multiplicative modulations are necessary to reproduce
neural variability observed in experimental data (Arandia-
Romero et al. 2016; Lin et al. 2015). Here, we modeled trial-
to-trial variability as a sum of gain-changed temporal factors,
where the gain is governed by the corresponding neuron fac-
tor and trial factor. Note that the temporal factors represent
the shared neural activity across neurons and trials, which
might serve as a better neural basis than the trial-averaged
evoked responses (Williams et al. 2018). However, as TCA is
built to capture shared modulation across dimensions, it is
unlikely to capture independent multiplicative or additive
modulations. For example, the gain modulation of the neuron
with low reliability shown in Fig. 3C was not captured by
TCA, given a limited number of components.

Second, we found that individual neuron’s response reliabil-
ity imposes only a weak constraint on its encoding capabilities.
One explanation given for the presence of neurons exhibiting
weak responses to sensory stimuli is that even poorly driven
neurons may contribute to sensory coding (Leavitt et al. 2017;
Safaai et al. 2013). Indeed, we show that neurons with low reli-
ability often make strong contributions to consistent stimulus-
driven factors, despite the fact that the responses of individual
neurons can be highly variable across trials (Fig. 3). In contrast,
researchers have proposed that variable activity across trials is
due to coding of nonsensory information, such as motor or be-
havioral variables (Niell and Stryker 2010; Vinck et al. 2015). A
recent article using shared variance component analysis identi-
fied stimulus-independent latent factors that were linked to fa-
cial movements and drove visual cortical neurons independently
of sensory input (Stringer et al. 2019b). Our results are also in
agreement with this finding, as we show that neurons from a
range of reliabilities contribute to stimulus-independent latent
factors (Fig. 3). Taken together, these results show that the
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encoding of distinct variables is not mutually exclusive and that
both phenomena are evident in visual cortical networks.

Third, our experiment and model results support the possibil-
ity that clustered external inputs underpin the neuronal coactiva-
tion pattern. Alternatively, coactive neuronal ensembles could
result from structured recurrent connectivity, based on the fact
that the connectivity probability between coactive neurons is
higher than neurons with decorrelated evoked responses (Ko et
al. 2011). Additional evidence in support of this alternative mech-
anism is the similarity between coactive neuronal ensembles dur-
ing spontaneous and stimulus-modulated activity (MacLean et al.
2005; Miller et al. 2014). However, the evidence might not be
sufficient: A neural network with random connectivity can also
generate similar neuronal coactivation patterns during spontane-
ous and evoked activity (Okun et al. 2012). Moreover, consistent
with previous work (Hofer et al. 2011), we found that neuronal
coactivation pattern is highly dependent on stimulus (Fig. 5),
which demonstrated that external inputs, instead of recurrent con-
nection, may be the dominant factor in the formation of neuronal
ensembles. The mechanism underlying these coactivation pat-
terns is still unclear. Searching for further evidence for our pro-
posed mechanism might require analyses on simultaneous
recordings from external inputs and cortical neurons (Sun et al.
2016).

Fourth, the coactivation pattern of neurons with diverse
reliability provides insights on the connectivity of external
inputs to visual cortex. Neuroanatomy data showed that V1
in mice is highly interconnected with other regions of neo-
cortex (Froudarakis et al. 2019). For instance, V1 receives
inputs carrying sensorimotor information (Petreanu et al. 2012).
However, the structure of inputs at the neuronal population level
remains elusive. In Fig. 1, we described a spectrum of how neu-
rons encode stimulus-driven and stimulus-independent variables.
Based on model investigations (Figs. 6 and 7, D-F), the two
extremes of the spectrum correspond to different external input
structures. Our experimental and model results suggested that a
neuron’s reliability imposes only a weak constraint on its encod-
ing capability, indicating that neurons receive both frozen and
trial-varied inputs. This input paradigm has a potential functional
advantage such that fewer neurons are required to encode the
same number of variables, compared with distinct external inputs
projecting to separate groups of neurons. Furthermore, different
variables are encoded by largely nonoverlapped groups of neu-
rons within a stimulus set (Fig. 5). This nonoverlapping encoding
strategy indicates that each input tends to innervate different
groups of neurons. Such a mutually exclusive representation may
enable simple linear readout for downstream neurons. This trade-
off between efficient coding and high readout efficiency informed
the choice of the input structure in our model. However, the cho-
sen input structure in our model may not be the only possible so-
lution to reproduce the key features of neuronal coactivation
patterns. Another limitation of our model is that we assumed ran-
dom connectivity between model neurons, which is not true for
cortical neurons. Models with spatial dependence in connectivity
resembling cortical networks (Huang et al. 2019) are good candi-
dates to be investigated in the future.

An important next step is to identify what stimulus-driven
and stimulus-independent variables are encoded by neural
responses. Earlier work suggests two possible ways to identify
the stimulus-independent variables. First, we can look for be-
havioral or internal variables that have the highest correlation
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with the trial factors of inconsistent components (Hirokawa et
al. 2019; Stringer et al. 2019b). Second, we can use photostimu-
lation to activate the neuronal ensemble corresponding to the
stimulus-independent component and observe the changes of
behavioral variables (Carrillo-Reid et al. 2019). However, it is
much less straightforward to identify the stimulus-driven varia-
bles or visual features in this case. One promising idea is using a
generative closed-loop system to evolve synthetic images to
maximize the corresponding neuronal ensemble’s coactivation
(Bashivan et al. 2019; Ponce et al. 2019). Such evolved images
might provide insight on the visual features encoded by the par-
ticular neuron ensemble.
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