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1. Introduction

Let M be a C2 manifold and let L1, . . . , Lm be C1 complex vector fields on M . 
Suppose, ∀ζ ∈ M ,

• L1(ζ), . . . , Lm(ζ), L1(ζ), . . . , Lm(ζ) span CTζM .
• [Lj , Lk](ζ) ∈ spanC {L1(ζ), . . . , Lm(ζ)}, ∀1 ≤ j, k ≤ m.
• spanC {L1(ζ), . . . , Lm(ζ)}

⋂
spanC

{
L1(ζ), . . . , Lm(ζ)

}
= {0}.

Under these conditions, the classical Newlander-Nirenberg Theorem (see [13]) states that 
M can be given the structure of a complex manifold such that L1(ζ), . . . , Lm(ζ) form 
a spanning set of T 0,1

ζ (M), ∀ζ ∈ M ; and this is the unique such complex structure on 
M . For s > 0 we let C s denote the Zygmund2 space of order s (see Section 2.1), C∞

denote the space of smooth functions, and C ω the space of real analytic functions. For 
s ∈ (0, ∞] ∪ {ω} if M is known to be a C s+2 manifold3 and L1, . . . , Lm are known to be 
C s+1 vector fields on M , then it is a result of Malgrange [15] that the complex structure 
on M is compatible with the original C s+2 manifold structure, and therefore L1, . . . , Lm

are also C s+1 with respect to the complex structure on M–and this is the best one can 
say in general regarding the regularity of the vector fields L1, . . . , Lm with respect to the 
complex structure.4

In this paper, we proceed in a different direction and only assume M is a C2 manifold 
and L1, . . . , Lm are C1 vector fields on M as above, and investigate the following two 
closely related questions for s ∈ (1, ∞] ∪ {ω}:

(i) When are the vector fields, L1, . . . , Lm, C s+1 with respect to the above complex 
structure on M? We present necessary and sufficient conditions for this to hold, 
which are intrinsic to the C2 structure on M (and can be checked locally in any C2

coordinate system on M).
(ii) Under the conditions we give for (i), how can we pick a holomorphic coordinate 

system near each point so that the vector fields L1, . . . , Lm are normalized in this 
coordinate system in a way which is useful for applying techniques from analysis? 
See Section 1.2.2 for an example of what we mean by “normalized”.

The real analogs of the above two questions were answered in a work of Stovall and 
the author [27,31,32]. The coordinate charts in those papers were seen as scaling maps 
in sub-Riemannian geometry. The quantitative study of scaling maps in sub-Riemannian 

2 For non-integer exponents, the Zygmund space agrees with the Hölder space. More precisely, for m ∈ N
and a ∈ (0, 1), the Zygmund space Cm+a is locally the same as the Hölder space Cm,a (see [36, Theorem 
1.118 (i)]). For a ∈ {0, 1}, these spaces differ: Cm+1,0 � Cm,1 � Cm+1.
3 We use the convention ∞ + 1 = ∞ + 2 = ∞ and ω + 1 = ω + 2 = ω.
4 [15] used Hölder spaces with non-integer exponents instead of Zygmund spaces, though the proof extends 

to Zygmund spaces. See [33] for a further discussion in the setting of Zygmund spaces.
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geometry began with the foundational work of Nagel, Stein, and Wainger [19] and the 
closely related work of C. Fefferman and Sánchez-Calle [10], and was furthered by Tao 
and Wright [34, Section 4] and the author [28], and most recently in the above mentioned 
series of papers [27,31,32]. Since Nagel, Stein, and Wainger’s original work, these ideas 
have had many applications. They have been particularly useful in the study of partial 
differential equations defined by vector fields; see the notes at the end of Chapter 2 of 
[30] for some comments on this history.

When applying these ideas to questions in several complex variables (when working 
on, for example, a complex manifold) a problem immediately arises. The scaling maps 
studied by Nagel, Stein, and Wainger (and in the subsequent works described above) are 
not holomorphic. Thus, if one tries to rescale questions using these maps, one destroys 
any holomorphic aspects of the questions under consideration. Nevertheless, scaling tech-
niques are one of the main tools needed to prove the quantitative estimates required to 
apply the theory of singular integrals to partial differential operators. Thus, when work-
ing in the complex category, one needs a different approach than the one given by Nagel, 
Stein, and Wainger to be able to scale with holomorphic maps. Some authors use ad hoc 
methods to create these scaling maps for the particular problem they wish to study (e.g., 
by using non-isotropic dilations determined by the Taylor series of some ingredients in 
the problem)–see, e.g., [18, Section 3], [4, Section 3.3.2], and [2, Section 2.1].

A main goal of this paper is to adapt the results of Nagel, Stein, and Wainger [19] (and 
more generally, the results of [27,31,32]) to the complex category. Thus, in an appropriate 
setting, one obtains holomorphic scaling maps adapted to a collection of complex vector 
fields. Much as the theory of Nagel, Stein, and Wainger allows one to quantitatively 
study sub-Riemannian geometry on a real manifold, the theory in this paper allows one 
to quantitatively study certain sub-Riemannian geometries on a complex manifold which 
are well adapted to the complex structure, using only holomorphic maps. We call such 
geometries sub-Hermitian.

While the complex setting is easier to understand, we proceed more generally than 
above. Instead of working with the category of complex manifolds, we work more gen-
erally in the category of real manifolds endowed with an elliptic structure; we call these 
manifolds E-manifolds (see Section 6). This allows us to state a general theorem which 
implies both the results in the complex setting, as well as generalizes the results from 
the real setting in [27,31,32]. The more general results apply, in some cases, to CR man-
ifolds (see Section 6.1 for the relationship between E-manifolds and CR manifolds and 
Section 8.4 for a discussion of our results in a setting on CR manifolds).

Our main result in the complex setting can be seen as a diffeomorphic invariant,5
quantitative version of the classical Newlander-Nirenberg theorem [21], while the more 
general main result in the elliptic setting can be seen as a diffeomorphic invariant, quan-
titative version of Nirenberg’s theorem on the integrability of elliptic structures [23].

5 Here, by diffeomorphic invariant, we mean that all of the quantitative estimates are invariant under 
arbitrary C2 diffeomorphisms. See Section 4.3.
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1.1. Comparison with previous results

The results in this paper can be compared to previous work in two ways:

• We provide a quantitatively diffeomorphic invariant approach to the classical 
Newlander-Nirenberg theorem, and more generally Nirenberg’s theorem on the inte-
grability of elliptic structures.

• We provide a holomorphic analog of the quantitative theory of sub-Riemannian 
geometry due to Nagel, Stein, and Wainger [19]; and more generally results on “E-
manifolds.” See Section 6 for the definition of E-manifolds.

We have already described the second point, so we focus on the first.
In previous results on the Newlander-Nirenberg theorem, one is given complex vector 

fields L1, . . . , Lm, as described at the start of the introduction, with some fixed regularity 
(e.g., in C s+1 for some s > 0). Given a fixed point ζ0 ∈ M , the goal is to find a 
C s+2 coordinate chart Φ : BCn(1) → W (where W is a neighborhood of ζ0), such that 
Φ∗L1, . . . , Φ∗Lm are T 0,1 (i.e., are spanned by ∂

∂z1
, . . . , ∂

∂zn
); in this case Φ∗L1, . . . , Φ∗Lm

are C s+1. C s+2 is the optimal possible regularity for Φ (in general), and was established 
by Malgrange [15].

Our results take a different perspective. In this paper, the vector fields are only as-
sumed to be C1, and we ask the question as to when it is possible to choose a C2

coordinate chart Φ so that the vector fields are C s+1 and T 0,1. Our results imply the 
above classical results on the Newlander-Nirenberg theorem6 but are more general: our 
results are invariant under arbitrary C2 diffeomorphisms (whereas previous results are 
only invariant under C s+2 diffeomorphisms).

Remark 1.1. The main results of this paper are in Section 4. There are many aspects of 
the main results which are important for applications. Some of these are:

• They are invariant under arbitrary C2 diffeomorphisms (see Section 4.3). For exam-
ple, this allows us to understand the regularity of a given collection of C1 complex 
vector fields, satisfying the conditions of the Newlander-Nirenberg theorem, with 
respect to the induced complex structure. See, e.g., Section 3.1 and more generally 
Section 7.1.

• They are quantitative. This allows us to view the induced coordinate charts as scaling 
maps in “sub-Hermitian geometry” (see Section 3.2.2) and more generally “sub-E 
geometry” (see Section 7.2). The quantitative nature of our results also has some 
applications to singular foliations; see Section 4.4.

• Instead of dealing with complex structures, we state our results in the context of 
elliptic structures (see Section 6). This allows us to state a general theorem which 

6 At least for s > 1.
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includes both the complex setting and the real setting of [27,31,32] as special cases. 
This more general setting applies, in some instances, to CR-manifolds.

Because we include all these considerations into our main results, the statements of these 
results are quite technical. In Section 1.2 we state some simple corollaries of the main 
results of this paper which are less technical, to help give the reader an idea of the 
types of results we are interested in. Furthermore, we describe several more significant 
consequences of the main results in Section 3. We hope that if the reader reads these 
results before the main results, it will make the main results easier to digest.

1.2. Some simple corollaries

Before we introduce all the relevant function spaces and notation, in this section we 
present some easy to understand corollaries of our main result to help give the reader 
an idea of the direction of this paper. Here, we only consider the smooth setting; precise 
statements of more general results appear later in the paper. We also only consider the 
complex setting in this section; the more general setting of E-manifolds is described in 
Sections 6 and 7. There are two, related, ways in which the main result of this paper 
(Theorem 4.5) can be understood. Below we give examples of these two perspectives. 
The main result addresses both of these perspectives simultaneously, and we will see 
that it also applies to several other situations.

1.2.1. Smoothness in the Newlander-Nirenberg theorem
Let L1, . . . , Lm be C1 complex vector fields defined on an open set W ⊆ Cn. Fix a 

point ζ0 ∈ U . We wish to understand when the following goal is possible:

Goal 1.2. Find a C2 diffeomorphism Φ : U → W ′, where U ⊆ Cn is open and W ′ ⊆ W

is an open set containing ζ0 such that:

• The vector fields Φ∗L1, . . . , Φ∗Lm are C∞ vector fields on U .
• ∀ζ ∈ U ,

spanC{Φ∗L1(ζ), . . . ,Φ∗Lm(ζ)} = spanC
{

∂

∂z1
, . . .

∂

∂zn

}
.

There are some obvious necessary conditions for Goal 1.2 to be possible. Namely, that 
there be an open neighborhood W ′′ ⊆ W containing ζ0, such that the following holds:

(i) spanC{L1(ζ), . . . , Lm(ζ)} 
⋂

spanC{L1(ζ), . . . , Lm(ζ)} = {0}, ∀ζ ∈ W ′′.
(ii) spanC{L1(ζ), . . . , Lm(ζ), L1(ζ), . . . , Lm(ζ)} = CTζW

′′, ∀ζ ∈ W ′′.
(iii) [Lj , Lk] =

∑m
l=1 c

1,l
j,kLl and [Lj , Lk] =

∑m
l=1 c

2,l
j,kLl+

∑m
l=1 c

3,l
j,kLl, where c1,lj,k, c

2,l
j,k, c

3,l
j,k :

W ′′ → C and satisfy the following: for any sequence V1, . . . , VK ∈ {L1, . . . , Lm, L1,

. . . , Lm}, of any length K ∈ N, we have
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V1V2 · · ·VKcp,lj,k

defines a continuous function W ′′ → C, 1 ≤ p ≤ 3, 1 ≤ j, k, l ≤ m.

That these conditions are necessary to achieve Goal 1.2 is clear: if Goal 1.2 holds, the 
above conditions all clearly hold for the vector fields Φ∗L1, . . . , Φ∗Lm. Indeed, for the 
vector fields Φ∗L1, . . . , Φ∗Lm one may take cp,lj,k to be C∞ functions on U . The above 
conditions are all invariant under C2 diffeomorphisms, and therefore if they hold for 
Φ∗L1, . . . , Φ∗Lm, they must also hold for the original vector fields L1, . . . , Lm. Our first 
corollary of Theorem 4.5 says the following:

Corollary 1.3. The above necessary conditions are also sufficient to obtain Goal 1.2.

See Section 3.1.2 for a more general version of Corollary 1.3.

1.2.2. Normalizing vector fields
Suppose one is given complex vector fields L1, . . . , Lm on an open set W ⊆ Cn of the 

form:

Lj =
n∑

k=1

bkj
∂

∂zk
, bkj ∈ C∞(W ), (1.1)

and such that ∀ζ ∈ W ,

spanC{L1(ζ), . . . , Lm(ζ)} = spanC
{

∂

∂z1
, . . .

∂

∂zn

}
. (1.2)

Assign to each Lj a formal degree dj ∈ [1, ∞). For δ ∈ (0, 1] (we think of δ as small), one 
tends to think of the vector fields δd1L1, . . . , δdmLm as being small. Fix a point ζ0 ∈ W . 
Our next goal is to find a holomorphic coordinate system, near ζ0, in which the vector 
fields are not small. More precisely, we wish to understand when the following goal is 
possible:

Goal 1.4. For each δ ∈ (0, 1] find a biholomorphism Φδ : BCn(1) → Wδ with Φδ(0) = ζ0, 
where BCn(1) is the unit ball in Cn and Wδ ⊆ W is an open neighborhood of ζ0, such 
that:

• Φ∗
δδ

d1L1, . . . , Φ∗
δδ

dmLm are C∞ vector fields, uniformly in δ ∈ (0, 1], in the sense 
that

max
1≤j≤m

sup ‖Φ∗
δδ

djLj‖Ck(BCn (1);Cn) < ∞, ∀k ∈ N.

δ∈(0,1]
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• Because Φδ is a biholomorphism, we have

spanC{Φ∗
δδ

d1L1(z), . . . ,Φ∗
δδ

dmLm(z)} = spanC
{

∂

∂z1
, . . .

∂

∂zn

}
, ∀z ∈ BCn(1).

We ask that this be true uniformly in δ in the sense

inf
δ∈(0,1]

max
j1,...,jn∈{1,...,m}

inf
z∈BCn (1)

∣∣det
(
Φ∗

δδ
dj1Lj1(z)| · · · |Φ∗

δδ
djnLjn(z)

)∣∣ > 0;

where the matrix 
(
Φ∗

δδ
dj1Lj1(z)| · · · |Φ∗

δδ
djnLjn(z)

)
is the n ×n matrix whose columns 

are given by the coefficients of the vector fields Φ∗
δδ

djkLjk(z), written as linear com-
binations of ∂

∂z1
, . . . , ∂

∂zn
.

Goal 1.4 can be thought of as rescaling the vector fields so that they are “normal-
ized”. Indeed, the vector fields Φ∗

δδ
d1Lm, . . . , Φ∗

δδ
dmLm are C∞ uniformly in δ and span 

T 0,1BCn(1) uniformly in δ. In short, we have changed coordinates near ζ0 to turn the 
case of δ small back into a situation similar to δ = 1. Notice that Goal 1.2 is trivial in 
the situation we are considering; nevertheless we will see that the necessary and suffi-
cient condition for when to Goal 1.4 is possible looks very similar to the necessary and 
sufficient conditions for when Goal 1.2 is possible.

There is an obvious necessary condition for Goal 1.4 to be possible. Namely, that 
for every δ ∈ (0, 1], there is an open neighborhood W ′

δ ⊆ W of ζ0 such that the fol-
low holds. For every δ ∈ (0, 1], [δdjLj , δdkLk] =

∑m
l=1 c

1,l,δ
j,k δdlLl and [δdjLj , δdkLk] =∑m

l=1 c
2,l,δ
j,k δdlLl +

∑m
l=1 c

3,l,δ
j,k δdlLl, where c1,l,δj,k , c2,l,δj,k , c3,l,δj,k : W ′

δ → C and satisfy the 
following: for any sequence V δ

1 , . . . , V
δ
K ∈ {δd1L1, . . . , δdmLm, δd1L1, . . . , δdmLm}, of any 

length K ∈ N, we have

sup
δ∈(0,1]

‖V δ
1 · · ·V δ

Kcp,l,δj,k ‖C(W ′
δ) < ∞,

∀1 ≤ p ≤ 3, 1 ≤ j, k, l ≤ m. That this condition is necessary is clear: if Φδ exists as in 
Goal 1.4, then one may write

[Φ∗
δδ

djLj ,Φ∗
δδ

dkLk] =
m∑
l=1

ĉ1,l,δj,k Φ∗
δδ

dlLl,

[Φ∗
δδ

djLj ,Φ∗
δδ

dkLk] =
m∑
l=1

ĉ2,l,δj,k Φ∗
δδ

dlLl +
m∑
l=1

ĉ3,l,δj,k Φ∗
δδ

dlLl,

where ĉp,l,δj,k ∈ C∞(BCn(1)), uniformly in δ ∈ (0, 1]. Setting cp,l,δj,k := ĉp,l,δj,k ◦ Φ−1
δ and 

W ′
δ := Φδ(Bn(1)), we see that the above condition is necessary. It is also necessary 

that the set W ′
δ must not be too small: it must essentially contain a sub-Riemannian 

ball adapted to the vector fields δd1L1, . . . , δdmLm. This is somewhat technical to make 
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precise (see Remark 1.7 for a precise statement), and the reader may wish to skip this on 
a first reading. Our next corollary is that the above necessary condition is also sufficient.

Corollary 1.5. Once the requirement on the size of W ′
δ described above is made precise 

(see Remark 1.7), the above necessary condition is also sufficient for Goal 1.4 to be 
possible.

Proof. This follows from Theorem 4.5, using Lemma 4.13. �
At first glance, it may be hard to see Corollary 1.5 as a consequence of Theorem 4.5. 

Indeed, the thrust of Corollary 1.5 is that we have a result which is “uniform in δ”. In 
Theorem 4.5, there is no parameter similar to δ for the results to be uniform in: there 
is just one finite list of vector fields, which does not depend on any variable like δ. The 
key is that we keep careful track of what all the estimates in Theorem 4.5 depend on. 
Because of this, we may apply Theorem 4.5 to each of the lists δd1L1, . . . , δdmLm, for 
δ ∈ (0, 1], and obtain results which are uniform in δ–this is because we can see from 
the dependances of the estimates in Theorem 4.5 that they do not depend on δ ∈ (0, 1], 
when applied to δd1L1, . . . , δdmLm.

Thus, to proceed in this way, it is essential to keep careful track of what each constant 
depends on in Theorem 4.5. This is notationally cumbersome, but is justified because 
it applies not only to results like Corollary 1.5, but also to much more complicated 
situations. For example, one might consider vector fields that depend on δ in a more 
complicated way than above, or consider the multi-parameter case δ ∈ (0, 1]ν , or look 
for results which are uniform in the base point ζ0. All of these are possible, and follow 
from Theorem 4.5 in the same way Corollary 1.5 does. See, for example, Section 8.

For a setting which generalizes Corollary 1.5 and which appears in several complex 
variables, see Section 8. For some more significant results similar to, but slightly dif-
ferent than Corollary 1.5, see Section 3.2.2–there we will see similar ideas as providing 
holomorphic scaling maps adapted sub-Riemannian geometries on a complex manifold.

Remark 1.6. In light of the above discussion, one way to think about one aspect of The-
orem 4.5 is the following. Suppose you are given smooth vector fields L1, . . . , Lm of the 
form described in (1.1) satisfying (1.2). But suppose the vector fields have very large co-
efficients, or very small coefficients (for example, in the above setting the coefficients were 
very small when δ was small). Theorem 4.5 provides necessary and sufficient conditions 
on when one can apply a holomorphic change of variables to normalize the coefficients 
in the way described above.

Remark 1.7. The size of W ′
δ can be described as follows. There exists ξ > 0 (independent 

of δ ∈ (0, 1]) such that

Bδd1L ,...,δdmL (ζ0, ξ) ⊆ W ′
δ. (1.3)
1 m
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See (2.2) and (2.4) for the definition of this ball. In the above description of necessity of 
our condition for Goal 1.4, we chose W ′

δ = Φδ(Bn(1)). Thus, to prove the necessity of 
(1.3), under the conclusions of Goal 1.4, we wish to show

Bδd1L1,...,δdmLm
(ζ0, ξ) ⊆ Φδ(Bn(1)), (1.4)

for some ξ > 0, independent of δ ∈ (0, 1]. Once we prove (1.4), it will show (1.3) is 
necessary for Goal 1.4 to hold. To see (1.4), note that the Picard-Lindelöf Theorem 
shows that there exists ξ > 0, independent of δ ∈ (0, 1] such that

BΦ∗
δδ

d1L1,...,Φ∗
δδ

dmLm
(0, ξ) ⊆ BCn(1/2). (1.5)

Applying Φδ to both sides of (1.5) implies (1.4), which completes the proof of necessity.

2. Function spaces

In this section, we introduce the function spaces which are used in this paper. We 
make a distinction between function spaces on open subsets of Rn and function spaces 
on a C2 manifold M . Rn is endowed with its usual real analytic structure, and it makes 
sense to consider all the usual function spaces on an open subset of Rn. Since M is 
merely a C2 manifold, it does not make sense to consider, for example, C∞ functions 
on M . However, if we are given a finite collection of C1 vector fields on M , it makes 
sense to consider functions which are C∞ with respect to these vector fields, and that 
is how we will proceed. The following function spaces were defined in [27], and we refer 
the reader there for a more detailed discussion. Throughout the paper, given a Banach 
space X , we denote by BX (r) the ball of radius r > 0 centered at 0 ∈ X .

2.1. Function spaces on Euclidean space

Let Ω ⊂ Rn be a bounded, connected, open set (we will almost always be considering 
the case when Ω is a ball in Rn). We have the following classical spaces of functions on 
Ω:

C(Ω) = C0(Ω) := {f : Ω → C
∣∣ f is continuous and bounded},

‖f‖C(Ω) = ‖f‖C0(Ω) := sup
x∈Ω

|f(x)|.

For m ∈ N, (we use the convention 0 ∈ N)

Cm(Ω) := {f ∈ C(Ω)
∣∣ ∂α

x f ∈ C(Ω),∀|α| ≤ m}, ‖f‖Cm(Ω) :=
∑

|α|≤m

‖∂α
x f‖C(Ω).

Next we define the classical Hölder spaces. For s ∈ [0, 1],
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‖f‖C0,s(Ω) := ‖f‖C(Ω) + sup
x,y∈Ω
x�=y

|x− y|−s|f(x) − f(y)|,

C0,s(Ω) := {f ∈ C(Ω) : ‖f‖C0,s(Ω) < ∞}.
(2.1)

For m ∈ N, s ∈ [0, 1],

‖f‖Cm,s(Ω) :=
∑

|α|≤m

‖∂α
x f‖C0,s(Ω), Cm,s(Ω) := {f ∈ Cm(Ω) : ‖f‖Cm,s(Ω) < ∞}.

Next, we turn to the classical Zygmund spaces. Given h ∈ Rn define Ωh := {x ∈ Rn :
x, x + h, x + 2h ∈ Ω}. For s ∈ (0, 1] set

‖f‖C s(Ω) := ‖f‖C0,s/2(Ω) + sup
0�=h∈Rn

x∈Ωh

|h|−s|f(x + 2h) − 2f(x + h) + f(x)|,

C s(Ω) := {f ∈ C(Ω) : ‖f‖C s(Ω) < ∞}.

For m ∈ N, s ∈ (0, 1], set

‖f‖Cm+s(Ω) :=
∑

|α|≤m

‖∂α
x f‖C s(Ω), Cm+s(Ω) := {f ∈ Cm(Ω) : ‖f‖Cm+s(Ω) < ∞}.

We set

C∞(Ω) :=
⋂
s>0

C s(Ω), C∞(Ω) :=
⋂

m∈N
Cm(Ω).

If Ω is a ball, C ∞(Ω) = C∞(Ω).
Finally, we turn to spaces of real analytic functions. Given r > 0, we define

‖f‖Cω,r(Ω) :=
∑

α∈Nn

‖∂α
x f‖C(Ω)

α! r|α|, Cω,r(Ω) := {f ∈ C∞(Ω) : ‖f‖Cω,r(Ω) < ∞}.

We set

Cω(Ω) :=
⋃
r>0

Cω,r(Ω), C ω(Ω) := Cω(Ω).

We also define another space of real analytic functions. We define A n,r to be the space 
of those f ∈ C(BRn(r)) such that f(t) =

∑
α∈Nn

cα
α! t

α, where

‖f‖A n,r :=
∑

α∈Nn

|cα|
α! r|α| < ∞.

See Lemma 9.1 (vi) and (vii) for the relationship between A n,r and Cω.
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For s ∈ (0, ∞] ∪ {ω}, we say f ∈ C s
loc(Ω) if ∀x ∈ Ω, there exists an open ball B ⊆ Ω, 

centered at x, such that f
∣∣
B
∈ C s(B). It is immediate to verify that C∞

loc(Ω) is the usual 
space of smooth functions on Ω and C ω

loc(Ω) is the usual space of real analytic functions 
on Ω.

If X is a Banach Space, we define the same spaces taking values in X in the ob-
vious way, and denote these spaces by C(Ω; X ), Cm(Ω; X ), Cm,s(Ω; X ), C s(Ω; X ), 
Cω,r(Ω; X ), Cω(Ω; X ), and A n,r(X ). Given a complex vector field X on Ω, we identify 
X =

∑n
j=1 aj(x) ∂

∂xj
with the function (a1, . . . , an) : Ω → Cn. It therefore makes sense 

to consider quantities like ‖X‖C s(Ω;Cn). When X is clear from context, we sometimes 
suppress it and write, e.g., ‖f‖C s(Ω) instead of ‖f‖C s(Ω;X ) for readability considerations.

2.2. Function spaces on manifolds

Let W1, . . . , WN be C1 real vector fields on a connected C2 manifold M . Define the 
Carnot-Carathéodory ball associated to W1, . . . , WN , centered at x ∈ M , of radius δ > 0
by

BW (x, δ) :=
{
y ∈ M

∣∣∣∣ ∃γ : [0, 1] → M,γ(0) = x, γ(1) = y, γ′(t) =
N∑
j=1

aj(t)δWj(γ(t)),

aj ∈ L∞([0, 1]),

∥∥∥∥∥∥
N∑
j=1

|aj |2
∥∥∥∥∥∥
L∞

< 1
}
,

(2.2)

and for y ∈ M , set

ρ(x, y) := inf{δ > 0 : y ∈ BW (x, δ)}. (2.3)

ρ is an extended metric: it is possible that ρ(x, y) = ∞ for some x, y ∈ M . When 
ρ(x, y) = ∞, we define ρ(x, y)−s = 0 for s > 0 and ρ(x, y)0 = 1. See Remark 2.6 for the 
precise definition of γ′(t) used in (2.2).

We use ordered multi-index notation Wα. Here, α denotes a list of elements of 
{1, . . . , N} and |α| denotes the length of the list. For example, W (2,1,3,1) = W2W1W3W1
and |(2, 1, 3, 1)| = 4.

Associated to the vector fields W1, . . . , WN , we have the following function spaces on 
M .

C(M) = C0
W (M) := {f : M → C

∣∣ f is bounded and continuous},

‖f‖C(M) = ‖f‖C0
W (M) := sup

x∈M
|f(x)|.

For m ∈ N, we define
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Cm
W (M) := {f ∈ C(M) : Wαf exists and Wαf ∈ C(M),∀|α| ≤ m},

‖f‖Cm
W (M) :=

∑
|α|≤m

‖Wαf‖C(M).

For s ∈ [0, 1] we define the Hölder spaces associated to W1, . . . , WN by

‖f‖C0,s
W (M) := ‖f‖C(M) + sup

x,y∈M
x�=y

ρ(x, y)−s|f(x) − f(y)|,

C0,s
W (M) := {f ∈ C(M) : ‖f‖C0,s

W (M) < ∞}.

For m ∈ N and s ∈ [0, 1], set

‖f‖Cm,s
W (M) :=

∑
|α|≤m

‖Wαf‖C0,s
W (M), Cm,s

W (M) := {f ∈ Cm
W (M) : ‖f‖Cm,s

W (M) < ∞}.

Next, we turn to the Zygmund spaces associated to W1, . . . , WN . For this, we use the 
Hölder spaces C0,s([a, b]) for a closed interval [a, b] ⊂ R; ‖·‖C0,s([a,b]) is defined via the 
formula (2.1). Given h > 0, s ∈ (0, 1), define

Ph
W,s :=

{
γ : [0, 2h] → M

∣∣∣∣ γ′(t) =
N∑
j=1

dj(t)Wj(γ(t)), dj ∈ C0,s([0, 2h]),

q∑
j=1

‖dj‖2
C0,s([0,2h]) < 1

}
.

For s ∈ (0, 1] set

‖f‖C s
W (M) := ‖f‖

C
0,s/2
W (M) + sup

h>0
γ∈Ph

W,s/2

h−s|f(γ(2h)) − 2f(γ(h)) + f(γ(0))|,

and for m ∈ N,

‖f‖Cm+s
W (M) :=

∑
|α|≤m

‖Wαf‖C s
W (M),

and we set

Cm+s
W (M) := {f ∈ Cm

W (M) : ‖f‖Cm+s
W (M) < ∞}.

Set

C∞
W (M) :=

⋂
C s
W (M) and C∞

W (M) :=
⋂

Cm
W (M).
s>0 m∈N
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We have C∞
W (M) = C∞

W (M); indeed, C∞
W (M) ⊆ C∞

W (M) is obvious, while the reverse 
containment follows from Lemma 9.1.

Finally, we turn to functions which are real analytic with respect to W1, . . . , WN . 
Given r > 0, we set

‖f‖Cω,r
W (M) :=

∞∑
m=0

rm

m!
∑

|α|=m

‖Wαf‖C(M),

Cω,r
W (M) := {f ∈ C∞

W (M) : ‖f‖Cω,r
W (M) < ∞};

this definition was introduced in greater generality by Nelson [20]. We set Cω
W (M) :=⋃

r>0 C
ω,r
W (M), and C ω

W (M) := Cω
W (M).

Given x0 ∈ M and r > 0 we define A x0,r
W to be the space of those f ∈ C(M) such that 

h(t1, . . . , tN ) := f(et1W1+···+tNWNx0) ∈ A N,r (here, we are assuming et1W1+···+tNWNx0
exists for (t1, . . . , tN ) ∈ BRN (r)–see Definition 4.1). We set ‖f‖A

x0,r
W

:= ‖h‖A N,r . Note 
that ‖f‖A

x0,r
W

depends only on the values of f(y) where y = et1W1+···+tNWNx0 and 
(t1, . . . , tN ) ∈ BN (r); thus this is merely a semi-norm.

An important property of the above spaces and norms is that they are invariant under 
diffeomorphisms.

Proposition 2.1. Let L be another C2 manifold, let Φ : M → L be a C2 diffeomorphism, 
and let Φ∗W denote the list of vector fields Φ∗W1, . . . , Φ∗WN . Then, the map f 
→
f ◦ Φ is an isometric isomorphism between the following spaces: Cm

Φ∗W
(L) → Cm

W (M), 
Cm,s

Φ∗W
(L) → Cm,s

W (M), C s
Φ∗W

(L) → C s
W (M), Cω,r

Φ∗W
(L) → Cω,r

W (M), and A Φ(x0),r
Φ∗W

→
A x0,r

W .

Proof. This is immediate from the definitions. �
Remark 2.2. Informally, Proposition 2.1 says that the spaces described in this section 
are “coordinate-free”. One can locally compute the norms in any C2 coordinate system, 
and one gets the same result no matter what coordinate system is used.

Remark 2.3. When we write V f for a C1 vector field V and f : M → R, we define 
this as V f(x) := d

dt

∣∣
t=0f(etV x). When we say V f exists, it means that this derivative 

exists in the classical sense, ∀x. If we have several C1 vector fields V1, . . . , VK , we define 
V1V2 · · ·VKf := V1(V2(· · ·VK(f))) and to say that this exists means that at each stage 
the derivative exists.

Remark 2.4. All of the above function spaces can be defined, with the same formulas, 
with M replaced by BW (x, δ), whether or not BW (x, δ) is a manifold. Indeed, for a 
function f : BW (x, δ) → C, one may define Wjf(x) := d

dt

∣∣
t=0f(etWjx). Using this one 

may define all the above norms, with the same formulas, for M replaced by BW (x, δ). 
See [27, Section 2.2.1] for a further discussion of this.
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Remark 2.5. Let Ω ⊆ Rn be a bounded, open set. Let ∇ denote the list of vector fields 
∇ =

(
∂

∂x1
, . . . , ∂

∂xn

)
. We have A 0,r

∇ = A n,r and Cω,r
∇ (Ω) = Cω,r(Ω), with equality of 

norms.

Remark 2.6. In (2.2) (and in the rest of the paper), γ′(t) is defined as follows. In the 
case that M is an open subset Ω ⊆ Rn and γ : [a, b] → Ω, γ′(t) =

∑q
j=1 aj(t)Xj(γ(t)) is 

defined to mean γ(t) = γ(a) +
∫ t

a

∑
j aj(s)Xj(γ(s)) ds; note that this definition is local 

in t (equivalently, we are requiring that γ be absolutely continuous and have the desired 
derivative almost everywhere). For an abstract C2 manifold, this is interpreted locally. 
I.e., if γ : [a, b] → M , we say γ′(t) =

∑q
j=1 aj(t)Xj(γ(t)) if ∀t0 ∈ [a, b], there is an open 

neighborhood N of γ(t0) and a C2 diffeomorphism Ψ : N → Ω, where Ω ⊆ Rn is open, 
such that (Ψ ◦ γ)′(t) =

∑q
j=1 aj(t)(Ψ∗Xj)(Ψ ◦ γ(t)) for t near t0 (t ∈ [a, b]).

2.2.1. Complex vector fields
Let M be a C2 manifold, let L1, . . . , Lm be complex C1 vector fields on M (i.e., 

L1, . . . , Lm take values in the complexified tangent space), and let X1, . . . , Xq be real 
C1 vector fields on M . We denote by X, L the list X1, . . . , Xq, L1, . . . , Lm. Associated to 
X, L we define the list of real vector fields W1, . . . , Wq+2m = X1, . . . , Xq, 2Re(L1), . . . ,
2Re(Lm), 2Im(L1), . . . , 2Im(Lm). Set

BX,L(x, δ) := BW (x, δ). (2.4)

We define Cm
X,L(M) := Cm

W (M), with equality of norms. We similarly define Cm,s
X,L(M), 

C s
X,L(M), Cω,r

X,L(M), A x0,r
X,L , C∞

X,L(M), and Cω
X,L(M). We will often consider the case 

when q = 0, and in that case we just write Cm
L (M) instead of Cm

X,L(M), and similarly 
for Cm,s

L (M), C s
L(M), Cω,r

L (M), A x0,r
L , C∞

L (M), and Cω
L(M).

Remark 2.7. The factor 2 in 2Re(Lj) and 2Im(Lj) in the definition of W is not an essen-
tial point. It is chosen so that if M = Rq ×Cm, with coordinates (t1, . . . , tq, z1, . . . , zm), 
and if Xk = ∂

∂tk
and Lj = ∂

∂zj
, then W = ∇, where ∇ denotes the gradient on 

Rq+2m ∼= Rq ×Cm.

3. Corollaries of the main result

Our main result (Theorem 4.5) concerns the existence of a certain coordinate chart 
which satisfies good quantitative properties. This coordinate chart is useful in two, re-
lated, ways:

• It is a coordinate system in which given vector fields have the optimal level of regu-
larity.

• It normalizes vector fields in a way which is useful for applying techniques from anal-
ysis. When viewed in this light, it can be seen as a scaling map for sub-Riemannian, 
or sub-Hermitian, geometries.
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In this section, we present two corollaries of our main result, which separate the above 
two uses. In each of these corollaries, we present the real setting (which is known) and 
the complex setting (which is new). In Section 7, we will revisit these corollaries and 
present a setting which unifies both the real and complex settings.

3.1. Optimal smoothness

3.1.1. The real case
Let W1, . . . , WN be C1 real vector fields on a C2 manifold M of dimension n, which 

span the tangent space at every point. In this section, we describe when there is a 
smoother structure on M with respect to which W1, . . . , WN have a desired level of 
regularity. These results were proved in [27,31,32] (though in Section 10.1, we will see 
them as corollaries of the main result of this paper), and they set the stage for the results 
in the complex setting in Section 3.1.2.

Theorem 3.1 (The local theorem). For x0 ∈ M , s ∈ (1, ∞] ∪ {ω}, the following three 
conditions are equivalent:

(i) There is an open neighborhood V ⊆ M of x0 and a C2 diffeomorphism Φ : U → V

where U ⊆ Rn is open, such that Φ∗W1, . . . , Φ∗WN ∈ C s+1(U ; Rn).
(ii) Re-order the vector fields so that W1(x0), . . . , Wn(x0) are linearly independent. 

There is an open neighborhood V ⊆ M of x0 such that:
• [Wi, Wj ] =

∑n
k=1 ĉ

k
i,jWk, 1 ≤ i, j ≤ n, where ĉki,j ∈ C s

W (V ).
• For n + 1 ≤ j ≤ N , Wj =

∑n
k=1 b

k
jWk, where bkj ∈ C s+1

W (V ).
(iii) There exists an open neighborhood V ⊆ M of x0 such that [Wi, Wj ] =

∑N
k=1 c

k
i,jWk, 

1 ≤ i, j ≤ N , where cki,j ∈ C s
W (V ).

Remark 3.2. Note that Theorem 3.1 (ii) and (iii) can be checked in any C2 coordinate 
system (see Proposition 2.1 and Remark 2.2), while Theorem 3.1 (i) gives the existence 
of a “nice” coordinate system.

Theorem 3.3 (The global theorem). For s ∈ (1, ∞] ∪ {ω}, the following two conditions 
are equivalent:

(i) There exists a C s+2 atlas on M , compatible with its C2 structure, such that 
W1, . . . , WN are C s+1 vector fields with respect to this atlas.

(ii) For each x0 ∈ M , any of the three equivalent conditions from Theorem 3.1 hold for 
this choice of x0.

Furthermore, under these conditions, the C s+2 manifold structure induced by the atlas 
in (i) is unique, in the sense that if there is another C s+2 atlas on M , compatible with 
its C2 structure, and such that W1, . . . , WN are locally C s+1 with respect to this second 
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atlas, then the identity map M → M is a C s+2 diffeomorphism between these two C s+2

manifold structures on M . Finally, when s ∈ (1, ∞], there is a third equivalent condition

(iii) [Wi, Wj ] =
∑N

k=1 c
k
i,jWk, 1 ≤ i, j ≤ N , where ∀x0 ∈ M , ∃V ⊆ M open with x0 ∈ V

such that cki,j
∣∣
V
∈ C s

W (V ), 1 ≤ i, j, k ≤ N .

Remark 3.4. Theorems 3.1 and 3.3 are stated for s > 1. It would be desirable to have 
the same results for s > 0, but our proof runs into technical difficulties for s ∈ (0, 1]. 
See [31] for details. Similar remarks hold for many of the main results in this paper; in 
particular, the same remark holds for the main result of the paper: Theorem 4.5.

3.1.2. The complex case
Let M be a C2 manifold and let L1, . . . , Lm be complex C1 vector fields on M . We 

assume:

• ∀ζ ∈ M , spanC
{
L1(ζ), . . . , Lm(ζ), L1(ζ), . . . , Lm(ζ)

}
= CTζM .

• ∀ζ ∈ M , spanC {L1(ζ), . . . , Lm(ζ)} ∩ spanC
{
L1(ζ), . . . , Lm(ζ)

}
= {0}.

By Lemma B.1 and the above assumptions we have, ∀ζ ∈ M ,

dimM = dim spanC
{
L1(ζ), . . . , Lm(ζ), L1(ζ), . . . , Lm(ζ)

}
= 2 dim spanC {L1(ζ), . . . , Lm(ζ)} .

In particular, let n := dim spanC {L1(ζ), . . . , Lm(ζ)}, then n does not depend on ζ and 
dimM = 2n.

Theorem 3.5 (The local theorem). Fix ζ0 ∈ M and s ∈ (1, ∞] ∪ {ω}. The following three 
conditions are equivalent:

(i) There exists an open neighborhood V ⊆ M of ζ0 and a C2 diffeomorphism Φ : U →
V , where U ⊆ Cn is open, such that ∀z ∈ U , 1 ≤ j ≤ m,

Φ∗Lj(z) ∈ spanC
{

∂

∂z1
, . . . ,

∂

∂zn

}
,

and Φ∗Lj ∈ C s+1(U ; Cn).
(ii) Reorder L1, . . . , Lm so that L1(ζ0), . . . , Ln(ζ0) are linearly independent. There exists 

a neighborhood V ⊆ M of ζ0 such that:
• [Lj , Lk] =

∑n
l=1 ĉ

1,l
j,kLl and [Lj , Lk] =

∑n
l=1 ĉ

2,l
j,kLl +

∑n
l=1 ĉ

3,l
j,kLl, where ĉa,lj,k ∈

C s
L(V ), 1 ≤ j, k, l ≤ n, 1 ≤ a ≤ 3.

• Lj =
∑n

l=1 b
l
jLl, where blj ∈ C s+1

L (V ), n + 1 ≤ j ≤ m, 1 ≤ l ≤ n.
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(iii) There exists a neighborhood V ⊆ M of ζ0 such that [Lj , Lk] =
∑m

l=1 c
1,l
j,kLl and 

[Lj , Lk] =
∑m

l=1 c
2,l
j,kLl +

∑m
l=1 c

3,l
j,kLl, where ca,lj,k ∈ C s

L(V ), 1 ≤ a ≤ 3, 1 ≤ j, k, l ≤
m.

Theorem 3.6 (The global theorem). For s ∈ (1, ∞] ∪{ω} the following two conditions are 
equivalent:

(i) There exists a complex manifold structure on M , compatible with its C2 structure, 
such that L1, . . . , Lm are C s+1 vector fields on M (with respect to this complex 
structure), and ∀ζ ∈ M ,

spanC {L1(ζ), . . . , Lm(ζ)} = T 0,1
ζ M.

(ii) For each ζ0 ∈ M , any of the three equivalent conditions from Theorem 3.5 hold for 
this choice of ζ0.

Furthermore, under these conditions, the complex manifold structure in (i) is unique, 
in the sense that if M has another complex manifold structure satisfying the conditions 
of (i), then the identity map M → M is a biholomorphism between these two complex 
structures. Finally, when s ∈ (1, ∞], there is a third equivalent condition:

(iii) [Lj , Lk] =
∑m

l=1 c
1,l
j,kLl and [Lj , Lk] =

∑m
l=1 c

2,l
j,kLl +

∑m
l=1 c

3,l
j,kLl, where ∀ζ ∈ M , 

there exists an open neighborhood V ⊆ M of ζ such that ca,lj,k

∣∣
V
∈ C s

L(V ), 1 ≤ a ≤ 3, 
1 ≤ j, k, l ≤ m.

Remark 3.7. Theorem 3.6 can be seen as a version of the Newlander-Nirenberg theorem 
(with sharp regularity in terms of Zygmund spaces), which is invariant under arbitrary 
C2 diffeomorphisms.

Remark 3.8. Because the Zygmund space Cm+α is (locally) the same as the Hölder 
space Cm,α for m ∈ N, α ∈ (0, 1), one can obtain analogs of Theorems 3.5 and 3.6
using the easier to understand Hölder spaces, as long as one avoids integer exponents. 
This is carried out in Section 14. For integer exponents, the use of Zygmund spaces is 
essential, as Theorem 3.5 does not hold if we replace the Zygmund spaces C s+1 (for 
s ∈ N) with Cs+1 or Cs,1; this is described in Lemma 14.4. As a consequence, Zygmund 
spaces are also essential in the main theorem of this paper (Theorem 4.5). The reason our 
proof requires Zygmund spaces when considering integer exponents is because it relies 
on nonlinear elliptic PDEs (via the results from [31,33]). As is well-known, the regularity 
theory of elliptic PDEs works best when using Zygmund spaces instead of Cm spaces or 
Lipschitz spaces.
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3.2. Geometries defined by vector fields

We present the basic results concerning sub-Riemannian and sub-Hermitian geometry 
in this section. The results on sub-Riemannian geometry are just a reprise (in a slightly 
different language) of the main results of Nagel, Stein, and Wainger’s work [19].7 The 
results on sub-Hermitian geometry can be seen as holomorphic analogs of these results. 
In this section, we present these ideas in these two simple settings. In Section 7.2 we 
generalize these results to a single unified result on “E-manifolds”.

3.2.1. Sub-Riemannian geometry: the results of Nagel, Stein, and Wainger
In this section, we describe the main results of the foundational paper of Nagel, Stein, 

and Wainger [19]. This describes how the existence of certain coordinate charts (like the 
ones developed in our main theorem) can be viewed as scaling maps in sub-Riemannian 
geometry. The results in this section set the stage for the results in the complex setting 
in Section 3.2.2.

Let W1, . . . , WN be C∞ real vector fields on a connected, C∞ manifold M of dimension 
n which span the tangent space at every point. To each Wj we assign a formal degree 
dj ∈ [1, ∞). We assume

[Wj ,Wk] =
∑

dl≤dj+dk

clj,kWl, clj,k ∈ C∞(M).

We write (W, d) for the list (W1, d1), . . . , (WN , dN ) and for δ > 0 write δdW for the list 
δd1W1, . . . , δdNWN . The sub-Riemannian ball associated to (W, d) centered at x0 ∈ M

of radius δ > 0 is defined by

BS(x0, δ) := BδdW (x0, 1),

where the later ball is defined by (2.2). BS(x0, δ) is an open subset of M . We define 
ρS(x, y) := inf{δ > 0 : y ∈ BS(x, δ)}; ρ is a metric on M and is called a sub-Riemannian 
metric. For the relationship between this definition of a sub-Riemannian metric and some 
of the other common definitions, see [19].

We define another metric on M , which will turn out to be equal to ρS, as follows. 
We say ρF (x, y) < δ if and only if there exists K ∈ N, smooth functions f1, . . . , fK :
BR(1/2) → M , and δ1, . . . , δK > 0 with 

∑
δl ≤ δ such that:

7 We present results on sub-Riemannian geometry which are essentially those of Nagel, Stein, and Wainger, 
however the main results of this paper (even in this real setting) imply many results which are beyond those 
that are implied by Nagel, Stein, and Wainger’s methods. In the real setting, this is described in the series 
[27,31,32]. We present the corollaries in this section in the simplest possible setting (as opposed to a very 
general setting) to help the reader understand the thrust of our main theorem, Theorem 4.5, which is stated 
in some generality. For example, even if one only considers real vector fields, the main results of this paper 
imply (and are stronger than) the results in the multi-parameter setting of [28], which could not be achieved 
by the methods of [19]. We also present a more complicated example in the complex setting in Section 8.
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• f ′
j(t) =

∑N
l=1 s

l
j(t)δ

dl
j Wl(fj(t)), with 

∥∥∑
l |slj |2

∥∥
L∞(BR(1/2)) < 1.

• fj(BR(1/2)) 
⋂
fj+1(BR(1/2)) �= ∅, 1 ≤ j ≤ K − 1.

• x ∈ f1(BR(1/2)), y ∈ fK(BR(1/2)).

ρF is clearly an extended metric. Once we prove ρF and ρS are equal, it will then follow 
that ρF is a metric.

Fix a strictly positive, C∞ density ν on M .8 For x ∈ M , δ > 0, set

Λ(x, δ) := max
j1,...,jn∈{1,...,N}

ν(x)(δdj1Xj1(x), . . . , δdjN XjN (x)).

The next result follows from the methods of [19] (though we prove it directly by seeing 
is as a special case of the result in Section 7.2).

Theorem 3.9 ([19]).

(a) ∀x, y ∈ M , ρS(x, y) = ρF (x, y).

Fix a compact set K ⊆ M . There exists δ0 = δ0(K) ∈ (0, 1] such that the following holds. 
We write A � B for A ≤ CB, where C can be chosen independent of x, y ∈ K and δ > 0. 
We write A ≈ B for A � B and B � A.

(b) ν(BS(x, δ)) ≈ Λ(x, δ), ∀x ∈ K, δ ∈ (0, δ0].
(c) ν(BS(x, 2δ)) � ν(BS(x, δ)), ∀x ∈ K, δ ∈ (0, δ0/2].

For each x ∈ K, δ ∈ (0, 1], there exists Φx,δ : BRn(1) → BS(x, δ) such that:

(d) Φx,δ(BRn(1)) ⊆ M is open and Φx,δ : BRn(1) → Φx,δ(BRn(1)) is a C∞ diffeomor-
phism.

(e) Φ∗
x,δν = hx,δσLeb, where hx,δ ∈ C∞(BRn(1)), hx,δ(t) ≈ Λ(x, δ) ∀t, and

‖hx,δ‖Cm(BRn (1)) � Λ(x, δ), ∀m (where the implicit constant depends on m, but 
not on x ∈ K or δ ∈ (0, 1]). Here, and in the rest of the paper, σLeb denotes the 
usual Lebesgue density on Rn.

Let Y x,δ
j := Φ∗

x,δδ
djWj, so that Y x,δ

j is a C∞ vector field on BRn(1).

(f) ‖Y x,δ
j ‖Cm(BRn (1);Rn) � 1, ∀x ∈ K, δ ∈ (0, 1], m ∈ N, where the implicit constant 

depends on m, but not on x or δ.

8 The results that follow are local and do not depend on the choice of ν, so long as it is strictly positive 
and smooth.
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(g) Y x,δ
1 (u), . . . , Y x,δ

N (u) span the tangent space uniformly in u, x, δ in the sense that

max
j1,...,jn∈{1,...,N}

inf
u∈BRN (1)

∣∣∣det
(
Y x,δ
j1

(u)| · · · |Y x,δ
jn

(u)
)∣∣∣ ≈ 1, x ∈ K, δ ∈ (0, 1].

(h) ∃ε ≈ 1 such that BS(x, εδ) ⊆ Φx,δ(BRn(1)) ⊆ BS(x, δ), ∀x ∈ K, δ ∈ (0, 1].

Remark 3.10. The most important aspects of Theorem 3.9 are (f) and (g); and these 
allow us to see the maps Φx,δ as “scaling maps”. Indeed, for δ small, one tends to think 
of δdjWj as a “small” vector field. However, Φx,δ gives a coordinate system in which 
δdjWj is of “unit size”: not only are Φ∗

x,δδ
d1W1, . . . , Φ∗

x,δδ
dNWN smooth uniformly in x

and δ (i.e., (f)), but they also span the tangent space uniformly in x and δ (i.e., (g)). See 
[27, Section 7.1.1] for some more comments in this direction.

Remark 3.11. (c) is the main estimate needed to show that the balls BS(x, δ) when 
paired with the density ν locally give a space of homogeneous type. Because of this, one 
has access to the Calderón-Zygmund theory of singular integrals with respect to these 
balls. This has had many uses: see the remarks at the end of Chapter 2 of [30] for a 
history of these ideas.

3.2.2. Sub-Hermitian geometry
Let M be a connected complex manifold of complex dimension n. Let L1, . . . , Lm be 

C∞, T 0,1 vector fields on M such that ∀ζ ∈ M , spanC{L1(ζ), . . . , Lm(ζ)} = T 0,1
ζ M . Our 

goal in this section is to describe a complex analog of the results in Section 3.2.1 with 
respect to the vector fields L1, . . . , Lm. The main point is to achieve as much as possible 
using only holomorphic maps, so that these results can be applied to questions in several 
complex variables.

To each Lj we assign a formal degree βj ∈ [1, ∞). We assume

[Lj , Lk] =
∑

βl≤βj+βk

c1,lj,kLl, [Lj , Lk] =
∑

βl≤βj+βk

c2,lj,kLl+
∑

βl≤βj+βk

c3,lj,kLl, ca,lj,k ∈ C∞(M).

Let (W1, d1), . . . , (W2m, d2m) = (2Re(L1), β1), . . . , (2Re(Lm), βm), (2Im(L1), β1), . . . ,
(2Im(Lm), βm). Fix a strictly positive, smooth density ν on M . It is immediate to verify 
that the list (W1, d1), . . . , (W2m, d2m) satisfies all the hypotheses of Section 3.2.1. Thus 
we obtain balls BS(ζ, δ) and an associated metric ρS = ρF , and Theorem 3.9 applies. The 
main problem is that the definitions of ρS and ρF use the underlying smooth structure 
on M and not the complex structure, and the scaling maps Φx,δ from Theorem 3.9 are 
only guaranteed to be smooth, not holomorphic. In particular, when rescaling δβjLj by 
computing Φ∗

x,δδ
βjLj we do not know that Φ∗

x,δδ
βjLj continues to be a T 0,1 vector field; 

i.e., we do not know Φ∗
x,δδ

βjLj is spanned by ∂
∂z1

, . . . , ∂
∂zn

. The results in this section fix 
these problems.
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First, we define a metric using the complex structure on M , which we will see is 
locally equivalent to ρS = ρF . This metric is obtained by taking the definition for ρF , 
and rewriting it with holomorphic maps in place of smooth maps. We say ρH(ζ1, ζ2) < δ

if and only if there exists K ∈ N, holomorphic functions f1, . . . , fK : BC(1/2) → M , 
and δ1, . . . , δK > 0 with 

∑K
l=1 δl ≤ δ such that:

• dfj(z) ∂
∂z =

∑m
l=1 s

l
j(z, z)δ

βl

j Ll(fj(z)), with ‖
∑

l |slj |2‖L∞(BC(1/2)) < 1.
• fj(BC(1/2)) 

⋂
fj+1(BC(1/2)) �= ∅, 1 ≤ j ≤ K − 1.

• ζ1 ∈ f1(BC(1/2)), ζ2 ∈ fK(BC(1/2)).

ρH is clearly an extended metric; once we show it is locally equivalent to ρS, it will follow 
that ρH is a metric.

Theorem 3.12.

(a) ∀ζ1, ζ2 ∈ M , ρS(ζ1, ζ2) = ρF (ζ1, ζ2) ≤ ρH(ζ1, ζ2).

Fix a compact set K ⊆ M . We write A � B for A ≤ CB where C can be chosen 
independent of ζ, ζ1, ζ2 ∈ K and δ ∈ (0, 1]. We write A ≈ B for A � B and B � A.

(b) ρH(ζ1, ζ2) � ρS(ζ1, ζ2), ∀ζ1, ζ2 ∈ K, and therefore ρH and ρS are equivalent on 
compact sets.

(c) All of the conclusions of Theorem 3.9 hold (when applied to (W1, d1), . . . , (W2m, d2m)) 
and (by identifying R2n ∼= Cn) the maps Φζ,δ : BCn(1) → BS(ζ, δ) ⊆ M can be taken 
to be holomorphic.

Because Φζ,δ is holomorphic, Φ∗
ζ,δδ

βjLj is a T 0,1 vector field; in other words,
Φ∗

ζ,δδ
βjLj(z) ∈ spanC

{
∂

∂z1
, . . . , ∂

∂zn

}
, ∀z ∈ BCn(1). We can thus think of Φ∗

ζ,δδ
βjLj

as a map BCn(1) → Cn.

(d) ‖Φ∗
ζ,δδ

βjLj‖Ck(BCn (1);Cn) � 1, ∀ζ ∈ K, δ ∈ (0, 1], k ∈ N, where the implicit constant 
depends on k, but not on ζ ∈ K or δ ∈ (0, 1].

(e) Φ∗
x,δδ

β1L1(z), . . . , Φ∗
x,δδ

βmLm(z) span T 0,1
z Cn uniformly in z, ζ, δ in the sense that

max
j1,...,jn∈{1,...m}

inf
z∈BCn (1)

∣∣det
(
Φ∗

ζ,δδ
βj1Lj1(z)| . . . |Φ∗

ζ,δδ
βjnLjn(z)

)∣∣ ≈ 1,

∀ζ ∈ K, δ ∈ (0, 1].

Remark 3.13. In Theorem 3.12 we described a C∞ version of sub-Hermitian geometry. 
With a very similar proof one can obtain a similar real analytic version; see Remark 7.7. 
One can also obtain results for vector fields with only a finite level of smoothness; see 
Remark 7.9.
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Remark 3.14. In the above discussion, we studied the vector fields δβ1L1, . . . , δβmLm. In 
many applications, the vector fields depend on δ in a more complicated way (such an 
example is given in Section 8). Furthermore, in some applications, δ ranges over (0, 1]μ
instead of (0, 1] (as studied in the real setting in [28]). Our proof methods allow us to 
study such settings in the same way; see Remark 7.8. We stated results in this setting 
for simplicity of presentation, so that the reader can easily see the main ideas.

4. The main results

Let X1, . . . , Xq be real C1 vector fields on a C2 manifold M and let L1, . . . , Lm be com-
plex C1 vector fields on M. For each x ∈ M, set Lx := spanC{L1(x), . . . , Lm(x), X1(x),
. . . , Xq(x)}, Xx := spanC{X1(x), . . . , Xq(x)}.

Fix x0 ∈ M, ξ > 0. Set r := dim Xx0 and n + r := dim Lx0 . Our goal in 
this section is to choose a “coordinate system” Φ : BRr×Cn(1) → BX,L(x0, ξ) so 
that Φ∗X1, . . . , Φ∗Xq, Φ∗L1, . . . , Φ∗Lm have a desired level of regularity and ∀(t, z) ∈
BRr×Cn(1),

spanC{Φ∗X1(t, z), . . . ,Φ∗Xq(t, z),Φ∗L1(t, z), . . . ,Φ∗Lm(t, z)}

= spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
,

where we have given Rr×Cn coordinates (t1, . . . , tr, z1, . . . , zn). Finally, we wish to pick 
this coordinate system so that Φ∗X1, . . . , Φ∗Xq, Φ∗L1, . . . , Φ∗Lm are normalized in a 
way which is useful for applying techniques from analysis.

Let Z1, . . . , Zq+m := X1, . . . , Xq, L1, . . . , Lm. Our three main algebraic assumptions 
are as follows:

(i) ∀x ∈ BX,L(x0, ξ), Lx

⋂
Lx = Xx.

(ii) [Zj , Zk] =
∑m+q

l=1 c1,lj,kZl and [Zj , Zk] =
∑m+q

l=1 c2,lj,kZl +
∑m+q

l=1 c3,lj,kZl, where ca,lj,k ∈
C(BX,L(x0, ξ)), 1 ≤ a ≤ 3, 1 ≤ j, k, l ≤ q + m (here we are giving BX,L(x0, ξ) the 
topology induced by the associated metric (2.3)).

(iii) x 
→ dim Lx, BX,L(x0, ξ) → N, is constant in x (it follows from the other as-
sumptions that this is equivalent to the map x 
→ dim Xx being constant in x; see 
Section 4.2).

Under the above hypotheses, BX,L(x0, ξ) is a C2, injectively immersed submanifold 
of M (see Proposition A.1), and CTxBX,L(x0, ξ) = Lx + Lx, ∀x ∈ BX,L(x0, ξ). In 
particular, using Lemma B.1,

dimBX,L(x0, ξ) = dimTx0BX,L(x0, ξ) = dim(Lx0+Lx0) = 2 dim Lx0−dim Xx0 = 2n+r.

Henceforth we view X1, . . . , Xq, L1, . . . , Lm as C1 vector fields on BX,L(x0, ξ).
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For a, b ∈ N, we set

I(a, b) := {(i1, i2, . . . , ia) : i1, . . . , ia ∈ {1, . . . , b}} = {1, . . . , b}a. (4.1)

For K = (k1, . . . , kr1) ∈ I(r1, q), we write XK for the list Xk1 , . . . , Xkr1
and for J =

(j1, . . . , jn1) ∈ I(n1, m) we write LJ for the list Lj1 , . . . , Ljn1
. We write 

∧
XK := Xk1 ∧

Xk2 ∧ · · · ∧Xkr1
and 

∧
LJ := Lj1 ∧ Lj2 ∧ · · · ∧ Ljn1

.
Fix ζ ∈ (0, 1], K0 ∈ I(r, q), J0 ∈ I(n, m) such that

max
K∈I(r1,q),J∈I(n1,m)

r1+n1=r+n

∣∣∣∣ (
∧
XK(x0))

∧
(
∧
LJ(x0))

(
∧
XK0(x0))

∧
(
∧

LJ0(x0))

∣∣∣∣ ≤ ζ−1. (4.2)

See Appendix B.2 for the definition of this quotient. Such a choice of J0, K0, and ζ
always exist; see Remark B.6. One cannot necessarily choose K0, J0 so that (4.2) holds 
with ζ = 1, however if n = 0 or r = 0 (the two most important special cases) one always 
can–see Remark B.6. Without loss of generality, reorder X1, . . . , Xq and L1, . . . , Lm so 
that K0 = (1, 2, . . . , r), J0 = (1, 2, . . . , n).

Let W1, . . . , W2m+q denote the list of vector fields X1, . . . , Xq, 2Re(L1), . . . , 2Re(Lm),
2Im(L1), . . . , 2Im(Lm); and order W1, . . . , W2m+q so that

W1, . . . ,W2n+r = X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln). (4.3)

Define Wx := spanR{W1(x), . . . , W2m+q(x)} = (Lx + Lx) ∩ TxBX,L(x0, ξ). Set P0 :=
(1, . . . , 2n + r) ∈ I(2n + r, 2m + q) and for any P = (p1, . . . , p2n+r) ∈ I(2n + r, 2m + q)
we write WP for the list Wp1 , . . . , Wp2n+r

and set 
∧

WP = Wp1 ∧Wp2 ∧ · · · ∧Wp2n+r
. In 

particular,∧
WP0 = X1 ∧X2 ∧ · · · ∧Xr ∧ 2Re(L1) ∧ 2Re(L2) ∧ · · · ∧ 2Re(Ln)

∧ 2Im(L1) ∧ 2Im(L2) ∧ · · · ∧ 2Im(Ln)

=
(∧

XK0

)∧(∧
2Re(L)J0

)∧(∧
2Im(L)J0

)
,

where 
∧

2Re(L)J0 and 
∧

2Im(L)J0 are defined in the obvious way; see (B.2). Note that 
BWP0

(x0, ξ) and BXK0 ,LJ0
(x0, ξ) are (by definition) equal; see (2.4).

Definition 4.1. For x ∈ M, U ⊆ M, and η > 0, we say WP0 satisfies C(x, η, U) if for every 
a ∈ B2n+r(η) the expression

ea1W1+a2W2+···+a2n+rW2n+rx

exists in U . More precisely, consider the differential equation

∂
E(r) = a1W1(E(r)) + · · · + a2n+rW2n+r(E(r)), E(0) = x.
∂r



24 B. Street / Advances in Mathematics 368 (2020) 107137
We assume that a solution E : [0, 1] → U exists for this differential equation. We have 
E(r) = era1W1+···+ra2n+rW2n+rx.

We fix the following two quantities:

• Fix η > 0 so that WP0 satisfies C(x0, η, M).
• Fix δ0 > 0 such that ∀δ ∈ (0, δ0], the following holds. If z ∈ BXK0 ,LJ0

(x0, ξ) is 
such that WP0 satisfies C(z, δ, BXK0 ,LJ0

(x0, ξ)) and if t ∈ BR2n+r (δ) is such that 
et1W1+···+t2n+rW2n+rz = z and if W1(z), . . . , W2n+r(z) are linearly independent, then 
t = 0.

Such a choice of η, δ0 always exist (see Lemma 4.13). These constants are invariant under 
C2 diffeomorphisms, and our quantitative results will be in terms of these constants; see 
[27, Section 4.1] for a detailed discussion of η and δ0.

In our main result, we keep track of what parameters each estimate depends on.9
To ease notation, we introduce various notions of “admissible constants”. These will be 
constants which only depend on certain parameters.10

Definition 4.2. We say C is a 0-admissible constant if C can be chosen to depend only 
on upper bounds for m, q, ζ−1, ξ−1, and ‖ca,lj,k‖C(BXK0 ,LJ0

(x0,ξ)), 1 ≤ j, k, l ≤ m + q, 
1 ≤ a ≤ 3.

Fix s0 ∈ (1, ∞) ∪ {ω}; when s0 ∈ (1, ∞) the following result concerns the setting of 
C s for s ∈ [s0, ∞] (and the results are stronger the closer s0 is to 1, but the constants 
depend on the choice of s0). When s0 = ω the following result concerns the real analytic 
setting. Thus, there are two cases in what follows: when s0 ∈ (1, ∞) and when s0 = ω.

Definition 4.3. If s0 ∈ (1, ∞), for s ∈ [s0, ∞), if we say C is a {s}-admissible constant, 
it means that we assume ca,lj,k ∈ C s

XK0 ,LJ0
(BXK0 ,LJ0

(x0, ξ)), for 1 ≤ j, k, l ≤ m + q, 
1 ≤ a ≤ 3. C can then be chosen to depend only on s, s0, and upper bounds for m, q, 
ζ−1, ξ−1, η−1, δ−1

0 , and ‖ca,lj,k‖C s
XK0 ,LJ0

(BXK0 ,LJ0
(x0,ξ)), 1 ≤ j, k, l ≤ m + q, 1 ≤ a ≤ 3. 

For s ∈ (0, s0), we define {s}-admissible constants to be {s0}-admissible constants.

Definition 4.4. If s0 = ω, and if we say C is an {ω}-admissible constant, it means that we 
assume ca,lj,k ∈ A x0,η

XK0 ,LJ0
, 1 ≤ j, k, l ≤ m + q, 1 ≤ a ≤ 3. C can be chosen to depend only 

on upper bounds for m, q, ζ−1, ξ−1, η−1, δ−1
0 , and ‖ca,lj,k‖A

x0,η
XK0 ,LJ0

, 1 ≤ j, k, l ≤ m + q, 
1 ≤ a ≤ 3.

9 Keeping track of constants in our main theorem is essential for applications. For example, to prove the 
results in Sections 3.2.1, 3.2.2, and 7.2 we will apply Theorem 4.5 infinitely many times, and the constants 
must be uniform over all these applications.
10 The various notions of admissible constants may vary from section to section, but we are explicit about 
how they are defined whenever they are used. See Remark 11.2 for how this varying notation is exploited 
in the proofs.
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Whenever we define a notion of ∗-admissible constant (where ∗ can be any symbol), 
we write A �∗ B for A ≤ CB, where C is a positive ∗-admissible constant. We write 
A ≈∗ B for A �∗ B and B �∗ A.

In what follows, we give Rr × Cn coordinates (t, z), where t = (t1, . . . , tr) ∈ Rr and 
z = (z1, . . . , zn) ∈ Cn. We write ∂

∂t for the column vector [ ∂
∂t1

, . . . , ∂
∂tr

]	 and ∂
∂z for the 

column vector [ ∂
∂z1

, . . . , ∂
∂zn

]	.

Theorem 4.5. There exists a 0-admissible constant χ ∈ (0, ξ] such that:

(i) ∀y ∈ BXK0 ,LJ0
(x0, χ),(∧

XK0(y)
)∧(∧

LJ0(y)
)
�= 0,

∧
WP0(y) �= 0.

In particular, XK0(y), LJ0(y) is a basis for Ly and WP0(y) is a basis for Wy. Recall,

Wy = spanR{W1(y), . . . ,W2m+q(y)}.

(ii) ∀y ∈ BXK0 ,LJ0
(x0, χ),

max
J∈I(n1,m),K∈I(r1,q)

n1+r1=n+r

∣∣∣∣ (
∧

XK(y))
∧

(
∧

LJ(y))
(
∧

XK0(y))
∧

(
∧
LJ0(y))

∣∣∣∣ ≈0 1,

max
P∈I(2n+r,2m+q)

∣∣∣∣ ∧WP (y)∧
WP0(y)

∣∣∣∣ ≈0 1.

(iii) ∀χ′ ∈ (0, χ], BXK0 ,LJ0
(x0, χ′) is an open subset of BX,L(x0, ξ), and is therefore a 

submanifold.

For the rest of the theorem, we assume:

• If s0 ∈ (1, ∞), we assume ca,lj,k ∈ C s0
XK0 ,LJ0

(BXK0 ,LJ0
(x0, ξ)), ∀1 ≤ j, k, l ≤ m + q, 

1 ≤ a ≤ 3.
• If s0 = ω, we assume ca,lj,k ∈ A x0,η

XK0 ,LJ0
, ∀1 ≤ j, k, l ≤ m + q, 1 ≤ a ≤ 3.

There exists a C2 map Φ : BRr×Cn(1) → BXK0 ,LJ0
(x0, χ) and {s0}-admissible constants 

ξ1, ξ2 > 0 such that:

(iv) Φ(BRr×Cn(1)) is an open subset of BXK0 ,LJ0
(x0, χ) and is therefore a submanifold 

of BX,L(x0, ξ).
(v) Φ : BRr×Cn(1) → Φ(BRr×Cn(1)) is a C2-diffeomorphism.
(vi) BX,L(x0, ξ2) ⊆ BXK0 ,LJ0

(x0, ξ1) ⊆ Φ(BRr×Cn(1)) ⊆ BXK0 ,LJ0
(x0, χ) ⊆ BX,L(x0,

ξ).
(vii) Φ(0) = x0.
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There exists an {s0}-admissible constant K ≥ 1 and a matrix A : BRr×Cn(1) →
M(n+r)×(n+r)(C) such that:

(viii) A(0) = 0.
(ix)

[
∂
∂t
∂
∂z

]
= K−1(I + A)

[
Φ∗XK0
Φ∗LJ0

]
,

where we have written Φ∗XK0 for the column vector of vector fields [Φ∗X1, . . . ,
Φ∗Xr]	 and similarly for Φ∗LJ0 .

(x) • If s0 ∈ (1, ∞), ‖A‖C s+1(BRr×Cn (1);M(n+r)×(n+r)) �{s} 1, ∀s ∈ (0, ∞), and 
‖A‖C s0+1(BRr×Cn (1);M(n+r)×(n+r)) ≤ 1

4 .
• If s0 = ω, ‖A‖A r+2n,1(M(n+r)×(n+r)) ≤ 1

4 , where we have identified Rr × Cn ∼=
Rr+2n.

Note that in either case, this implies the matrix (I + A(ζ)) is invertible, ∀ζ ∈
BRr×Cn(1).

(xi) ∀ζ ∈ BRr×Cn(1), 1 ≤ k ≤ q, 1 ≤ j ≤ m,

Φ∗Xk(ζ) ∈ spanR
{

∂

∂t1
, . . . ,

∂

∂tr

}
,

Φ∗Lj(ζ) ∈ spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
.

(xii) • If s0 ∈ (1, ∞), we have ∀s ∈ (0, ∞), 1 ≤ k ≤ q, 1 ≤ j ≤ m,

‖Φ∗Xk‖C s+1(BRr×Cn (1);Rr) �{s} 1, ‖Φ∗Lj‖C s+1(BRr×Cn (1);Cr+n) �{s} 1.

• If s0 = ω, we have for 1 ≤ k ≤ q, 1 ≤ j ≤ m,

‖Φ∗Xk‖A 2n+r,1(Rr) �{ω} 1, ‖Φ∗Lj‖A 2n+r,1(Cr+n) �{ω} 1.

Remark 4.6. In the language of Section 6, the map Φ : BRr×Cn(1) → BX,L(x0, ξ) from 
Theorem 4.5 is an E-map; where BX,L(x0, ξ) is given the E-manifold structure with the 
associated elliptic structure L . In particular, when r = 0, L is a complex structure and 
the E-manifold structure on BX,L(x0, ξ) is the complex manifold structure associated to 
L (via the Newlander-Nirenberg theorem). In this case, Φ : BCn(1) → BX,L(x0, ξ) is a 
holomorphic map (see Remark 6.12). This is particularly important for applications to 
several complex variables. For example this is used in Sections 3.1.2, 3.2.2, and 8.2 to 
guarantee the desired coordinate charts are holomorphic.
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4.1. Densities

In many applications, one wishes to change variables in an integral using the coordi-
nate chart given in Theorem 4.5 (see, e.g., the settings in Sections 3.2.1, 3.2.2, and 7.211). 
Thus, it is important to understand pullbacks of certain densities via the map Φ. We 
present such results in this section. We refer the reader to [11] for a quick introduction 
to densities (see also [22] where densities are called 1-densities). In this section, we take 
all the assumptions as in Theorem 4.5 and let Φ be as in that theorem.

Let χ ∈ (0, ξ] be as in Theorem 4.5 and let ν be a real C1 density on BXK0 ,LJ0
(x0, χ). 

Suppose, for 1 ≤ k ≤ r, 1 ≤ j ≤ n,

LXk
ν = f1

kν, LLj
ν = f2

j ν, f1
k , f

2
j ∈ C(BXK0 ,LJ0

(x0, χ)),

where LV denotes the Lie derivative with respect to V , and LLj
is defined as LReLj

+
iLImLj

.

Definition 4.7. If we say C is a [s0; ν]-admissible constant, it means C is a {s0}-admissible 
constant which is also allowed to depend on upper bounds for ‖f1

k‖C(BXK0 ,LJ0
(x0,χ)), 

1 ≤ k ≤ r, and ‖f2
j ‖C(BXK0 ,LJ0

(x0,χ)), 1 ≤ j ≤ n. This definition applies in either case: 
s0 ∈ (1, ∞) or s0 = ω.

Definition 4.8. If s0 ∈ (1, ∞), for s > 0, if we say C is a {s; ν}-admissible constant it 
means that we assume f1

k , f
2
j ∈ C s

XK0 ,LJ0
(BXK0 ,LJ0

(x0, χ)), 1 ≤ k ≤ r, 1 ≤ j ≤ n. C is 
allowed to depend on anything an {s}-admissible constant is allowed to depend on, and 
is also allowed to depend on upper bounds for ‖f1

k‖C s
XK0 ,LJ0

(BXK0 ,LJ0
(x0,χ)), 1 ≤ k ≤ r, 

and ‖f2
j ‖C s

XK0 ,LJ0
(BXK0 ,LJ0

(x0,χ)), 1 ≤ j ≤ n. For s ≤ 0, we define {s; ν}-admissible 

constants to be [s0; ν]-admissible constants.

If s0 = ω we fix some r0 > 0; the results which follow depend on the choice of r0.

Definition 4.9. If s0 = ω, if we say C is an {ω; ν}-admissible constant, it means that we 
assume f1

k , f
2
j ∈ A x0,r0

XK0 ,LJ0
. C is allowed to depend on anything an {ω}-admissible con-

stant may depend on, and is allowed to depend on upper bounds for r−1
0 , ‖f1

k‖A
x0,r0
XK0 ,LJ0

, 
1 ≤ k ≤ r, and ‖f2

j ‖A
x0,r0
XK0 ,LJ0

, 1 ≤ j ≤ n.

Theorem 4.10. Define h ∈ C1(BRr×Cn(1)) by Φ∗ν = hσLeb, where σLeb denotes the usual 
Lebesgue density on Rr ×Cn.

11 For example, such changes of variables were important in the study of multi-parameter singular integrals 
and singular radon transforms in [30,24,29,26].
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(i) ∀ζ ∈ BRr×Cn(1),

h(ζ) ≈[s0;ν] ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0).

In particular, h(ζ) always has the same sign, and is either never zero or always zero.
(ii) • If s0 ∈ (1, ∞), for s > 0,

‖h‖C s(BRr×Cn (1))

�{s−1;ν} |ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0)| .

• If s0 = ω,

‖h‖A 2n+r,min{1,r0}

�{ω;ν} |ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0)| .

Corollary 4.11. Let ξ2 > 0 be as in Theorem 4.5. Then,

ν(BXK0 ,LJ0
(x0, ξ2)) ≈[s0;ν] ν(BX,L(x0, ξ2))

≈[s0;ν] ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0),
(4.4)

and therefore∣∣ν(BXK0 ,LJ0
(x0, ξ2))

∣∣ ≈[s0;ν] |ν(BX,L(x0, ξ2)|
≈[s0;ν] |ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0)|
≈0 max

K∈I(r,q),J∈I(n,m)
|ν(XK , 2Re(L)J , 2Im(L)J )(x0)|

≈0 max
P∈I(2n+r,2m+q)

|ν(WP )(x0)| .

(4.5)

4.2. Some comments on the assumptions

Because W1, . . . , W2m+q span the tangent space of BX,L(x0, ξ) at every point (see 
Proposition A.1) and BX,L(x0, ξ) is a 2n + r dimensional manifold, it follows that x 
→
dim Wx, taking BX,L(x0, ξ) → N, is constant. However, the hypothesis that x 
→ dim Lx

is constant does not follow from the other assumptions. The next example elucidates 
this:

Example 4.12. On C, consider the vector fields L1 = ∂
∂z , L2 = z ∂

∂z , X1 = z ∂
∂z + z ∂

∂z , 
and X2 = 1

i

(
z ∂
∂z − z ∂

∂z

)
. We then have

[L1, L2] = [X1, X2] = [L2, X1] = [L2, X2] = 0, [L1, X1] = L1, [L1, X2] = 1
L1,
i
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and the vector fields L1, L2, X1, X2, L1, L2 span the complexified tangent space at every 
point (in fact L1 and L1 do). However,

dim spanC{L1(z), L2(z), X1(z), X2(z)} =
{

2, z �= 0,
1, z = 0.

The assumption that x 
→ dim Lx is constant is equivalent to the assumption that 
x 
→ dim Xx is constant. Indeed, by Lemma B.1, and the fact that dim Wx = 2n + r =
dimBX,L(x0, ξ), we have

2n+r = dim Wx = dim(Lx+Lx) = 2 dim(Lx)−dim(Lx

⋂
Lx) = 2 dim(Lx)−dim(Xx).

In particular, in the two most important special cases Lx = Xx ∀x, or Xx = {0} ∀x, 
the hypothesis that x 
→ dim Lx is constant does follow from the other assumptions.

A choice of η, δ0 > 0, as in the hypotheses of Theorem 4.5, always exist. In fact, they 
can be chosen uniformly on compact sets, as the next lemma shows.

Lemma 4.13. Let W = W1, . . . , WN be a list of C1 vector fields on a C2 manifold M and 
let K � M be a compact set.

(i) ∃η > 0 such that ∀x0 ∈ K, W satisfies C(x0, η, M).
(ii) ∃δ0 > 0 such that ∀θ ∈ SN−1 if x ∈ K is such that θ1W1(x) + · · · + θNWN (x) �= 0, 

then ∀r ∈ (0, δ0],

erθ1W1+···+rθNWNx �= x.

Proof. (i) is a simple consequence of the Phragmén–Lindelöf Principle. (ii) is proved in 
[27, Proposition 4.14]. �

Despite the fact that a choice of η, δ0 > 0 always exist (as described in Lemma 4.13), 
η and δ0 are diffeomorphic invariant quantities,12 and the proof of existence of these 
constants in Lemma 4.13 depends on the C1 norms of the vector fields W1, . . . , WN in 
some fixed coordinate system (which is not a diffeomorphic invariant quantity). Thus, we 
state all of our results in terms of η and δ0 to preserve the quantitative diffeomorphism 
invariance. See Section 4.3.

4.3. Diffeomorphism invariance

The main results of this paper are invariant under arbitrary C2 diffeomorphisms. This 
is true quantitatively. For example, consider Theorem 4.5. Let X1, . . . , Xq, L1, . . . , Lm

12 I.e., η and δ0 remain unchanged when the entire setting is pushed forward under a C2 diffeomorphism.
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be the vector fields on M from Theorem 4.5 and let Ψ : M → N be a C2

diffeomorphism. Then X1, . . . , Xq, L1, . . . , Lm satisfy the conditions of Theorem 4.5
at the point x0 ∈ M if and only if Ψ∗X1, . . . , Ψ∗Xq, Ψ∗L1, . . . , Ψ∗Lm satisfy the 
conditions at Ψ(x0). Moreover, any constant which is ∗-admissible (where ∗ is 
any symbol) with respect to X1, . . . , Xq, L1, . . . , Lm is ∗-admissible with respect to 
Ψ∗X1, . . . , Ψ∗Xq, Ψ∗L1, . . . , Ψ∗Lm. Finally, if Φ is the map guaranteed by Theorem 4.5
when applied to X1, . . . , Xq, L1, . . . , Lm, then Ψ ◦ Φ is the map given by Theorem 4.5
when applied to Ψ∗X1, . . . , Ψ∗Xq, Ψ∗L1, . . . , Ψ∗Lm (as can be seen by tracing through 
the proof). Thus the main results (and, indeed, the entire proofs) are invariant under 
arbitrary C2 diffeomorphisms.

4.4. The Frobenius theorem and singular foliations

We now describe a consequence of Theorem 4.5 which is not used in the rest of the 
paper: it provides coordinate charts on leaves of singular foliations, which behave well 
in a quantitative way near singular points.

Let M be a smooth manifold and let X1, . . . , Xq be real C∞ vector fields on M. 
Suppose

[Xj , Xk] =
q∑

l=1

clj,kXl, clj,k ∈ C∞(M).

For x ∈ M, let Xx := spanR{X1(x), . . . , Xq(x)}. Under these hypotheses, the real Frobe-
nius theorem applies to the distribution X to foliate M into leaves. The tangent bundle 
to each leaf is given by X restricted to the leaf. Note that this may be a singular fo-
liation: different leaves may have different dimensions, since x 
→ dim Xx might not be 
constant in x. For x ∈ M, let Leafx denote the leaf passing through x; thus Leafx is an 
injectively immersed C∞ submanifold of M.

Definition 4.14. We say x ∈ M is a singular point of the foliation if x 
→ dim Lx is not 
constant on any neighborhood of x (equivalently, if x 
→ dim Leafx is not constant on 
any neighborhood of x).

Leafx is a manifold, and is therefore defined by an atlas. For applications in analysis, 
it is sometimes important to have quantitative control of the charts which define the 
atlas. An interesting aspect of Theorem 4.5 is that it yields coordinate charts which 
behave well whether or not one is near a singular point.

Indeed, let K � M be a compact set. Lemma 4.13 and some straightforward estimates 
show that Theorem 4.5 (in the case m = 0) applies to the vector fields X1, . . . , Xq (with, 
e.g., s0 = 3/2), uniformly for x0 ∈ K. Thus, any constant which is {s}-admissible (for any 
s ∈ (0, ∞)) in the sense of Theorem 4.5 can be taken independent of x0 ∈ K. The map 
Φ provided by Theorem 4.5 can be seen as a coordinate chart on Leafx0 , centered at x0, 
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which has good estimates which are uniform in x0. In particular, as x0 ∈ K approaches 
a singular point in K, the estimates remain uniform.

The above holds in the complex setting as well. Again let M be a smooth manifold, 
and let L1, . . . , Lm be C∞ complex vector fields on M. Suppose

[Lj , Lk] =
m∑
l=1

c1,lj,kLl, [Lj , Lk] =
m∑
l=1

c2,lj,kLl +
m∑
l=1

c3,lj,kLl, ca,lj,k ∈ C∞(M).

For x ∈ M, set Lx := spanC{L1(x), . . . , Lm(x)}; we assume Lx

⋂
Lx = {0}, ∀x ∈ M. 

Under the above assumptions, the real Frobenius theorem applies to the distribution 
L + L to foliate M into leaves; as before this may be a singular foliation. Let Leafx
denote the leaf passing through x. For each x ∈ M, L (restricted to Leafx) defines a 
complex structure on Leafx, and the classical Newlander-Nirenberg theorem therefore 
gives Leafx the structure of a complex manifold. As in the real case, Theorem 4.5 applies 
uniformly as the base point x0 ranges over compact sets (in this case, we take q = 0), in 
the sense that {s}-admissible constants (for any s ∈ (0, ∞)) may be taken independent 
of x0 as x0 ranges over a compact set. The map Φ provided by Theorem 4.5 can be seen 
as a holomorphic coordinate chart near x0, which has estimates which are uniform on 
compact sets; whether or not that compact set contains a singular point.

Remark 4.15. A previous (and weaker) version of the above ideas (originally described 
in [28]) was an essential point in the work of the author and Stein on singular Radon 
transforms [24,29,26,25]. For example, a corollary of one of the main results of [25] is 
the following. Suppose γt(x) is real analytic function defined on a neighborhood of the 
origin of (t, x) ∈ RN ×Rn, mapping to Rn, and satisfying γ0(x) ≡ x. Define an operator 
acting on functions f(x) defined near the origin in x ∈ Rn by

Tf(x) = ψ(x)
∫

f(γt(x))K(t) dt,

where K(t) is a Calderón-Zygmund kernel supported near t = 0, and ψ ∈ C∞
0 (Rn) is 

supported near x = 0. Then, T : Lp → Lp, for 1 < p < ∞; see [25] for a more precise 
statement and further details. This result does not follow from the foundational work of 
Christ, Nagel, Stein, and Wainger on singular Radon transforms [8]; however, the only 
additional ingredient necessary to conclude this result (beyond the theory in [8]) is the 
above described uniformity of coordinate charts near singular points (though the theory 
in [25] proceeds by proving a more general result, and concluding the above result as a 
corollary).

Remark 4.16. One way to view the above discussion is that Theorem 4.5 is quantitatively 
invariant under C2 diffeomorphisms (see Section 4.3), and being “nearly” a singular point 
is not a diffeomorphically invariant concept. Indeed, consider the real case described 
above. Fix x0 ∈ M and let k := dim Xx0 = dim Leafx0 and N := dimM. Pick a coordi-
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nate system on M near x0. In this coordinate system, we may think of X1(x0), . . . , Xq(x0)
as vectors in RN which span a k dimensional subspace of RN . Let σ := min | detB|, 
where B ranges over all k × k submatrices of the N × q matrix (X1(x0)| · · · |Xq(x0)). 
Then, σ > 0. One might say x0 is “nearly” a singular point if σ is small. However, σ
is not invariant under diffeomorphisms: the above procedure depended on the choice of 
coordinate system. This is one way of intuitively understanding why the estimates in 
Theorem 4.5 do not depend on a lower bound for σ > 0.

Remark 4.17. While we described the above for smooth vector fields, similar remarks 
hold for vector fields with a finite level of smoothness using the same ideas.

4.5. Proof outline

Theorem 4.5 is the central result of this paper. If all we wanted was a coordinate 
system like Φ in which the vector fields were normalized and had the desired regularity, 
but did not have the key property given in Theorem 4.5 (xi),13 then Theorem 4.5 would 
be an easy consequence of the main results in [27,31] applied to W1, . . . , W2m+q (see 
Section 12 for a detailed statement of this). In particular, in the case when q = 0 (and 
M is given the complex structure induced by L via the Newlander-Nirenberg theorem–
see Remark 4.6), then if we did not require that Φ be holomorphic, Theorem 4.5 would 
be a simple consequence of the results in [27,31].

The proof proceeds as follows. We apply the results from [27,31] (see Section 12) to 
yield a candidate chart Φ0 satisfying all the conclusions of Theorem 4.5 without the key 
property discussed above. Then, we apply the main technical result of [33] to obtain 
another map Φ1 such that if we set Φ = Φ0 ◦ Φ1, Φ satisfies all the conclusions of 
Theorem 4.5.

As described above, in this paper we construct the map Φ as a composition of two 
maps Φ = Φ0 ◦Φ1. When s0 ∈ (1, ∞), Φ0 is constructed in [31] as a composition of three 
maps (one of which was a simple dilation map). When s0 ∈ (1, ∞), Φ1 was constructed 
in [33] as a composition of four maps (two of which were simple dilation maps). Thus, if 
s0 ∈ (1, ∞), when all the proofs are unraveled, Φ is a composition of seven maps, three 
of which are simple dilation maps. When s0 = ω, Φ is considerably simpler.

5. Notation

If f : M → N is a C1 map between C1 manifolds, we write df(x) : TxM → TxN for the 
usual differential. We extend this to be a complex linear map df(x) : CTxM → CTxN , 
where CTxM = TxM⊗RC denotes the complexified tangent space. Even if the manifold 
M has additional structure (e.g., in the case of a complex manifold), df(x) is defined in 
terms of the underlying real manifold structure.

13 And replacing ∂
∂z with ∂

∂x in Theorem 4.5 (ix), where x ∈ R2n.
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When working on Rr×Cn we will often use coordinates (t, z) where t = (t1, . . . , tr) ∈
Rr and z = (z1, . . . , zn) ∈ Cn. We write

∂

∂t
=

⎡⎢⎢⎢⎢⎣
∂
∂t1
∂
∂t2
...
∂

∂tr

⎤⎥⎥⎥⎥⎦ ,
∂

∂z
=

⎡⎢⎢⎢⎢⎣
∂

∂z1
∂

∂z2
...
∂

∂zn

⎤⎥⎥⎥⎥⎦ .

At times we will instead use coordinates (u, w) where u ∈ Rr and w ∈ Cn and define ∂
∂u

and ∂
∂w similarly.

We identify Rr×R2n ∼= Rr×Cn via the map (t1, . . . , tr, x1, . . . , x2n) 
→ (t1, . . . , tr, x1+
ixn+1, . . . , xn + ix2n). Thus, given a function G(t, z) : Rr ×Cn → Rs×Cm, we may also 
think of G as function G(t, x) = (G1(t, x), . . . , Gs+2m(t, x)) : Rr ×R2n → Rs×R2m. For 
such a function, we write

d(t,x)G =

⎡⎢⎢⎢⎢⎣
∂G1
∂t1

· · · ∂G1
∂tr

∂G1
∂x1

· · · ∂G1
∂x2n

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

∂Gs+2m
∂t1

· · · ∂Gs+2m
∂tr

∂Gs+2m
∂x1

· · · ∂Gs+2m
∂x2n

⎤⎥⎥⎥⎥⎦ .

We write IN×N ∈ MN×N to denote the N × N identity matrix, and 0a×b ∈ Ma×b to 
denote the a × b zero matrix.

6. E-manifolds

The results in this paper simultaneously deal with the setting of real vector fields (on 
a real manifold) and the setting of complex vector fields (on a complex manifold). It is 
more convenient to work in a category of manifolds which contains both real manifolds 
and complex manifolds as full subcategories. We define these manifolds here, and call 
them E-manifolds.14 This category of manifolds was also used in [33], and we refer the 
reader to that reference for a more detailed description.

Remark 6.1. “E” in the name E-manifolds stands for “elliptic”. Indeed, using the termi-
nology of [35, Definition I.2.3], a complex manifold is a manifold endowed with a complex 
structure, a CR-manifold is a manifold endowed with a CR structure, and an E-manifold 
is a manifold endowed with an elliptic structure; see Theorem 6.22 and [33] for a more 
detailed discussion. Unfortunately, the name “elliptic manifold” is already taken by an 
unrelated concept.

14 The manifold structure we discuss here is well-known to experts, but we could not find a name for the 
category of such manifolds, and decided to call them E-manifolds for lack of a better name.
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Definition 6.2. Let U1 ⊆ Rr1 ×Cn1 and U2 ⊆ Rr2 ×Cn2 be open sets. We give Rr1 ×Cn1

coordinates (t, z) and Rr2 ×Cn2 coordinates (u, w). We say a C1 map f : U1 → U2 is an 
E-map if

df(t, z) ∂

∂tk
, df(t, z) ∂

∂zj
∈ spanC

{
∂

∂u1
, . . . ,

∂

∂ur2

,
∂

∂w1
, . . . ,

∂

∂wn2

}
,

∀(t, z) ∈ U1, 1 ≤ k ≤ r1, 1 ≤ j ≤ n1.

For s ∈ (1, ∞] ∪ {ω}, we say f is a C s
loc E-map if f is an E-map and f ∈ C s

loc(U1; Rr2 ×
Cn2).

Remark 6.3. Suppose U1, U2 ⊆ Rr × Cn and f : U1 → U2 is an E-map which is also a 
C1-diffeomorphism. Then, f−1 : U2 → U1 is an E-map.

Remark 6.4. Note that when r1 = r2 = 0, if U1 ⊆ R0×Cn1 ∼= Cn1 , U2 ⊆ R0×Cn2 ∼= Cn2 , 
then f : U1 → U2 is an E-map if and only if it is holomorphic.

Definition 6.5. Let M be a Hausdorff, paracompact topological space and fix n, r ∈ N, 
s ∈ (1, ∞] ∪ {ω}. We say {(φα, Vα) : α ∈ I} (where I is some index set) is a C s E-
atlas of dimension (r, n) if {Vα : α ∈ I} is an open cover for M , φα : Vα → Uα is a 
homeomorphism where Uα ⊆ Rr × Cn is open, and φβ ◦ φ−1

α : φα(Vβ ∩ Vα) → Uβ is a 
C s

loc E-map, ∀α, β.

Definition 6.6. A C s E-manifold M of dimension (r, n) is a Hausdorff, paracompact 
topological space M endowed with a C s E-atlas of dimension (r, n).

Remark 6.7. On may analogously define Cm E-manifolds in the obvious way. C∞ E-
manifolds and C∞ E-manifolds are the same (because C∞

loc is the usual space of smooth 
functions).

Definition 6.8. For s ∈ (0, ∞] ∪ {ω}, let M and N be C s+1 E-manifolds with C s+1 E-
atlases {(φα, Vα)} and {(ψβ, Wβ)}, respectively. We say f : M → N is a C s+1

loc E-map if 
ψβ ◦ f ◦ φ−1

α is a C s+1
loc E-map, ∀α, β.

Lemma 6.9. For s ∈ (0, ∞] ∪ {ω}, let M1, M2, and M3 be C s+1 E-manifolds and f1 :
M1 → M2 and f2 : M2 → M3 be C s+1

loc E-maps. Then, f2 ◦ f1 : M1 → M3 is a C s+1
loc

E-map.

Proof. See [33, Lemma 4.10] for a proof of this standard result. �
Lemma 6.10. For s ∈ (0, ∞] ∪ {ω}, let M1 and M2 be C s+1 E-manifolds and let f :
M1 → M2 be a C s+1

loc E-map which is also a C1 diffeomorphism. Then, f−1 : M2 → M1
is a C s+1

loc E-map.
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Proof. See [33, Lemma 4.11] for a proof of this standard result. �
Definition 6.11. Suppose s ∈ (0, ∞] ∪{ω}, and M1 and M2 are C s+1 E-manifolds. We say 
f : M1 → M2 is a C s+1 E-diffeomorphism if f : M1 → M2 is invertible and f : M1 → M2

and f−1 : M2 → M1 are C s+1
loc E-maps.

Remark 6.12. For s ∈ (1, ∞] ∪ {ω} the category of C s E-manifolds, whose objects are 
C s E-manifolds and morphisms are C s

loc E-maps, contains both C s real manifolds and 
complex manifolds as full subcategories. The real manifolds of dimension r are those 
with E-dimension (r, 0), while the complex manifolds of complex dimension n are those 
with E-dimension (0, n). That complex manifolds (with morphisms given by holomorphic 
maps) embed as a full subcategory follows from Remark 6.4. The isomorphisms in the 
category of C s E-manifolds are the C s E-diffeomorphisms.

Remark 6.13. Note that open subsets of Rr×Cn are C ω E-manifolds of dimension (r, n), 
by using the atlas consisting of one coordinate chart (the identity map). Henceforth, we 
give such sets this E-manifold structure.

As mentioned above, C s E-manifolds of dimension (r, 0) are exactly the C s manifolds 
of dimension r, in the usual sense (in particular, one may take Definition 6.6 in the 
case n = 0 as the definition of a C s manifolds of dimension r). There is a natural 
forgetful functor taking C s E-manifolds of dimension (r, n) to C s manifolds of dimension 
2n + r. Thus, one may define any of the usual objects from manifolds on E-manifolds. 
For example, we have the following standard definitions on C s manifolds, and therefore 
on C s E-manifolds.15

Definition 6.14. For s ∈ (0, ∞] ∪{ω} let M be a C s+1 manifold of dimension r, with C s+1

atlas {(φα, Vα)}; here φα : Vα → Uα is a C s+1 diffeomorphism and Uα ⊆ Rr is open. We 
say a complex vector field X on M is a C s vector field if (φα)∗X ∈ C s

loc(Uα; Cr), ∀α.

Definition 6.15. For s ∈ (0, ∞] ∪ {ω}, a C s sub-bundle L of CTM of rank m ∈ N is a 
disjoint union

L =
⋃
ζ∈M

Lζ ⊆ CTM

such that:

• ∀ζ ∈ M , Lζ is an m-dimensional vector subspace of CTζM .

15 The following standard definitions can all be found in [35] in the case s = ∞, and in [33] for finite levels 
of smoothness.
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• ∀ζ0 ∈ M , there exists an open neighborhood U ⊆ M of ζ0 and a finite collection of 
complex C s vector fields L1, . . . , LK on U , such that ∀ζ ∈ U ,

spanC{L1(ζ), . . . , LK(ζ)} = Lζ .

Definition 6.16. For a C s sub-bundle L of CTM , we define L by Lζ = {z : z ∈ Lζ}. 
It is easy to see that L is a C s sub-bundle of CTM .

Definition 6.17. Let W ⊆ M be open, L a complex vector field on W , and L a C s

sub-bundle of CTM . We say L is a section of L over W if ∀ζ ∈ W , L(ζ) ∈ Lζ . We say 
L is a C s section of L over W if L is a section of L over W and L is a C s complex 
vector field on W .

Definition 6.18. Let L be a C s+1 sub-bundle of CTM . We say L is a C s+1 formally 
integrable structure if the following holds. For all W ⊆ M open, and all C s+1 sections 
L1 and L2 of L over W , we have [L1, L2] is a section of L over W .

Definition 6.19. Let L be a C s+1 formally integrable structure on M . We say L is a 
C s+1 elliptic structure if Lζ + Lζ = CTζM , ∀ζ ∈ M .

For s ∈ (0, ∞] ∪ {ω}, on a C s+2 E-manifold of dimension (r, n), there is a naturally 
associated C s+1 elliptic structure on M defined as follows. Let (φα, Vα) be an E-atlas 
for M . For ζ ∈ M let ζ ∈ Vα for some α. We set:

Lζ := spanC
{
dΦ−1

α (Φα(ζ)) ∂

∂t1
, . . . , dΦ−1

α (Φα(ζ)) ∂

∂tr
, dΦ−1

α (Φα(ζ)) ∂

∂z1
, . . . ,

dΦ−1
α (Φα(ζ)) ∂

∂zn

}
.

It is straightforward to check that Lζ ⊆ CTx0M is well-defined16 and L =
⋃

ζ∈M Lζ is 
a C s+1 elliptic structure on M . As remarked above, an E-manifold of dimension (0, n)
is a complex manifold; in this case L equals T 0,1M .

Definition 6.20. We call L the elliptic structure associated to the E-manifold M .

Lemma 6.21. Suppose M and M̂ are C s E-manifolds with associated elliptic structures 
L and L̂ . Then a C s

loc map f : M → M̂ is a C s
loc E-map if and only if df(x)Lx ⊆ L̂f(x), 

∀x ∈ M .

Proof. This follows immediately from the definitions. �
16 I.e., Lζ does not depend on which α we pick with ζ ∈ Vα.
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It turns out that the elliptic structure L associated to the E-manifold M uniquely 
determines the E-manifold structure as the following theorem shows.

Theorem 6.22. Let s ∈ (0, ∞] ∪ {ω} and let M be a C s+2 manifold. For each ζ ∈ M , let 
Lζ be a vector subspace of CTζM , and let L =

⋃
ζ∈M Lζ . The following are equivalent:

(i) There is a C s+2 E-manifold structure M , compatible with its C s+2 structure, such 
that L is the C s+1 elliptic structure associated to M .

(ii) L is a C s+1 elliptic structure.

Moreover, under these conditions, the E-manifold structure given in (i) is unique in the 
sense that of M is given another C s+2 E-manifold structure, compatible with its C s+2

structure, with respect to which L is the associated elliptic sub-bundle, then the identity 
map M → M is a C s+2 E-diffeomorphism between these two C s+2 E-manifold structures 
on M .

Comments on the proof. The case s = ω of this result is classical. The case s = ∞
is due to Nirenberg [23]. In the special case of complex manifolds (i.e., E-manifolds of 
dimension (0, n)) this is the Newlander-Nirenberg Theorem [21] with sharp regularity, 
as proved by Malgrange [15]. The full result can be found in [33, Theorem 4.18]. �
6.1. CR manifolds

There is another, related, category of manifolds of substantial interest, where the 
original scaling maps of Nagel, Stein, and Wainger [19] have been widely used: CR 
manifolds. Theorem 6.22 characterizes E-manifolds as manifolds endowed with an elliptic 
structure. CR manifolds are defined in a similar way.

Definition 6.23. Let W be a C s+1 formally integrable structure on M . We say W is a 
C s+1 CR structure if Wζ ∩ Wζ = {0}, ∀ζ ∈ M .

Definition 6.24. A C s+2 CR manifold M is a C s+2 manifold M endowed with at C s+1

CR structure on M .

Notice that a CR structure, W , is an elliptic structure if and only if Wζ⊕Wζ = CTζM , 
∀ζ ∈ M . This is precisely the definition of a complex structure. There does not seem to 
be a natural way, given an arbitrary E-manifold, to see it as a CR manifold. Nor is there 
a natural way, given an arbitrary CR manifold, to see it as an E-manifold. Nevertheless, 
many of the classical examples of CR manifolds can be naturally given the structure of 
an E-manifold. Indeed, given a CR structure W , it is often the case that there is another 
sub-bundle, T , of CTM such that W ⊕ T is an elliptic structure.

The simplest example of this is the three dimensional Heisenberg group H1. As a man-
ifold, H1 is diffeomorphic to C×R and we give it coordinates (z, t) ∈ C×R. We give H1
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a CR structure by setting W(z,t) := spanC
{

∂
∂z − iz ∂

∂t

}
. By setting T(z,t) := spanC

{
∂
∂t

}
, 

we have W ⊕ T is an elliptic structure on H1. In many examples of CR manifolds one 
has a similar setting: there are local coordinates (z1, . . . , zn, t1, . . . , tr) ∈ Cn × Rr such 
that the CR structure, W , is contained in the span of ∂

∂z1
, . . . , ∂

∂zn
, ∂
∂t1

, . . . , ∂
∂tr

in such at 
way that if one takes T(z,t) := spanC

{
∂
∂t1

, . . . , ∂
∂tr

}
, then W ⊕T is an elliptic structure. 

See Section 8.4 for a discussion of one way the results of this paper can be applied to 
CR manifolds.

Remark 6.25. A major distinction between CR structures and elliptic structures is that 
elliptic structures of dimension (r, n) have a single canonical example. Indeed, Rr ×Cn

is naturally an E-manifold with associated elliptic structure L̂ given by

L̂ζ = spanC
{

∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂t1
, . . . ,

∂

∂tr

}
, ∀ζ ∈ Rr ×Cn.

Theorem 6.22 shows that given any elliptic structure L , there is a local coordinate 
system in which L is given by L̂ , where n + r = dim Lζ and r = dim

(
Lζ ∩ Lζ

)
(here, n and r are constant in ζ–see [33, Section 3]). Theorem 4.5 can be thought of 
as a quantitative, diffeomorphic invariant version of a coordinate system which sees an 
elliptic structure as this canonical example. Since there is no similar canonical example 
of a CR structure, it is not immediately clear what an analog of Theorem 4.5 would be 
for general CR structures.

7. Corollaries revisited

In this section, we generalize the results from Section 3 using the language of E-
manifolds. This unifies the complex and real settings.

7.1. Optimal smoothness

Let X1, . . . , Xq be real C1 vector fields on a connected C2 manifold M and let 
L1, . . . , Lm be complex C1 vector fields on M . For x ∈ M set

Lx := spanC{X1(x), . . . , Xq(x), L1(x), . . . , Lm(x)}, Xx := spanC{X1(x), . . . , Xq(x)}.
(7.1)

We assume:

• Lx + Lx = CTxM , ∀x ∈ M .
• Xx = Lx ∩ Lx, ∀x ∈ M .

Theorem 7.1 (The local theorem). Fix x0 ∈ M , s ∈ (1, ∞] ∪ {ω}, and set r := dim Xx0

and n + r := dim Lx0 . The following three conditions are equivalent:
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(i) There exists an open neighborhood V ⊆ M of x0 and a C2 diffeomorphism Φ : U →
V , where U ⊆ Rr ×Cn is open, such that ∀(t, z) ∈ U , 1 ≤ k ≤ q, 1 ≤ j ≤ m,

Φ∗Xk(t, z) ∈ spanR
{

∂

∂t1
, . . . ,

∂

∂tr

}
,

Φ∗Lj(t, z) ∈ spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
,

and Φ∗Xk ∈ C s+1(U ; Rr), Φ∗Lj ∈ C s+1(U ; Cr+n).
(ii) Reorder X1, . . . , Xq so that X1(x0), . . . , Xr(x0) are linearly independent, and 

reorder L1, . . . , Lm so that L1(x0), . . . , Ln(x0), X1(x0), . . . , Xr(x0) are linearly 
independent. Let Ẑ1, . . . , Ẑn+r denote the list X1, . . . , Xr, L1, . . . , Ln, and let 
Y1, . . . , Ym+q−(r+n) denote the list Xr+1, . . . , Xq, Ln+1, . . . , Lm. There exists an 
open neighborhood V ⊆ M of x0 such that:
• [Ẑj , Ẑk] =

∑n+r
l=1 ĉ1,lj,kẐl, and [Ẑj , Ẑk] =

∑n+r
l=1 ĉ2,lj,kẐl +

∑n+r
l=1 ĉ3,lj,kẐl, where ĉa,lj,k ∈

C s
X,L(V ), 1 ≤ j, k, l ≤ n + r, 1 ≤ a ≤ 3.

• Yj =
∑n+r

l=1 bljẐl, where blj ∈ C s+1
X,L (V ), 1 ≤ j ≤ m + q − (r + n), 1 ≤ l ≤ n + r.

Furthermore, the map x 
→ dim Lx, V → N is constant in x.
(iii) Let Z1, . . . , Zm+q denote the list X1, . . . , Xq, L1, . . . , Lm. There exists a neighbor-

hood V ⊆ M of x0 such that [Zj , Zk] =
∑m+q

l=1 c1,lj,kZl and [Zj , Zk] =
∑m+q

l=1 c2,lj,kZl +∑m+q
l=1 c3,lj,kZl, where ca,lj,k ∈ C s

X,L(V ), 1 ≤ a ≤ 3, 1 ≤ j, k, l ≤ m + q. Furthermore, 
the map x 
→ dim Lx, V → N is constant in x.

Theorem 7.2 (The global theorem). For s ∈ (1, ∞] ∪{ω} the following two conditions are 
equivalent:

(i) There exists a C s+2 E-manifold structure on M , compatible with its C2 structure, 
such that X1, . . . , Xq, L1, . . . , Lm are C s+1 vector fields on M and L (as defined in 
(7.1)) is the associated elliptic structure (see Definition 6.20).

(ii) For each x0 ∈ M , any of the three equivalent conditions from Theorem 7.1 hold for 
this choice of x0.

Furthermore, under these conditions, the C s+2 E-manifold structure in (i) is unique, in 
the sense that if M has another C s+2 E-manifold structure satisfying the conclusions 
of (i), then the identity map M → M is a C s+2 E-diffeomorphism between these two 
E-manifold structures. Finally, when s ∈ (1, ∞], there is a third equivalent condition:

(iii) Let Z1, . . . , Zm+q denote the list X1, . . . , Xq, L1, . . . , Lm. Then, [Zj , Zk] =∑m+q
l=1 c1,lj,kZl and [Zj , Zk] =

∑m+q
l=1 c2,lj,kZl +

∑m+q
l=1 c3,lj,kZl, where ∀x ∈ M , there 

exists an open neighborhood V ⊆ M of x such that ca,lj,k

∣∣
V

∈ C s
X,L(V ), 1 ≤ a ≤ 3, 

1 ≤ j, k, l ≤ m + q. Furthermore, the map x 
→ dim Lx, M → N is constant.
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Remark 7.3. For a discussion of results like Theorems 7.1 and 7.2 using the easier to 
understand Hölder spaces, see Section 14.

7.2. Sub-E geometry

Let M be a connected C∞ E-manifold of dimension (r, n) and let L be the associated 
elliptic structure. For x ∈ M , set Xx := Lx∩Lx, so that r = dim Xx and n +r = dim Lx, 
∀x ∈ M . Fix a strictly positive C∞ density ν on M .17 Suppose X1, . . . , Xq are C∞

real vector fields on M and L1, . . . , Lm are C∞ complex vector fields on M such that 
Xx = spanC{X1(x), . . . , Xq(x)} and Lx = spanC{X1(x), . . . , Xq(x), L1(x), . . . , Lm(x)}, 
∀x ∈ M .

To each Xk, we assign a formal degree βk ∈ [1, ∞), and to each Lj we assign a formal 
degree βj+q ∈ [1, ∞). We let Z1, . . . , Zm+q denote the list X1, . . . , Xq, L1, . . . , Lm, so 
that Zj has assigned formal degree βj .

We assume:

[Zj , Zk] =
∑

βl≤βj+βk

c1,lj,kZl, [Zj , Zk] =
∑

βl≤βj+βk

c2,lj,kZl+
∑

βl≤βj+βk

c3,lj,kZl, ca,lj,k ∈ C∞(M).

(7.2)
For δ ∈ (0, 1] write δβX for the list δβ1X1, . . . , δβqXq and write δβL = δβq+1L1, . . . ,
δβq+mLm. Using the notation from Section 4 it makes sense to write, for K ∈ I(r1, q), 
J ∈ I(n1, m), 

(∧
(δβX)K

)∧ (∧
(δβL)J

)
. We assume: ∀K � M compact, ∃ζ ∈ (0, 1] such 

that ∀x ∈ K, δ ∈ (0, 1], ∃K0(x, δ) ∈ I(r, q), J0(x, δ) ∈ I(n, m) such that

sup
x∈K

δ∈(0,1]

max
K∈I(r1,q),J∈I(n1,m)

r1+n1=r+n

∣∣∣∣∣
(∧

(δβX(x))K
)∧ (

(δβL(x))J
)(∧

(δβX(x))K0(x,δ)
)∧ (

(δβL(x))J0(x,δ)
) ∣∣∣∣∣ ≤ ζ−1. (7.3)

Remark 7.4. The existence of K0(x, δ), J0(x, δ), and ζ as in (7.3) does not follow from 
the other hypotheses. However, it is immediate to see that if r = 0 or n = 0, one may 
always find J0(x, δ) and K0(x, δ) so that (7.3) holds with ζ = 1. This accounts for the 
two most important special cases: the ones in Sections 3.2.1 and 3.2.2.

Under these hypotheses, we will study two metrics on M (and show these two metrics 
are equivalent on compact sets). The first metric is a standard sub-Riemannian metric 
and we will define it in two different ways, denoted by ρS and ρF . We will show that 
ρS = ρF . Both of the definitions ρS and ρF are defined extrinsically: they are defined 
by using the underlying manifold structure on M using maps which are not necessarily 
E-maps. The second metric, ρH , has a definition which is similar to that of ρF , but it is 
defined intrinsically on M : it is defined entirely within the category of E-manifolds.

17 The results that follow are local and do not depend on the choice of density.
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For x ∈ M , δ > 0 set BS(x, δ) := BδβX,δβL(x, 1) (where the later ball is defined in 
(2.4)) and set ρS(x, y) := inf{δ > 0 : y ∈ BS(x, δ)}.

Let (W1, d1), . . . , (W2m+q, d2m+q) denote the list of vector fields with formal degrees

(X1, β1), . . . , (Xq, βq), (2Re(L1), βq+1), . . . , (2Re(Lm), βq+m), (2Im(L1), βq+1), . . . ,

(2Im(Lm), βq+m).

We say ρF (x, y) < δ if and only if ∃K ∈ N, C∞ functions f1, . . . , fK : BR(1/2) → M , 
and δ1, . . . , δK > 0 with 

∑K
j=1 δj ≤ δ, such that:

• f ′
j(t) =

∑2m+q
l=1 slj(t)δ

dl
j Wl(fj(t)), with ‖

∑
l |slj |2‖L∞(BR(1/2)) < 1.

• fj(BR(1/2)) ∩ fj+1(BR(1/2)) �= ∅, 1 ≤ j ≤ K − 1.
• x ∈ f1(BR(1/2)), y ∈ fK(BR(1/2)).

Set BF (x, δ) := {y ∈ M : ρF (x, y) < δ}.
Finally, we define ρH . We say ρH(x, y) < δ if and only if ∃K ∈ N, C∞ E-maps 

f1, . . . , fK : BR×C(1/2) → M , and δ1, . . . , δK with 
∑K

j=1 δj ≤ δ, such that:

(1) Because fj is an E-map, we may write

dfj(t, z)
∂

∂t
=

q∑
k=1

skj,1(t, z)δ
βk

j Xk(fj(t, z)) +
m∑
l=1

sl+q
j,1 (t, z)δβl+q

j

2√
2
Ll(fj(t, z)),

dfj(t, z)
2√
2
∂

∂z
=

q∑
k=1

skj,2(t, z)δ
βk

j Xk(fj(t, z)) +
m∑
l=1

sl+q
j,2 (t, z)δβl+q

j

2√
2
Ll(fj(t, z)).

The choice of sj ’s is not necessarily unique. Let Sj(t, z) denote the (q + 2m) × 3
matrix such that the (l, a) component of Sj(t, z) is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
slj,a(t, z), 0 ≤ l ≤ m + q, a = 1, 2
0, m + q + 1 ≤ l ≤ 2m + q, a = 1, 2
slj,a(t, z), 0 ≤ l ≤ q or m + q + 1 ≤ l ≤ 2m + q, a = 3
0, q + 1 ≤ l ≤ m + q, a = 3.

In particular, Sj(t, z) is a matrix representation of dfj(t, z) thought of as taking the 
basis ∂

∂t , 
2√
2

∂
∂z , 

2√
2

∂
∂z to the spanning set

δβ1
j X1, . . . , δ

βq

j Xq, δ
βq+1
j

2√
2
L1, . . . , δ

βq+m

j

2√
2
Lm, δ

βq+1
j

2√
2
L1, . . . , δ

βq+m

j

2√
2
Lm.

We assume
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‖Sj‖L∞(BR×C(1/2);M(q+2m)×3) < 1.

The choice of Sj may not be unique,18 and we only ask for the existence of such an Sj.
(2) fj(BR×C(1/2)) ∩ fj+1(BR×C(1/2)) �= ∅, 1 ≤ j ≤ K − 1.
(3) x ∈ f1(BR×C(1/2)), y ∈ fK(BR×C(1/2)).

Set BH(x, δ) := {y ∈ M : ρH(x, y) < δ}.

Remark 7.5. A consequence of (1) is the following. We identify R × C with R3 in the 
usual way. Let Ŝj(t, x1, x2) be a (2m + q) × 3 matrix representation of dfj(t, x1, x2)
thought as taking the basis ∂

∂t , 
∂

∂x1
, ∂
∂x2

to the spanning set δd1
j W1(fj(t, x1, x2), . . . ,

δ
d2m+q

j W2m+q(fj(t, x1, x2)). Then if (1) holds we may choose Ŝj so that

‖Ŝj‖L∞(BR3 (1/2);M(q+2m)×3) < 1. (7.4)

Define, for x ∈ M , δ > 0,

Λ(x, δ) := max
j1,...,j2n+r∈{1,...,2m+q}

ν(x)(δdj1Wj1(x), . . . , δdj2n+rWj2n+r
(x)).

Theorem 7.6.

(a) ∀x, y ∈ M , ρS(x, y) = ρF (x, y) ≤ ρH(x, y).

Fix a compact set K � M . We write A � B for A ≤ CB, where C is a positive constant 
which can be chosen independent of x, y ∈ K, δ > 0. We write A ≈ B for A � B and 
B � A. There exists δ1 ≈ 1 such that:

(b) ρH(x, y) � ρS(x, y), and therefore ρS and ρH are equivalent on compact sets.
(c) ν(BS(x, δ)) ≈ ν(BH(x, δ)) ≈ Λ(x, δ), x ∈ K, δ ∈ (0, δ1].
(d) ν(BS(x, 2δ)) � ν(BS(x, δ)), ∀x ∈ K, δ ∈ (0, δ1/2]; the same holds with BS replaced 

by BH .19

For each x ∈ K, δ ∈ (0, 1], there exists a C∞ E-map Φx,δ : BRr×Cn(1) → BS(x, δ) such 
that

(e) Φx,δ(BRr×Cn(1)) ⊆ M is open and Φx,δ : BRr×Cn(1) → Φ(BRr×Cn(1)) is a C∞

diffeomorphism.
(f) Φ∗

x,δν = hx,δσLeb, where σLeb denotes the usual Lebesgue density on Rr × Cn, 
hx,δ ∈ C∞(BRr×Cn(1)), and ‖hx,δ‖Cm(BRr×Cn (1)) � Λ(x, δ), ∀m (where the implicit 

18 The choice of Sj is not unique if m + q > n + r.
19 This is the key estimate that shows that the balls BS(x, δ), when paired with the density ν, locally give 
a space of homogeneous type.
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constant may depend on m). Also, hx,δ(t, z) ≈ Λ(x, δ), ∀(t, z) ∈ BRr×Cn(1), where 
the implicit constant does not depend on x ∈ K, δ ∈ (0, 1], or (t, z) ∈ BRr×Cn(1).

Let Ẑx,δ
j := Φ∗

x,δδ
βjZj, so that Ẑx,δ

j is a C∞ vector field on BRr×Cn(1).

(g) Ẑx,δ
j (t, z) ∈ spanC

{
∂
∂t1

, . . . , ∂
∂tr

, ∂
∂z1

, . . . , ∂
∂zn

}
, ∀(t, z) ∈ BRr×Cn(1).

In light of (g), we may think of Ẑx,δ
j as a map BRr×Cn(1) → Cr+n, and we henceforth 

do this.

(h) Ẑx,δ
1 (t, z), . . . , Ẑx,δ

m+q(t, z) span spanC
{

∂
∂t1

, . . . , ∂
∂tr

, ∂
∂z1

, . . . , ∂
∂zn

}
uniformly in t, z,

x, δ in the sense that

max
j1,...,jn+r∈{1,...,m+q}

inf
(t,z)∈BRr×Cn (1)

∣∣∣det
(
Ẑx,δ
j1

(t, z)| · · · |Ẑx,δ
jn+r

(t, z)
)∣∣∣ ≈ 1,

∀x ∈ K, δ ∈ (0, 1].

In fact, for x ∈ K, δ ∈ (0, 1],

max
k1,...,kr∈{1,...,q}
j1,...,jn∈{1,...,m}

inf
(t,z)∈BRr×Cn (1)∣∣det

(
Φ∗

x,δδ
βk1Xk1(t, z)| · · · |Φ∗

x,δδ
βkrXkr

(t, z)|Φ∗
x,δδ

βj1+qLj1(t, z)|
· · · |Φ∗

x,δδ
βjn+qLjn(t, z)

)∣∣ ≈ 1.

(i) ‖Ẑx,δ
j ‖Ck(BRr×Cn (1);Cr+n) � 1, ∀x ∈ K, δ ∈ (0, 1] (where the implicit constant may 

depend on k ∈ N).
(j) ∃R ≈ 1 such that Φx,δ(BRr×Cn(1)) ⊆ BH(x, Rδ), x ∈ K, δ ∈ (0, 1].
(k) ∃ε ≈ 1 such that BS(x, εδ) ⊆ Φx,δ(BRr×Cn(1)) ⊆ BS(x, δ), x ∈ K, δ ∈ (0, 1].

Remark 7.7. In Theorem 7.6 we stated a result for C∞ vector fields. A similar result, 
with a similar proof, can be stated for real analytic vector fields, where one can ensure 
the map Φx,δ is real analytic and the vector fields Ẑx,δ

j are real analytic in a quantitative 
way. This proceeds by using the case s0 = ω in Theorem 4.5 (instead of s0 ∈ (1, ∞)). 
In the setting of real vector fields, this was done in [32]. We leave the details to the 
interested reader.

Remark 7.8. In this section, we described geometries where the vector fields at scale 
δ where given by δβ1X1, . . . , δβqXq, δβq+1L1, . . . , δβq+mLm, for some fixed vector fields 
X1, . . . , Xq, L1, . . . , Lm. It is straightforward to generalize Theorem 7.6 to work in a 
setting where the vector fields have a more complicated dependance on δ. In this setting, 
one would take, for each δ ∈ (0, 1], a collection of vector fields Xδ

1 , . . . , X
δ
q , L

δ
1, . . . , L

δ
m
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and place appropriate axioms on these vector fields so that the proof of Theorem 7.6
works uniformly for δ ∈ (0, 1]. This approach was described in the real setting in [27,32]. 
An example in the complex setting is described in Section 8. Using the same ideas, 
the results in this paper generalize the result in the multi-parameter stetting of [28]. 
Here, we fix some μ ∈ N, μ ≥ 1 and for each δ ∈ (0, 1]μ we are given vector fields 
Xδ

1 , . . . , X
δ
q , L

δ
1, . . . , L

δ
m and proceed in the same way. We leave further details to the 

interested reader.

Remark 7.9. The assumption that the vector fields are C∞ is not essential. In fact, 
because Theorem 4.5 is stated for C1 vector fields, one need only assume the given vector 
fields are C1. Then, as in Remark 7.8, one assumes that the hypotheses of Theorem 4.5
hold uniformly in the relevant parameters. See [27, Section 7.3] for a description of this 
in the real setting.

8. An example from several complex variables

In Sections 1.2.2, 3.2, and 7.2 we described how to use the coordinate system Φ from 
Theorem 4.5 as a generalized scaling map. In these settings, we applied Theorem 4.5 to 
a family of vector fields which depended on δ ∈ (0, 1]. For example, in Section 3.2.2, the 
vector fields were δβ1L1, . . . , δβmLm, where L1, . . . , Lm were sections of T 0,1M satisfying 
certain properties (and M was a complex manifold). In these settings, the vector fields 
depend on δ in a very simple way; and we presented results in these settings for simplicity. 
However, Theorem 4.5 allows one to consider vector fields which depend on δ (and on the 
base point) in much more complicated ways. This can be important in applications, and 
to describe these ideas we present an important setting which arises in several complex 
variables: extremal bases.

Extremal bases were first used by McNeal [16] to study Bergman kernels and invariant 
metrics associated to convex domains of finite type; see also [12]. More generally, extremal 
bases can be used to study lineally convex domains [9] (see also [4, Section 7.1]). They can 
also be used to study Bergman and Szegö kernels and invariant metrics on pseudoconvex 
domains of finite type with comparable eigenvalues [14,5,6,7]. Finally, they have been 
used to study pseudoconvex domains of finite type with locally diagonalizable Levi forms 
[3,2,4]. All of these settings have been generalized to one abstract setting by Charpentier 
and Dupain [4]. The presentation below is closely related to the ideas of [4], though 
expressed in a different way.

As can be seen from the above mentioned works, extremal bases are closely related 
to a notion of distance in many complex domains; and scaling techniques are central in 
using extremal bases to study objects like Bergman and Szegö kernels (many of the above 
papers use some kind of scaling). See [17] for a particularly straightforward explanation 
of the form scaling takes in some of these examples. In this section, we show how to use 
Theorem 4.5 to understand this scaling in a more abstract way. The idea is to rephrase 
the notion of an extremal basis in a way which is quantitatively invariant under arbitrary 
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biholomorphisms. We hope that this will give the reader some idea of how to apply the 
results of this paper to questions in several complex variables, perhaps even beyond the 
setting of extremal bases.

Following the philosophy of this paper, we describe the scaling associated to extremal 
bases in three steps:

• Extremal bases at the unit scale: because we wish to scale a small scale into the 
unit scale, first we must introduce what we mean by the unit scale. This is the 
setting where classical techniques from several complex variables can be used to 
prove estimates.

• Extremal bases in a biholomorphic invariant setting: using Theorem 4.5, we rephrase 
the unit scale from the previous point in a way which is quantitatively invariant 
under arbitrary biholomorphisms. Because of this, we completely remove the notion 
of “scale,” because that notion depends on a choice of coordinate system.

• Extremal bases at small scales: here we introduce the notion of extremal bases at 
small scales, by seeing it as a special case of the biholomorphically invariant version 
of the previous point. Because of this, it will immediately follow that the setting of 
small scales is biholomorphically equivalent to the unit scale.

After introducing these three steps, we describe the similar setting of CR manifolds.
Though it will not play a role in our discussion, the setting to keep in mind is the 

following. M is a complex manifold, and Ω = {ζ ∈ M : ρ(ζ) < 0} is relatively compact 
domain, where ρ ∈ C∞(M; R) is a defining function of Ω such that dρ(ζ) �= 0, ∀ζ ∈
∂Ω = {ρ = 0}. All of the above mentioned papers concern pseudoconvex domains near 
points of finite type.

While the scaling maps of Nagel, Stein, and Wainger [19] have long been used in such 
problems (see, e.g., [14]), we will see that the results of this paper allow us to have similar 
scaling maps which are holomorphic, as opposed to the smooth maps given in [19]; thus 
they do not destroy the complex nature of the problem.

Remark 8.1. Other than a new way of viewing extremal bases, the perspective here 
may not bring much new to this well-studied concept. However, we hope the general 
outline may be useful for other problems in several complex variables. Indeed, as we 
will explain, the idea is to take a known result at the unit scale, rewrite it in a way 
which is quantitatively invariant under biholomorphisms (using Theorem 4.5). This then 
automatically gives a quantitative result at small scales, since the notion of scale is not 
invariant under biholomorphisms.

8.1. Extremal bases at the unit scale

Fix n ∈ N and let ρ ∈ C∞(BCn(1); R) satisfy ρ(0) = 0 and dρ(ζ) �= 0, ∀ζ ∈ BCn(1). 
Let Ln be a smooth section of T 0,1BCn(1) (i.e., Ln is a complex vector field spanned by 



46 B. Street / Advances in Mathematics 368 (2020) 107137
∂
∂z1

, . . . , ∂
∂zn

) be such that Lnρ(ζ) �= 0, ∀ζ ∈ BCn(1). For example, one often takes

Ln =
n∑

j=1

∂ρ

∂zj

∂

∂zj
,

so that Lnρ =
∑∣∣∣ ∂ρ

∂zj

∣∣∣2.
Let L1, . . . , Ln−1 be smooth sections of T 0,1BCn(1) such that Ljρ = 0 on BCn(1), 

and such that L1(ζ), . . . , Ln(ζ) span T 0,1
ζ BCn , ∀ζ ∈ BCn(1). Given θ = (θ1, . . . , θn−1) ∈

Cn−1 with |θ| = 1, set Lθ =
∑n−1

j=1 θjLj . Set Zθ
1 = {[Lθ, Lθ]}, and recursively set 

Zθ
j = {[Lθ, Z], [Lθ, Z] : Z ∈ Zθ

j−1} for j ≥ 2.

Definition 8.2. We say L1, . . . , Ln, ρ is an extremal system if there exists K ∈ N such 
that

{L1, . . . , Ln−1, L1, . . . , Ln−1, Ln}
⋃⎛⎝ K⋃

j=1
Zθ

j

⎞⎠
spans CTζBCn(1), ∀ζ ∈ BCn(1), |θ| = 1.

Along with an extremal system, strictly plurisubharmonic functions are often used. 
Thus, we assume we are given a function H ∈ C3(BCn(1); R) such that ∂∂H is strictly 
positive definite on BCn(1).

Remark 8.3. Given an extremal system and plurisubharmonic function, as above, there 
are many estimates one can prove using now standard techniques (usually, this occurs 
under the additional qualitative assumption that the domain is weakly pseudoconvex, see 
the above mentioned works for details). These estimates often depend on the following 
quantities (or something similar):

(i) Upper bounds for n and K.
(ii) Upper bounds for ‖ρ‖CN (BCn (1)) and max1≤j≤n ‖Lj‖CN (BCn (1);Cn), where N can 

be chosen to depend only on upper bounds for K, n, and the particular estimate 
being shown.

(iii) A lower bound, > 0, for infζ∈BCn (1) |Lnρ(ζ)|.
(iv) A lower bound, > 0, for infζ∈BCn (1) |det(L1(ζ)| · · · |Ln(ζ))|, where this matrix has 

columns L1, . . . , Ln, written in terms of ∂
∂z1

, . . . , ∂
∂zn

.
(v) A lower bound, > 0, for

inf
ζ∈BCn (1)

max
Z∈

⋃K
j=1 Zθ

j

∣∣∣∣det
(
L1(ζ)| · · · |Ln(ζ)|L1(ζ)| · · · |Ln−1(ζ)|Z(ζ)

)∣∣∣∣ ,

|θ|=1
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where in the above matrix, the vector fields are written in terms of ∂
∂z1

, . . . , ∂
∂zn

, ∂
∂z1

,

. . . , ∂
∂zn

.
(vi) An upper bound for ‖H‖C3(BCn (1)).
(vii) A lower bound, > 0, for the quadratic form ∂∂H on BCn(1). Equivalently, using (ii) 

and (iv), for ω = (ω1, . . . , ωn) ∈ Cn with |ω| = 1, set Lω =
∑

ωjLj . The estimates 
may depend on a lower bound, > 0, for:

inf
ζ∈BCn (1)

|ω|=1

〈
∂∂H(ζ);Lω(ζ), Lω(ζ)

〉
. (8.1)

Thus, if one has an infinite collection of extremal systems and plurisubharmonic func-
tions, such that the above quantities can be chosen uniformly over this infinite collection, 
then one can prove the above mentioned estimates, uniformly over the infinite collection. 
See [17] for some easy to understand examples of such estimates. Note that all of the 
above quantities except for (i) depend on the choice of coordinate system: if one applies 
a biholomorphism to this setting, it destroys all of the above constants. The next section 
fixes this problem.

Remark 8.4. In (vii), we assumed that the quadratic form ∂∂H was bounded away from 0. 
In the famous work of Catlin [1], subelliptic estimates are shown using plurisubharmonic 
functions where this bound can be chosen very large. While the form being positive 
definite does not depend on the choice of holomorphic coordinate system, the lower 
bound for the form does depend on the choice of coordinate system. In Section 8.3, we 
will assume the existence of a plurisubharmonic function adapted to each scale; those 
adapted to a small scale will have a large lower bound when viewed in a fixed coordinate 
system independent of the scale (see Remark 8.8).

8.2. Extremal bases invariant under biholomorphisms

In this section, we present extremal bases again. Qualitatively, this is exactly the same 
as what is written in Section 8.1; the difference here is that our quantitative assumptions 
will be written in a way which is invariant under biholomorphisms (as opposed to the 
quantitative assumptions in Remark 8.3 which depended on the choice of coordinate 
system).

Let M be a complex manifold of complex dimension n. Fix a point ζ0 ∈ M and 
ρ ∈ C∞(M; R) with ρ(ζ0) = 0. Let L1, . . . , Ln be smooth sections of T 0,1M and fix 
ξ > 0. We take the following assumptions and definitions:

(i) ∀ζ ∈ BL(ζ0, ξ), spanC{L1(ζ), . . . , Ln(ζ)} = T 0,1M.
(ii) c1 := infζ∈BL(ζ0,ξ) |Lnρ(ζ)| > 0.
(iii) For 1 ≤ j ≤ n − 1, Ljρ(ζ) = 0 for ζ ∈ BL(ζ0, ξ).
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(iv) Due to (i), we may write [Lj , Lk] =
∑n

l=1 c
1,l
j,kLl and [Lj , Lk] =

∑n
l=1 c

2,l
j,kLl +∑n

j=1 c
3,l
j,kLl. For each N ∈ N, take CN (which we assume to be finite20) so that

‖ca,lj,k‖CN
L (BL(ζ0,ξ)),

N∑
m=1

‖Lm
n ρ‖C(BL(ζ0,ξ)) ≤ CN , 1 ≤ j, k, l ≤ n, 1 ≤ a ≤ 3.

(v) For each θ ∈ Cn−1 with |θ| = 1, define Zθ
j in terms of L1, . . . , Ln−1 as in Section 8.1. 

We assume that there exists K ∈ N such that ∀ζ ∈ BL(ζ0, ξ),

Ln(ζ) =
n∑

j=1
a1,θ
j (ζ)Lj(ζ) +

n−1∑
j=1

a2,θ
j (ζ)Lj(ζ) +

∑
Z∈

⋃K
j=1 Zθ

j

bθZ(ζ)Z(ζ),

with

D := sup
ζ∈BL(ζ0,ξ)

|θ|=0,Z∈
⋃K

j=1 Zθ
j

|a1,θ
j (ζ)| + |a2,θ

j (ζ)| + |bθZ(ζ)| < ∞.

(vi) Let η, δ0 > 0 be as in Theorem 4.5. In applications, usually L1, . . . , Ln are often 
given in a coordinate system in which their C1 norms are very small, and then η
and δ0 can be bounded below in terms of the C1 norms in this coordinate system 
(see, e.g., Lemma 4.13 and the discussion following it).

(vii) We suppose we are given a function H ∈ C3
L(BL(ζ0, ξ); R). For ω ∈ Cn with |ω| = 1, 

define Lω =
∑n

j=1 ωjLj . We assume,

c2 := inf
ζ∈BL(ζ0,ξ)

|ω|=1

〈
∂∂H(ζ);Lω(ζ), Lω(ζ)

〉
> 0.

Proposition 8.5. In the above setting, there is a biholomorphism Φ : BCn(1) →
Φ(BCn(1)) ⊆ BL(ζ0, ξ), with Φ(0) = ζ0, such that Φ∗L1, . . . , Φ∗Ln, Φ∗ρ is an extremal 
system with plurisubharmonic function Φ∗H. Moreover, all of the estimates described in 
Remark 8.3 can be bounded in terms of upper bounds for n, K, c−1

1 , CN (where N can 
be chosen to depend only on n, K, and the particular estimate being shown), D, η−1, 
δ−1
0 , ξ−1, c−1

2 , and ‖H‖C3
L(BL(ζ0,ξ)).

Proof. This follows immediately from Theorem 4.5 (and that theorem includes more 
properties of Φ), by applying the theorem to L1, . . . , Ln (we are talking m = n and 
q = 0)–that Φ is holomorphic is the essence of Remark 4.6.

20 CN can always be chosen to be finite, so long as BL(ζ0, ξ) is relatively compact in M, which can be 
guaranteed by taking ξ small enough; though it is the particular value of CN which is important, not just 
that it is finite.
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There are two parts which do not follow directly from the statement of Theo-
rem 4.5. To estimate ‖Φ∗ρ‖CN (BCN (1)) we would like to have estimates on ‖ρ‖CN

L (BL(ζ0,ξ)). 
To obtain this, note that it follows easily from (iii) and (iv) that ‖ρ‖CN

L (BL(ζ0,ξ)) ≈∑N
m=1 ‖Lm

n ρ‖C(BL(ζ0,ξ)) ≤ CN .
The other part that does not follow directly from the statement of Theorem 4.5 is a 

lower bound for (8.1). The key here is that this quantity is invariant under biholomor-
phisms. Indeed, since Φ is a biholomorphism,〈

∂∂(Φ∗H)(z); (Φ∗Lω)(z), (Φ∗Lω)(z)
〉

=
〈
∂∂H(Φ(z));Lω(Φ(z)), Lω(Φ(z))

〉
.

Thus, (8.1) is bounded below by c2. �
Definition 8.6. Let I be an index set, and suppose for each ι ∈ I, we are given Mι, ζι0, 
Lι

1, . . . , L
ι
n, ρι, and Hι as above, satisfying the above estimates uniformly (i.e., there 

are upper bounds for the quantities discussed in Proposition 8.5 which can be chosen 
independent of ι). We say that the collection Lι

1, . . . , L
ι
n, ζι0, ρι, Hι is an extremal system 

with adapted plurisubharmonic function, uniformly in ι.

Remark 8.7. Combining Definition 8.6 and Proposition 8.5, we see that if Lι
1, . . . , L

ι
n, 

ζι0, ρι, Hι is an extremal system with adapted plurisubharmonic function, uniformly in 
ι, then for each ι ∈ I, there exists a biholomorphism Φι : BCn(1) → Φι(BCn(1)) ⊆
Mι, with Φι(0) = ζι0 such that Φ∗

ιL
ι
1, . . . , Φ∗

ιL
ι
n, Φ∗

ι ρ
ι, Φ∗

ιH
ι is an extremal system 

with plurisubharmonic function on BCn(1), satisfying all of the estimates outlined in 
Remark 8.3, uniformly in ι.

8.3. Extremal bases at small scales

Let M be a complex manifold of complex dimension n and fix ζ0 ∈ M, and let 
ρ ∈ C∞(M; R). Let K ⊆ {ζ ∈ M : ρ(ζ) = 0}, and suppose Ln is a smooth section of 
T 0,1M such that infζ∈K |Lnρ(ζ)| > 0. To work at scale δ ∈ (0, 1], we wish to replace ρ
with δ−2ρ and Ln with δ2Ln.

To do this, we assume that for each δ ∈ (0, 1], ζ0 ∈ K, we are given smooth sections of 
T 0,1M defined near ζ0, Lδ,ζ

1 , . . . , Lδ,ζ
n−1, and a real valued smooth function Hζ0,δ defined 

near ζ0, such that

Lδ,ζ0
1 , . . . , Lδ,ζ0

n−1, δ
2Ln, δ

−2ρ,Hζ0,δ, ζ0

is an extremal system with adapted plurisubharmonic function, uniformly in δ ∈ (0, 1], 
ζ0 ∈ K. Thus, using Remark 8.7, for each δ ∈ (0, 1], ζ0 ∈ K, there is a bi-
holomorphism Φζ0,δ : BCn(1) → Φζ0,δ(BCn(1)), with Φζ0,δ(0) = ζ0 and such that 
Φ∗

ζ0,δ
Lδ,ζ0

1 , . . . , Φ∗
ζ0,δ

Lδ,ζ0
n−1, Φ∗

ζ0,δ
δ2Ln, Φ∗

ζ0,δ
δ−2ρ, Φ∗

ζ0,δ
Hζ0,δ is an extremal system at the 

unit scale, uniformly in ζ0 ∈ K and δ ∈ (0, 1] (in the sense that the constants described 
in Remark 8.3 can be chosen uniformly in ζ0 and δ).
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If one imagines M has having some fixed coordinate system, independent of δ, then 
Φζ,δ takes points which look to be of distance ≈ δ2 from {ρ = 0} and “rescales” them to 
have distance ≈ 1 from {Φ∗

ζ,δρ = 0}.

Remark 8.8. In the coordinate system Φζ,δ, the quadratic form ∂∂Φ∗
ζ,δH

ζ,δ is bounded 
above and below, uniformly in ζ ∈ K, δ ∈ (0, 1]. However, if one starts with a fixed coor-
dinate system on M (independent of δ ∈ (0, 1]), then in terms of this coordinate system, 
∂∂Hζ,δ has a large lower bound (as δ → 0), since the vector fields Lδ,ζ

1 , . . . , Lδ,ζ
n−1, δ

2Ln

are small in this fixed coordinate system.

In applications, a major difficulty is showing such an extremal basis and adapted 
plurisubharmonic function exists at each scale. As mentioned before, this has been done 
in many settings, and was abstracted in [4]. Indeed, if L1, . . . , Ln is a (M, K, ζ, δ) extremal 
basis as in [4, Definition 3.1], then one can obtain an extremal basis at scale δ (in the 
sense discussed here) by considering F (L1, ζ, δ)−1/2L1, . . . , F (Ln−1, ζ, δ)−1/2Ln−1, δ2Ln

and δ−2ρ, where these terms are all defined in [4] (adapted plurisubharmonic functions 
are described in [4, Section 5]). While the results in this paper do not help find such 
an extremal basis, perhaps they will help make clear what to look for in other similar 
situations. Indeed, once one has a result on the unit scale, to translate the result to small 
scales it often suffices to write the unit scale result in a way which is invariant under 
biholomorphisms using Theorem 4.5, as we did in Section 8.2. Then one can immediately 
translate the setting to small scales as we did in Section 8.3.

8.4. CR manifolds

Instead of studying extremal bases on a neighborhood of a point on the boundary 
of a complex domain, one could try to work directly on the boundary by working with 
abstract CR manifolds; this is the approach taken, for example, in [14] (which addressed 
the “comparable eigenvalue” setting).

Let M be a smooth manifold of dimension 2n −1 endowed with a smooth CR structure 
W of rank n − 1 (so that W ⊕ W has codimension 1 in CTM). Fix a point ζ0 ∈ M and 
pick a smooth real vector field T , defined near ζ0, such that

Wζ0 + Wζ0 + spanC{T (ζ0)} = CTM.

If we pick smooth sections L1, . . . , Ln−1 of W near ζ0, these can play the role that the 
vector fields of the same name did in Section 8.2. We then take the same assumptions as 
(iv), (i), and (vi) from Section 8.2, where we replace Ln with T , Ln with 0, and remove 
ρ from (iv); thus we obtain constants ξ, CN , D, K, η, and δ0 as in those assumptions.

In this setting, Theorem 4.5 applies with X1, . . . , Xq = Re(L1), Im(L1), . . . , Re(Ln−1),
Im(Ln−1), T , to obtain a C∞ diffeomorphism21 Φ : BR×Cn−1(1) → Φ(BR×Cn−1(1)) with 

21 Throughout we identify R2n−1 with R × Cn−1.
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Φ(0) = ζ0 and such that Φ∗L1, . . . , Φ∗Ln−1, Φ∗T satisfy good estimates at the unit scale. 
Namely, we obtain Remark 8.3 (ii) and (v), where in (ii) we replace Ln with T and ρ
with 0, and in (v) we replace Ln with 0 and the vector fields are written in terms of 
the standard basis for vector fields on R × Cn−1 ∼= R2n−1–and these quantities can be 
estimated in terms of upper bounds for ξ−1, n, K, CN (where N can be chosen to depend 
only on n, K, and the estimate at hand), D, η−1, and δ−1

0 .
Thus, Theorem 4.5 allows us to rewrite a setting at the “unit scale” in a way which 

is invariant under arbitrary diffeomorphisms; which, as in Section 8.3, allows us to view 
these maps as scaling maps. In Section 8.2 we asked that the map be bioholomorphic. It 
does not make a priori sense to insist that the map Φ given here is a CR map because 
R × Cn−1 does not have a canonical CR structure. We could give BR×Cn−1(1) the CR 
structure Φ∗W , and then Φ is automatically a CR map, but this does not add much 
useful information.

However, in the special case that one can choose T so that the bundle Wζ + CT (ζ)
is formally integrable (and therefore an elliptic structure), then we can do more. In this 
case, we can choose Φ so that Φ∗L1, . . . , Φ∗Ln−1, Φ∗T are all spanned by ∂

∂z1
, . . . , ∂

∂zn
, ∂∂t

(where R × Cn−1 is given coordinates (t, z1, . . . , zn)). One can see this by applying 
Theorem 4.5 to the vector fields L1, . . . , Ln−1 and X1 = T (with m = n − 1 and q = 1). 
In many of the standard examples of CR manifolds, one can find such a T–see Section 6.1.

9. Function spaces revisited

In this section we present the basic properties of the function spaces introduced in 
Section 2; most of these properties were proved in [27,31,32], and we refer the reader to 
those references for proofs and a further discussion of the results not proved here. We 
take W1, . . . , WN to be real C1 vector fields on a C2 manifold M as in Section 2.

Lemma 9.1.

(i) For 0 ≤ s1 ≤ s2 ≤ 1, m ∈ N, ‖f‖Cm,s1
W (M) ≤ 3‖f‖Cm,s2

W (M).
(ii) ‖f‖Cm,1

W (M) ≤ ‖f‖Cm+1
W (M).

(iii) For s ∈ (0, 1], m ∈ N, ‖f‖C s+m
W (M) ≤ 5‖f‖Cm,s

W (M).
(iv) For 0 < s1 ≤ s2 < ∞, ‖f‖C

s1
W (M) ≤ 15‖f‖C

s2
W (M).

(v) If U ⊆ M is an open set, then ‖f‖Cm,s
W (U) ≤ ‖f‖Cm,s

W (M) and ‖f‖C s
W (U) ≤

‖f‖C s
W (M).

(vi) Cω,r(BRn(r)) ⊆ A n,r and ‖f‖A n,r ≤ ‖f‖Cω,r(BRn (r)).
(vii) A n,r ⊆ Cω,r/2(BRn(r/2)) and ‖f‖Cω,r/2(Bn(r/2)) ≤ ‖f‖A n,r .
(viii) Suppose W = W1, . . . , WN satisfies C(x0, r, M). Then, Cω,r

W (M) ⊆ A x0,r
W and 

‖f‖A
x0,r
W

≤ ‖f‖Cω,r
W (M).

(ix) For any s ∈ (0, r), Wj : Cω,r
W (M) → Cω,s

W (M). In particular, Wj : Cω
W (M) →

Cω
W (M).

(x) For any s ∈ (1, ∞] ∪ {ω}, Wj : C s
W (M) → C s−1

W (M).
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Proof. (i), (ii), (iii), (iv), and (v) are contained in [27, Lemma 8.1]. (vi), (vii), (viii), (ix) 
are contained in [32]. For s ∈ (1, ∞], (x) follows immediately from the definitions. For 
s = ω, (x) follows from (ix); where we are using the convention ω = ω − 1. �
Remark 9.2. Let Ω ⊆ Rn be an open set. In analogy with Lemma 9.1 (iii), for m ∈ N, 
s ∈ [0, 1] with m + s > 0, we have Cm,s(Ω) ⊆ Cm+s(Ω). If Ω is a bounded Lipschitz 
domain and s ∈ (0, 1), then we have the reverse containment as well Cm+s(Ω) ⊆ Cm,s(Ω)
(see [36, Theorem 1.118 (i)]). Because of this, one might hope for the reverse inequality 
to the one in Lemma 9.1 (iii) for s ∈ (0, 1). One can obtain such an estimate, but it 
requires additional hypotheses on the vector fields. This is discussed in [31].

Proposition 9.3. The spaces Cm,s
W (M), C s

W (M), Cm,s(Ω), C s(Ω), Cω,r
W (M), A x0,r

W , 
Cω,r(M), and A n,r are algebras. In fact, if Y denotes any one of these spaces, then

‖fg‖Y ≤ CY ‖f‖Y ‖g‖Y .

When Y ∈ {Cω,r
W (M), A x0,r

W , Cω,r(M), A n,r}, we may take CY = 1; i.e., these spaces 
are Banach algebras.22 When Y ∈ {Cm,s

W (M), C s
W (M), Cm,s(Ω), C s(Ω)}, these spaces 

have multiplicative inverses for functions which are bounded away from zero: if f ∈ Y

with infx |f(x)| ≥ c0 > 0, then f(x)−1 = 1
f(x) ∈ Y . Furthermore, ‖f(x)−1‖Y ≤ C where 

C can be chosen to depend only on Y , c0, and an upper bound for ‖f‖Y .

Proof. The proofs for Cm,s
W (M) and Cm,s(Ω) are straightforward and standard, and we 

leave the proofs to the reader. The results for C s
W (M) and C s(Ω) are in [27, Proposition 

8.3]. The results for Cω,r
W (M), A x0,r

W , Cω,r(M), and A n,r are in [32]. �
Remark 9.4. For s ∈ (0, ∞] ∪ {ω}, suppose A ∈ C s(Ω; Mk×k) is such that
inft∈Ω | detA(t)| > 0. Then it follows that A(·)−1 ∈ C s(Ω; Mk×k); where we write A(·)−1

for the function t 
→ A(t)−1. Indeed, for s ∈ (0, ∞], this follows from Proposition 9.3
using the cofactor representation of A(·)−1. For s = ω, this is standard. When s ∈ (0, ∞), 
‖A(·)−1‖C s(Ω) can be bounded in terms of s, k, n, a lower bound for inft∈Ω | detA(t)| > 0, 
and an upper bound for ‖A‖C s(Ω).

Lemma 9.5. Let D1, D2 > 0, s1 > 0, s2 ≥ s1, s2 > 1, f ∈ C s1(BRn(D1)), g ∈
C s2(BRm(D2); Rn) with g(BRm(D2)) ⊆ BRn(D1). Then, f ◦ g ∈ C s1(BRm(D2)) and 
‖f ◦ g‖C s1 (BRm (D2)) ≤ C‖f‖C s1 (BRn (D1)), where C can be chosen to depend only on s1, 
s2, D1, D2, m, n, and an upper bound for ‖g‖C s2 (BRm (D2)).

Proof. This is proved in [31]. �
22 This remains true for the analogous spaces taking values in a Banach algebra.
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Lemma 9.6. Let η1, η2 > 0, n1, n2 ∈ N, and let X be a Banach space. Suppose f ∈
A n1,η1(X ), g ∈ A n2,η2(Rn1) with ‖g‖A n2,η2 (Rn1 ) ≤ η1. Then, f ◦ g ∈ A n2,η2(X ) with 
‖f ◦ g‖A n2,η2 ≤ ‖f‖A n1,η1 .

Proof. This is immediate from the definitions. �
Lemma 9.7. Fix 0 < η2 < η1, and suppose f ∈ A n,η1(X ), where X is a Banach space. 
Then, for each j = 1, . . . , n, ∂

∂tj
f(t) ∈ A n,η2(X ) and ‖ ∂

∂tj
f‖A n,η2 ≤ C‖f‖A n,η1 , where 

C can be chosen to depend only on η1 and η2.

Proof. Without loss of generality, we prove the result for j = 1. We let e1 denote the 
first standard basis element: e1 = (1, 0, . . . , 0) ∈ Nn. Suppose f(t) =

∑
cα

tα

α! . Then, 
∂
∂t1

f(t) =
∑

α1>0 cα
tα−e1

(α−e1)! . Hence,

∥∥∥∥ ∂

∂t1
f

∥∥∥∥
A n,η2

=
∑
α1>0

|cα|
(α− e1)!

η
|α−e1|
2 =

∑
α

|cα|
α! η

|α|
1

(
η2

η1

)|α|
α1

η1

≤
(

sup
α

(
η2

η1

)|α|
α1

η1

)
‖f‖A n,η1 ,

completing the proof. �
Proposition 9.8. Let Y1, . . . , YN be C1 vector fields on an open ball B ⊆ Rn. Suppose 
Y1, . . . , YN span the tangent space at every point in the sense that for 1 ≤ j ≤ n,

∂

∂tj
=

N∑
k=1

bkjYk, bkj ∈ C(B).

Fix s ∈ (0, ∞] ∪{ω} and suppose Yk ∈ C s−1(B; Rn), bkj ∈ C s−1(B), ∀j, k. Then, C s(B) =
C s
Y (B). Here we use the convention that for s ∈ (−1, 0], C s(B) := C0,(s+1)/2(B).

Proof. The case s ∈ (0, ∞] is contained in [27, Proposition 8.12], while the case s = ω

is discussed in [32]. The case s = ω is part of a more general result due to Nelson [20, 
Theorem 2]. [27,32] also contain quantitative versions of this result. �
10. Proofs of corollaries

10.1. Optimal smoothness

In this section, we prove Theorems 7.1 and 7.2, and describe how Theorems 3.1, 3.3, 
3.5, and 3.6 are consequences of Theorems 7.1 and 7.2.
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Proof of Theorem 7.1. (i)⇒(ii): Suppose the conditions of (i) hold and without loss of 
generality we may assume 0 ∈ U and Φ(0) = x0; reorder the vector fields as in (ii). 
Because dim Xx0 = r and dim Lx0 = n + r, we have

spanR{Φ∗X1(0, 0), . . . ,Φ∗Xr(0, 0)} = spanR
{

∂

∂t1
, . . . ,

∂

∂tr

}
,

spanC{Φ∗X1(0, 0), . . . ,Φ∗Xr(0, 0),Φ∗L1(0, 0), . . . ,Φ∗Ln(0, 0)}

= spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
.

Writing XK0 for the column vector of vector fields [X1, . . . , Xr]	 and LJ0 for the column 
vector [L1, . . . , Ln]	 and using the hypotheses of (i), we may write

[
Φ∗XK0
Φ∗LJ0

]
= B

[
∂
∂t
∂
∂z

]
,

where B ∈ C s+1(U ; M(n+r)×(n+r)) is such that B(0, 0) is invertible. Letting U0 ⊆ U be 
a sufficiently small open ball centered at (0, 0), we have that | detB(t, z)| is bounded 
away from 0 on U0. Thus, on U0, B is invertible and B(·)−1 ∈ C s+1(U0; M(n+r)×(n+r))
(see Remark 9.4); and we have

B−1
[
Φ∗XK0
Φ∗LJ0

]
=
[

∂
∂t
∂
∂z

]
. (10.1)

Thus, for x ∈ Φ(U0),

dim Lx ≥ dim spanC{X1(x), . . . , Xr(x), L1(x), . . . , Ln(x)}

= dim spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
= n + r.

The hypothesis (i) implies for x ∈ Φ(U) = V ,

dim Lx = dim spanC{X1(x), . . . , Xq(x), L1(x), . . . , Lm(x)}

≤ dim spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
= n + r.

This shows that the map x 
→ dim Lx, Φ(U0) → N is the constant function n + r.
Since Φ∗Ẑj ∈ spanC{ ∂

∂t1
, . . . , ∂

∂tr
, ∂
∂z1

, . . . , ∂
∂zn

} we can think of Φ∗Ẑj as a function 

taking values in Cn+r. We have Φ∗Ẑj ∈ C s+1(U ; Cn+r), and therefore [Φ∗Ẑj , Φ∗Ẑk] ∈
C s(U ; Cn+r) and it follows from (10.1) and Proposition 9.3 that
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[Φ∗Ẑj ,Φ∗Ẑk] =
n+r∑
l=1

c̃1,lj,kΦ
∗Ẑl, c̃1,lj,k ∈ C s(U0). (10.2)

Similarly, since [Φ∗Ẑj , Φ∗Ẑk] ∈ C s(U ; C2n+r), we have

[Φ∗Ẑj ,Φ∗Ẑk] =
n+r∑
l=1

c̃2,lj,kΦ
∗Ẑl +

n+r∑
l=1

c̃3,lj,kΦ
∗Ẑl, c̃2,lj,k, c̃

3,l
j,k ∈ C s(U0). (10.3)

Furthermore, since Φ∗Yj(t, z) ∈ spanC
{

∂
∂t1

, . . . , ∂
∂tr

, ∂
∂z1

, . . . , ∂
∂zn

}
and Φ∗Yj ∈ C s+1(U ;

Cr+n), (10.1) and Proposition 9.3 imply

Φ∗Yj =
n+r∑
l=1

b̃ljΦ∗Ẑl, b̃lj ∈ C s+1(U0). (10.4)

Proposition 9.8, combined with (10.1), shows c̃a,lj,k ∈ C s(U0) = C s
Φ∗X,Φ∗L(U0) and b̃lj ∈

C s+1(U0) = C s+1
Φ∗X,Φ∗L(U0), ∀j, k, l, a. Let ĉa,lj,k := c̃a,lj,k ◦ Φ−1, blj := b̃lj ◦ Φ−1, and V0 :=

Φ(U0). Proposition 2.1 shows ĉa,lj,k ∈ C s
X,L(V0) and blj ∈ C s+1

X,L (V0). Pushing forward 
(10.2), (10.3), and (10.4) via Φ gives

[Ẑj , Ẑk] =
n+r∑
l=1

ĉ1,lj,kẐl, [Zj , Ẑk] =
n+r∑
l=1

ĉ2,lj,kẐl +
n+r∑
l=1

ĉ3,lj,kẐl, Yj =
n+r∑
l=1

bljẐl.

Along with the above remarks on ĉa,lj,k and blj , this completes the proof of (ii) with V
replaced by V0.

(ii)⇒(iii): Suppose (ii) holds. First, we wish to show that

[Zj , Zk] =
m+q∑
l=1

c1,lj,kZl, c1,lj,k ∈ C s
X,L(V ). (10.5)

Zj and Zk are each either of the form Ẑl or Yl for some l (where Ẑl and Yl are as in 
(ii)). When Zj and Zk are both of the form Ẑl for some l, (10.5) is contained in (ii). 
We address the case when Zj = Yl1 , Zk = Yl2 for some l1, l2. The remaining case (when 
Zj = Ẑl1 and Zk = Yl2) is similar, and we leave it to the reader. We have,

[Zj , Zk] = [Yl1 , Yl2 ] =
[∑

l3

bl3l1Ẑl3 ,
∑
l4

bl4l2Ẑl4

]

=
∑
l3,l4

bl3l1b
l4
l2

[Ẑl3 , Ẑl4 ] +
∑
l3,l4

bl3l1(Ẑl3b
l4
l2

)Ẑl4 −
∑
l3,l4

bl4l2(Ẑl4b
l3
l1

)Ẑl3 .

Using Lemma 9.1 (x) and Proposition 9.3, we have bl3l1(Ẑl3b
l4
l2

), bl4l2(Ẑl4b
l3
l1

) ∈ C s
X,L(V ). 

Also, we have
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∑
l3,l4

bl3l1b
l4
l2

[Ẑl3 , Ẑl4 ] =
∑
l3,l4

∑
l5

bl3l1b
l4
l2
ĉ1,l5l3,l4

Ẑl5 ,

and by Proposition 9.3, bl3l1b
l4
l2
ĉ1,l5l3,l4

∈ C s
X,L(V ). Combining the above remarks, we have

[Zj , Zk] =
n+r∑
l=1

c1,lj,kẐl, c1,lj,k ∈ C s
X,L(V ).

Since each Ẑl is of the form Zl′ for some l′, (10.5) follows. A similar proof shows

[Zj , Zk] =
∑
l

c2,lj,kZl +
∑
l

c3,lj,kZl, c2,lj,k, c
3,l
j,k ∈ C s

X,L(V ),

and we leave the details to the reader. This completes the proof of (iii).
(iii)⇒(i): This is a consequence of Theorem 4.5; and we include a few remarks on 

this. First, a choice of η, δ0 > 0 as in the hypotheses of Theorem 4.5 always exist; see 
Lemma 4.13. A choice of J0, K0, and ζ > 0 as in the hypotheses also always exist; see 
Remark B.6. We take ξ > 0 so small BX,L(x0, ξ) ⊆ V .

First we address the case s ∈ (1, ∞]. In this case, pick s0 ∈ (1, s] \ {∞} (the choice of 
s0 does not matter). We have, directly from the definitions

ca,lj,l ∈ C s
X,L(V ) ⊆ C s

X,L(BX,L(x0, ξ)) ⊆ C s
XK0 ,LJ0

(BXK0 ,LJ0
(x0, ξ))

⊆ C s0
XK0 ,LJ0

(BXK0 ,LJ0
(x0, ξ)).

Thus, all of the hypotheses of Theorem 4.5 hold for this choice of s0. The map guaranteed 
by Theorem 4.5 satisfies the conclusions of (i) and this completes the proof in the case 
s ∈ (1, ∞].

When s = ω, we wish to apply Theorem 4.5 in the case s0 = ω. There is a slight 
discrepancy between the hypotheses of Theorem 4.5 and (iii). Namely, we are currently 
assuming ca,lj,k ∈ Cω,r0

X,L (V ) for some r0 > 0, while Theorem 4.5 assumes ca,lj,k ∈ A x0,η
XK0 ,LJ0

and ca,lj,k is continuous near x0. However, ca,lj,k ∈ Cω,r0
X,L (V ) clearly implies ca,lj,k is continuous 

near x0, and using Lemma 9.1 (viii) we have Cω,η
X,L ⊆ Cω,η

XK0 ,LJ0
⊆ A x0,η

XK0 ,LJ0
, so by shrink-

ing η so that η ≤ r0, these hypotheses follow. With these remarks, Theorem 4.5 applies 
to yield the coordinate chart Φ as in that theorem, which satisfies all the conclusions of 
(i). This completes the proof. �

Before we prove Theorem 7.2, we require two lemmas.

Lemma 10.1. Fix s ∈ (0, ∞] ∪ {ω} and suppose M1 and M2 are C s+2 manifolds. Let 
Z1, . . . , ZN be complex C s+1 vector fields on M1 such that Z1, . . . ZN , Z1, . . . , ZN span 
the complexified tangent space to M1 at every point. Let Ψ : M1 → M2 be a C2 dif-
feomorphism such that Ψ∗Zj is a C s+1 vector field, ∀1 ≤ j ≤ N . Then, Ψ is a C s+2

diffeomorphism.
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Proof. By taking real an imaginary parts, it suffices to prove the result in the case 
Z1, . . . , ZN are real and span the tangent space at every point. In the case s ∈ (0, ∞], 
this is proved in [31]. In the case s = ω, this is proved in [32]. �
Lemma 10.2. 

(
T(t0,z0)(Rr ×Cn)

)
∩spanC

{
∂
∂t1

, . . . , ∂
∂tr

, ∂
∂z1

, . . . , ∂
∂zn

}
= spanR

{
∂
∂t1

, . . . ,

∂
∂tr

}
.

Proof. This is immediate. �
Proof of Theorem 7.2. (i)⇒(ii): The inverses of the coordinate charts from the atlas 
given in (i) satisfy the conditions in Theorem 7.1 (i) (this uses Lemma 10.2); and so (ii) 
follows.

(ii)⇒(i): Assume that (ii) holds. Using the characterization in Theorem 7.1 (iii), we 
have that x 
→ dim Lx, M → N is locally constant, and since M is connected, x 
→
dim Lx, M → N is constant. By the discussion in Section 4.2 we also have x 
→ dim Xx, 
M → N is constant. Set r := dim Xx and n +r := dim Lx (so that n and r do not depend 
on x, by the above discussion). Now, we use the characterization given in Theorem 7.1
(i). Thus, for each x ∈ M , there is a neighborhood Vx ⊆ M of x and a C2 diffeomorphism 
Φx : Ux → Vx, where Ux ⊆ Rr×Cn is open, such that ∀(t, z) ∈ Ux, 1 ≤ k ≤ q, 1 ≤ j ≤ m,

Φ∗
xXk(t, z) ∈ spanR

{
∂

∂t1
, . . . ,

∂

∂tr

}
,

Φ∗
xLj(t, z) ∈ spanC

{
∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
,

and Φ∗
xXk ∈ C s+1(Ux; Rr), Φ∗

xLj ∈ C s+1(Ux; Cr+n). Our desired atlas is {(Φ−1
x , Vx) :

x ∈ M}–once we show this is a C s+2 E-atlas, (i) will follow. For x, y ∈ M , set Ψx,y :=
Φ−1

y ◦ Φx : Φ−1
x (Vy ∩ Vx) → Uy; we wish to show that Ψx,y is a C s+2

loc E-map. Note that

dΨx,y(t, z)(Φ∗
xXk)(t, z) = (Φ∗

yXk)(Ψx,y(t, z)),

dΨx,y(t, z)(Φ∗
xLj)(t, z) = (Φ∗

yLj)(Ψx,y(t, z)), ∀j, k.
(10.6)

In other words,

(Ψx,y)∗Φ∗
xXk = Φ∗

yXk, (Ψx,y)∗Φ∗
xLj = Φ∗

yLj , ∀j, k. (10.7)

Since dim Ly = n + r, ∀y ∈ M , we have ∀(t, z) ∈ Ux,

spanC{Φ∗
xX1(t, z), . . . ,Φ∗

xXq(t, z),Φ∗
xL1(t, z), . . . ,Φ∗

xLm(t, z)}

= spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
.

(10.8)

Combining (10.8) and (10.6) shows that Ψx,y is an E-map. (10.8) implies
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Φ∗
xX1(t, z), . . . ,Φ∗

xXq(t, z),Φ∗
xL1(t, z), . . . ,Φ∗

xLm(t, z),Φ∗
xL1(t, z), . . . ,Φ∗

xLm(t, z)

span the complexified tangent space at every point of Ux. Since these vector fields are 
also C s+1 by hypothesis, (10.7) and Lemma 10.1 show that Ψx,y is C s+2

loc . This completes 
the proof of (i).

(iii)⇒(ii): This is obvious, and holds for s ∈ (0, ∞] ∪ {ω}.
(i)⇒(iii), for s ∈ (0, ∞]: Assuming that (i) holds (where M is an E-manifold of 

dimension (r, n)), a simple partition of unity argument shows that we may write 
[Zj , Zk] =

∑m+q
l=1 c1,lj,kZl and [Zj , Zk] =

∑m+q
l=1 c2,lj,kZl +

∑m+q
l=1 c3,lj,kZl, where ca,lj,k : M → C

and ca,lj,k are locally in C s. We wish to show ∀x0 ∈ M , ∃V ⊆ M open with x0 ∈ V and 

ca,lj,k

∣∣
V
∈ C s

X,L(V ). Fix x0 ∈ M and let W ⊆ M be a neighborhood of x0 such that there 
is a C s+2 diffeomorphism Φ : BRr×Cn(1) → W with Φ(0) = x0. Let Y1, . . . , Yq+2m de-
note the list Φ∗X1, . . . , Φ∗Xr, 2Φ∗Re(L1), . . . , 2Φ∗Re(Lm), 2Φ∗Im(L1), . . . , 2Φ∗Im(Lm). 
Y1, . . . , Yq+2m are C s+1 vector fields on BRr×Cn(1) and span the tangent space at ev-
ery point. We conclude Y1, . . . , Yq+2m satisfy all the hypotheses of Proposition 9.8 with 
B := BRr×Cn(1/2). Thus, by Proposition 9.8, ca,lj,k◦Φ ∈ C s(B) = C s

Y (B). Proposition 2.1
shows ca,lj,k ∈ C s

X,L(Φ(B)), completing the proof with V = Φ(B).
Finally, we turn to the uniqueness claimed in the theorem; that under the equiv-

alent hypotheses (i) and (ii), the E-manifold structure given in (i) is unique. Indeed, 
suppose there are two such structures on M . Under these conditions, the identity map 
M → M is C s+2

loc by Lemma 10.1 (here we have applied Lemma 10.1 with the vec-
tor fields X1, . . . , Xq, L1, . . . , Lm). That the identity map is a C s+2

loc E-map follows from 
Lemma 6.21. It follows that the identity map is a C s+2 E-diffeomorphism, as claimed. �
Proof of Theorems 3.1 and 3.3. In the setting of Theorems 3.1 and 3.3, because 
W1, . . . , WN span the tangent space at every point, we have dim spanR{W1(x), . . . ,
WN (x)} = dimM = n, ∀x; in particular, the map x 
→ dim spanR{W1(x), . . . , WN (x)}
is constant. With this in mind, Theorems 3.1 and 3.3 are immediate consequences of the 
case m = 0 of Theorems 7.1 and 7.2. �
Proof of Theorems 3.5 and 3.6. In the setting of Theorems 3.5 and 3.6, we have 
dim Lζ = n, ∀ζ ∈ M . Thus, the map ζ 
→ dim Lζ is constant. Also, in the context of 
Theorem 3.6, E-maps are holomorphic (and E-diffeomorphisms are biholomorphisms); 
this is because complex manifolds embed into E-manifolds as a full sub-category (see 
Remark 6.12). With these remarks in hand, Theorems 3.5 and 3.6 are immediate conse-
quences of the case q = 0 of Theorems 7.1 and 7.2. �
10.2. Sub-E geometry

In this section, we prove Theorem 7.6. In light of Remark 7.4, Theorem 3.9 is a special 
case of Theorem 7.6. Theorem 3.12 is also a special case of Theorem 7.6:
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Proof of Theorem 3.12. In light of Remark 7.4, the hypotheses of Theorem 3.12 imply 
the hypotheses of Theorem 7.6. The main issue in seeing Theorem 3.12 as a special case 
of Theorem 7.6 is that the definitions of ρH in the two theorems are not obviously the 
same. However, if M is a complex manifold and f(t, z) : BR×C(1/2) → M is an E-map, 
then f must be constant in t and is therefore a holomorphic map BC(1/2) → M . Indeed, 
df(t, z) ∂

∂t is both a T 0,1
f(t,z) tangent vector and a real tangent vector, and we conclude 

df(t, z) ∂
∂t ≡ 0. Using this, it is easy to see that the definition of ρH in Theorem 7.6 is 

the same as the definition of ρH in Theorem 3.12 when M is a complex manifold. �
The rest of this section is devoted to the proof of Theorem 7.6.

Lemma 10.3. limy→x ρF (x, y) = 0, where the limit is taken in the usual topology on 
M–recall, M is a manifold and therefore comes equipped with a topology which we are 
referring to as the “usual topology.”

Proof. Fix ε > 0; we wish to find a neighborhood N ⊆ M of x such that ∀y ∈ N , 
ρF (x, y) < ε. Reorder W1, . . . , W2m+q so that W1(x), . . . , W2n+r(x) form a basis for 
TxM and set

Ψ(t1, . . . , t2n+r) := et1W1+···+t2n+rW2n+rx.

Since ∂
∂tj

∣∣
t=0Ψ(t) = Wj(x) it follows from the inverse function theorem that there exists 

an open neighborhood U of 0 ∈ R2n+r such that Ψ(U) is open and Ψ : U → Ψ(U) is 
a C∞ diffeomorphism. Set 0 < c ≤ (32(2n + r))−1/2 and let B := {t = (t1, . . . , t2n+r) :
|tj | < cεdj}; take c so small that B ⊆ U and set N = Ψ(B). N is clearly open since Ψ
is a diffeomorphism. Thus, it remains to show N ⊆ BF (x, ε). Take y ∈ N , so that there 
exists t ∈ B with y = Ψ(t). Define f : BR(1/2) → M by

f(s) := e4s(t1W1+···+t2n+rW2n+r)x,

so that f ∈ C∞, f(0) = x, f(1/4) = y, and

f ′(s) =
2n+r∑
j=1

4tjWj(f(s)) =
2n+r∑
j=1

4 tj
εdj

εdjWj(f(s)).

Since

2n+r∑
j=1

(
4 tj
εdj

)2

≤
2n+r∑
j=1

1
2(2n + r) ≤ 1

2 < 1,

it follows that ρF (x, y) < ε, completing the proof. �
Lemma 10.4. The metric topology induced by ρF is the same as the usual topology on M .
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Proof. Lemma 10.3 shows that the usual topology on M is finer than the metric topology 
induced ρF . That the metric topology induced by ρF is finer than the usual topology 
is a straightforward application of the Phragmén-Lindelöf Theorem; and we leave the 
details to the reader.23 �
Proof of Theorem 7.6 (a). We begin by showing ρF ≤ ρS . Suppose ρS(x, y) < δ. 
Then, there exists γ : [0, 1] → M , γ(0) = x, γ(1) = y, γ′(t) =

∑
aj(t)δdjWj(γ(t)), 

‖
∑

|aj |2‖L∞([0,1]) < 1. For σ > 0, let γσ : [0, 1] → M be functions such that 
γσ
∣∣
(0,1) ∈ C∞, γσ

σ→0−−−→ γ in C([0, 1]), and γ′
σ(t) =

∑
bσj (t)(δ + σ)djWj(γσ(t)) with ∥∥∑ |bσj |2

∥∥
L∞ < 1–this can be achieved by simple argument using mollifiers and the 

fact that W1, . . . , W2m+q are smooth and span the tangent space at every point. Set 
xσ := γσ(σ), yσ := γσ(1 − σ), so that limσ↓0 xσ = x and limσ↓0 yσ = y. Using the func-
tion fσ : BR(1/2) → M given by fσ(t) := γσ(t + 1/2), it follows from the definition of 
ρF that ρF (xσ, yσ) < δ + σ. Thus, we have

ρF (x, y) ≤ ρF (x, xσ) + ρF (xσ, yσ) + ρF (yσ, y) < δ + σ + ρF (x, xσ) + ρF (yσ, y)
σ→0−−−→ δ,

where in the last step we have used Lemma 10.3. We conclude ρF (x, y) ≤ ρS(x, y).
Next, we show ρS ≤ ρF . Suppose ρF (x, y) < δ and let f1, . . . , fK , δ1, . . . , δK be as in 

the definition of ρF . For w1, w2 ∈ fj(BR(1/2)), we will show ρS(w1, w2) < δj . Notice, 
this will complete the proof since we may find ξ1, . . . , ξL+1 with ξj , ξj+1 ∈ fj(BR(1/2)), 
x = ξ1, y = ξL+1, and so using the triangle inequality for ρS , we have

ρS(x, y) ≤
L∑

j=1
ρS(ξj , ξj+1) ≤

L∑
j=1

ρF (ξj , ξj+1) <
L∑

j=1
δj ≤ δ,

which will prove ρS(x, y) ≤ ρF (x, y).
Given w1, w2 ∈ fj(BR(1/2)), we have w1 = fj(t1), w2 = fj(t2) for some t1, t2 ∈

BR(1/2). Set γ(r) := fj((1 − r)t1 + rt2). Then,

γ′(r) = f ′
j((1 − r)t1 + rt2)(t1 − t2) =

m+q∑
l=1

(t1 − t2)slj(t)δ
dl
j Wl(fj(t)),

with ‖
∑

l |slj |2‖L∞ < 1. Since |t1 − t2| < 1, it follows from the definition of ρS that 
ρS(w1, w2) < δj , completing the proof of ρS ≤ ρF .

Finally, we show ρF ≤ ρH . Suppose ρH(x, y) < δ. Take δ1, . . . , δK and f1, . . . , fK as in 
the definition of ρH . We will show that if w1, w2 ∈ fj(BC×R(1/2)), then ρF (w1, w2) < δj . 
The result will then follow from the triangle inequality, just as in the proof of ρS ≤ ρF .

23 Another way to prove Lemma 10.4 is as follows. We see below in the proof of Theorem 7.6 (a) that 
ρS ≤ ρF –and the proof of this inequality does not use Lemma 10.4. Thus the metric topology induced 
by ρF is finer than the metric topology induced by ρS . That the metric topology induced by ρS is finer 
than the usual topology follows from [27, Lemma A.1]. Alternatively, one can easily adapt the proof of [27, 
Lemma A.1] to directly prove that the metric topology induced by ρF is finer than the usual topology.
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Let w1 = fj(ξ1) and w2 = fj(ξ2) with ξ1, ξ2 ∈ BR×C(1/2). Fix ε > 0 small (depending 
on ξ1, ξ2) and set η(r) := (1

2 − (1 + ε)r)ξ1 + (1
2 + (1 + ε)r)ξ2. Note (if ε > 0 is small 

enough), η : BR(1/2) → BR×C(1/2). Set g(r) := fj(η(r)). Let ξ3 = (1 + ε)(ξ2 − ξ1), and 
we henceforth think of ξ3 as an element of BR3(1), by identifying R × C with R3. We 
have

g′(r) = dfj(η(r))η′(r) = dfj(η(r))ξ3.

Let Ŝj(t, x1, x2) be the matrix from Remark 7.5. We have

g′(r) =
2m+q∑
l=1

(Ŝj(t, x1, x2)ξ3)lδdl
j Wl(g(r)),

where (Ŝj(t, z)ξ3)l denotes the l-th component of the vector Ŝj(t, z)ξ3. Since |ξ3| < 1
and using (7.4), we have ∥∥∥∥∥∑

l

∣∣∣(Ŝj(·)ξ3)l
∣∣∣2∥∥∥∥∥

L∞

< 1.

Since g(−1/(2(1 + ε))) = w1 and g(1/(2(1 + ε)) = w2, it follows that ρF (w1, w2) < δj , 
as desired. �
Completion of the proof of Theorem 7.6. We will prove the theorem by applying Theo-
rems 4.5 and 4.10 and Corollary 4.11 to δβX, δβL, as the base point x0 ranges over K
and as δ ranges over (0, 1] (where δβX and δβL are defined in Section 7.2). Thus, our 
first goal is to show that the hypotheses of these results are satisfied uniformly for x0 ∈ K
and δ ∈ (0, 1]; so that any type of admissible constant in those results can be chosen 
independently of x0 ∈ K and δ ∈ (0, 1]. For notational simplicity, we turn to calling the 
base point x instead of x0.

For δ ∈ (0, 1], we multiply both sides of (7.2) by δβj+βk to see

[δβjZj , δ
βkZk] =

∑
βl≤βj+βk

(δβj+βk−βlc1,lj,k)δ
βlZl,

[δβjZj , δ
βkZk] =

∑
βl≤βj+βk

(δβj+βk−βlc2,lj,k)δ
βlZl +

∑
βl≤βj+βk

(δβj+βk−βlc3,lj,k)δ
βlZl.

Setting Zδ
j := δβjZj and

ca,l,δj,k :=
{
δβj+βk−βlca,lj,k if βl ≤ βj + βk

0 otherwise,

we have
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[Zδ
j , Z

δ
k ] =

∑
l

c1,δj,kZ
δ
l , [Zδ

j , Z
δ
k ] =

∑
l

c2,δj,kZ
δ
l +

∑
l

c3,δj,kZ
δ
l .

With this notation, δβX, δβL is the same as the list Zδ
1 , . . . , Z

δ
m+q.

For δ ∈ (0, 1], ca,l,δj,k ∈ C∞ and Zδ
l ∈ C∞, uniformly in δ. Thus if Ω � M is a relatively 

compact open set with K ⊆ Ω, we have, directly from the definitions,

‖ca,l,δj,k ‖Cp

δβX,δβL
(Ω) � 1, ∀j, k, l, a, ∀p ∈ N,

where the implicit constant may depend on p, but does not depend on δ ∈ (0, 1]. It 
follows from Lemma 9.1 (ii) and (iii) that

‖ca,l,δj,k ‖C s
δβX,δβL

(Ω) � 1, ∀j, k, l, a, s > 0, δ ∈ (0, 1], (10.9)

where the implicit constant may depend on s, but does not depend on δ ∈ (0, 1]. We 
take ξ ∈ (0, 1] so small BX,L(x, ξ) ⊆ Ω, ∀x ∈ K; as a consequence, BδβX,δβL(x, ξ) ⊆
BX,L(x, ξ) ⊆ Ω, ∀x ∈ K, δ ∈ (0, 1]. By Lemma 9.1 (v) and (10.9) we have∥∥∥ca,l,δj,k

∥∥∥
C s

δβX,δβL
(B

δβX,δβL
(x,ξ))

� 1, ∀j, k, l, a, s > 0, δ ∈ (0, 1], x ∈ K,

where the implicit constant does not depend on δ ∈ (0, 1] or x ∈ K. We also have 
LZδ

j
ν = fδ

j ν where fδ
j ∈ C∞ uniformly for δ ∈ (0, 1] (this follows directly from the 

definitions and the fact that ν is a strictly positive, C∞ density). Similar to the above 
discussion, we have

‖fδ
j ‖C s

δβX,δβL
(B

δβX,δβL
(x,ξ)) � 1, ∀j, s > 0, δ ∈ (0, 1], x ∈ K.

The existence of η > 0 and δ0 > 0 (independent of x ∈ K and δ ∈ (0, 1]) as in the 
hypotheses of Theorem 4.5 (when applied to δβX, δβL at the base point x) follows from 
Lemma 4.13; indeed Lemma 4.13 directly gives the existence of these constants for x ∈ K
when δ = 1 and it is immediate from the definitions of η and δ0 that the same constants 
may be used ∀δ ∈ (0, 1]. The existence of J0 = J0(x, δ) ∈ I(r, q), K0 = K0(x, δ) ∈
I(n, m), and ζ ∈ (0, 1] (independent of x ∈ K, δ ∈ (0, 1]) as in Theorem 4.5 (when 
applied to δβX, δβL at the base point x) follows from the hypothesis (7.3).

Thus, Theorems 4.5 and 4.10 and Corollary 4.11 apply (with, e.g., s0 = 3/2–the 
choice of s0 ∈ (1, ∞) is irrelevant for what follows), uniformly for x ∈ K, δ ∈ (0, 1]. 
In particular, any positive {s}-admissible constant from those results (for any s > 0) 
can be chosen independent of x ∈ K, δ ∈ (0, 1] (and is therefore ≈ 1 in the sense of 
this theorem); and similarly for any other kind of admissible constant. We let ξ2 ≈ 1
(0 < ξ2 ≤ ξ ≤ 1) and K ≈ 1 be the constants of the same name from Theorem 4.5, and 
let Φx,δ : BRr×Cn(1) → BδβX,δβL(x, ξ) be the map guaranteed by Theorem 4.5 when 
applied to δβX, δβL at the base point x ∈ K.
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We turn to proving (k). By Theorem 4.5 (vi) we have

BδβX,δβL(x, ξ2) ⊆ Φx,δ(BRr×Cn(1)) ⊆ BδβX,δβL(x, ξ) ⊆ BδβX,δβL(x, 1) = BS(x, δ).

We set ε = ξ2, and the proof of (k) will be complete once we show

BS(x, ξ2δ) ⊆ BδβX,δβL(x, ξ2). (10.10)

Take y ∈ BS(x, ξ2δ). Thus, ∃γ : [0, 1] → M , γ(0) = x, γ(1) = y, γ′(t) =∑
aj(t)ξ

dj

2 δdjWj(γ(t)), with ‖
∑

|aj |2‖L∞([0,1]) < 1. Hence,

γ′(t) =
∑
j

(aj(t)ξ
dj−1
2 )ξ2δdjWj(γ(t)),

∥∥∥∥∑∣∣∣ajξdj−1
2

∣∣∣2∥∥∥∥
L∞

< 1.

It follows that y = γ(1) ∈ BδβX,δβL(x, ξ2), completing the proof of (k).
(g) follows from Theorem 4.5 (xi). (h) follows from Theorem 4.5 (ix) using the fact 

that if A is as in that result, ‖A(t, z)‖M(n+r)×(n+r) ≤ 1
4 , ∀t, z by Theorem 4.5 (x) and 

therefore I + A(t, z) is invertible with ‖(I + A(t, z))−1‖M(n+r)×(n+r) ≤ 4
3 , ∀t, z.

Since ‖·‖Ck ≤ ‖·‖Ck+1 , ∀k ∈ N, by definition, (i) follows from Theorem 4.5 (xii). 
Similarly, (f) follows from Theorem 4.10 (i) and (ii).

(e) follows from Theorem 4.5 (iv) and (v); except that (v) only guarantees Φx,δ is a 
C2 diffeomorphism. That Φx,δ is C∞ follows by combining (i) and Lemma 10.1.

Next, we prove (j). Let y ∈ Φx,δ(BRr×Cn(1)). We will show y ∈ BH(x, Rδ) for some 
R ≈ 1 to be chosen later. By (h) and (i) we may write

∂

∂tk
=

m+q∑
l=1

alk,x,δẐ
x,δ
l ,

∂

∂zj
=

m+q∑
l=1

blj,x,δẐ
x,δ
l ,

where,

‖alk,x,δ‖Cp(BRr×Cn (1)), ‖blj,x,δ‖Cp(BRr×Cn (1)) � 1, ∀p ∈ N.

We have

dΦx,δ(t, z)
∂

∂tk
=

m+q∑
l=1

alk,x,δ(t, z)Zδ
l (Φx,δ(t, z)),

dΦx,δ(t, z)
∂

∂zj
=

m+q∑
l=1

blj,x,δ(t, z)Zδ
l (Φx,δ(t, z)).

Let y = Φx,δ(t0, z0) for some (t0, z0) ∈ BRr×Cn(1). Define

f(s, w) := Φx,δ

(
2s t0

, 2w z0
)

|t0| |z0|
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so that f : BR×C(1/2) → M , f(0, 0) = x and y ∈ f(BR×C(1/2)). We have

df(s, w) ∂

∂s
=

m+q∑
l=1

ãl(s, w)Zδ
l (f(s, w)), df(s, w) ∂

∂w
=

m+q∑
l=1

b̃l(s, w)Zδ
l (f(s, w)),

where

ãl(s, w) :=
r∑

k=1

alk,x,δ

(
2s t0

|t0|
, 2w z0

|z0|

)(
2 t0
|t0|

)
k

,

where 
(
2 t0
|t0|

)
k

denotes the kth component of 2 t0
|t0| ; and b̃l is defined similarly. In partic-

ular

‖ãl‖L∞(BR×C(1/2), ‖b̃l‖L∞(BR×C(1/2)) � 1.

For R ≥ 1 set ãRl := ãl/(Rβl), so that we have

df(s, w) ∂

∂s
=

m+q∑
l=1

ãRl (s, w)ZRδ
l (f(s, w)), df(s, w) ∂

∂w
=

m+q∑
l=1

b̃Rl (s, w)ZRδ
l (f(s, w)).

By taking R to be a sufficiently large admissible constant, we see that f satisfies the 
hypotheses of the definition of ρH with K = 1 (i.e., we are using f1 = f and δ1 = Rδ). 
This proves y ∈ f(BR×C(1/2)) ⊆ BH(x, Rδ), completing the proof of (j).

We turn to (b). Because K is compact with respect to the usual topology on M , 
ρF induces the usual topology on M (Lemma 10.4), and ρF = ρS , it follows from 
Lemma 10.4 that K is compact with respect to the metric topology induced by ρS. A 
simple compactness argument shows that to prove (b), it suffices to show that there 
exists ε′ > 0 such that if ρS(x, y) < ε′, x, y ∈ K, then ρH(x, y) � ρS(x, y). We take 
ε′ = ε, where ε > 0 is from (k). If ρS(x, y) < εδ (for some δ ∈ (0, 1]), we have (by (k) and 
(j)) y ∈ BS(x, εδ) ⊆ Φx,δ(BRr×Cn(1)) ⊆ BH(x, Rδ). Hence ρH(x, y) ≤ Rδ. We conclude 
that if ρS(x, y) < ε with x, y ∈ K, then ρH(x, y) ≤ R

ε ρS(x, y). This completes the proof 
of (b).

Next we prove (c). Corollary 4.11 shows

ν(BδβX,δβL(x, ξ2)) ≈ Λ(x, δ) ≈ Λ(x, εδ), (10.11)

where in the second ≈, we have used the formula for Λ and the fact that ε ≈ 1. Using 
this, (10.10), and the fact that we chose ε = ξ2, we have

ν(BS(x, εδ)) ≤ ν(BδβX,δβL(x, ξ2)) � Λ(x, εδ). (10.12)

Conversely, again using (10.11), we have
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Λ(x, δ) � ν(BδβX,δβL(x, ξ2)) ≤ ν(BδβX,δβL(x, 1)) = ν(BS(x, δ)). (10.13)

Since (10.12) and (10.13) hold ∀δ ∈ (0, 1], it follows that ν(BS(x, δ)) ≈ Λ(x, δ), ∀δ ∈
(0, ε]. By (a) we have (for δ ∈ (0, ε]),

ν(BH(x, δ)) ≤ ν(BS(x, δ)) ≈ Λ(x, δ). (10.14)

By (j) and (k), we have (for δ ∈ (0, 1])

Λ(x,Rδ) ≈ Λ(x, εδ) ≈ ν(BS(x, εδ)) ≤ ν(BH(x,Rδ)), (10.15)

where in the first ≈, we have used R, ε ≈ 1 and the formula for Λ. Combining (10.14)
and (10.15), we have for δ ∈ (0, min{ε, 1/R}],

ν(BH(x, δ)) ≈ Λ(x, δ).

This completes the proof of (c). (d) is a consequence of (c) and the formula for Λ. �
11. Nirenberg’s theorem for elliptic structures

In this section, we present the main technical result from [33]. This can be seen as 
a sharp (in terms of regularity) version of Nirenberg’s theorem that formally integrable 
elliptic structures are integrable [23]. Here, unlike the setting of Theorem 4.5, we assume 
the vector fields already have the desired regularity, and that we have good estimates on 
the coefficients in a given coordinate system. The goal is to pick a new coordinate system 
in which the vector fields are spanned by ∂

∂t1
, . . . , ∂

∂tr
, ∂
∂z1

, . . . , ∂
∂zn

, while maintaining 
the regularity of the vector fields.

Fix s0 ∈ (0, ∞) ∪ {ω} and let X1, . . . , Xr, L1, . . . , Ln be complex vector fields on 
BRr×Cn(1) with:

• If s0 ∈ (0, ∞), Xk, Lj ∈ C s0+1(BRr×Cn(1); Cr+2n).
• If s0 = ω, Xk, Lj ∈ A r+2n,1(Cr+2n).

We suppose:

• Xk(0) = ∂
∂tk

, Lj(0) = ∂
∂zj

.
• ∀ζ ∈ BRr×Cn(1), [Xk1 , Xk2 ](ζ), [Xk, Lj ](ζ), [Lj1 , Lj2 ](ζ) ∈ spanC{X1(ζ), . . . , Xr(ζ),

L1(ζ), . . . , Ln(ζ)}.

Under these hypotheses, Nirenberg’s theorem24 implies that there exists a map Φ1 :
BRr×Cn(1) → BRr×Cn(1), with Φ1(0) = 0, Φ1 is a diffeomorphism onto its image (which 

24 Originally, Nirenberg considered only the case of C∞ vector fields and worked in the case when 
X1, . . . , Xr were real.
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is an open neighborhood of 0 ∈ BRr×Cn(1)), and such that Φ∗
1Xk(u, w), Φ∗

1Lj(u, w) ∈
spanC

{
∂

∂u1
, . . . , ∂

∂ur
, ∂
∂w1

, . . . , ∂
∂wr

}
, ∀(u, w) (here we are giving the domain space Rr ×

Cn coordinates (u, w)). In [33] this is improved to a quantitative version which gives Φ1

the optimal regularity (namely, when s0 ∈ (0, ∞), Φ1 is in C s0+2, and when s0 = ω, Φ1

is real analytic). Unlike the results in the rest of this paper, the results in this section are 
not quantitatively diffeomorphically invariant: the estimates depend on the particular 
coordinate system we are using (the standard coordinate system on Rr ×Cn).

Definition 11.1. If s0 ∈ (0, ∞), for s ≥ s0 if we say C is an {s}-admissible constant, it 
means that we assume Xk, Lj ∈ C s+1(BRr×Cn(1); Cr+2n), ∀j, k. C can then be cho-
sen to depend only on n, r, s, s0, and upper bounds for ‖Xk‖C s+1(BRr×Cn (1)) and 
‖Lj‖C s+1(BRr×Cn (1)), 1 ≤ k ≤ r, 1 ≤ j ≤ n. For s ≤ s0, we define {s}-admissible 
constants to be {s0}-admissible constants.

Remark 11.2. In Definition 11.1 we have defined admissible constants differently than 
they were defined in Definitions 4.2, 4.3, and 4.4. This reuse of notation is justified 
when we turn to the proof of the main theorem (Theorem 4.5). Indeed, when we apply 
Theorem 11.4 in the proof Theorem 4.5, we apply it to a choice of vector fields in such 
a way that constants which are admissible in the sense of Theorem 11.4 are admissible 
in the sense of Theorem 4.5. Thus, in the particular application of Theorem 11.4 used to 
prove Theorem 4.5, the definitions of admissible constants do coincide.

Definition 11.3. If s0 = ω, we say C is an {ω}-admissible constant if C can be chosen 
to depend only on n, r, and upper bounds for ‖Xk‖A 2n+r,1 , ‖Lj‖A 2n+r,1 , 1 ≤ k ≤ r, 
1 ≤ j ≤ n.

Theorem 11.4. There exists an {s0}-admissible constant K1 ≥ 1 and a map Φ1 :
BRr×Cn(1) → BRr×Cn(1) such that

(i) • If s0 ∈ (0, ∞), Φ1 ∈ C s0+2(BRr×Cn(1); Rr ×Cn) and ‖Φ1‖C s+2(BRr×Cn (1)) �{s}
1, ∀s > 0.

• If s0 = ω, Φ1 ∈ A 2n+r,2(Rr ×Cn) and ‖Φ1‖A 2n+r,2 ≤ 1.
(ii) Φ1(0) = 0 and d(t,x)Φ1(0) = K−1

1 I(r+2n)×(r+2n). See Section 5 for the notation 
d(t,x).

(iii) ∀ζ ∈ BRr×Cn(1), det d(t,x)Φ1(ζ) ≈{s0} 1.
(iv) Φ1(BRr×Cn(1)) ⊆ BRr×Cn(1) is an open set and Φ1 : BRr×Cn(1) → Φ1(BRr×Cn(1))

is a diffeomorphism.25

25 By diffeomorphism we mean that Φ1 : BRr×Cn (1) → Φ1(BRr×Cn (1)) is a bijection and dΦ1 is everywhere 
nonsingular.
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(v) [
∂
∂u
∂
∂w

]
= K−1

1 (I + A)
[
Φ∗

1X
Φ∗

1L

]
,

where A : BRr×Cn(1) → M(n+r)×(n+r)(C), A(0) = 0 and
• If s0 ∈ (0, ∞), ‖A‖C s+1(BRr×Cn (1);M(n+r)×(n+r)) �{s} 1, ∀s > 0 and

‖A‖C s0+1(BRr×Cn (1);M(n+r)×(n+r)) ≤
1
4 .

• If s0 = ω, ‖A‖A 2n+r,1(M(n+r)×(n+r)) ≤ 1
4 .

In either case, note that this implies (I +A) is an invertible matrix on BRr×Cn(1).
(vi) Suppose Z is another complex vector field on BRr×Cn(1). Then,

• If s0 ∈ (0, ∞), ‖Φ∗
1Z‖C s+1(BRr×Cn (1)) �{s} ‖Z‖C s+1(BRr×Cn (1)), ∀s > 0.

• If s0 = ω, ‖Φ∗
1Z‖A 2n+r,1 �{ω} ‖Z‖A 2n+r,1 .

Proof. This is [33, Theorem 7.3]. �
12. The real case

The case when m = 0 of Theorem 4.5 (i.e., when there are no complex vector fields), 
was the subject of the series [27,31,32]. In this section, we present a simplified version of 
this for use in proving Theorem 4.5.

Let W1, . . . , WQ be C1 real vector fields on a C2 manifold M. Fix x0 ∈ M and let 
N := dim spanR{W1(x0), . . . , WQ(x0)}. Fix ξ, ζ ∈ (0, 1]. We assume that on BW (x0, ξ), 
the Wj satisfy

[Wj ,Wk] =
Q∑
l=1

clj,kWl, clj,k ∈ C(BW (x0, ξ)),

where BW (x0, ξ) is given the metric topology induced by the corresponding sub-
Riemannian metric (2.3). Under the above hypotheses, BW (x0, ξ) is a C2, injectively im-
mersed submanifold of M of dimension N and TxBW (x0, ξ) = spanR{W1(x), . . . , WQ(x)}, 
∀x ∈ BW (x0, ξ) (see Proposition A.1). Henceforth we view W1, . . . , WQ as C1 vector 
fields on BW (x0, ξ).

Let P0 ∈ I(N, Q) be such that 
∧
WP0(x0) �= 0 and moreover

max
P∈I(N,Q)

∣∣∣∣ ∧WP (x0)∧
WP0(x0)

∣∣∣∣ ≤ ζ−1.

Without loss of generality, reorder the vector fields so that P0 = (1, . . . , N).
We take η > 0 and δ0 > 0 as in Theorem 4.5; i.e.,
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• Fix η > 0 so that WP0 satisfies C(x0, η, M).
• Fix δ0 > 0 such that ∀δ ∈ (0, δ0], the following holds. If z ∈ BWP0

(x0, ξ) is 
such that WP0 satisfies C(z, δ, BWP0

(x0, ξ)) and if t ∈ BR2n+r (δ) is such that 
et1W1+···+t2n+rWN z = z and if W1(z), . . . , WN (z) are linearly independent, then t = 0.

Definition 12.1. We say C is a 0-admissible constant if C can be chosen to depend only 
on upper bounds for Q, ζ−1, ξ−1, and ‖clj,k‖C(BWP0

(x0,ξ)), 1 ≤ j, k, l ≤ Q.

Fix s0 ∈ (1, ∞) ∪ {ω}.

Definition 12.2. Suppose s0 ∈ (1, ∞). For s ∈ [s0, ∞) if we say C is an {s}-admissible 
constant it means that we assume clj,k ∈ C s

WP0
(BWP0

(x0, ξ)). C is allowed to depend 

only on s, s0, and upper bounds for ζ−1, ξ−1, η−1, δ−1
0 , Q, and ‖clj,k‖C s

WP0
(BWP0

(x0,ξ)), 
1 ≤ j, k, l ≤ Q. For s ∈ (0, s0), we define {s}-admissible constants to be {s0}-admissible 
constants.

Definition 12.3. Suppose s0 = ω. If we say C is an {s0}-admissible constant it means that 
we assume clj,k ∈ A x0,η

WP0
. C is allowed to depend only on anything a 0-admissible constant 

may depend on, as well as upper bounds for η−1, δ−1
0 , and ‖clj,k‖A

x0,η
WP0

, 1 ≤ j, k, l ≤ Q.

Proposition 12.4. There exists a 0-admissible constant χ ∈ (0, ξ] such that

(i) ∀y ∈ BWP0
(x0, χ), 

∧
WP0(y) �= 0.

(ii) ∀y ∈ BWP0
(x0, χ),

max
P∈I(N,Q)

∣∣∣∣ ∧WP (y)∧
WP0(y)

∣∣∣∣ ≈0 1.

(iii) ∀χ′ ∈ (0, χ], BWP0
(x0, χ′) is an open subset of BW (x0, χ), and is therefore a sub-

manifold.

For the remainder of the proposition, we assume:

• If s0 ∈ (1, ∞), we assume clj,k ∈ C s0
WP0

(BWP0
(x0, ξ)).

• If s0 = ω, we assume clj,k ∈ A x0,η
WP0

.

There exists a C2 map Φ0 : BRN (1) → BWP0
(x0, χ) such that:

(iv) Φ0(BRN (1)) is an open subset of BWP0
(x0, χ) and is therefore a submanifold.

(v) Φ0(0) = x0.
(vi) Φ0 : BRN (1) → Φ0(BRN (1)) is a C2 diffeomorphism.
(vii) • If s0 ∈ (1, ∞), ‖Φ∗

0Wj‖C s+1(B N (1);RN ) �{s} 1, ∀s > 0, 1 ≤ j ≤ Q.

R
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• If s0 = ω, ‖Φ∗
0Wj‖A N,1(RN ) �{ω} 1, 1 ≤ j ≤ Q.

(viii) There exists an {s0}-admissible constant K0 ≥ 1 such that

Φ∗
0WP0 = K0(I + A0)

∂

∂t
,

where A0 : BRN (1) → MN×N (R), A0(0) = 0, supt∈BRN (1) ‖A0(t)‖MN×N ≤ 1
2 , 

and:
• If s0 ∈ (1, ∞), ‖A0‖C s(BRN (1);MN×N ) �{s} 1, ∀s > 0.
• If s0 = ω, ‖A0‖A N,1(MN×N ) ≤ 1

2 .

12.1. Densities

We take the same setting as Proposition 12.4, and let χ ∈ (0, ξ] be as in that propo-
sition. Let ν be a real C1 density on BWP0

(x0, χ) and suppose for 1 ≤ j ≤ N (recall, we 
are assuming P0 = (1, . . . , N)),

LWj
ν = fjν, fj ∈ C(BWP0

(x0, χ)).

Definition 12.5. If we say C is a [s0; ν]-admissible constant, it means that C is 
a {s0}-admissible constant, which is also allowed to depend on upper bounds for 
‖fj‖C(BWP0

(x0,χ)), 1 ≤ j ≤ N . This definition holds in both cases: s0 ∈ (1, ∞) and 
s0 = ω.

Definition 12.6. If s0 ∈ (1, ∞), for s > 0 if we say C is an {s; ν}-admissible constant 
it means that fj ∈ C s

WP0
(BWP0

(x0, χ)). C is then allowed to depend on anything an 
{s}-admissible constant may depend on, and is allowed to depend on upper bounds for 
‖fj‖C s

WP0
(BWP0

(x0,χ)), 1 ≤ j ≤ N . For s ≤ 0, we define {s; ν}-admissible constants to be 

[s0; ν]-admissible constants.

If s0 = ω, we fix some number r0 > 0.

Definition 12.7. If s0 = ω and if we say C is a {ω; ν}-admissible constant, it means that 
we assume fj ∈ A x0,r0

WP0
, 1 ≤ j ≤ N . C is then allowed to depend on anything a {ω}-

admissible constant may depend on, and is allowed to depend on upper bounds for r−1
0

and ‖fj‖A
x0,r0
WP0

, 1 ≤ j ≤ N .

Proposition 12.8. Define h0 ∈ C1(BRN (1)) by Φ∗
0ν = h0σLeb. Then,

(a) h0(t) ≈[s0;ν] ν(W1, . . . , WN )(x0), ∀t ∈ BRN (1).26 In particular, h0(t) always has the 
same sign, and is either never zero or always zero.

26 Recall, we are assuming without loss of generality that P0 = (1, . . . , N).
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(b) • If s0 ∈ (1, ∞), for s > 0,

‖h0‖C s(BRN (1)) �{s−1;ν} |ν(W1, . . . ,WN )(x0)|.

• If s0 = ω,

‖h0‖A N,min{1,r0} �{ω;ν} |ν(W1, . . . ,WN )(x0)|.

12.2. Proofs

In this section, we discuss the proofs of Proposition 12.4 and Proposition 12.8. When 
s0 ∈ (1, ∞), Proposition 12.4 and Proposition 12.8 follow directly from the main results 
in [31], and so we focus on the case s0 = ω.

The main results of [32] are very similar to Proposition 12.4 and Proposition 12.8
when s0 = ω. (i), (ii), and (iii) of Proposition 12.4 are directly contained in [32]. The 
main result of [32] shows that there exists an {ω}-admissible constant η̂ ∈ (0, 1] and a 
map

Φ̂ : BRN (η̂) → BWP0
(x0, ξ)

such that

• Φ̂(BRN (η̂)) is an open subset of BWP0
(x0, χ) and is therefore a submanifold of 

BW (x0, ξ).
• Φ̂ : BRN (η̂) → Φ̂(BRN (η̂)) is a C2 diffeomorphism, and Φ̂(0) = x0.
• ‖Φ̂∗Wj‖A N,η̂(RN ) �{ω} 1, 1 ≤ j ≤ Q.
•

Φ̂∗WP0 = (I + Â) ∂
∂t

,

where Â : BRn(η̂) → MN×N (R), Â(0) = 0, and ‖Â‖A N,η̂ ≤ 1
2 .

Define Ψ : BRN (1) → BRN (η̂) by Ψ(t) = η̂t, and set Φ0 := Φ̂ ◦ Ψ. The remainder of 
Proposition 12.4 follows from the above properties of Φ̂, with K0 := η̂−1 and A0 := Â◦Ψ.

Now let ν be a real C1 density on BWP0
(x0, χ) as in Proposition 12.8. The main result 

on densities in [32] shows that if ĥ ∈ C1(BRn(η̂)) is defined by Φ̂∗ν = ĥσLeb, then

• ĥ(t) ≈[ω;ν] ν(W1, . . . , WN )(x0), ∀t ∈ BRn(η̂).
• ĥ ∈ A N,min{η̂,r0} and ‖ĥ‖A N,min{η̂,r0} �{ω;ν} 1.

Note that h0 = (ĥ ◦ Ψ) det dΨ = η̂N ĥ ◦Ψ. Since η̂ ≈{ω} 1, Proposition 12.8 follows from 
the above estimates on ĥ.
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13. Proofs of the main results

In this section, we prove Theorem 4.5, Theorem 4.10, and Corollary 4.11.
Note that, by the definitions, BWP0

(x0, ξ) =BXK0 ,LJ0
(x0, ξ), C s

WP0
(U) =C s

XK0 ,LJ0
(U), 

and A r,η
WP0

= A r,η
XK0 ,LJ0

(with equality of norms). It follows from the hypotheses that we 
may write (for 1 ≤ j, k ≤ 2m + q)

[Wj ,Wk] =
2m+q∑
l=1

c̃lj,kWl, c̃lj,k ∈ C(BWP0
(x0, ξ)),

‖c̃lj,k‖C(BWP0
(x0,ξ)) �0 1, and

• If s0 ∈ (1, ∞), ‖c̃lj,k‖C s
WP0

(BWP0
(x0,χ)) �{s} 1, ∀s > 0.

• If s0 = ω, ‖c̃lj,k‖A
x0,η
WP0

�{ω} 1.

Recall,

WP0 = W1, . . . ,W2n+r = X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln).
(13.1)

Combining (4.2) with Proposition B.5 (i), we see

max
P∈I(2n+r,2m+q)

∣∣∣∣ ∧WP (x0)∧
WP0(x0)

∣∣∣∣ ≤ (
2ζ−1√2n + r

)2n+r �0 1. (13.2)

In light of these remarks, and the definition of η and δ0, Proposition 12.4 applies to the 
vector fields W1, . . . , W2m+q (with N = 2n + r) and any constant which is ∗-admissible 
in the sense of Proposition 12.4 is ∗-admissible in the sense of this section (where ∗ is 
any symbol).

We take the 0-admissible constant χ ∈ (0, ξ] from Proposition 12.4. By Proposi-
tion 12.4 (i) and (ii), ∀y ∈ BWP0

(x0, χ), 
∧

WP0(y) �= 0 and

max
P∈I(N,Q)

∣∣∣∣ ∧WP (y)∧
WP0(y)

∣∣∣∣ ≈0 1. (13.3)

By hypothesis, dim Ly = dim Lx0 = 2n + r and dim Xy = dim Xx0 = r, ∀y ∈
BWP0

(x0, χ) ⊆ BX,L(x0, ξ). Combining this with (13.3), Proposition B.5 (ii) implies 
∀y ∈ BWP0

(x0, χ) = BXK0 ,LJ0
(x0, χ),

(∧
XK0(y)

)∧(∧
LJ0(y)

)
�= 0,

and moreover
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max
J∈I(n1,m),K∈I(r1,q)

n1+r1=n+r

∣∣∣∣ (
∧
XK(y))

∧
(
∧
LJ(y))

(
∧

XK0(y))
∧

(
∧

LJ0(y))

∣∣∣∣ �0 1. (13.4)

Since the left hand side of (13.4) is ≥ 1, it follows that the left hand side of (13.4) is 
≈0 1. Theorem 4.5 (i) and (ii) follow. Theorem 4.5 (iii) follows from Proposition 12.4
(iii). Since dim Lx = dim Lx0 = 2n + r, ∀x ∈ BX,L(x0, ξ), Theorem 4.5 (i) implies 
that X1(x), . . . , Xr(x), L1(x), . . . , Ln(x) form a basis for Lx, ∀x ∈ BXK0 ,LJ0

(x0, χ). In 
particular, for x ∈ BXK0 ,LJ0

(x0, χ), 1 ≤ k, k1, k2 ≤ q, 1 ≤ j, j1, j2 ≤ m,

Xk(x), Lj(x), [Xk1 , Xk2 ](x), [Lj1 , Lj2 ](x), [Xk, Lj ](x)

∈ Lx = spanC{X1(x), . . . , Xr(x), L1(x), . . . , Ln(x)}.
(13.5)

Let Φ0 : BRr+2n(1) → BXK0 ,LJ0
(x0, χ) be the map from Proposition 12.4.

• If s0 ∈ (1, ∞), Proposition 12.4 (vii) gives ‖Φ∗
0Wj‖C s+1(BR2n+r (1)) �{s} 1, 1 ≤ j ≤

2m + q, and therefore

‖Φ∗
0Xk‖C s+1(BRN (1)), ‖Φ∗

0Lj‖C s+1(BR2n+r (1)) �{s} 1, 1 ≤ j ≤ m, 1 ≤ k ≤ q.

(13.6)
• If s0 = ω, Proposition 12.4 (vii) gives ‖Φ∗

0Wj‖A 2n+r,1 �{ω} 1, 1 ≤ j ≤ 2m + q, and 
therefore

‖Φ∗
0Xk‖A 2n+r,1 , ‖Φ∗

0Lj‖A 2n+r,1 �{ω} 1, 1 ≤ j ≤ m, 1 ≤ k ≤ q. (13.7)

We identify Rr+2n ∼= Rr ×Cn, via the map (t1, . . . , tr, x1, . . . , x2n) 
→ (t1, . . . , tr, x1 +
ixn+1, . . . , xn + ix2n). Let K2 ≥ 1 be the {s0}-admissible constant called K0 in Propo-
sition 12.4. By Proposition 12.4 (viii) (and since P0 = (1, . . . , 2n + r)), we have

Φ∗
0K

−1
2 Wj(0) =

⎧⎨⎩ ∂
∂tj

1 ≤ j ≤ r,

∂
∂xj−r

r + 1 ≤ j ≤ 2n.

Using this and (13.1) shows, for 1 ≤ k ≤ r, 1 ≤ j ≤ n,

Φ∗
0K

−1
2 Xk(0) = ∂

∂tk
, Φ∗

0K
−1
2 Lj(0) = ∂

∂zj
.

Pulling (13.5) back via Φ0 (and multiplying by K−2
2 ), we have for 1 ≤ k, k1, k2 ≤ r, 

1 ≤ j, j1, j2 ≤ n, ζ ∈ BRr×Cn(1),

[
Φ∗

0K
−1
2 Xk1 ,Φ∗

0K
−1
2 Xk2

]
(ζ),

[
Φ∗

0K
−1
2 Lj1 ,Φ∗

0K
−1
2 Lj2

]
(ζ),

[
Φ∗

0K
−1
2 Xk,Φ∗

0K
−1
2 Lj

]
(ζ)

∈ span
{
Φ∗K−1X (ζ), . . .Φ∗K−1X (ζ),Φ∗K−1L (ζ), . . . ,Φ∗K−1L (ζ)

}
.
C 0 2 1 0 2 r 0 2 1 0 2 n
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The above remarks show that Theorem 11.4 applies to the vector fields

Φ∗
0K

−1
2 X1, . . . ,Φ∗

0K
−1
2 Xr,Φ∗

0K
−1
2 L1, . . . ,Φ∗

0K
−1
2 Ln,

and any constant which is {s}-admissible in the sense of Theorem 11.4 is {s}-admissible 
in the sense of this section. We let K1 ≥ 1 be the {s0}-admissible constant from Theo-
rem 11.4, and Φ1 : BRr×Cn(1) → BRr×Cn(1) and A : BRr×Cn(1) → M(r+n)×(r+n)(C) be 
as in Theorem 11.4. Set K = K2K1 and Φ = Φ0◦Φ1. Note that Φ∗ = Φ∗

1Φ∗
0. Theorem 4.5

(iv) follows from Theorem 11.4 (iv) and Proposition 12.4 (iv) and (vi). Theorem 4.5 (v) 
follows from Theorem 11.4 (i) and (iv) and Proposition 12.4 (vi). Theorem 4.5 (vii) fol-
lows from Theorem 11.4 (ii) and Proposition 12.4 (v). Theorem 4.5 (viii) and (x) follow 
from Theorem 11.4 (v).

Using Theorem 11.4 (v) we have[
∂
∂u
∂
∂w

]
= K−1

1 (I + A)
[
Φ∗

1Φ∗
0K

−1
2 XK0

Φ∗
1Φ∗

0K
−1
2 LJ0

]
= K−1(I + A)

[
Φ∗XK0
Φ∗LJ0

]
.

Theorem 4.5 (ix) follows.
Because X1(x), . . . , Xr(x), L1(x), . . . , Ln(x) forms a basis for Lx, ∀x ∈ BXK0 ,LJ0

(x0,

χ),

Φ∗X1(ζ), . . . ,Φ∗Xr(ζ),Φ∗L1(ζ), . . . ,Φ∗Ln(ζ)

forms a basis for (Φ∗L )ζ , ∀ζ ∈ BRr×Cn(1). Theorem 4.5 (x) (which we have already 
shown) implies that

sup
ζ∈BRr×Cn (1)

‖A(ζ)‖M(r+n)×(r+n) ≤ 1
4 .

In particular, the matrix I + A(ζ) is invertible, ∀ζ ∈ BRr×Cn(1). Hence, Theorem 4.5
(ix) (which we have already proved) implies, ∀ζ ∈ BRr×Cn(1),

(Φ∗L )ζ = spanC {Φ∗X1(ζ), . . . ,Φ∗Xr(ζ),Φ∗L1(ζ), . . . ,Φ∗Ln(ζ)}

= spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
.

Since Xk(x), Lj(x) ∈ Lx, ∀x, 1 ≤ k ≤ q, 1 ≤ j ≤ m, it follows that for 1 ≤ k ≤ q, 
1 ≤ j ≤ m and ∀ζ ∈ BRr×Cn(1) we have

Φ∗Xk(ζ),Φ∗Lj(ζ) ∈ spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
.

Because Φ∗Xk is a real vector field, we conclude for 1 ≤ k ≤ q,
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Φ∗Xk(ζ) ∈ spanR
{

∂

∂t1
, . . . ,

∂

∂tr

}
, ∀ζ ∈ BRr×Cn(1).

Theorem 4.5 (xi) follows. Since Φ∗ = Φ∗
1Φ∗

0, Theorem 4.5 (xii) follows by combining 
Theorem 11.4 (vi), (13.6), and (13.7).

All that remains of Theorem 4.5 is (vi). We already have, by the range of Φ0, 
that Φ(BRr×Cn(1)) ⊆ BXK0 ,LJ0

(x0, χ) ⊆ BX,L(x0, ξ) and the final two contain-
ments in (vi) follow. Let ξ1 ∈ (0, ξ] be a constant to be chosen later, and suppose 
y ∈ BXK0 ,LJ0

(x0, ξ1) = BWP0
(x0, ξ1). Thus, there exists γ : [0, 1] → BWP0

(x0, ξ1) with 

γ(0) = x0, γ(1) = y, γ′(t) =
∑2n+r

j=1 bj(t)ξ1Wj(γ(t)), ‖
∑

|bj(t)|2‖L∞ < 1. Define

t0 := sup {t ∈ [0, 1] : γ(t′) ∈ Φ(BRr×Cn(1/2)),∀0 ≤ t′ ≤ t} .

We want to show that by taking ξ1 > 0 to be a sufficiently small {s0}-admissible constant, 
we have t0 = 1 and γ(1) ∈ Φ(BRr×Cn(1/2)). Note that t0 ≥ 0, since γ(0) = x0 = Φ(0).

Suppose t0 < 1. Then |Φ−1(γ(t0))| = 1/2. Using that ‖Φ∗Wj‖C(BRr×Cn (1);Rr+2n) �{s0}
1 (by Theorem 4.5 (xii) and the definition of the Wj), and Φ(0) = x0 (by Theorem 4.5
(vii)) and therefore Φ−1(γ(0)) = Φ−1(x0) = 0, we have

1/2 = |Φ−1(γ(t0))| =

∣∣∣∣∣∣
t0∫

0

d

dt
Φ−1 ◦ γ(t) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t0∫

0

2n+r∑
j=1

bj(t)ξ1(Φ∗Wj)(Φ−1 ◦ γ(t)) dt

∣∣∣∣∣∣
�{s0} ξ1.

This a contradiction if ξ1 is a sufficiently small {s0}-admissible constant, which proves 
the second containment in Theorem 4.5 (vi). The existence of ξ2 > 0 as in Theorem 4.5
(vi) follows from [27, Lemma 9.35]. This completes the proof of Theorem 4.5.

Now let ν be a density as in Section 4.1. Proposition 12.8 applies to ν, and any constant 
which is [s0; ν] or {s; ν}-admissible in the sense of that proposition is [s0; ν] or {s; ν}-
admissible, respectively, in the sense of this section. Let h0 be as in Proposition 12.8 so 
that Φ∗

0ν = h0σLeb. Thus,

hσLeb = Φ∗ν = Φ∗
1h0σLeb = (h0 ◦ Φ1) det dΦ1σLeb.

We conclude h = (h0 ◦ Φ1) det dΦ1. Proposition 12.8 (a) combined with Theorem 11.4
(iii) yields Theorem 4.10 (i).

Combining Proposition 12.8 (b) with Theorem 11.4 (i) (and using Lemmas 9.5 and 9.6) 
shows:

• If s0 ∈ (1, ∞), for s > 0,

‖h0 ◦ Φ1‖C s(BRr×Cn (1))

�{s−1;ν} |ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0)| .
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• If s0 = ω,

‖h0 ◦ Φ1‖A 2n+r,min{1,r0}

�{ω;ν} |ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0)| .

Also by Theorem 11.4 (i) (and using Proposition 9.3 and Lemma 9.7) we have:

• If s0 ∈ (1, ∞), for s > 0, ‖det dΦ1‖C s(BRr×Cn (1)) �{s−1} 1.
• If s0 = ω, ‖det dΦ1‖A 2n+r,1 �{ω} 1.

Combining the above estimates and using Proposition 9.3 yields Theorem 4.10 (ii).
Finally, we turn to Corollary 4.11. To prove this, we introduce a corollary of Theo-

rem 4.5.

Corollary 13.1. Let Φ, ξ1, and ξ2 be as in Theorem 4.5. Then, there exist {s0}-admissible 
constants 0 < ξ4 ≤ ξ3 ≤ ξ2 and a map Φ̂ : BRr×Cn(1) → BXK0 ,LJ0

(x0, ξ2), which satisfies 
all the same estimates as Φ, so that

BX,L(x0, ξ4) ⊆ BXK0 ,LJ0
(x0, ξ3) ⊆ Φ̂(BRr×Cn(1)) ⊆ BXK0 ,LJ0

(x0, ξ2) ⊆ BX,L(x0, ξ2)

⊆ BXK0 ,LJ0
(x0, ξ1) ⊆ Φ(BRr×Cn(1)) ⊆ BXK0 ,LJ0

(x0, χ) ⊆ BXK0 ,LJ0
(x0, ξ).

Proof. After applying Theorem 4.5 to obtain Φ, ξ1, and ξ2, we apply Theorem 4.5 again 
with ξ replaced by ξ2 to obtain ξ3, ξ4, and Φ̂ as above. �
Proof of Corollary 4.11. Using Theorem 4.10 (i), we have

ν(Φ(BRr×Cn(1))) =
∫

Φ(BRr×Cn (1))

ν =
∫

BRr×Cn (1)

Φ∗ν =
∫

BRr×Cn (1)

h(t, x) dt dx

≈[s0;ν] ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0),

with the same result with Φ replaced by Φ̂, where Φ̂ is as in Corollary 13.1. Since

Φ̂(BRr×Cn(1)) ⊆ BXK0 ,LJ0
(x0, ξ2) ⊆ BX,L(x0, ξ2) ⊆ Φ(BRr×Cn(1)),

and since h(t, x) always has the same sign (Theorem 4.10 (i)), (4.4) follows.
We turn to (4.5). It follows from the definitions that

|ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . , 2Im(Ln))(x0)|
≤ max

K∈I(r,q),J∈I(n,m)
|ν(XK , 2Re(L)J , 2Im(L)J)(x0)|

≤ max |ν(WP )(x0)| .

P∈I(2n+r,2m+q)
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Thus, with (4.4) in hand, to prove (4.5) it suffices to show

max
P∈I(2n+r,2m+q)

|ν(WP )(x0)| �0 |ν(X1, . . . , Xr, 2Re(L1), . . . , 2Re(Ln), 2Im(L1), . . . ,

2Im(Ln))(x0)|;

i.e., we wish to show

max
P∈I(2n+r,2m+q)

|ν(WP )(x0)| �0 |ν(WP0)(x0)| . (13.8)

Since WP0(x0) forms a basis for the tangent space Tx0BX,L(x0, ξ), if the right hand side 
is 0, the left hand side must be zero as well. If the right hand side is nonzero, it follows 
from Lemma B.4 that

max
P∈I(2n+r,2m+q)

|ν(WP )(x0)|
|ν(WP0)(x0)|

= max
P∈I(2n+r,2m+q)

∣∣∣∣ ∧WP (x0)∧
WP0(x0)

∣∣∣∣ �0 1,

where the final inequality follows from (13.2). (13.8) follows, which completes the 
proof. �
Remark 13.2. The most important special case of Theorem 4.5 is the case when r = 0. 
In that case, we can always pick J0 so that (4.2) holds with ζ = 1. However, even in this 
case, because of (13.1), we require Proposition 12.4 in the general case ζ ∈ (0, 1]. Thus, 
even for the reader only interested in Theorem 4.5 in the case ζ = 1, it is important that 
we at least have Proposition 12.4 for general ζ ∈ (0, 1]. In any case, having Theorem 4.5
for general ζ ∈ (0, 1] gives additional, convenient flexibility in applications, even when 
r = 0.

14. Hölder spaces

Let Ω ⊂ Rn be a bounded, Lipschitz domain. It follows immediately from the 
definitions that for g ∈ N, s ∈ [0, 1] with g + s > 0, we have the containment 
Cg,s(Ω) ⊆ C g+s(Ω). For g ∈ N, s ∈ (0, 1) we also have the reverse containment 
C g+s(Ω) ⊆ Cg,s(Ω); this follows easily from [36, Theorem 1.118 (i)].

When we move to the corresponding spaces with respect to C1 real vector fields 
W1, . . . , WN on a C2 manifold M , we have similar results. For any g ∈ N, s ∈ [0, 1], 
g + s > 0, we have Cg,s

W (M) ⊆ C g+s
W (M); this follows from Lemma 9.1. The reverse 

containment for g ∈ N, s ∈ (0, 1) requires more hypotheses on the vector fields. This is 
described in [31].

In a similar vein, we can create Hölder versions of Theorem 7.1 and Theorem 7.2. We 
present these here.

Let X1, . . . , Xq be real C1 vector fields on a connected C2 manifold M and let 
L1, . . . , Lm be complex C1 vector fields on M . For x ∈ M set
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Lx := spanC{X1(x), . . . , Xq(x), L1(x), . . . , Lm(x)}, Xx := spanC{X1(x), . . . , Xq(x)}.
(14.1)

We assume:

• Lx + Lx = CTxM , ∀x ∈ M .
• Xx = Lx ∩ Lx, ∀x ∈ M .

Corollary 14.1 (The local result). Fix x0 ∈ M , g ∈ N, g ≥ 1, s ∈ (0, 1), and set 
r := dim Xx0 and n + r := dim Lx0 . The following three conditions are equivalent:

(i) There exists an open neighborhood V ⊆ M of x0 and a C2 diffeomorphism Φ : U →
V , where U ⊆ Rr ×Cn is open, such that ∀(t, z) ∈ U , 1 ≤ k ≤ q, 1 ≤ j ≤ m,

Φ∗Xk(t, z) ∈ spanR
{

∂

∂t1
, . . . ,

∂

∂tr

}
,

Φ∗Lj(t, z) ∈ spanC
{

∂

∂t1
, . . . ,

∂

∂tr
,

∂

∂z1
, . . . ,

∂

∂zn

}
,

and Φ∗Xk ∈ Cg+1,s(U ; Rr), Φ∗Lj ∈ Cg+1,s(U ; Cr+n).
(ii) Reorder X1, . . . , Xq so that X1(x0), . . . , Xr(x0) are linearly independent, and 

reorder L1, . . . , Lm so that L1(x0), . . . , Ln(x0), X1(x0), . . . , Xr(x0) are linearly 
independent. Let Ẑ1, . . . , Ẑn+r denote the list X1, . . . , Xr, L1, . . . , Ln, and let 
Y1, . . . , Ym+q−(r+n) denote the list Xr+1, . . . , Xq, Ln+1, . . . , Lm. There exists an 
open neighborhood V ⊆ M of x0 such that:
• [Ẑj , Ẑk] =

∑n+r
l=1 ĉ1,lj,kẐl, and [Ẑj , Ẑk] =

∑n+r
l=1 ĉ2,lj,kẐl +

∑n+r
l=1 ĉ3,lj,kẐl, where ĉa,lj,k ∈

Cg,s
X,L(V ), 1 ≤ j, k, l ≤ n + r, 1 ≤ a ≤ 3.

• Yj =
∑n+r

l=1 bljẐl, where blj ∈ Cg+1,s
X,L (V ), 1 ≤ j ≤ m + q − (r + n), 1 ≤ l ≤ n + r.

Furthermore, the map x 
→ dim Lx, V → N is constant in x.
(iii) Let Z1, . . . , Zm+q denote the list X1, . . . , Xq, L1, . . . , Lm. There exists a neighbor-

hood V ⊆ M of x0 such that [Zj , Zk] =
∑m+q

l=1 c1,lj,kZl and [Zj , Zk] =
∑m+q

l=1 c2,lj,kZl +∑m+q
l=1 c3,lj,kZl, where ca,lj,k ∈ Cg,s

X,L(V ), 1 ≤ a ≤ 3, 1 ≤ j, k, l ≤ m + q. Furthermore, 
the map x 
→ dim Lx, V → N is constant in x.

Proof. (i)⇒(ii)⇒(iii) has a nearly identical proof to the corresponding parts of The-
orem 7.1, and we leave the details to the reader. Assume (iii) holds. Then, since 
Cg,s

X,L(V ) ⊆ C g+s
X,L (V ) (by Lemma 9.1 (iii)) we have that Theorem 7.1 (iii) holds (with s

replaced by g + s). Therefore Theorem 7.1 (i) holds (again, with s replaced by g + s); 
we may shrink U in Theorem 7.1 (i) so that it is a Euclidean ball. This establishes all 
of (i), except that it shows Φ∗Xk ∈ C g+s+1(U ; Rr), Φ∗Lj ∈ C g+s+1(U ; Cr+n) instead 
of Φ∗Xk ∈ Cg+1,s(U ; Rr), Φ∗Lj ∈ Cg+1,s(U ; Cr+n). However, since U is a ball and 
s ∈ (0, 1) (this is the only place we use s �= 0, 1), it follows from [36, Theorem 1.118 
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(i)] that C g+s+1(U ; Rr) = Cg+1,s(U ; Rr). This establishes (iii)⇒(i) and completes the 
proof. �
Remark 14.2. The only place where g ≥ 1, s �= 0, 1 was used in the proof of Corollary 14.1
was the implication (iii)⇒(i). The implications (i)⇒(ii)⇒(iii) hold for g ∈ N and s ∈
[0, 1] with the same proof.

Corollary 14.3 (The global result). For g ∈ N, g ≥ 1, s ∈ (0, 1) the following three 
conditions are equivalent:

(i) There exists a Cg+2,s E-manifold structure on M , compatible with its C2 structure, 
such that X1, . . . , Xq, L1, . . . , Lm are Cg+1,s vector fields on M and L (as defined 
in (14.1)) is the associated elliptic structure (see Definition 6.20).

(ii) For each x0 ∈ M , any of the three equivalent conditions from Corollary 14.1 hold 
for this choice of x0.

(iii) Let Z1, . . . , Zm+q denote the list X1, . . . , Xq, L1, . . . , Lm. Then, [Zj , Zk] =∑m+q
l=1 c1,lj,kZl and [Zj , Zk] =

∑m+q
l=1 c2,lj,kZl +

∑m+q
l=1 c3,lj,kZl, where ∀x ∈ M , there 

exists an open neighborhood V ⊆ M of x such that ca,lj,k

∣∣
V

∈ Cg,s
X,L(V ), 1 ≤ a ≤ 3, 

1 ≤ j, k, l ≤ m + q. Furthermore, the map x 
→ dim Lx, M → N is constant.

Furthermore, under these conditions, the Cg+2,s E-manifold structure in (i) is unique, in 
the sense that if M has another Cg+2,s E-manifold structure satisfying the conclusions 
of (i), then the identity map M → M is a Cg+2,s E-diffeomorphism between these two 
E-manifold structures.

Proof. With Corollary 14.1 in hand, the proof is nearly identical to the proof of Theo-
rem 7.2, and we leave the details to the interested reader. �

When s ∈ {0, 1}, the use of Zygmund spaces (as in Theorem 7.1 and Theorem 7.2) is 
essential. Indeed, the above results do not hold with s ∈ {0, 1}, at least in the special 
case when n ≥ 1, r = 0. This follows from the next lemma.

Lemma 14.4. Fix n ≥ 1, g ∈ N. There exists an open neighborhood V ′ ⊆ Cn of 0 and 
complex vector fields L1, . . . , Ln ∈ Cg+1(V ′; C2n) such that

(i) For every ζ ∈ V , L1(ζ), . . . , Ln(ζ), L1(ζ), . . . , Ln(ζ) form a basis for CTζV
′.

(ii) [Lj , Lk] =
∑m

l=1 c
1,l
j,kLl and [Lj , Lk] =

∑m
l=1 c

2,l
j,kLl +

∑m
l=1 c

3,l
j,kLl, where ca,lj,k ∈

Cg
L(V ′), 1 ≤ a ≤ 3, 1 ≤ j, k, l ≤ n.

(iii) There does not exist a C2 diffeomorphism Φ : U → V , where V ⊆ V ′ is an open 
neighborhood of 0 and U ⊆ Cn is open such that Φ∗L1, . . . , Φ∗Ln ∈ Cg,1(U) and 
∀ζ ∈ U ,
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Φ∗L1(ζ), . . . ,Φ∗Ln(ζ) ∈ spanC
{

∂

∂z1
, . . . ,

∂

∂zn

}
.

Proof. The idea of the proof is that our results (e.g., Theorem 3.5) imply the sharp 
regularity of the classical Newlander-Nirenberg theorem, and it is a result of Liding Yao 
[37] that sharp results for the classical Newlander-Nirenberg theorem require Zygmund 
spaces. Indeed, he exhibits a set complex vector fields L1, . . . , Ln ∈ Cg+1(V ′; C2n), 
defined on an open neighborhood V ′ of the origin in Cn such that

• For every ζ ∈ V , L1(ζ), . . . , Ln(ζ), L1(ζ), . . . , Ln(ζ) form a basis for CTζV
′.

• There does not exist a Cg+1,1 diffeomorphism Φ : U → V , where V ⊆ V ′ is an open 
neighborhood of 0 and U ⊆ Cn is open such that ∀ζ ∈ U ,

Φ∗L1(ζ), . . . ,Φ∗Ln(ζ) ∈ spanC
{

∂

∂z1
, . . . ,

∂

∂zn

}
.

To see why this choice of L1, . . . , Ln satisfies the conclusion of them lemma, note that

[Lj , Lk] =
m∑
l=1

c1,lj,kLl, [Lj , Lk] =
m∑
l=1

c2,lj,kLl +
m∑
l=1

c3,lj,kLl,

ca,lj,k ∈ Cg(V ′), 1 ≤ a ≤ 3, 1 ≤ j, k, l ≤ n.

Since L1, . . . , Ln ∈ Cg+1(V ′; C2n), it follows immediately from the definitions that 
Cg(V ′) ⊆ Cg

L(V ′). Now suppose, for contradiction, Φ : U → V is a C2 diffeomor-
phism as in (iii). Then, the obvious of analog of Lemma 10.1 for Hölder spaces shows 
Φ ∈ Cg+1,1(U), contradicting the choice of L1, . . . , Ln. �
Appendix A. Immersed submanifolds

Let W1, . . . , WN be real C1 vector fields on a C2 manifold M. For x, y ∈ M, define 
ρ(x, y) as in (2.3). Fix x0 ∈ M and let Z := {y ∈ M : ρ(x0, y) < ∞}. ρ is a metric on Z, 
and we give Z the topology induced by ρ (this is finer27 than the topology as a subspace 
of M, and may be strictly finer). Let M ⊆ Z be a connected open subset of Z containing 
x0. We give M the topology of a subspace of Z.

Proposition A.1. Suppose [Wj , Wk] =
∑N

l=1 c
l
j,kWl, where clj,k : M → R are locally 

bounded. Then, there is a C2 manifold structure on M (compatible with its topology) 
such that:

• The inclusion M ↪→ M is a C2 injective immersion.

27 See [27, Lemma A.1] for a proof that this topology is finer than the subspace topology.
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• W1, . . . , WN are C1 vector fields tangent to M .
• W1, . . . , WN span the tangent space at every point of M .

Furthermore, this C2 structure is unique in the sense that if M is given another C2

structure (compatible with its topology) such that the inclusion map M ↪→ M is a C2

injective immersion, then the identity map M → M is a C2 diffeomorphism between 
these two C2 structures on M .

Proposition A.1 is standard; see [27, Appendix A] for a proof.

Appendix B. Linear algebra

B.1. Real and complex vector spaces

Let V be a real vector space and let V C = V ⊗R C be its complexification. We 
consider V ↪→ V C as a real subspace by identifying v with v ⊗ 1. There are natural 
maps:

Re : V C → V , Im : V C → V , complex conjugation : V C → V C,

defined as follows. Every v ∈ V C can be written uniquely as v = v1 ⊗ 1 + v2 ⊗ i, with 
v1, v2 ∈ V . Then, Re(v) := v1, Im(v) := v2, and v := v1 ⊗ 1 − v2 ⊗ i.

Lemma B.1. Let L ⊆ V C be a finite dimensional complex subspace. Then, dim(L +
L ) + dim(L

⋂
L ) = 2 dim(L ).

Proof. It is a standard fact that dim(L + L ) + dim(L
⋂

L ) = dim(L ) + dim(L ). 
Using that w 
→ w, L → L is an anti-linear isomorphism, the result follows. �
Lemma B.2. Let L ⊆ V C be a finite dimensional subspace. Let x1, . . . , xr ∈ L

⋂
L
⋂
V

be a basis for L
⋂

L and let l1, . . . , ln ∈ L . The following are equivalent:

(i) x1, . . . , xr, Re(l1), . . . , Re(ln), Im(l1), . . . , Im(ln) is a basis for L + L .
(ii) x1, . . . , xr, l1, . . . , ln is a basis for L .

Proof. Clearly r = dim(L ∩ L ).
(i)⇒(ii): Suppose (i) holds. Then dim(L +L ) = 2n +r. Lemma B.1 implies dim(L ) =

n + r. Thus, once we show x1, . . . , xr, l1, . . . , ln are linearly independent, they will form 
a basis. Suppose

r∑
akxk +

n∑
(bj + icj)lj = 0, (B.1)
k=1 j=1
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with ak ∈ C, bj , cj ∈ R. We wish to show ak = bj = cj = 0, ∀j, k. Applying Re to (B.1), 
we see

n∑
k=1

Re(ak)xk +
n∑

j=1
bjRe(lj) −

n∑
j=1

cjIm(lj) = 0.

Since x1, . . . , xr, Re(l1), . . . , Re(ln), Im(l1), . . . , Im(ln) are linearly independent by hy-
pothesis, we see Re(ak) = bj = cj = 0, ∀j, k. Plugging this into (B.1) we have

r∑
k=1

iIm(ak)xk = 0.

Since x1, . . . , xr are linearly independent, we see Im(ak) = 0, ∀k. Thus, ak = bj = cj = 0, 
∀j, k and (ii) follows.

(ii)⇒(i): Suppose x1, . . . , xr, l1, . . . , ln form a basis for L . Then, dim(L ) = n + r and 
Lemma B.1 shows dim(L + L ) = 2n + r. Thus, once we show x1, . . . , xr, Re(l1), . . . ,
Re(ln), Im(l1), . . . , Im(ln) span L + L it will follow that they are a basis. But it is 
immediate to verify that Re(L ) spans L +L , thus since Re(xj) = xj , Re(ixj) = 0, and 
Re(−ilj) = Im(lj), it follows that x1, . . . , xr, Re(l1), . . . , Re(ln), Im(l1), . . . , Im(ln) span 
L + L , which completes the proof. �
Lemma B.3. Let L ⊆ V C be a finite dimensional complex subspace. Suppose x1, . . . , xr ∈
L
⋂

L
⋂

V is a basis for L
⋂

L and extend this to a basis x1, . . . , xr, l1, . . . , ln ∈ L . 
Suppose z ∈ L and

Re(z) =
r∑

k=1

akxk +
n∑

j=1
bjRe(lj) +

n∑
j=1

cjIm(lj),

Im(z) =
r∑

k=1

dkxk +
n∑

j=1
ejRe(lj) +

n∑
j=1

fjIm(lj),

with ak, bj , cj , dk, ej , fj ∈ R. Then,

z =
r∑

k=1

(ak + idk)xk +
n∑

j=1
(bj − icj)lj .

Proof. Set z0 =
∑r

k=1(ak + idk)xk +
∑n

j=1(bj − icj)lj ; we wish to show z = z0. Clearly 
Re(z − z0) = 0. We have

Im(z − z0) =
n∑

j=1
(ej + cj)Re(lj) +

n∑
j=1

(fj − bj)Im(lj)

∈ spanC{Re(l1), . . . ,Re(ln), Im(l1), . . . , Im(ln)}.
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However, since Re(z − z0) = 0,

Im(z − z0) = 1
i
(z − z0) = −1

i
(z − z0) ∈ L

⋂
L = spanC{x1, . . . , xr}.

Thus,

Im(z − z0) ∈ spanC{Re(l1), . . . ,Re(ln), Im(l1), . . . , Im(ln)}
⋂

spanC{x1, . . . , xr}.

Since x1, . . . , xr, Re(l1), . . . , Re(ln), Im(l1), . . . , Im(ln) are linearly independent (by
Lemma B.2), it follows that Im(z − z0) = 0, which completes the proof. �
B.2. Wedge products

Let Z be a one dimensional vector space over a field F (we will always be using 
F = C or R). For z1, z2 ∈ Z , z1 �= 0 we set

z2

z1
:= λ(z2)

λ(z1)
∈ F ,

where λ : Z → F is any non-zero linear functional. It is easy to see that z2z1 is independent 
of the choice of λ.

Let W be an N -dimensional vector space over F , so that 
∧N W is a one-dimensional 

vector space over F . Let w1, . . . , wN ∈ W be a basis for W and let w′
1, . . . , w

′
N ∈ W . 

Using the above definition, it makes sense to consider

w′
1 ∧ w′

2 ∧ · · · ∧ w′
N

w1 ∧ w2 ∧ · · · ∧ wN
.

Lemma B.4. In the above setting, the following three quantities are equal:

(i) w′
1∧w′

2∧···∧w′
N

w1∧w2∧···∧wN
.

(ii) det(B), where B is the linear transformation defined by Bwj = w′
j.

(iii) det(C), where C is the N ×N matrix with components ckj , where w′
j =

∑
ckjwk.

Proof. Clearly (ii) and (iii) are equal. To see that (i) and (ii) are equal, let B be as in 
(ii). Then, we have

w′
1 ∧ w′

2 ∧ · · · ∧ w′
N

w1 ∧ w2 ∧ · · · ∧ wN
= (Bw1) ∧ (Bw2) ∧ · · · ∧ (BwN )

w1 ∧ w2 ∧ · · · ∧ wN
= det(B)(w1 ∧ w2 ∧ · · · ∧ wN )

w1 ∧ w2 ∧ · · · ∧ wN

= det(B),

completing the proof. �
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Let V be a real vector space and let V C be its complexification. Let L ⊆ V C be a 
finite dimensional subspace and let X := L

⋂
L ; note that X = X . Set r = dim(X )

and n + r = dim(L ). Set W := (L + L ) 
⋂

V = spanR{Re(l) : l ∈ L } ⊆ V (so that W
is a real vector space). By Lemma B.1, dim(W ) = 2n + r.

Fix x1, . . . , xq ∈ X
⋂

V and l1, . . . , lm ∈ L such that X = spanC{x1, . . . , xq} and 
L = spanC{x1, . . . , xq, l1, . . . , lm}. For K = (k1, . . . , kr1) ∈ I(r1, q) (where I(r1, q) =
{1, . . . , q}r1 ; see (4.1)), set 

∧
XK := xk1∧xk2∧· · ·∧xkr1

. For J = (j1, . . . , jn1) ∈ I(n1, m)
set∧

LJ := lj1 ∧ lj2 ∧ · · · ∧ ljn1
,

∧
2Re(L)J := 2Re(lj1) ∧ 2Re(lj2) ∧ · · · ∧ 2Re(ljn1

),∧
2Im(L)J :=2Im(lj1) ∧ 2Im(lj2) ∧ · · · ∧ 2Im(ljn1

).
(B.2)

Let w1, . . . , w2m+q denote the list x1, . . . , xq, 2Re(l1), . . . , 2Re(lm), 2Im(l1), . . . , 2Im(lm), 
so that W = spanR{w1, . . . , w2m+q}. For P = (p1, . . . , p2n+r) ∈ I(2n + r, 2m + q), we 
set 

∧
WP := wp1 ∧ wp2 ∧ · · · ∧ wp2n+r

.

Proposition B.5. Fix ζ ∈ (0, 1], J0 ∈ I(n, m), K0 ∈ I(r, q).

(i) Suppose (
∧
XK0)

∧
(
∧

LJ0) �= 0 and moreover,

max
J∈I(n1,m),K∈I(r1,q)

n1+r1=n+r

∣∣∣∣ (
∧
XK)

∧
(
∧

LJ)
(
∧

XK0)
∧

(
∧
LJ0)

∣∣∣∣ ≤ ζ−1.

Then, (
∧
XK0)

∧
(
∧

2Re(L)J0)
∧

(
∧

2Im(L)J0) �= 0 and moreover,

max
P∈I(2n+r,2m+q)

∣∣∣∣ ∧
WP

(
∧

XK0)
∧

(
∧

2Re(L)J0)
∧

(
∧

2Im(L)J0)

∣∣∣∣ ≤ (
2ζ−1√2n + r

)2n+r
.

(B.3)
(ii) Conversely, suppose (

∧
XK0)

∧
(
∧

2Re(L)J0)
∧

(
∧

2Im(L)J0) �= 0 and moreover,

max
P∈I(2n+r,2m+q)

∣∣∣∣ ∧
WP

(
∧

XK0)
∧

(
∧

2Re(L)J0)
∧

(
∧

2Im(L)J0)

∣∣∣∣ ≤ ζ−1.

Then, (
∧
XK0)

∧
(
∧

LJ0) �= 0 and moreover,

max
J∈I(n1,m),K∈I(r1,q)

n1+r1=n+r

∣∣∣∣ (
∧

XK)
∧

(
∧
LJ)

(
∧
XK0)

∧
(
∧

LJ0)

∣∣∣∣ ≤ (
4ζ−1√n + r

)n+r
. (B.4)

Remark B.6. A choice of K0, J0, and ζ as in (i) or (ii) always exist: take K0 = (k1, . . . , kr)
and J0 = (j1, . . . , jn) so that xk1 , . . . , xkr

, lj1 , . . . , ljn form a basis for L . With this choice, 
the conditions for (i) and (ii) then hold for some ζ ∈ (0, 1]. If X

⋂
spanC{l1, . . . , lm} =
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{0}, one may pick J0 and K0 so that the conditions of (i) hold with ζ = 1. This occurs 
in the two most important special cases: r = 0 or m = 0.

Remark B.7. The estimates (B.3) and (B.4) are not optimal; however, we do not know 
the optimal estimates, and so content ourselves with proving the simplest estimates 
which are sufficient for our purposes.

Proof. Suppose K0, J0, and ζ are as in (i); let K0 = (k1, . . . , kr), J0 = (j1, . . . , jn). 
Since dim L = n + r and since xk1 , . . . , xkr

, lj1 , . . . , ljn are linearly independent, it 
follows that xk1 , . . . , xkr

, lj1 , . . . , ljn are a basis for L . By Lemma B.2, xk1 , . . . , xkr
,

2Re(lj1), . . . , 2Re(ljn), 2Im(lj1), . . . , 2Im(ljn) are a basis for W , and therefore (
∧
XK0)

∧
(
∧

2Re(L)J0)
∧

(
∧

2Im(L)J0) �= 0.
Let P = (p1, . . . , p2n+r) ∈ I(2n + r, 2m + q). We claim, for t = 1, . . . , 2n + r,

wpt
=

r∑
α=1

aαt xkα
+

n∑
β=1

bβt 2Re(ljβ ) +
n∑

β=1

cβt 2Im(ljβ ), 1
2 |a

α
t |, |bβt |, |cβt | ≤ ζ−1,∀t, α, β.

(B.5)
By its definition wpt

= 2Re(z), where z ∈ {1
2x1, . . . , 12xq, l1, . . . , lm, −il1, . . . , −ilm}. 

Using Cramer’s rule, we have

z =
r∑

α=1

xk1 ∧ · · · ∧ xkα−1 ∧ z ∧ xkα+1 ∧ · · · ∧ xkr
∧ lj1 ∧ · · · ∧ ljn

xk1 ∧ · · · ∧ xkr
∧ lj1 ∧ · · · ∧ ljn

xkα

+
n∑

β=1

xk1 ∧ · · · ∧ xkr
∧ lj1 ∧ · · · ∧ ljβ−1 ∧ z ∧ ljβ+1 ∧ · · · ∧ ljn

xk1 ∧ · · · ∧ xkr
∧ lj1 ∧ · · · ∧ ljn

ljβ

=:
r∑

α=1
dαxkα

+
n∑

β=1

eβljβ ,

where |dα|, |eβ | ≤ ζ−1 by hypothesis. Thus,

wpt
= 2Re(z) = z + z =

r∑
α=1

(dα + dα)xkα
+

n∑
β=1

(eβljβ ) + (eβljβ )

=
r∑

α=1
2Re(dα)xkα

+
n∑

β=1

Re(eβ)2Re(ljβ ) +
n∑

β=1

−Im(eβ)2Im(ljβ ).

(B.5) follows.
Using (B.5), Lemma B.4 shows

∧
WP∧ ∧ ∧ ∧ ∧
( XK0) ( 2Re(L)J0) ( 2Im(L)J0)
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is equal to the determinant of a (2n + r) × (2n + r) matrix, all of whose components are 
bounded by 2ζ−1. (B.3) now follows from Hadamard’s inequality.

Suppose K0, J0, and ζ are as in (ii); let K0 = (k1, . . . , kr), J0 = (j1, . . . , jn). Since

xk1 , . . . , xkr
, 2Re(lj1), . . . , 2Re(ljn), 2Im(lj1), . . . , 2Im(ljn)

are linearly independent, and since dim W = 2n + r, it follows that they are a ba-
sis for W . By Lemma B.2, xk1 , . . . , xr, lj1 , . . . , ljn is a basis for L , and therefore 
(
∧

XK0)
∧

(
∧

LJ0) �= 0.
Let J ∈ I(n1, m), K ∈ I(r1, q) with n1 + r1 = n + r. (

∧
XK)

∧
(
∧
LJ ) = z1 ∧ z2 ∧

· · · ∧ zn+r, where each zt is of the form xk or lj for some j or k. We claim

zt =
r∑

α=1
gαt xkα

+
n∑

β=1

hβ
t ljβ , |gαt |, |hβ

t | ≤ 4ζ−1,∀t, α, β. (B.6)

Indeed, suppose zt = lj for some j. Then,

2Re(zt) =
r∑

α=1
aαt xkα

+
n∑

β=1

bβt 2Re(ljβ ) +
n∑

β=1

cβt 2Im(ljβ ),

where, by Cramer’s rule,

aαt =
∧

WPt,α

(
∧
XK0)

∧
(
∧

2Re(L)J0)
∧

(
∧

2Im(L)J0)
,

and 
∧
WPt,α

is defined by replacing xkα
with 2Re(zt) in (

∧
XK0)

∧
(
∧

2Re(L)J0)
∧

(
∧

2Im(L)J0), and therefore |aαt | ≤ ζ−1, by hypothesis. Similarly, |bβt |, |cβt | ≤ ζ−1. Simi-
larly,

2Imzt =
r∑

α=1
dαt xkα

+
n∑

β=1

eβt 2Re(ljβ ) +
n∑

β=1

fβ
t 2Re(ljβ ), |dαt |, |eβt |, |fβ

t | ≤ ζ−1,∀t, α, β.

(B.6) now follows from Lemma B.3 (with, in fact, 4ζ−1 replaced by 2ζ−1). A similar 
proof works when zt = xk for some k, yielding (B.6).

Using (B.6), Lemma B.4 shows

(
∧
XK)

∧
(
∧

LJ)
(
∧

XK0)
∧

(
∧
LJ0)

is equal to the determinant of an (n + r) × (n + r) matrix, all of whose components are 
bounded by 4ζ−1. (B.4) now follows from Hadamard’s inequality. �
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