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ABSTRACT   

In this paper, morphological operations on regular hexagonal structures are considered, where a regular hexagonal 
structure is a subset of a hexagonal lattice and consists of the sampled points for the discretization of a regular hexagonal 
region. First, a sequence of reasonable structure elements (SE) for hexagonal lattices are provided, and the 
decompositions of the SEs are shown. Second, based on the decompositions of the SEs, some efficient algorithms for 
morphological operations on the regular hexagonal structures are developed. Finally, the algorithms are tested using a 
computerized tomography (CT) image, and promising applications of such algorithms on CT image reconstruction and 
segmentation are pointed out. 
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1. INTRODUCTION  

Let R  and Z denote the set of real numbers and integers, respectively. As in [1] by Zheng, if U  and V are two vectors 
(in 2R ) that have the same length and the angle between them is 60  or 120 , then the set 
 1 2 1 2| ,k U k V k k Z• + •   is called a hexagonal lattice generated by U  and V . Let H  be a hexagonal lattice and 
p H , the Voronoi cell associated with the lattice point p  is the set  

( ) ( ) 2 2| , ,x R d x p d x q for any q R   . 

 
     Figure 1: A regular hexagonal structure consisting of the sampled points of a regular hexagonal region. 
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Let  1, 0U =  and 
1 3,
2 2

V
 

= − 
 

. If  1 2 1 2: | ,L k U k V k k Z= • + •  , then L  is a hexagonal lattice generated by 

U  and V . For each positive integer n , let  

 1 2 1 2 1 2 1 2: , , | | , | | , | ||n k U k V k k Z k n k n and k k n = • + •    −  .                    (1) 

n  is called a regular hexagonal structure (RHS) with parameter n . Fig. 1 shows 4  along with the coefficient vector 

 1 2,k k  of the lattice points in 4  in terms of U  and V . As displayed in Fig. 1, each lattice point in a hexagonal 
lattice has six equidistant neighbors; each Voronoi cell is well connected to six adjacent Voronoi cells; and the lattice 
points of n  are well indexed because the coefficient vectors of lattice points in n constitute the set  

     2 2
1 2 2 1 2 1 2 2 2 1, 0, , 1 , .| |k k n k n k n k k k k n n k k nZ Z−   −   +   − +       (2) 

As shown at Section 6 in [2] by Zheng and Gu, and in [3] by Zheng, because of rotations of computerized tomography 
(CT) machines, a 2D CT image may be assumed to be circular. The circular region may be embedded into a regular 
hexagonal region more compactly than the corresponding square region. Hence 2D CT image reconstruction on n  may 
not only provide better image quality, but may also produce a smaller set of data. Hence the computational time for some 
image processing tasks such as image segmentation using graph-cut methods may be reduced. 

In [4] by Chackalackal and Basart, morphological techniques are used in areas such as medical imaging and cellular 
biology. In [5] and [6] by Mostafa et al., binary and grayscale morphological operators on hexagonal images were 
applied to edge-detection and noise-removal, and achieved improvement over the corresponding operators on the 
commonly used rectangular Cartesian images. In [7] by Mostafa et al., fuzzy morphological operations with different 
geometric shapes and directional fuzzy structuring elements on hexagonal lattices were developed and applied to noise 
removal and edge detection to overcome the deficiency of the corresponding methods for Cartesian images. As shown in 
Fig. 9 (a) of [6], the previous computer algorithms and codes are for morphological operations on rectangular regions. In 
this paper, we develop efficient algorithms for morphological operations on images defined on RHSs for regular 
hexagonal regions and hexagonal lattices. Those algorithms have promising applications on CT image processing. 

 

2. BINARY MORPHOLOGY OPERATORS ON REGULAR HEXAGONAL STRUCTURES 
The terminologies for morphological operations including dilation, erosion, opening, and closing can be found in 
references such as [8] by Youkana, [9] by Bartovsky et al., and [10] by Bartovsky. Let us first consider the 
morphological operations on binary images defined on RHSs. For each integer 0m  , a binary image defined on the 

RHS m  is just an indicator function b  on a subset S  of m , in other words, ( )
1,
0,

if p S
b p

if p S


= 


for each 

mp . Hence the binary image can be just denoted as S . Let ,m n Z with 0m n  . By Equation 1 for the 

definitions of RHSs, we have m n   . The dilation of the binary image m by the structure element n is the binary 

image defined to be  : | ,m n m np q p q  = +   . The erosion of m by n is defined to be 

 : |m n m m np p q for each q  =  +   . The opening of m by n is defined to be 

( ):m n m n n  =    , and the closing of m by n is defined to be ( ):m n m n n • =    .  

When m  and n  are big, if we compute m n   directly by the definition of m n  , then the computational time 

may be huge because the computer needs to check whether p q+  is in m  or not for each nq . However, when 
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1n = , the computational time for 1m   is much less because, for each interior point p  of  m , p q+  is always 

in m  for each nq . Furthermore, if mp  and p lies at the border of m , then p  is called a boundary point 

of m  as in [11] and [12] by Zheng. Because m  is a RHS, if p  is a boundary point of m and if 1q , then (based 

on the geometry of m and q ) it is easy to determine whether p q+  is in m or not. 

As in [13] by Ohn, it is easy to verify that 1 1n n+ =    for each integer 0n  ; in other words, we have the 

decomposition formulas 2 1 1 =   , ( )3 1 1 1 =    , and so on. By Equation 5 in [13], m n   can be 

computed iteratively and efficiently. For example, when 3n = , ( )( )3 1 1 1m m  =     . This is one of the 
advantages of hexagonal lattices over square lattices (whose Voronoi cells are squares).  

For square lattices, as shown in [14] by Solomon and Breckon, the Matlab command se3 = strel('disk',5)  creates a 
structure element which corresponds to a disk of radius 5.  The Matlab command decomp=getsequence(se3)  
decomposes se3 into six basic structure elements. But those six basic structure elements are not the same, and hence 
difference computer codes are needed for the efficient computation of the corresponding morphological operations on 
those six basic structure elements.  

For hexagonal lattices, as displayed in [6] by Mostafa and Her, the structure element m  also has the advantage that 

m represents the discretization of a circular region well. Usually we prefer the circular shapes for the structure elements 
because the neighborhoods for domains of continuous functions are often assumed to be circular. As shown in Fig. 9 (a) 
in [6], Mostafa and Her studied the morphological operations on square regions with RHSs as structure elements. In this 
paper, morphological operations on regular hexagonal regions with RHSs as structure elements are considered. 

 

3. GREYSCALE MORPHOLOGY OPERATORS ON REGULAR HEXAGONAL STRUCTURES 
AND EFFICIENT COMPUTATIONAL ALGORITHMS 

The results on the last section can be generalized to greyscale images defined on RHSs. Let ,m n Z with 

0m n  ; and let f  be a greyscale image defined on m . As in [10] by Bartovsky, the greyscale dilation and 

greyscale erosion of f  by the structure element n  is defined to be ( ) ( ) ( ) : max |
n nf p f p q q

  = +    

and ( ) ( ) ( ) : min |
n nf p f p q q  = −   for each mp , respectively. Because n  is symmetric about 

the origin, we have ( ) ( ) ( ) min |
n nf p f p q q  = +   .  

As discussed in the last section, ( )
n

f  and ( )
n

f  can be computed iteratively and efficiently using the basic 

structure element 1 for n  times. Because the difference between the computations of ( )
n

f  and  ( )
n

f  is just 

max  versus min operations, in the following, we just show efficient computational algorithms for ( )
n

f . In the 

actual computation, the function f  defined on m  is represented as a 2 1m +  by 2 1m +  matrix 

( ) ( ) ( )2 1 2 1
,

m m
i jM M R +  +

=  such that 

( )1 2 1, 11 2
f k U k V Mk m k m• + • =

+ + + +
,                                               (3) 

for 1 2,k k Z satisfying 1| |k m  and 2| |k m .  
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ALGORITHM 1: Efficient algorithm for greyscale dilation of images defined on RHSs by the structure element 1  

Input: A square matrix M  with odd number of rows, where M  represents a greyscale image defined on a RHS as 
in Equation 3. 

Output: A matrix N of the same size as M , where N  represents the dilated image by the structure element 1 . 

In the following, we show the details of Algorithm 1 using some Matlab and algorithmic notations. Let r  and c  denote 
the rows and columns of the output matrix N , respectively. In this algorithm, c  proceeds from 1 to 2 1m +  
corresponding to the lowest row to the highest row of m  as displayed in Fig. 1.  For a given c , the boundary points of 

the corresponding row of m  are dealt first. 

• ( ),1 1
2

size M
m

−
  ;  (2 1,2 1)N zeros m m + +  ; 

• ( ) ( ) ( ) ( ) ( ) 1,1 max 1,1 , 2,1 , 1,2 , 2,2N M M M M ; ( ) ( ) ( ) ( ) ( ) 1,1 max ,1 , 1,1 , 1,2 , 2,2N m M m M m M m M m+  + + +  ; 

• for 2 : ,r m=  

                          ( ) ( ) ( ) ( ) ( ) ( ) ,1 max 1,1 , ,1 , 1,1 , ,2 , 1,2N r M r M r M r M r M r − + +  ; 

                end 

• for 2 : ,c m=  

( ) ( ) ( ) ( ) ( ) ( ) 1, max 1, , 2, , 1, 1 , 1, 1 , 2, 1N c M c M c M c M c M c − + +  ; 

 ( ) ( ) ( ) ( ) ( ) ( ) m+c, max m+c-1, , m+c, , m+c, 1 , m+c+1, 1 , m+c-1, 1N c M c M c M c M c M c + + −  ;               

for ( )2 : 1 ,r m c= + −  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , max 1, , , , 1, , 1, 1 , , 1 , , 1 , 1, 1N r c M r c M r c M r c M r c M r c M r c M r c − + − − − + + +  ;   

end 

                end 

• ( ) ( ) ( ) ( ) ( ) 1, 1 max 1, 1 , 2, 1 , 1, , 2, 2N m M m M m M m M m+  + + +  ; 

• ( ) ( ) ( ) ( ) ( ) 2 1, 1 max 2 , 1 , 2 1, 1 , 2 1, 2 , 2 ,N m m M m m M m m M m m M m m+ +  + + + + +  ; 

• for ( )2 : 2 ,r m=  

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , 1 max 1, 1 , , 1 , 1, 1 , 1, , , , , 2 , 1, 2N r m M r m M r m M r m M r m M r m M r m M r m+  − + + + + − + + + ; 

               end 

• for ( ) ( )2 : 2 ,c m m= +  

( ) ( ) ( ) ( ) ( ) ( ) , max , , 1, , , 1 , 1, 1 , 1, 1N c m c M c m c M c m c M c m c M c m c M c m c−  − − + − − − − − − + +  ; 

 ( ) ( ) ( ) ( ) ( ) ( ) 2m+1, max 2 , , 2m+1, , 2m+1, 1 , 2m+1, 1 , 2 , 1N c M m c M c M c M c M m c + − −  ;               
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for ( ) ( )1 : 2 ,r c m m= − +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , max 1, , , , 1, , 1, 1 , , 1 , , 1 , 1, 1N r c M r c M r c M r c M r c M r c M r c M r c − + − − − + + +  ;   

end 

 end 

• ( ) ( ) ( ) ( ) ( ) 1,2 1 max 1,2 1 , 2,2 1 , 1,2 , ,2N m m M m m M m m M m m M m m+ +  + + + + +  ; 

• ( ) ( ) ( ) ( ) ( ) 2 1,2 1 max 2 ,2 1 , 2 1,2 1 , 2 1,2 , 2 ,2N m m M m m M m m M m m M m m+ +  + + + +  ; 

• for ( ) ( )2 : 2 ,r m m= +  

      ( ) ( ) ( ) ( ) ( ) ( ) ,2 1 max 1,2 1 , ,2 1 , 1,2 1 , ,2 , 1,2N r m M r m M r m M r m M r m M r m+  − + + + + − ; 

              end 

 

ALGORITHM 2: Efficient algorithm for greyscale dilation of images defined on RHSs by the structure element n  

Input: An integer 0n   and a square matrix M  with odd number of rows, where M  represents a greyscale image 
defined on a RHS. 

Output: A matrix N of the same size as M , where N  represents the dilated image by the structure element n . 

▪ N M  ; 

▪ for 1:k n=  

                          N   the output of Algorithm 1 with input N ; 

               end 

 

ALGORITHM 3: Naive algorithm for greyscale dilation of images defined on RHSs by the structure element n  

Input: An integer 0n   and a square matrix M  with odd number of rows, where M  represents a greyscale image 
defined on a RHS. 

Output: A matrix N of the same size as M , where N  represents the dilated image by the structure element n . 

• Let coefH  be a matrix whose rows are exactly the 2-dimensional vectors in the set 

  2
1 2 1 2 1 2, | | , | | , | ||k k Z k n k n and k k n   −   ; 

• rL   ( )1,coefsize H ; in other word, rL  denotes the number of rows of the matrix coefH ; 

• ( ),1 1
2

size M
m

−
  ;  (2 1,2 1)N zeros m m + +  ; ( )( )min minb M  ; 
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• for ( )1: 1c m= + , 

for ( )1:r m c= + , 

add the vector [ , ]r c  to each row of coefH , and denote the resulting matrix as S ; 

initialize T  to be the row vector of length  rL such that each entry of T is b ; 

for 1: rg L= , 

( ),11g S g ; ( ), 22g S g ; 

if 01g  , 02g  , 2 21 mg  + , and 1 2 1| |g g m +− , 

( ) ( )1, ,1 2T g M g g ; 

end 

end 

( ) ( ), maxN r c T ; 

end 

              end 

• for ( ) ( )2 : 2 1c m m= + + , 

for ( ) ( ): 2 1r c m m= − + , 

add the vector [ , ]r c  to each row of coefH , and denote the resulting matrix as S ; 

initialize T  to be the row vector of length  rL such that each entry of T is b ; 

for 1: rg L= , 

( ),11g S g ; ( ), 22g S g ; 

if 01g  , 02g  , 2 21g m + , and | | 11 2g g m−  + , 

( ) ( )1, ,1 2T g M g g ; 

end 

end 

( ) ( ), maxN r c T ; 

end 

              end 
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4. TEST AND COMPUTATIONAL TIME COMPARISON OF THE ALGORITHMS 
Because the inputs of those algorithms are images defined on RHSs, to test those algorithms, we use a greyscale CT 
image of size 496 by 496 as displayed at the top left of Table 1. Then resample this image into the image defined on the 
corresponding RHS (using Matlab command griddata ) as displayed at the top right of Table 1. The resampled image 

is applied to Algorithms 2 and 3 with 1 , 3  and 6  as structure elements, respectively. With 3  as a structure 
element, the dilated image and the internal gradient image are displayed at the bottom of Table 1, where the internal 
gradient of an image f  with a structure element E is defined to be ( )f f E−  . For the dilation or erosion, 
Algorithms 2 and 3 have the same output image, but the computational time of Algorithm 2 is much less than Algorithm 
3.  Table 2 shows the amounts of computational time for the corresponding Matlab programs on a 2.7 GHz PC for the 
dilation of Algorithms 2 and 3. Thus, in terms of computational time, Algorithm 2 is much more efficient than 
Algorithm 3. The reason is that Algorithm 3 needs to check whether a lattice point in a neighborhood (of a lattice point 
in m ) is still in m  or not based on the constraint conditions for the definition of m . But Algorithm 2 is based on 

Algorithm 1which can determine the neighborhood of a boundary lattice point of  m easily from the index of the 

boundary lattice point based on the geometry of m . 

     Table 1.  Test of algorithms using a CT image. The top left is the original greyscale CT image; the top right is the resampled image 
using the associated hexagonal lattice; the bottom shows the dilated image (using Algorithm 2) and the internal gradient image, resp. 
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  Table 2.  The computational time of Algorithms 2 and 3 for the dilation of the image at the top right of Table 1. 

Structure Element Comput. time using Algorithm 2 (Efficient) Comput. time using Algorithm 3 (Naïve) 

1  0.0383 0.2671 

3  0.0792 0.2834 

6  0.1747 0.6388 

 

5. SUMMARY 
We have developed algorithms for the computation of some usual morphological operations on images defined on RHSs, 
and have shown that the novel Algorithm 2 is very computationally efficient and hence has promising applications. 
Because Algorithm 2 uses iterative morphological operations with the basic structure element 1 , Algorithm 2 is much 
more computationally efficient than the naïve Algorithm 3 which needs to check whether a point in a neighborhood is 
still inside the original image domain or not. We have successfully tested the algorithms using a greyscale CT image and 
displayed the results. As mentioned in the introduction, RHSs have advantages over the usual rectangular structures for 
2D CT image reconstruction and segmentation because they approximate circular regions well and allow efficient data 
indexing as shown in Equation 2. 

For 2D CT image reconstruction, hexagonal lattices have advantages over the usual Cartesian lattices as shown in [15] 
by Knaup et al., [16] by Mueller and Xu, [17] by Sjölin and Persson, and [3] by Zheng. In this paper, we have just used a 
usual CT image defined on a square lattice to test the algorithms. The square image is resampled to an image defined on 
the corresponding hexagonal lattice as the inputs of the algorithms. During the actual CT image reconstruction, a CT 
image may be reconstructed directly on a hexagonal lattice from a sinogram. Because hexagonal lattices have advantages 
over square lattices, the CT image reconstruction effect on a hexagonal lattice is better.  Furthermore, as shown in the 
introduction and in Fig. 1, a circular region may be embedded into a regular hexagonal region more compactly the 
corresponding square region. RHSs can save the number of samples for 2D image reconstruction and processing, and 
hence the computational time for some image processing tasks such as image segmentation using graph-cut methods 
may be reduced.  

Because each lattice point in a hexagonal lattice has six equidistant neighbors, hexagonal lattices may provide better 
effect of image segmentation or morphological operations than the usual square lattices as shown in [18] by Vartak and 
Mankar. In the future, we may do reasonable simulations as in [3] by Zheng to compare those two different kinds of 
lattices fairly for the effectiveness of those morphological operations on regular hexagonal regions. We may also 
generalize the research from 2D to 3D as in [1] by Zheng and in [2] by Zheng and Gu. The success of the image 
processing programs for 2D CT paves the way for the future 3D work. For the 3D CT, no matter whether images are 
reconstructed on the usual cubic lattices or 3D optimal sampling lattices, to display the reconstructed 3D images on a 2D 
monitor, the 3D images need to be resampled and the optimal sampling lattices may also provide better resampling effect 
than the 3D cubic lattices. As in [5, 6, 7] by Mostafa et al., [19] by Steppa and Holch, and [20] by Schlosser et al., 
another import future research topic is to explore the applications of those algorithms on CT image processing. 
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