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Abstract— The ability to autonomously modify their environ-
ment dramatically increases the capability of robots to operate
in unstructured environments. We develop a specialized con-
struction algorithm and robotic system that can autonomously
build motion support structures with previously unseen objects.
The approach is based on our prior work on adaptive ramp
building algorithms, but it eliminates the assumption of having
specialized building materials that simplify manipulation and
planning for stability. Utilizing irregularly shaped stones makes
the problem significantly more challenging since the outcome of
individual placements is sensitive to details of contact geometry
and friction, which are difficult to observe. To reuse the same
high-level algorithm, we develop a new physics-based planner
that explicitly considers the uncertainty produced by incomplete
in-situ sensing and imprecision during pickup and placement.
We demonstrate the approach on a robotic system that uses a
newly developed gripper to reliably pick up stones with minimal
additional sensors or complex grasp planning. The resulting
system can build structures with more than 70 stones, which
in turn provide traversable paths to previously inaccessible
locations.

Index Terms— physics simulation, autonomous construction,
robotics, irregular building materials.

I. INTRODUCTION

The social and economic need for safer, more efficient, and
sustainable construction operations has motivated much on-
going research into automating construction through robotic
systems [1], [2], [3]. While many of these efforts target
efficiency and safety, here, we investigate the use of robotic
systems for enabling novel types of construction that can be
used in remote and extreme environments with insufficient
access to prefabricated construction materials [4] but an
abundance of irregular objects [5]. Our goal is to directly
use these objects as raw construction material without any
further processing. Additionally, these methods could be used
for reducing the significant amount of solid construction
waste [6], [7] by complementing traditional construction
methods.

Robotic systems can be used to build utility structures, in
which the function is more important than the exact shape,
like shelter, levees, ramps [8], [9], walls or protection barrier
[10], [11]. In many cases, the ability to move around in the
environment is critical to allow robots to complete high-level
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Fig. 1. (top,left) Point Cloud of Structure. (top,right) Structure mesh and
the construction path (in purple). (bottom) Robot placing a stone in the
structure.

tasks. While many methods are designed for determining
or assessing areas that agents can navigate [12], [13], [14],
robots with construction capabilities can modify those areas
to provide mobility where needed [9], [15], [16], [17], [18].
This ability is especially important for autonomy in remote
locations, where human operators are limited.

In this work, we demonstrate the use of irregular objects
to build utility structures in unstructured environments. We
use irregularly shaped stones as a simulant material for
found objects, and provide statistics of their shape descriptors
in order to facilitate comparison to other materials. The
robot uses these stones to build ramp-like motion support
structures, which are useful not only to accomplish high-
level tasks but as means to reach a goal location. In our
previous results [9], [19], [20], we simulated the use of
found objects by using compliant bags and rigid foam blocks.
However, while these materials are convenient to manipulate
and deposit, they poorly model the physical characteristics
of materials that are available in real-world scenarios, like
stone and concrete rubble.

Autonomous construction with stones is demonstrated to
be a challenging task. Furrer et al. [21] present a system for
the construction of balancing vertical towers without using
mortars. The authors use a physics engine coupled with a
greedy pose searching algorithm that considers structural
stability to indicate the next best stone placement and is



capable of stacking up to 4 stones per tower. By incor-
porating heuristics, the dry-stacking method presented by
Liu et al. [11] is able to build towers of up to 6 stones.
They also describe a building strategy that can build walls
with 16 stones based on the approach developed for 2D
irregular objects [22], which introduces a course-by-course
construction approach to build dry-stacked walls grounded
on heuristics form masonry manuals [23], [24], [25].

The main challenge with building 3D structures is the large
action space of continuous poses for each object and the
uncertainty introduced by poor contact and friction models.
Unlike prior work, the proposed system uses a quick in-situ
scanner to capture the stones’ geometry, which compounds
the geometric uncertainty further degrading the ability to
simulate and predict the outcome of each action accurately.
To combat these issues, we perform simulations using a
rigid-body physics simulator to evaluate the effects of sens-
ing, manipulation and motion uncertainty on the potential
placement. Each simulation run is a forward simulation
of a sample from a probabilistic distribution of the world
model. This approach allows us to quickly rule out bad
actions without spending much simulation time and estimate
actions that have consistent outcomes despite the various
sources of uncertainty throughout the system. The quick
calculation of potentially stable placement actions represents
a discretization of the action space, which is subsequently
refined using a sequence of ranking methods based both
on the physical object-environment interactions [22] and the
construction goals of the robot [9].

The contribution of the paper is two-fold. First, we pro-
pose a physics-based deposition planner that incorporates
sensing and action uncertainty for stacking irregular rigid
bodies to form motion support structures. Second, an end-
to-end autonomous robot system that scans stones in-situ
and plans stone placements in unstructured environments
to build structures that enable robot mobility. The system
uses the newly developed planner as well as mechanical
features such as a compliant gripper and wheel suspension
to combat uncertainty. To the best of our knowledge, this is
the first demonstration of an autonomous system using found
stones to build functional structures in unstructured terrains,
utilizing only in-situ knowledge of its environment.

A. Problem Formulation
The environment is modeled as a continuous function. The

construction area Q is a bounded subset of R2 and domain of
a bounded, non-negative height function h :Q→R+ which
describes a structure. Navigability [26] provides a method to
tie robot specific kinematic constrains to the terrain model
and gives a concise mathematical way to express a set of
poses p∈ SE(3) that the robot can occupy. Target volume
Th,u, for some target structure u : Q→R+ with h ≤ u, is the
volume bounded between the current height of the structure
h and above by u. Each object o is a rigid body described
by the 3D volume it occupies, yet since measurements of its
surface are noisy and incomplete, we use a shape distribution
ψobj shape(o) to describe each object o. Drawing a sample

Fig. 2. (a) Sensing and internal representation of an object o. Each of
the columns shows a different view of the same object. The top row shows
the noisy and incomplete data from the scanning sensor. The middle and
last rows showcase the augmented contour point cloud constructed using an
extrusion method (Section III (b)) and the initial seed mesh, respectively.
The initial seed mesh corresponds to the shape distribution ψobj shape(o),
that incorporates sensing noise. A mesh sample Mo is generated from this
initial seed mesh using Monte Carlo sampling. (b) Example objects from
the set O of stones used in the experiments.

from the distribution defines a specific 3D object mesh Mo.
Given a target construction volume Th,u ⊂ R3 and a set of
rigid objects O, the assembly process consists of n assembly
steps, with each step consisting of a deposition pose do for
an object o ∈ O.

The Minimal Additive Ramp Structure (MARS) [9] pro-
vides the upper bounds for the least additive construction
for building Perfect Motion Support Structures. MARS is a
monotone function that is defined to subsets of the structure
domain, which in this case is called the restricted MARS.
To build a navigable path, we potentially need to build a
substructure that connects a position in the target area and
the robot’s initial position. By limiting the construction to
only the subset of Q that minimizes the required construction
volume, we identify both the target position t∗ and the target
volume Th,u. We chose Th,u by exhaustively searching for
the minimum restricted MARS between the robot’s initial
position and all points in the target area. The volume between
the substructure surface and the MARS restricted to this
substructure is defined as MARS Gap. Thus, when Th,u is
specified by the MARS Gap, the deposition planner outputs
a set of deposition poses to build a motion support structure
to reach a previously inaccessible target location t∗.

The remainder of the paper is structured as follows: §II
discusses the various methods used to describe the abstract
construction algorithm. §III details the system implemen-
tation, and §IV describes the experiments and the related
discussions. Finally, §V concludes the paper.

II. METHODS

Physics simulators at their best aim to reduce the
simulation-to-reality gap by modeling various forces in the
system and employing accurate shape description of the
objects, estimated surface properties and the best possible
physics engine parameters. However, the process of con-
struction with found objects in unstructured environments
is riddled with inaccurate and/or incomplete descriptions of
the environment, especially when the agent is operating on
purely in-situ knowledge. We propose a method that utilizes
simulations to incorporate the uncertainties in the world



Fig. 3. Valid Pose Search and Hierarchical Filtering. (a) shows the bottom
bound h of the target volume Th,u i.e. the substructure to build on. (b)
depicts the set of physically stable poses on h. (c) depicts the initial set
of valid poses Ṽ with the upper bound u (restricted MARS bound for the
substructure) shown in green. (d-h) depict the valid poses after filtering in
Levels 1-5 as described in Section II-C.

description and in the robot dynamics. The physics simulator
needs to be tuned to favor speed over accuracy to allow for
a sufficient number of simulated samples of the world model
in reasonable time (Section IV-A). In this section, we first
propose the action space of deposition planning and how a
physics-based simulator may be used for finding a set of
physically stable poses. We then discuss how our proposed
adaptive construction algorithm refines this set through an
action space reduction method and picks a “good” deposition
pose.

A. Action Space

The continuous action space A of an object o ∈ O is the
set of all poses q ∈ SE(3) that an object’s CoM can occupy
in the target volume Th,u. Only a subset of these poses are
physically stable, termed as the set of valid poses V⊂A.

B. Valid Pose Search

Our proposed method for a valid pose search finds an
initial finite set of valid poses Ṽ⊂V , from an object shape
distribution ψobj shape(o), given a target volume Th,u. The
first step is to generate a discrete set of terrain sample
points ∆[h] using a grid sampling algorithm, where ∆[.] is
the discretization operator. We define the pose initialization
distribution ψpose init(t) for a point t∈∆[h] such that for
every pose q≡ 〈xq, rq〉 ∈ ψpose init(t), xq is a position
at an offset along the surface normal nt at t, and rq is a
random rotation around nt.

The Valid Pose Search algorithm is depicted in Algo-
rithm 1. cpose inits, cmesh samples, citers and |∆[h]| denote
the number of initialization poses, object mesh samples,
simulation iterations and terrain sample points, respectively.
For each terrain sample point t ∈ ∆[h] (line 2), a pose q
is sampled from the distribution ψpose init(t) (line 4). The
object mesh Mo ∼ ψobj shape(o) is initialized with pose q,
and is pushed along the surface normal nt until it touches
the terrain surface (lines 6-7). We then perform forward
simulation using a physics simulator to get a physically stable
pose (lines 8-10), and add it to the set of valid poses if it
does not intersect with the upper bound of Th,u (lines 11-
13). We repeat lines 4-13 for new initialized poses cpose inits

times per terrain point t for cmesh samples number of object
mesh samples. Repeating lines 3-13 for every sampled mesh
point gives us the initial set of valid deposition poses Ṽ .
The algorithm offers a trade-off between accuracy and speed.

Algorithm 1: Valid Pose Search. Given a target volume
Th,u and an object shape distribution ψobj shape(o), the
algorithm outputs a set of valid poses Ṽ .

1 Ṽ ← {}
2 for t ∈ ∆[h] do
3 for i← 0 : cpose inits do
4 q ∼ ψpose init(t)
5 for j ← 0 : cmesh samples do
6 Mo ∼ ψobj shape(o)
7 Move Mo along the surface normal nt until it

is in contact with the structure
8 for k ← 0 : citers do
9 Step simulation

10 end
11 if (Mo ∩ u) == φ then
12 Ṽ ← Ṽ ∪ (Pose after simulation)
13 end
14 end
15 end
16 end

Large values of the constants can lead to a larger set of
deposition poses for a given object on a terrain at the cost
of a longer run time.

C. Action Space Reduction

We perform a hierarchical filtering to refine the set of valid
poses based on various geometric, heuristic, and physics-
related considerations that promote overall structural quality.
At each level of the filtering algorithm, the subset of the
poses that are most compliant with the specific consideration
is kept. Figure 3 depicts the hierarchical filtering as part of
our system implementation. The filtering levels, in order, are:

• Level 1 - Kinematics: This step is system-dependent
and takes into account the kinematics of the robot
system and eliminates poses that cannot be executed
by the robot.

• Level 2 - Distance to Target: During the course of the
construction process, the navigable area is expected to
expand and shrink. When the navigable area shrinks, the
set of legal actions reduces, as does the scope of strate-
gic planning. This level promotes fewer fluctuations in
the beginning stages of the construction.

• Level 3 - Stone functionality: Masonry building strate-
gies associate functionality with stone shapes [24], [27].
One technique is to use larger stones in the sides, to hold
the smaller inner stones in place, acting as a retaining
wall, and thereby increasing the overall stability and
integrity of the structure. We implement this strategy
by placing stones larger than a threshold (csize thres)
in locations further away from the center of the con-
struction path, and stones smaller than the threshold in
locations closer to the center of the construction path.

• Level 4 - MARS Proximity: We filter out poses that
are closer to the upper bound as they are more likely to
lead to poses that do not conform to the MARS bounds,
due to various uncertainties in the system.

• Level 5 - System Dynamics This step is system depen-
dent and takes into account the robot dynamics and the



Algorithm 2: Adaptive Construction Algorithm. Given a
structure h, an object dataset O and a target location t∗,
the algorithm builds an access structure through a series of
depositions in order to obtain a navigable path to t∗.

1 Th,u ←MARSGap(h, t∗)
2 while |Th,u| > 0 and robot not in t∗ do
3 Pick a random object o from O
4 F ← V alidPoseSearch(Th,u, ψobj shape)
5 do ← HierarchicalF iltering(Th,u, F )
6 if do 6= ∅ then
7 Place object o at do

8 end
9 T ←MARSGap(h, t∗)

10 end

uncertainties in the system. Each object pose is achieved
by a specific robot state. We perform Monte Carlo
sampling on the robot state distribution and generate
cdyn samples samples, which are then simulated forward.
We estimate a score for each object pose based on how
probable it is for the robot state to achieve the intended
object pose. This is calculated by the L2 norm of the
average error in placements across all the simulated
samples. The object pose with the best score is chosen
as the deposition pose.

D. Adaptive Construction Algorithm

The proposed construction algorithm is depicted in Algo-
rithm 2. Given a structure h, an abundant set of objects O
to build with and a target location t∗, the algorithm finds a
series of deposition pose do for a randomly selected object
o ∈ O in each step of the assembly process to build an
access structure to t∗. The first step is to calculate the MARS
Gap (line 1). The MARS bound essentially confines the
action space to the least additive deposition space required to
make a structure navigable. If there is space for placement
(line 2), it picks a random object from the set O (line 3)
and performs a Valid Search Pose for the given construction
volume Th,u defined by the MARS gap (line 4). In line 5,
the deposition pose is estimated using Hierarchical Filtering
on the set of valid poses. If a deposition pose do exists (line
6), then place the object at that pose (line 7). Re-evaluate the
MARS gap after placement (line 9) and continue the building
process while the robot is not at t∗.

III. SYSTEM DESIGN

A. Stone Dataset

The stone data set used in our experiments contains
samples of decorative creek and pebble stones (Fig. I-
A (b)), with mean length, width and height of 3.628cm,
2.764cm and 3.1cm, respectively. The distribution of the
stone morphology is discussed in detail in Section IV-B.

B. Stone and Terrain Reconstruction

The system collects an angled top-view point cloud of the
stones placed on the ground for the 3D shape (Fig. I-A(a)).
Since the observed points is an incomplete representation of

Fig. 4. (left,middle) Gripper design and (right) 3D printed gripper

the stone, we use a filling procedure to estimate the remain-
ing parts of the stone shape and generate an initial closed
seed mesh. The contour points representing the unobserved
portions of the stone are generated by an extrusion mech-
anism: the observed contour points are projected onto the
ground plane, along with a horizontal expansion depending
on the curvature of the observed points, while adding contour
points along the vertical boundary (middle row in Fig. I-A
(a)). This new set of points together with the observed points
is a crude representation of the object. A ball pivoting surface
reconstruction method is used to generate the initial seed
mesh (last row in Fig. I-A (a)). A Mesh sample is generated
by performing Monte Carlo sampling on the seed mesh, thus
instantiating a set of contour sample points representing the
stone. The closed mesh is subsequently generated by per-
forming a surface normal estimation followed by a Poisson
surface reconstruction method.

A triangular mesh of the structure is constructed from a
discretized height-map of its point cloud and subsequently
applying a ball-pivoting algorithm for the surface reconstruc-
tion.

C. Gripper Design
The Stone Crabber is a 1 DOF Pinch gripper (Fig. 4)

designed to pick up stones modeled around the following
restrictions: 1) small payload of the arm (300 g) and 2) in-
situ 2D perception for pickup analysis. The various aspects of
the gripper design are explained in the following paragraphs.

a) Grasping Motion: The gripper was designed to have
an angular grasping motion in order to reduce the motion
span during placements and promote picking up random
geometrical objects. Four involute gears are used to drive
the two-finger angular gripper.

b) Actuation: The gripper motor was selected based on
the torque requirement while minimizing the weight of the
motor. We chose the Robotis XL320 motor that provides a
max stall torque of 0.39 N-m, weighing in at 20g.

c) Finger Design: Due to the limited gripping force, we
designed the fingers to encompass the object. The fingers are
curved while being flat and thin near the pick-up points in
order to scoop the object. Since we are unaware of the exact
3D geometry of the object to be grasped, each finger consists
of 5 parallel sub-fingers, with each sub-finger connected to
the main rigid finger body through a flexure providing 1-
compliant DOF. The flexure joint in each sub finger enhances
compliance around the object by increasing the contact area,
to help scoop the object up and increase friction after the
initial grasping.

d) Fabrication: The final design of the gripper was 3D
printed using ABS on a Lulzbot TAZ 6.



Fig. 5. Stone morphology distributions showcase the generality of the stone
dataset used, and provide statistics for comparison with other datasets.

e) Control: The motor is able to provide approximate
torque feedback based on the current flow. Its temperature
characteristics allow it to be in a continuous grasp action
of about 3 minutes until it reached its maximum operating
temperature. Hence, gripper design dimensions were closely
coupled to increase friction and the encompassing nature of
the fingers in order to grasp a stone under minimal torque.

D. Robot Design

The robot is a low-cost mobile manipulator made from off-
the-shelf components, capable of maneuvering over irregular
terrain. An AprilTag [28] is mounted on top of the robot
for pose estimation. A global 2D occupancy grid map is
maintained for motion planning using a single overhead
Kinect camera. Depth data is used to get the voxelized
representation of the construction area, Q. A downward-
facing VGA camera is fixed on the end-effector of the arm.
It detects stones using image thresholding, and aligns the
gripper along a stone’s major axis using visual servoing
during pickup. We present a more detailed description of
the robot design and the construction system in [19].

IV. EXPERIMENTS AND DISCUSSIONS

A. Modeling Uncertainties and System Parameters

We use pybullet [29] for rigid body physics simulations. In
pybullet, the controllable parameters are given by the tuple
(csim time, citers, cmax faces), where csim time is the simu-
lation time step, citers is the number of forward simulation
steps and cmax faces is the number of maximum vertex faces
in our object representations.

For a given input to ValidPoseSearch, we perform param-
eter tuning by comparing the algorithm’s performance and
run times of the best possible setting ((0.004, 2000, 1500)
with a mean run time of 58s) in the coordinate space with
other possible tuples. This is done by matching each pose
before and after simulation and then calculating the error
in position and orientation between the simulated poses. We
then calculate the mean error and variance in position and
orientation across all such poses. Smaller csim time, larger
citers and larger cmax faces favor accuracy over speed. We
perform a multi-level search by keeping two parameters
constant, while comparing against different values of the
third parameter. Our parameter tuning favors speed and
generality over accuracy and chooses a value that does not

deviate greatly from the best setting for much lower run
times. The selected parameters are (0.09, 300, 250) with a
mean run time of 9s.

For a reasonable construction time based on our sys-
tem specification, we set the number of pose initializations
cpose inits to 3. The overhead camera was positioned at
1.5m from the stone pick area, looking at them at an angle
of −30° from the camera z plane. Given the relatively
small stone dimensions, the number of sample points per
stone was less than 100. Taking into account the physics
engine performance, the maximum number of mesh faces
cmax faces for each stone was set to 250 by performing a
quadric based edge collapse strategy for mesh simplifica-
tion [30]. Using the specified object shape distribution, the
variations in the mesh shape between different samples after
mesh simplification were unnoticeable for a citers = 300.
Hence, cmesh samples was set to 1. The masses of various
objects were estimated using the mean stone density value
of dolomite stones (2.3g/cm3). A safe operating payload
range for the arm after the gripper installation was 200g; the
size threshold for stones csize thres was set to at half this
value, 100g.

We utilized a desktop with the following configuration for
running the simulations and adaptive construction algorithm:
Intel Core(TM) i7-6700 CPU @ 3.40GHz and 16GB DDR3
RAM. With these settings, the average run time of our
physics simulations for one assembly step was around 20s.

B. Stone Dataset Distribution
Although we use only in situ knowledge to plan for deposi-

tions, and the stones used in our experiments mimic the ones
found in real-world scenarios, we present the characteristics
of our stone dataset (Fig. 5) in order to exhibit the extent of
our system in the general sense of construction with stones.
For example, the stone morphology distribution can be used
to compare our dataset with that of stones found on mars [5].

There are many quantitative characteristics to describe the
morphology of sedimentary rocks [5]. Here, we elucidate
the exact methods used to describe the morphology of our
stone dataset. The stone morphological properties were semi-
autonomously calculated from 2D images of the stones.

1) Elongation[31]: It measures the projection of the stone
and is given by E = W/L. The length (L) and width (W) of
the stone are given by the major and minor axes, respectively.

2) Sphericity[32]: It is a three-dimensional property that
can be estimated from a 2D image of a stone and is a measure
of how spherical the stone is. It is given by S = (Di/Dc)

0.5,
where Di and Dc are the diameters of the largest inscribed
and smallest circumscribing circles, respectively.

3) Roundness[33]: It is a two-dimensional property that
measures the relative curvature of the stone’s cross-section
R = rs/Di , where rs is the radius of the smallest corner.
The stone face that best describes the relative curvature of
the stone was chosen during the scanning process.

C. Experimental Setup
The setup consists of a target area, shown in green (Fig. 6),

that is initially inaccessible. The robot is deployed on a



TABLE I
EXPERIMENTS

Exp
ID

Depositions Failed
Pickups

Failed
Depo-
sitions

Target
Height
(cm)

Goal
Reached

Count
Total
Weight
(kg)

1 72 7 2 2 13 Yes
2 44 4.37 1 4 13 Yes
3 74 7.2 1 6 18 No
4 45 4.028 2 2 13 Yes
5 21 1.691 3 2 13 Yes

terrain that is navigable and has access to an abundant supply
of stones from a specified region (quarry). The robot system
is tasked to build a navigable path to the target area using
the stones from the quarry. Starting from the largest stone
option, the robot estimates a deposition pose. If no pose was
found, it either: (a) moves to the next largest stone until it
finds a stone with a valid deposition pose, or (b) requests for
more options. Once the building process is completed, the
robot finds a navigable path in the structure and attempts to
reach the target area. In the experiments, the robot’s sensing
range is large enough to see the target structure.

Each trial experiment (Table I) consists of a distinct
initial irregular terrain. In each assembly step, the robot
autonomously navigates to the quarry, plans a deposition
pose, picks up the stone and deposits it on the structure.
This is repeated until the robot eventually builds, and
autonomously detects and climbs the navigable structure.
Unless specifically mentioned, manual interventions to the
entire building process are limited to battery replacements
in the rover. Apart from the motion planning algorithm, the
simulation, meshing and perception algorithms run on an
external computer.

Experiment 1: The structure was initialized with an
unstructured terrain. The target height was 13cm from the
ground plane and the robot used stones from the quarry to
autonomously build and navigate a path to the target location.

Experiment 2: The structure was initialized with a
different unstructured terrain (Fig. 6 (a)). A navigable path
was built using 44 stones weighing a total of 4.37kg.

Experiment 3: The structure has a different initial terrain
and a higher target location than the previous runs (Fig. 6
(b)). However, it consisted of features if taken advantage of,
can help the robot system to build a navigable path with
lesser material. A part of the structure consists of a small
ramp followed by a pit that the rover had to fill to move to
the target location. After the structure was deemed complete,
the robot while autonomously navigating through the terrain
flipped due to a motion planning uncertainty. The structure
was however climbable when operated manually.

Experiment 4: The structure was initialized with a large
flat ground. The rover had to build a ramp on a much
smoother surface without any supporting structures in the
side, to help hold the built structure in place. Hence, as the
rover builds the ramp and beings to use it, stones started
to move outwards. The robot had to compensate for the
reduction in ramp volume by building larger structures to
sustain the robot’s weight.

Experiment 5: The structure is similar to the previous

Fig. 6. Experiments. (a) and (b) depict the the before (left column) and
after (right column) scenarios in experiment runs 2 and 3, respectively. (c)
depicts the before, intermediate and after scenarios for run 5. Video of the
experiments can be found in shorturl.at/stJK8.

experiment except for the presence of supporting structures
in the side and a more uneven terrain that can give rise to
better stone depositions, stability due to increased friction
and possible interlocking. The robot was able to build the
structure with lesser material to get to the target location.

V. CONCLUSION

The presented system is able to build navigable structures
over unstructured terrain with found stones without prior
knowledge of either the stones or the environment. The
system can operate fully autonomously over many hours
and find, choose, and deposit stones to build motion support
structures. The adaptive construction algorithm is robust to
uncertainties in the environment and found building material
by estimating the prediction quality of the embedded physics
simulation when choosing the next deposition. The experi-
mental runs show various unstructured scenarios where the
robot system was able to utilize the adaptive construction
algorithm to reach its target location.

In future works, we aim to study the stability of each
deposition pose and how it contributes to the overall stability
of the structure. We would also like to study, in a more
controlled environment, the deviation between the intended
deposition pose and the actual final pose after deposition.
This would allow us to better model the environment, and
understand the relationship between various parameters of
physics simulation and the complexity of the environment.

https://www.youtube.com/playlist?list=PLf5ketaUezFSotXw1ZNR46ZEJKxl63-mK
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