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ABSTRACT

In this paper, morphological operations on regular hexagonal structures are considered, where a regular hexagonal
structure is a subset of a hexagonal lattice and consists of the sampled points for the discretization of a regular hexagonal
region. First, a sequence of reasonable structure elements (SE) for hexagonal lattices are provided, and the
decompositions of the SEs are shown. Second, based on the decompositions of the SEs, some efficient algorithms for
morphological operations on the regular hexagonal structures are developed. Finally, the algorithms are tested using a
computerized tomography (CT) image, and promising applications of such algorithms on CT image reconstruction and
segmentation are pointed out.
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1. INTRODUCTION

Let R and Z denote the set of real numbers and integers, respectively. As in [1] by Zheng, if U and V are two vectors
(in R* ) that have the same length and the angle between them is 60° or 120° , then the set
{k, U +k, oV | k,k, € Z} is called a hexagonal lattice generated by U and V . Let H be a hexagonal lattice and

p € H , the Voronoi cell associated with the lattice point p is the set

{xeR2 |d(x,p)£d(x,q)forany qeRz}.
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Figure 1: A regular hexagonal structure consisting of the sampled points of a regular hexagonal region.
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Let U = [1, 0] and V ={—§ —} If L= {kl oU+k,oV |k, k,e Z} , then L is a hexagonal lattice generated by

B

2

U and V . For each positive integer 7, let

5:=@¢U+@-V| @@eZJhgnJggmamu@—@gn} (1)

n

&, is called a regular hexagonal structure (RHS) with parameter 7. Fig. 1 shows =, along with the coefficient vector

[kl,kz] of the lattice points in &, in terms of U and V' . As displayed in Fig. 1, each lattice point in a hexagonal

lattice has six equidistant neighbors; each Voronoi cell is well connected to six adjacent Voronoi cells; and the lattice

points of = are well indexed because the coefficient vectors of lattice points in = constitute the set

{[k.k]€Z | —n<l, <0, —n<k <n+kU{k.k]€Z* | 1<k, <n,—n+k, <k <n|. @

As shown at Section 6 in [2] by Zheng and Gu, and in [3] by Zheng, because of rotations of computerized tomography
(CT) machines, a 2D CT image may be assumed to be circular. The circular region may be embedded into a regular

hexagonal region more compactly than the corresponding square region. Hence 2D CT image reconstruction on = may

not only provide better image quality, but may also produce a smaller set of data. Hence the computational time for some
image processing tasks such as image segmentation using graph-cut methods may be reduced.

In [4] by Chackalackal and Basart, morphological techniques are used in areas such as medical imaging and cellular
biology. In [5] and [6] by Mostafa et al., binary and grayscale morphological operators on hexagonal images were
applied to edge-detection and noise-removal, and achieved improvement over the corresponding operators on the
commonly used rectangular Cartesian images. In [7] by Mostafa et al., fuzzy morphological operations with different
geometric shapes and directional fuzzy structuring elements on hexagonal lattices were developed and applied to noise
removal and edge detection to overcome the deficiency of the corresponding methods for Cartesian images. As shown in
Fig. 9 (a) of [6], the previous computer algorithms and codes are for morphological operations on rectangular regions. In
this paper, we develop efficient algorithms for morphological operations on images defined on RHSs for regular
hexagonal regions and hexagonal lattices. Those algorithms have promising applications on CT image processing.

2. BINARY MORPHOLOGY OPERATORS ON REGULAR HEXAGONAL STRUCTURES

The terminologies for morphological operations including dilation, erosion, opening, and closing can be found in

references such as [8] by Youkana, [9] by Bartovsky et al.,, and [10] by Bartovsky. Let us first consider the

morphological operations on binary images defined on RHSs. For each integer 7 > 0, a binary image defined on the
= - L ifpeS

RHS = is just an indicator function b on a subset S of = , in other words, b(p) = . for each
0, if pesS

p € Z, . Hence the binary image can be just denoted as S . Let m,n € Z with m > n > 0. By Equation 1 for the

—

definitions of RHSs, we have & D = . The dilation of the binary image =, by the structure element = is the binary

image defined to be = D= = {p+q |peg,, qEEn} . The erosion of E by Z is defined to be

n

2 OF = {peEm | p+q €&, foreach qEEn} . The opening of 2 by E is defined to be

n

[1]

IO (:.m@).:.n ) @ E, , and the closing of &, by &, is definedtobe =, o= = (:m DE, )@:.n )

When m and n are big, if we compute = OZ  directly by the definition of = ©OX , then the computational time

may be huge because the computer needs to check whether p+¢q isin Z  or not for each ¢ € = . However, when
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n =1, the computational time for = OZX, is much less because, for each interior point p of = , p+gq is always
in =  for each g € = . Furthermore, if p € =  and p lies at the border of = , then p is called a boundary point

of 2 asin[11] and [12] by Zheng. Because =

m

is a RHS, if p is a boundary point of =, and if ¢ € &, then (based

m

on the geometry of & and ¢ ) it is easy to determine whether p +¢ isin 2, or not.

As in [13] by Ohn, it is easy to verify that & ,, == @ X, for each integer # > 0; in other words, we have the

n+l1
decomposition formulas =, =2 @ =, , &, = (El @El)@El, and so on. By Equation 5 in [13], 2 OZ  can be
computed iteratively and efficiently. For example, when n =3, 2 OZF, = ((EmG)EI JOE, )®E1 . This is one of the
advantages of hexagonal lattices over square lattices (whose Voronoi cells are squares).

For square lattices, as shown in [14] by Solomon and Breckon, the Matlab command se3 = strel('disk’,5) creates a

structure element which corresponds to a disk of radius 5. The Matlab command decomp=getsequence(se3)

decomposes se3 into six basic structure elements. But those six basic structure elements are not the same, and hence
difference computer codes are needed for the efficient computation of the corresponding morphological operations on
those six basic structure elements.

For hexagonal lattices, as displayed in [6] by Mostafa and Her, the structure element = also has the advantage that

m
=, represents the discretization of a circular region well. Usually we prefer the circular shapes for the structure elements

because the neighborhoods for domains of continuous functions are often assumed to be circular. As shown in Fig. 9 (a)
in [6], Mostafa and Her studied the morphological operations on square regions with RHSs as structure elements. In this
paper, morphological operations on regular hexagonal regions with RHSs as structure elements are considered.

3. GREYSCALE MORPHOLOGY OPERATORS ON REGULAR HEXAGONAL STRUCTURES
AND EFFICIENT COMPUTATIONAL ALGORITHMS

The results on the last section can be generalized to greyscale images defined on RHSs. Let m,n € Z with

m=n>0;and let / be a greyscale image defined on = . As in [10] by Bartovsky, the greyscale dilation and

n

greyscale erosion of f by the structure element = is defined to be [éin ( f ):'( p) = max{ f ( p+q ) | q € En}
and I:gsn (f):l(p) = min {f(p —q) lqgeE, } for each p € £ | respectively. Because = is symmetric about

the origin, we have [‘95” (f)](p):min{f(p+q) | q EEn}'

As discussed in the last section, O ( f ) and &2 ( f ) can be computed iteratively and efficiently using the basic
structure element &, for 71 times. Because the difference between the computations of O ( f ) and & ( f ) is just

max versus min operations, in the following, we just show efficient computational algorithms for Oz ( f ) In the
actual computation, the function f defined on =  is represented as a 2m+1 by 2m+1 matrix
M= (Mi,j) e R ) gueh that

f(kl 0U+k2 OV)=M

, (3)
kl +m+1,k2+m+l

for k,,k, € Z satisfying | k, [<m and | k, < m.
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ALGORITHM 1: Efficient algorithm for greyscale dilation of images defined on RHSs by the structure element =

Input: A square matrix M with odd number of rows, where M represents a greyscale image defined on a RHS as
in Equation 3.

Output: A matrix N of the same size as M , where N represents the dilated image by the structure element = .

In the following, we show the details of Algorithm | using some Matlab and algorithmic notations. Let # and ¢ denote
the rows and columns of the output matrix N , respectively. In this algorithm, ¢ proceeds from 1 to 2m +1

corresponding to the lowest row to the highest row of = as displayed in Fig. 1. For a given ¢, the boundary points of

the corresponding row of = are dealt first.

ze(M,1)—1
. m(—%z—’L ; N« zeros(2m+1,2m+1) ;

o N(L1)« max{M(11),M(2,1),M (1,2),M (2,2)} ; N(m+1,1) < max {M (m,1),M (m+1,1),M (m+1,2),M (m+2,2)} ;
e forr=2:m,
N(r.1) < max{M (r=1,1),M (r,1),M (r +1,1),M (,2),M (r +1,2)} ;

end

e forc=2:m,
N(lLec) < max{M(L,c),M(2,¢),M (Lc—1),M (L,c+1),M (2,c +1)} ;
N (mrc,c) « max{M (mtec-1,c),M (mte,c),M (mitc,c+1),M (mte+l,c +1),M (mte-le —1)}
for r=2:(m+c-1),
N(r,c) « max{M(r—1,c),M(r.c),M(r+1,c),M(r—1,c=1),M (r,c=1),M (r,c+1),M (r +Lc+1)} ;

end
end

o N(Lm+1)« max{M(Lm+1),M(2,m+1),M (1,m),M (2,m+2)} ;
o N(2m+lLm+1)« max{M (2m,m+1),M (2m+1,m+1),M (2m+1,m+2),M (2m,m)} ;
o for r=2:(2m),
N(r,m+1) < max{M (r —1Lm+1),M (r,m+1),M (r +1,m+1),M (r —1,m),M (r,m),M (r,m+2),M (r + L,m +2)} ;

end

o for c=(m+2):(2m),
N(c—m,c)(—max{M(c—m,c),M(c—m+1,c),M(c—m,c—l),M(c—m—l,c—1),M(c—m+1,c+l)} ;

N(2mt1,¢) < max {M (2m,c),M (2m+1,c),M (2m+1,c +1),M (2m+l,c —1),M (2m,c 1)} ;
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for r=(c—m+1):(2m),

N(r,c) <«— max{M(rfl,c),M(r,c),M(r + l,c),M(r -Lc 71),M(r,c71),M (r,c + 1),M (r +1,¢ +1)} ;

end
end
o N(m+12m+1) « max{M (m+1,2m+1),M (m+2,2m+1),M (m+1,2m),M (m,2m)} ;

. N(Zm +1,2m +1) <« max{M(2m,2m +1),M(2m +1,2m +1),M(2m +1,2m),M(2m,2m)} ;

e for r:(m+2):(2m),

N(r.2m+1) < max{M (r—=1,2m+1),M (r.2m+1),M (r +1,2m+1),M (r,2m),M (r —1,2m)} ;

end

ALGORITHM 2: Efficient algorithm for greyscale dilation of images defined on RHSs by the structure element =,

Input: An integer n > 0 and a square matrix M with odd number of rows, where M represents a greyscale image
defined on a RHS.

Output: A matrix N of the same size as M , where N represents the dilated image by the structure element = .

= N« M ;
= fork=1:n
N <« the output of Algorithm 1 with input N ;

end

ALGORITHM 3: Naive algorithm for greyscale dilation of images defined on RHSs by the structure element =

Input: An integer n > 0 and a square matrix M with odd number of rows, where M represents a greyscale image
defined on a RHS.

Output: A matrix N of the same size as M , where N represents the dilated image by the structure element = .

e Let H coef be a matrix whose rows are exactly the 2-dimensional vectors in the set

{[kl,kz]eZz | |k <n, |k, |<n, and |k —k, |Sn};

. L, <— Size(H coof > 1) ; in other word, Lr denotes the number of rows of the matrix /7 coof 3

>

o m(—%$E ; N« zeros(2m+1,2m+1) ; b(_min(mil’l(M)) ;
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. forc=1:(m+1),
forr:l:(m+c),

add the vector [I” , C] to each row of and denote the resulting matrix as S ;

coef
initialize 7 to be the row vector of length L’, such that each entry of 7 is b ;
forg=1:L,

g «—S(g1); g, «—S(g,2);

ifg1>0, g2>0, g1<2m+2,and|g1—g2|<m+l,

T(hg) M (g5, )

end

end
N(r,c) <« max(T);
end

end

o forc=(m+2):(2m+l),
for r=(c—m):(2m+l),

add the vector [7,¢] to each row of H and denote the resulting matrix as S ;

coef >
initialize 7 to be the row vector of length Lr such that each entry of 7 is b ;
forg=1:L,

g «—S(g1); g, «—S(g.2);

ifg1>0, g2>0, gl<2m+2,and|gl—g2|<m+1,

T(lg) <M (g, ):
end
end
N (r,c) <« max(T);
end

end
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4. TEST AND COMPUTATIONAL TIME COMPARISON OF THE ALGORITHMS

Because the inputs of those algorithms are images defined on RHSs, to test those algorithms, we use a greyscale CT
image of size 496 by 496 as displayed at the top left of Table 1. Then resample this image into the image defined on the
corresponding RHS (using Matlab command griddata ) as displayed at the top right of Table 1. The resampled image
is applied to Algorithms 2 and 3 with =, =, and = as structure elements, respectively. With =, as a structure
element, the dilated image and the internal gradient image are displayed at the bottom of Table 1, where the internal
gradient of an image f with a structure element E is defined to be f —( fOE ) . For the dilation or erosion,

Algorithms 2 and 3 have the same output image, but the computational time of Algorithm 2 is much less than Algorithm
3. Table 2 shows the amounts of computational time for the corresponding Matlab programs on a 2.7 GHz PC for the
dilation of Algorithms 2 and 3. Thus, in terms of computational time, Algorithm 2 is much more efficient than
Algorithm 3. The reason is that Algorithm 3 needs to check whether a lattice point in a neighborhood (of a lattice point

in & )isstill in =  or not based on the constraint conditions for the definition of = . But Algorithm 2 is based on
Algorithm 1which can determine the neighborhood of a boundary lattice point of = easily from the index of the

boundary lattice point based on the geometry of = .

Table 1. Test of algorithms using a CT image. The top left is the original greyscale CT image; the top right is the resampled image
using the associated hexagonal lattice; the bottom shows the dilated image (using Algorithm 2) and the internal gradient image, resp.

The original CT image CT image resampled using the associated hex lattice

50

100

150

250

300

350

400

450

50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450

The dilated CT image by the SE with parameter 3 Morphlogy Gradient when the SE parameter is 3

50 50

100 100

150 150
200 200
250 2 250
300 300
350 350

400 400
450 \—/ 450

50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
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Table 2. The computational time of Algorithms 2 and 3 for the dilation of the image at the top right of Table 1.

Structure Element | Comput. time using Algorithm 2 (Efficient) Comput. time using Algorithm 3 (Naive)
El 0.0383 0.2671
53 0.0792 0.2834
56 0.1747 0.6388
5. SUMMARY

We have developed algorithms for the computation of some usual morphological operations on images defined on RHSs,
and have shown that the novel Algorithm 2 is very computationally efficient and hence has promising applications.

Because Algorithm 2 uses iterative morphological operations with the basic structure element =, Algorithm 2 is much

more computationally efficient than the naive Algorithm 3 which needs to check whether a point in a neighborhood is
still inside the original image domain or not. We have successfully tested the algorithms using a greyscale CT image and
displayed the results. As mentioned in the introduction, RHSs have advantages over the usual rectangular structures for
2D CT image reconstruction and segmentation because they approximate circular regions well and allow efficient data
indexing as shown in Equation 2.

For 2D CT image reconstruction, hexagonal lattices have advantages over the usual Cartesian lattices as shown in [15]
by Knaup et al., [16] by Mueller and Xu, [17] by Sj6lin and Persson, and [3] by Zheng. In this paper, we have just used a
usual CT image defined on a square lattice to test the algorithms. The square image is resampled to an image defined on
the corresponding hexagonal lattice as the inputs of the algorithms. During the actual CT image reconstruction, a CT
image may be reconstructed directly on a hexagonal lattice from a sinogram. Because hexagonal lattices have advantages
over square lattices, the CT image reconstruction effect on a hexagonal lattice is better. Furthermore, as shown in the
introduction and in Fig. 1, a circular region may be embedded into a regular hexagonal region more compactly the
corresponding square region. RHSs can save the number of samples for 2D image reconstruction and processing, and
hence the computational time for some image processing tasks such as image segmentation using graph-cut methods
may be reduced.

Because each lattice point in a hexagonal lattice has six equidistant neighbors, hexagonal lattices may provide better
effect of image segmentation or morphological operations than the usual square lattices as shown in [18] by Vartak and
Mankar. In the future, we may do reasonable simulations as in [3] by Zheng to compare those two different kinds of
lattices fairly for the effectiveness of those morphological operations on regular hexagonal regions. We may also
generalize the research from 2D to 3D as in [1] by Zheng and in [2] by Zheng and Gu. The success of the image
processing programs for 2D CT paves the way for the future 3D work. For the 3D CT, no matter whether images are
reconstructed on the usual cubic lattices or 3D optimal sampling lattices, to display the reconstructed 3D images on a 2D
monitor, the 3D images need to be resampled and the optimal sampling lattices may also provide better resampling effect
than the 3D cubic lattices. As in [5, 6, 7] by Mostafa et al., [19] by Steppa and Holch, and [20] by Schlosser et al.,
another import future research topic is to explore the applications of those algorithms on CT image processing.
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