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1. Introduction

Let M be a C? manifold and let Ly,...,L,, be C' complex vector fields on M.
Suppose, V¢ € M,

d L1(<)77Lm(C)7L_1(C)u7m(C) Span CTcM
® [LJ7L/€KC) GSPanC {Ll(C)77Lm(@7 V1 S.]ig m.
e spanc {L1(C),- -, Lm(C)} Nspang {L1(C),- .., Lm(C) } = {0}

Under these conditions, the classical Newlander-Nirenberg Theorem (see [13]) states that
M can be given the structure of a complex manifold such that L;i(C),..., Ly (¢) form
a spanning set of TCO "1(M ), V¢ € M; and this is the unique such complex structure on
M. For s > 0 we let ¢° denote the Zygmund? space of order s (see Section 2.1), €
denote the space of smooth functions, and € the space of real analytic functions. For
s € (0,00] U{w} if M is known to be a ¢**2 manifold® and Ly, ..., L,, are known to be
%51 vector fields on M, then it is a result of Malgrange [15] that the complex structure
on M is compatible with the original €**2 manifold structure, and therefore L1,. .., L,
are also €' with respect to the complex structure on M—and this is the best one can
say in general regarding the regularity of the vector fields L, ..., L,, with respect to the
complex structure.”

In this paper, we proceed in a different direction and only assume M is a C'? manifold
and Lq,...,L,, are C' vector fields on M as above, and investigate the following two
closely related questions for s € (1, 00] U {w}:

(i) When are the vector fields, Ly,..., Ly, €°*! with respect to the above complex
structure on M? We present necessary and sufficient conditions for this to hold,
which are intrinsic to the C? structure on M (and can be checked locally in any C?
coordinate system on M).

(ii) Under the conditions we give for (i), how can we pick a holomorphic coordinate
system near each point so that the vector fields L1, ..., L,, are normalized in this
coordinate system in a way which is useful for applying techniques from analysis?
See Section 1.2.2 for an example of what we mean by “normalized”.

The real analogs of the above two questions were answered in a work of Stovall and
the author [27,31,32]. The coordinate charts in those papers were seen as scaling maps
in sub-Riemannian geometry. The quantitative study of scaling maps in sub-Riemannian

2 For non-integer exponents, the Zygmund space agrees with the Holder space. More precisely, for m € N
and a € (0,1), the Zygmund space €™ 1 is locally the same as the Holder space C™® (see [36, Theorem
1.118 (i)]). For a € {0, 1}, these spaces differ: C™ 10 ¢ ¢™1 C g™+

3 We use the convention co +1 =co+2=ocand w+1=w + 2 = w.

4 [15] used Holder spaces with non-integer exponents instead of Zygmund spaces, though the proof extends
to Zygmund spaces. See [33] for a further discussion in the setting of Zygmund spaces.
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geometry began with the foundational work of Nagel, Stein, and Wainger [19] and the
closely related work of C. Fefferman and Sénchez-Calle [10], and was furthered by Tao
and Wright [34, Section 4] and the author [28], and most recently in the above mentioned
series of papers [27,31,32]. Since Nagel, Stein, and Wainger’s original work, these ideas
have had many applications. They have been particularly useful in the study of partial
differential equations defined by vector fields; see the notes at the end of Chapter 2 of
[30] for some comments on this history.

When applying these ideas to questions in several complex variables (when working
on, for example, a complex manifold) a problem immediately arises. The scaling maps
studied by Nagel, Stein, and Wainger (and in the subsequent works described above) are
not holomorphic. Thus, if one tries to rescale questions using these maps, one destroys
any holomorphic aspects of the questions under consideration. Nevertheless, scaling tech-
niques are one of the main tools needed to prove the quantitative estimates required to
apply the theory of singular integrals to partial differential operators. Thus, when work-
ing in the complex category, one needs a different approach than the one given by Nagel,
Stein, and Wainger to be able to scale with holomorphic maps. Some authors use ad hoc
methods to create these scaling maps for the particular problem they wish to study (e.g.,
by using non-isotropic dilations determined by the Taylor series of some ingredients in
the problem)-see, e.g., [18, Section 3], [4, Section 3.3.2], and [2, Section 2.1].

A main goal of this paper is to adapt the results of Nagel, Stein, and Wainger [19] (and
more generally, the results of [27,31,32]) to the complex category. Thus, in an appropriate
setting, one obtains holomorphic scaling maps adapted to a collection of complex vector
fields. Much as the theory of Nagel, Stein, and Wainger allows one to quantitatively
study sub-Riemannian geometry on a real manifold, the theory in this paper allows one
to quantitatively study certain sub-Riemannian geometries on a complex manifold which
are well adapted to the complex structure, using only holomorphic maps. We call such
geometries sub-Hermitian.

While the complex setting is easier to understand, we proceed more generally than
above. Instead of working with the category of complex manifolds, we work more gen-
erally in the category of real manifolds endowed with an elliptic structure; we call these
manifolds E-manifolds (see Section 6). This allows us to state a general theorem which
implies both the results in the complex setting, as well as generalizes the results from
the real setting in [27,31,32]. The more general results apply, in some cases, to CR man-
ifolds (see Section 6.1 for the relationship between E-manifolds and CR manifolds and
Section 8.4 for a discussion of our results in a setting on CR manifolds).

Our main result in the complex setting can be seen as a diffeomorphic invariant,”
quantitative version of the classical Newlander-Nirenberg theorem [21], while the more
general main result in the elliptic setting can be seen as a diffeomorphic invariant, quan-
titative version of Nirenberg’s theorem on the integrability of elliptic structures [23].

5 Here, by diffeomorphic invariant, we mean that all of the quantitative estimates are invariant under
arbitrary C? diffeomorphisms. See Section 4.3.
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1.1. Comparison with previous results
The results in this paper can be compared to previous work in two ways:

¢ We provide a quantitatively diffeomorphic invariant approach to the classical
Newlander-Nirenberg theorem, and more generally Nirenberg’s theorem on the inte-
grability of elliptic structures.

e We provide a holomorphic analog of the quantitative theory of sub-Riemannian
geometry due to Nagel, Stein, and Wainger [19]; and more generally results on “E-
manifolds.” See Section 6 for the definition of E-manifolds.

We have already described the second point, so we focus on the first.

In previous results on the Newlander-Nirenberg theorem, one is given complex vector
fields L1, ..., Ly,, as described at the start of the introduction, with some fixed regularity
(e.g., in €5t for some s > 0). Given a fixed point (5 € M, the goal is to find a
©5+2 coordinate chart @ : Ben (1) — W (where W is a neighborhood of (), such that
, %); in this case ®*L1,...,®*L,,

are ¢*T1. €**? is the optimal possible regularity for ® (in general), and was established

®*Ly,...,0*L,, are T"! (i.e., are spanned by 8%1, e

by Malgrange [15].

Our results take a different perspective. In this paper, the vector fields are only as-
sumed to be C!, and we ask the question as to when it is possible to choose a C?
coordinate chart ® so that the vector fields are €**! and T%!. Our results imply the
above classical results on the Newlander-Nirenberg theorem® but are more general: our
results are invariant under arbitrary C? diffeomorphisms (whereas previous results are
only invariant under ¢**? diffeomorphisms).

Remark 1.1. The main results of this paper are in Section 4. There are many aspects of
the main results which are important for applications. Some of these are:

o They are invariant under arbitrary C? diffeomorphisms (see Section 4.3). For exam-
ple, this allows us to understand the regularity of a given collection of C! complex
vector fields, satisfying the conditions of the Newlander-Nirenberg theorem, with
respect to the induced complex structure. See, e.g., Section 3.1 and more generally
Section 7.1.

o They are quantitative. This allows us to view the induced coordinate charts as scaling
maps in “sub-Hermitian geometry” (see Section 3.2.2) and more generally “sub-E
geometry” (see Section 7.2). The quantitative nature of our results also has some
applications to singular foliations; see Section 4.4.

o Instead of dealing with complex structures, we state our results in the context of
elliptic structures (see Section 6). This allows us to state a general theorem which

6 At least for s > 1.
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includes both the complex setting and the real setting of [27,31,32] as special cases.
This more general setting applies, in some instances, to CR-manifolds.

Because we include all these considerations into our main results, the statements of these
results are quite technical. In Section 1.2 we state some simple corollaries of the main
results of this paper which are less technical, to help give the reader an idea of the
types of results we are interested in. Furthermore, we describe several more significant
consequences of the main results in Section 3. We hope that if the reader reads these
results before the main results, it will make the main results easier to digest.

1.2. Some simple corollaries

Before we introduce all the relevant function spaces and notation, in this section we
present some easy to understand corollaries of our main result to help give the reader
an idea of the direction of this paper. Here, we only consider the smooth setting; precise
statements of more general results appear later in the paper. We also only consider the
complex setting in this section; the more general setting of E-manifolds is described in
Sections 6 and 7. There are two, related, ways in which the main result of this paper
(Theorem 4.5) can be understood. Below we give examples of these two perspectives.
The main result addresses both of these perspectives simultaneously, and we will see
that it also applies to several other situations.

1.2.1. Smoothness in the Newlander-Nirenberg theorem
Let Lq,..., L, be C! complex vector fields defined on an open set W C C™. Fix a
point (g € U. We wish to understand when the following goal is possible:

Goal 1.2. Find a C? diffeomorphism ® : U — W', where U C C" is open and W/ C W
is an open set containing (y such that:

e The vector fields ®*Lq,...,®*L,, are C* vector fields on U.
e V(eU,

0 0
spanc{(p*Ll(C), ceey (b*Lm(C)} = spang {8—21’ - 8—271} .
There are some obvious necessary conditions for Goal 1.2 to be possible. Namely, that
there be an open neighborhood W"” C W containing (p, such that the following holds:

(1) spanc{L1(0),- -+ ()} Nspang (T1(C) - . Fm(O)} = {0}, ¥C € W
(ll) SpanC{Ll(C)v ) LM(C)a Ll(C)v_ 7LTTL(()} = CTCW”7 VC G_VV”'
(iii) [L;, L] =>2", c;’,chl and [L;, L) = Y4 ci’,chl—kZ;il c?,’,iLl, where c;”,i, ci’,lw c?,i
W' — C and satisfy the following: for any sequence Vi,...,Vx € {L1,..., Ly, L1,
.oy Ly}, of any length K € N, we have
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ViVy - Vieely,
defines a continuous function W’ — C, 1 <p <3,1<j,k, I <m.

That these conditions are necessary to achieve Goal 1.2 is clear: if Goal 1.2 holds, the
above conditions all clearly hold for the vector fields ®*Lq,..., ®*L,,. Indeed, for the
vector fields ®*Lq,...,®*L,, one may take c?,i to be C* functions on U. The above
conditions are all invariant under C? diffeomorphisms, and therefore if they hold for
®*Ly,...,P*L,,, they must also hold for the original vector fields L1, ..., Ly,. Our first
corollary of Theorem 4.5 says the following;:

Corollary 1.3. The above necessary conditions are also sufficient to obtain Goal 1.2.

See Section 3.1.2 for a more general version of Corollary 1.3.

1.2.2. Normalizing vector fields

Suppose one is given complex vector fields Ly, ..., L,, on an open set W C C™ of the
form:
L; = . b’?i, bE e o (W), (1.1)
J Pt 70z, J

and such that V{ € W,

span(c{Ll(C),...,Lm(C)}:span(c{%,...%}. (1.2)
Assign to each L; a formal degree d; € [1,00). For 6 € (0, 1] (we think of § as small), one
tends to think of the vector fields 6% L1, ..., % L,, as being small. Fix a point (y € W.
Our next goal is to find a holomorphic coordinate system, near (j, in which the vector
fields are not small. More precisely, we wish to understand when the following goal is
possible:

Goal 1.4. For each ¢ € (0,1] find a biholomorphism ®s : Ber (1) — Wi with @5(0) = (o,
where B (1) is the unit ball in C™ and W5 C W is an open neighborhood of (g, such
that:

o BE6NLy, ..., ®58%m L, are C* vector fields, uniformly in 6 € (0,1], in the sense
that

max sup |[®50UL; n(1):Cny < 00, Vk € N.
B ae(ol,)u |95 iller(Ben (1):cm)
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e Because ®; is a biholomorphism, we have

0 7]

spanc{ @56 Ly (2), ..., ®56% L,,(2)} = spang {831’ e 52} , Vz € Ben(1).

We ask that this be true uniformly in ¢ in the sense

inf £ |det (®ro%1 L o | PESTin L 0;
pl . mex o inf 1)! et (®50%1 Lj, (2)] - - - |®; in(2))] > 0;

where the matrix (®36%1 L;, ()] -+ - |®;6%n L;, (z)) is the nxn matrix whose columns
are given by the coefficients of the vector fields ®%5%x L, (2), written as linear com-

)
binations of 8, RRRRY -

Goal 1.4 can be thought of as rescaling the vector fields so that they are “normal-
ized”. Indeed, the vector fields ®%6% L,y,, ..., ®%§%" L,, are C* uniformly in § and span
T%!Bcn (1) uniformly in §. In short, we have changed coordinates near (y to turn the
case of § small back into a situation similar to § = 1. Notice that Goal 1.2 is trivial in
the situation we are considering; nevertheless we will see that the necessary and suffi-
cient condition for when to Goal 1.4 is possible looks very similar to the necessary and
sufficient conditions for when Goal 1.2 is possible.

There is an obvious necessary condition for Goal 1.4 to be possible. Namely, that
for every 6 € (0,1], there is an open neighborhood Wj§ C W of (o such that the fol-
low holds. For every § € (0,1, [6% L;, 6% Ly] = Yo7, ei°6% Ly and [0% L;, 0% L) =
S 162l65d’L1 + Y 103156d1Ll, where cjlllf,c?,lf,c?,ié : Wg_—> C andﬁtisfy the
following: for any sequence V?,..., V2 € {§®Ly,... 0% Ly, 04 Ly, ..., 8% L,,}, of any
length K € N, we have

1,6
sup VP -+ Ve lewy) < o0,
6€(0,1]

V1 <p<3,1< 4,k 1 <m. That this condition is necessary is clear: if ®5 exists as in
Goal 1.4, then one may write

[@50% L, ®50% L] =Y e 050" Ly,
=1

m
[@56% Lj, ®56% Ly :Z En @y +Zé3l5¢> 0Ly,
=1 =1
where é?:,lc’& € C*°(Bcn (1)), uniformly in § € (0,1]. Setting c?”,lc"s = é’;,’é"; o ®; ! and
Wi = ®5(B"(1)), we see that the above condition is necessary. It is also necessary
that the set W§ must not be too small: it must essentially contain a sub-Riemannian
ball adapted to the vector fields 6% Ly, ..., 5% L,,. This is somewhat technical to make
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precise (see Remark 1.7 for a precise statement), and the reader may wish to skip this on
a first reading. Our next corollary is that the above necessary condition is also sufficient.

Corollary 1.5. Once the requirement on the size of Wy described above is made precise
(see Remark 1.7), the above necessary condition is also sufficient for Goal 1.4 to be
possible.

Proof. This follows from Theorem 4.5, using Lemma 4.13. O

At first glance, it may be hard to see Corollary 1.5 as a consequence of Theorem 4.5.
Indeed, the thrust of Corollary 1.5 is that we have a result which is “uniform in §”. In
Theorem 4.5, there is no parameter similar to ¢ for the results to be uniform in: there
is just one finite list of vector fields, which does not depend on any variable like §. The
key is that we keep careful track of what all the estimates in Theorem 4.5 depend on.
Because of this, we may apply Theorem 4.5 to each of the lists 6% Ly, ... 8% L,,, for
§ € (0,1], and obtain results which are uniform in d—this is because we can see from
the dependances of the estimates in Theorem 4.5 that they do not depend on § € (0, 1],
when applied to 6% L1, ..., 6% L,,.

Thus, to proceed in this way, it is essential to keep careful track of what each constant
depends on in Theorem 4.5. This is notationally cumbersome, but is justified because
it applies not only to results like Corollary 1.5, but also to much more complicated
situations. For example, one might consider vector fields that depend on § in a more
complicated way than above, or consider the multi-parameter case § € (0,1]”, or look
for results which are uniform in the base point (y. All of these are possible, and follow
from Theorem 4.5 in the same way Corollary 1.5 does. See, for example, Section 8.

For a setting which generalizes Corollary 1.5 and which appears in several complex
variables, see Section 8. For some more significant results similar to, but slightly dif-
ferent than Corollary 1.5, see Section 3.2.2—there we will see similar ideas as providing
holomorphic scaling maps adapted sub-Riemannian geometries on a complex manifold.

Remark 1.6. In light of the above discussion, one way to think about one aspect of The-
orem 4.5 is the following. Suppose you are given smooth vector fields L1, ..., L,, of the
form described in (1.1) satisfying (1.2). But suppose the vector fields have very large co-
efficients, or very small coefficients (for example, in the above setting the coefficients were
very small when ¢ was small). Theorem 4.5 provides necessary and sufficient conditions
on when one can apply a holomorphic change of variables to normalize the coefficients
in the way described above.

Remark 1.7. The size of W; can be described as follows. There exists £ > 0 (independent
of § € (0,1]) such that

Bsaip, . simr,, (G0, €) C W. (1.3)
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See (2.2) and (2.4) for the definition of this ball. In the above description of necessity of
our condition for Goal 1.4, we chose W§ = ®5(B"(1)). Thus, to prove the necessity of
(1.3), under the conclusions of Goal 1.4, we wish to show

B(Sdth,,,,(SdMLm(COag) - q)é(Bn(l))v (14)

for some £ > 0, independent of § € (0,1]. Once we prove (1.4), it will show (1.3) is
necessary for Goal 1.4 to hold. To see (1.4), note that the Picard-Lindel6f Theorem
shows that there exists £ > 0, independent of ¢ € (0, 1] such that

By:siip,,... e550m L, (0,€) € Ben (1/2). (1.5)

Applying ®5 to both sides of (1.5) implies (1.4), which completes the proof of necessity.
2. Function spaces

In this section, we introduce the function spaces which are used in this paper. We
make a distinction between function spaces on open subsets of R™ and function spaces
on a C? manifold M. R" is endowed with its usual real analytic structure, and it makes
sense to consider all the usual function spaces on an open subset of R™. Since M is
merely a C? manifold, it does not make sense to consider, for example, C* functions
on M. However, if we are given a finite collection of C! vector fields on M, it makes
sense to consider functions which are C* with respect to these vector fields, and that
is how we will proceed. The following function spaces were defined in [27], and we refer
the reader there for a more detailed discussion. Throughout the paper, given a Banach
space £, we denote by Bg (r) the ball of radius r > 0 centered at 0 € 2.

2.1. Function spaces on Euclidean space

Let  C R™ be a bounded, connected, open set (we will almost always be considering
the case when €2 is a ball in R™). We have the following classical spaces of functions on

Q:
cOQ)=CcQ):={f:Q—=C ’ f is continuous and bounded},
[fllc@) = Ifllco) = sup [f(@)].
zEQ

For m € N, (we use the convention 0 € N)

Cm™Q) = {feC@)|05f € C),VIal <m}, Ifllom@) = Y 105 fllow)-

la|<m

Next we define the classical Holder spaces. For s € [0, 1],
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[ fllcos(@) = [ fllew + sup |z —y[~*[f(z) — f(y)],

z,y€Q

z#y (2.1)
C’O’S(Q) ={feC(): Hf||Co,s(Q) < o0}

For m € N, s € [0,1],

/1

Cmis(Q) F= Z 102 fllcos (), C™*(Q) :={f € C™(Q) : || f|

loe|]<m

cmos(Q) < OO}

Next, we turn to the classical Zygmund spaces. Given h € R™ define Q;, := {z € R" :
x,x + h,z + 2h € Q}. For s € (0,1] set

¢ = [fllcosrz) + sup |77 f(z +2h) = 2f(x + h) + f(=)],
O;éth"
xeldp

Q) :={feC): |If]

¢:() < OO}

For m € N, s € (0,1], set

[ fllgmeey =D 109 Fllgay,  EmQ) = {f € C™(Q) : || fllgm+s(a) < 0}
la|<m
We set

=% (Q), Q) := () C™(Q)

>0 meN

If Q is a ball, €°° () = C*(Q).
Finally, we turn to spaces of real analytic functions. Given r > 0, we define

G5 fH ol o
1fllcwry = > —22C@lal - cwr(@) = {f € C(Q) : || fllcur @y < o0}
aeNn

We set

Cce(Q) = J (@), £(Q):=Ce(9)

r>0

We also define another space of real analytic functions. We define /™" to be the space
of those f € C(Bgr~(r)) such that f(t) = cn» 5t where

C
Wllarer = 3 Lelpial < o
(%)

aeN”

See Lemma 9.1 (vi) and (vii) for the relationship between /™" and C“.
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For s € (0,00] U{w}, we say f € €.(Q) if Vo € Q, there exists an open ball B C ,
centered at x, such that f|B € €¢°(B). It is immediate to verify that €22 (2) is the usual
space of smooth functions on Q and %, (12) is the usual space of real analytic functions
on ().

If 2 is a Banach Space, we define the same spaces taking values in 2" in the ob-
vious way, and denote these spaces by C(Q2; 2Z7), C™(Q; Z), C"™*(; Z), €°(Q; Z),
Cor(, ), CY (s 27), and ™7 (Z27). Given a complex vector field X on §2, we identify
X = 2?21 aj(az)a%j with the function (ay,...,a,) : @ — C™. It therefore makes sense
to consider quantities like || X||4s(q;cn). When 27 is clear from context, we sometimes
suppress it and write, e.g., || f|l4=(q) instead of || f||«= ;) for readability considerations.

2.2. Function spaces on manifolds
Let Wi,...,Wx be C? real vector fields on a connected C? manifold M. Define the

Carnot-Carathéodory ball associated to Wy, ..., Wy, centered at x € M, of radius § > 0
by

N
B (2.) i= {y € M |33 10.1] = Mo 0) = 3(1) = 17 () = Y- a5 (03 0).
N
ay € L2((0,1]), |3 Ja ? <1}7
i=1 Lo
(2.2)
and for y € M, set
p(z,y) :=1inf{é6 > 0:y € Bw(x,9)}. (2.3)

p is an extended metric: it is possible that p(z,y) = oo for some x,y € M. When
p(z,y) = oo, we define p(z,y)~* =0 for s > 0 and p(z,y)° = 1. See Remark 2.6 for the
precise definition of 7/(t) used in (2.2).

We use ordered multi-index notation W®. Here, o denotes a list of elements of
{1,...,N} and |a| denotes the length of the list. For example, W 2131 = W, W3 W,
and [(2,1,3,1)| = 4.

Associated to the vector fields W7, ..., Wy, we have the following function spaces on
M.

C(M) = C’%,(M) ={f:M—>C ‘ f is bounded and continuous},

I fllean = Ifllcy, ) = sup |f(x)].

For m € N, we define
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Cv(M):={feC(M): W*f exists and W*f € C(M),V|a| < m},
I fllcg () = Z W flle -

la|]<m
For s € [0,1] we define the Holder spaces associated to Wy, ..., Wy by
11l ary = Ilf lean + Slle%p(x,y)_slf(x) =Wl
f;ﬁy
Oy (M) := {f € C(M) : [|fl| g2 (ar) < o0}

For m € N and s € [0, 1], set
e = 3 IW fllgge s Cor*(M) = {f € CRM) = [f ey < o0}

la|<m

Next, we turn to the Zygmund spaces associated to W1, ..., Wy. For this, we use the
Hoélder spaces C%*([a,b]) for a closed interval [a,b] C R; ||*||co.s([q,0)) is defined via the
formula (2.1). Given h > 0, s € (0,1), define

N

Pl s = {7 20,2 = M ‘ Y (1) =Y di(OW;(y(1),d; € C**([0,2h]),

j=1
q
Z |d; HC‘“(OZh) < 1}

For s € (0,1] set

) = Ifllegernquny + Sup B IF2(2R) =26 (1) + FOO))]

h
YEPW, s /2

and for m € N,

||f||<g$+S(M) = Z W fl

laf<m

€5 (M

and we set

Gy (M) = {f e Cp (M) : ||

<g$+S(M) < OO}.

Set

) =) Gy (M) and Cp (M) == (] Cip(M

s>0 meN
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We have €3 (M) = Cyp(M); indeed, €55 (M) C Cyp (M) is obvious, while the reverse
containment follows from Lemma 9.1.

Finally, we turn to functions which are real analytic with respect to W1y,..., Wy.
Given r > 0, we set

3

r

£ llesran =Y
m=0

Cw' (M) :=A{f € O (M) : |fllcgan) < o0;

3

, W fllean,
|

al=m

this definition was introduced in greater generality by Nelson [20]. We set Cf, (M) =
Uyoo G5 (M), and % (M) = Cif (M).

Given o € M and r > 0 we define #7;""" to be the space of those f € C'(M) such that
h(ty, ... tn) = f(ehtWitFivWngg) € 7N (here, we are assuming et Wit +Fiv W g
exists for (f1,...,tn) € Brw(r)-see Definition 4.1). We set || f|| yz0.~ := ||h[|o~.-. Note
that | f|| 2o depends only on the values of f(y) where y = e+ wWrg, and
(t1,...,tn) € BY(r); thus this is merely a semi-norm.

An important property of the above spaces and norms is that they are invariant under
diffeomorphisms.

Proposition 2.1. Let L be another C? manifold, let ® : M — L be a C? diffeomorphism,
and let ®, W denote the list of vector fields ® W1,..., . Wy. Then, the map f +—
fo® is an isometric isomorphism between the following spaces: Cg' (L) — Cyr (M),

m,s m,s s s w,r w,r P(x0),r
Cow(Ll) — Oy (M), 65 w(L) = 6 (M), Cg'y, (L) — Ciy' (M), and ‘QZI)*(VI})) -
AP

Proof. This is immediate from the definitions. O

Remark 2.2. Informally, Proposition 2.1 says that the spaces described in this section
are “coordinate-free”. One can locally compute the norms in any C? coordinate system,
and one gets the same result no matter what coordinate system is used.

Remark 2.3. When we write V f for a C! vector field V and f : M — R, we define
this as Vf(z) := %|tzof(etvx). When we say V f exists, it means that this derivative
exists in the classical sense, V. If we have several C! vector fields Vi, ..., Vi, we define
ViV Vi f := Vi(Va(--- Vk(f))) and to say that this exists means that at each stage
the derivative exists.

Remark 2.4. All of the above function spaces can be defined, with the same formulas,
with M replaced by By (x,d), whether or not By (x,0) is a manifold. Indeed, for a
function f : By (x,d) — C, one may define W, f(z) := %’tzof(etwjm). Using this one
may define all the above norms, with the same formulas, for M replaced by By (z,9).
See [27, Section 2.2.1] for a further discussion of this.
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Remark 2.5. Let 2 C R™ be a bounded, open set. Let V denote the list of vector fields
vV = (8%1,...,61 ) We have szor = ™" and Cg" () = C¥"(Q), with equality of
norms.

Remark 2.6. In (2.2) (and in the rest of the paper), +/(¢) is defined as follows. In the
case that M is an open subset 2 C R™ and 7 [a,b] — Q, »/(t) = 227, a; () X;(v(1)) is
defined to mean ~y(t) )+ f >_;a;j(8)X;(7(s)) ds; note that this definition is local
in ¢t (equivalently, we are requlrlng that ~ be absolutely continuous and have the desired
derivative almost everywhere). For an abstract C? manifold, this is interpreted locally.
Le., if v : [a,b] = M, we say 7/(t) = j 16; ()X, (v(2)) if Vo € [a,b], there is an open
neighborhood N of y(ty) and a C? diffeomorphism ¥ : N — Q, where Q C R™ is open,
such that (W o) (t) = 329_; a;(t)(V.X;) (P o(t)) for t near to (t € [a,b]).
2.2.1. Complex vector fields

Let M be a C? manifold, let Li,...,L,, be complex C' vector fields on M (i.e.,
Li,..., Ly, take values in the complexified tangent space), and let Xi,..., X, be real
C* vector fields on M. We denote by X, L the list X1,..., X, L1, ..., Ln. Associated to
X, L we define the list of real vector fields W1y, ..., Wyyom = X1,...,Xq,2Re(L1), ...,

2Re(Ly,), 2Im(Lq), ..., 2Im(L,,). Set
BX7L(£L’,5) = Bw(x, 5) (24)

We define C% | (M) := Cf, (M), with equality of norms. We similarly define C'"; (M),
Cx.p (M), CX'L (M), &5°", CF (M), and C§ [ (M). We will often consider the case
when ¢ = 0, and in that case we just write C7'(M) instead of C% ; (M), and similarly
for C7"*(M), €5 (M), C7" (M), ", C° (M), and C¥ (M).

Remark 2.7. The factor 2 in 2Re(L;) and 2Im(L;) in the definition of W is not an essen-
tial point. It is chosen so that if M R? x C™, with coordinates (t1,...,tq, 21, -, 2m)s
and if X; = % and L; = 8Z , then W = V, where V denotes the gradlent on
RIF2m > R9 x C™,

3. Corollaries of the main result

Our main result (Theorem 4.5) concerns the existence of a certain coordinate chart
which satisfies good quantitative properties. This coordinate chart is useful in two, re-
lated, ways:

e It is a coordinate system in which given vector fields have the optimal level of regu-
larity.

¢ It normalizes vector fields in a way which is useful for applying techniques from anal-
ysis. When viewed in this light, it can be seen as a scaling map for sub-Riemannian,
or sub-Hermitian, geometries.
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In this section, we present two corollaries of our main result, which separate the above
two uses. In each of these corollaries, we present the real setting (which is known) and
the complex setting (which is new). In Section 7, we will revisit these corollaries and
present a setting which unifies both the real and complex settings.

3.1. Optimal smoothness

3.1.1. The real case

Let W1,...,Wx be C! real vector fields on a C? manifold M of dimension n, which
span the tangent space at every point. In this section, we describe when there is a
smoother structure on M with respect to which Wi, ..., Wy have a desired level of
regularity. These results were proved in [27,31,32] (though in Section 10.1, we will see
them as corollaries of the main result of this paper), and they set the stage for the results
in the complex setting in Section 3.1.2.

Theorem 3.1 (The local theorem). For xo € M, s € (1,00] U {w}, the following three
conditions are equivalent:

(i) There is an open neighborhood V.C M of xo and a C? diffeomorphism ® : U — V.
where U C R™ is open, such that ®*Wy,..., ®* Wy € €5T1(U;R").

(ii) Re-order the vector fields so that Wi(xg), ..., Wy(xo) are linearly independent.
There is an open nez’ghborhood V C M of xg such that:
o (Wi, Wyl =30 e Wi, 1< i,5 < n, where &} ; € 6,(V).
. Forn—|—1<j<N W > oney DKW, wherebke%“’ﬂ( ).

(itt) There exists an open neighborhood V.C M of xo such that [W;, W;] = 25:1 cﬁjWk,
1<i,j <N, where ¢ ; € €5 (V).

Remark 3.2. Note that Theorem 3.1 (ii) and (iii) can be checked in any C? coordinate
system (see Proposition 2.1 and Remark 2.2), while Theorem 3.1 (i) gives the existence
of a “nice” coordinate system.

Theorem 3.3 (The global theorem). For s € (1,00] U {w}, the following two conditions
are equivalent:

(i) There exists a €°T2 atlas on M, compatible with its C? structure, such that
Wi,...,Wx are €°T1 vector fields with respect to this atlas.

(i) For each xy € M, any of the three equivalent conditions from Theorem 3.1 hold for
this choice of xq.

Furthermore, under these conditions, the €°*2 manifold structure induced by the atlas
in (i) is unique, in the sense that if there is another €°*2 atlas on M, compatible with
its C? structure, and such that W1, ..., Wy are locally €°T1 with respect to this second
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atlas, then the identity map M — M is a €°T2 diffeomorphism between these two €52
manifold structures on M. Finally, when s € (1,00], there is a third equivalent condition

(tit) (Wi, W;] = Z,ivzl ¢f Wi, 1 <i,j <N, where Vag € M, 3V C M open with zg € V
such that cf’j vEG(V), 1<i,5,k<N.

Remark 3.4. Theorems 3.1 and 3.3 are stated for s > 1. It would be desirable to have
the same results for s > 0, but our proof runs into technical difficulties for s € (0, 1].
See [31] for details. Similar remarks hold for many of the main results in this paper; in
particular, the same remark holds for the main result of the paper: Theorem 4.5.

3.1.2. The complex case
Let M be a C? manifold and let Ly,..., L,, be complex C' vector fields on M. We
assume:

e VCEM, sSpangc {Ll(g)v : 7Lm(<)7L_1(C)7 s ,m(O} = (CTCM
o V¢ e M, spanc {L1(¢),- .., L (¢)} Nspanc {L1(¢), ..., Lm(¢)} = {0}.

By Lemma B.1 and the above assumptions we have, V( € M,

dim M = dimspan(c {LI(C)’ .- ’Lm(<)7L—1(§)7 s 7L_7n(<)}
= 2dimspang {L1(¢),..., Lm(¢)}.

In particular, let n := dimspangc {L1(¢), ..., Ln({)}, then n does not depend on ¢ and
dim M = 2n.

Theorem 3.5 (The local theorem). Fiz (o € M and s € (1,00]U{w}. The following three
conditions are equivalent:

(i) There exists an open neighborhood V- C M of (o and a C? diffeomorphism ® : U —
V', where U C C™ is open, such thatVz € U, 1 < j <m,

. 0 0
®*L;(2) € spang {6—21,...,5},

and ®*L; € ¢°T1(U;C").
(ii) Reorder Ly, ..., Ly, so that L1((o), .- ., Ln(o) are linearly independent. There exists
a neighborhood V-C M of (o such that:
o [Ly L) = X0y &k and [Ly, T) = Y01, &L+ Y, &L, where &5 €
Ci(V),1<j,kl<n,1<a<3.
o« Li=3", bé-Ll, where bé- € ‘KLSH(V), n+1<j<m,1<I1<n.
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(iii) There exists a neighborhood V. C M of (o such that [Lj, L] = > -, c;’,iLl and
[Lj, L) = >, ci’,iLl + >, cj’,lcfl, where c?,lc €Ci(V),1<a<3,1<jkl<
m.

Theorem 3.6 (The global theorem). For s € (1,00]U{w} the following two conditions are
equivalent:

(i) There exists a complex manifold structure on M, compatible with its C* structure,
such that Ly,..., Ly, are €51 vector fields on M (with respect to this complex
structure), and ¥¢ € M,

spanc {L1(C), ..., L ()} = T M.

(i) For each (o € M, any of the three equivalent conditions from Theorem 3.5 hold for
this choice of (y.

Furthermore, under these conditions, the complex manifold structure in (i) is unique,
in the sense that if M has another complex manifold structure satisfying the conditions
of (i), then the identity map M — M is a biholomorphism between these two complex
structures. Finally, when s € (1,00], there is a third equivalent condition:

(iii) [Lj, L) = S/ cple and (L, Le] = Yo &Ly + S0 ¢y Li, where V¢ € M,
there exists an open neighborhood V-C M of ¢ such that c?,i v € ci(V),1<a<3,
1<,k 1 <m.

Remark 3.7. Theorem 3.6 can be seen as a version of the Newlander-Nirenberg theorem
(with sharp regularity in terms of Zygmund spaces), which is invariant under arbitrary
C? diffeomorphisms.

Remark 3.8. Because the Zygmund space €1 is (locally) the same as the Hélder
space C"™* for m € N, a € (0,1), one can obtain analogs of Theorems 3.5 and 3.6
using the easier to understand Holder spaces, as long as one avoids integer exponents.
This is carried out in Section 14. For integer exponents, the use of Zygmund spaces is
essential, as Theorem 3.5 does not hold if we replace the Zygmund spaces €1 (for
s € N) with C*T1 or C*1; this is described in Lemma 14.4. As a consequence, Zygmund
spaces are also essential in the main theorem of this paper (Theorem 4.5). The reason our
proof requires Zygmund spaces when considering integer exponents is because it relies
on nonlinear elliptic PDEs (via the results from [31,33]). As is well-known, the regularity
theory of elliptic PDEs works best when using Zygmund spaces instead of C™ spaces or
Lipschitz spaces.
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3.2. Geometries defined by vector fields

We present the basic results concerning sub-Riemannian and sub-Hermitian geometry
in this section. The results on sub-Riemannian geometry are just a reprise (in a slightly
different language) of the main results of Nagel, Stein, and Wainger’s work [19].” The
results on sub-Hermitian geometry can be seen as holomorphic analogs of these results.
In this section, we present these ideas in these two simple settings. In Section 7.2 we
generalize these results to a single unified result on “E-manifolds”.

3.2.1. Sub-Riemannian geometry: the results of Nagel, Stein, and Wainger

In this section, we describe the main results of the foundational paper of Nagel, Stein,
and Wainger [19]. This describes how the existence of certain coordinate charts (like the
ones developed in our main theorem) can be viewed as scaling maps in sub-Riemannian
geometry. The results in this section set the stage for the results in the complex setting
in Section 3.2.2.

Let W1, ..., Wx be C* real vector fields on a connected, C*° manifold M of dimension
n which span the tangent space at every point. To each W} we assign a formal degree
d; € [1,00). We assume

Wi, Wil = > Wi,y e C(M).
di <d;j+dy

We write (W, d) for the list (Wy,d1),...,(Wx,dy) and for § > 0 write §9W for the list
SN, ..., 6% Wy. The sub-Riemannian ball associated to (W, d) centered at z9 € M
of radius § > 0 is defined by

Bgs(x,90) := Bsayw (20,1),

where the later ball is defined by (2.2). Bg(zg,d) is an open subset of M. We define
ps(z,y) :=1inf{0 > 0:y € Bg(z,0)}; p is a metric on M and is called a sub-Riemannian
metric. For the relationship between this definition of a sub-Riemannian metric and some
of the other common definitions, see [19].

We define another metric on M, which will turn out to be equal to pg, as follows.
We say pp(z,y) < ¢ if and only if there exists K € N, smooth functions fi,..., fk :
Br(1/2) = M, and 41,...,dx > 0 with > d; < ¢ such that:

7 We present results on sub-Riemannian geometry which are essentially those of Nagel, Stein, and Wainger,
however the main results of this paper (even in this real setting) imply many results which are beyond those
that are implied by Nagel, Stein, and Wainger’s methods. In the real setting, this is described in the series
[27,31,32]. We present the corollaries in this section in the simplest possible setting (as opposed to a very
general setting) to help the reader understand the thrust of our main theorem, Theorem 4.5, which is stated
in some generality. For example, even if one only considers real vector fields, the main results of this paper
imply (and are stronger than) the results in the multi-parameter setting of [28], which could not be achieved
by the methods of [19]. We also present a more complicated example in the complex setting in Section 8.
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¢ fyl'( )= Zl 1 J( )5lel(fJ( )); with ||Zl |S§‘|2||L°C(BR(1/2)) <1
« [i(Br(1/2))N fi+1(Br(1/2)) #0, 1 <j <K - 1.
« v € f1i(Br(1/2)), y € fx(Br(1/2)).

pr is clearly an extended metric. Once we prove pr and pg are equal, it will then follow
that pp is a metric.
Fix a strictly positive, C* density v on M.® For x € M, § > 0, set

Az, 9) = max v(x) (6% X, (), ..., 8%~ X, (2)).

J1yedn€{1,...,N}

The next result follows from the methods of [19] (though we prove it directly by seeing
is as a special case of the result in Section 7.2).

Theorem 3.9 ([19]).

(a) Vz,y € M, ps(z,y) = pr(z,y).

Fiz a compact set K C M. There exists g = do(K) € (0,1] such that the following holds.
We write A < B for A < CB, where C can be chosen independent of x,y € K and § > 0.
We write A~ B for AS B and B S A.

(b) v(Bs(z,0)) ~ Az, 6), Yz € K, 6 € (0, o).
(¢) v(Bs(z,28)) < v(Bs(x,9)), Vo € K, 5 € (0,50/2].

For each x € K, § € (0,1], there exists ®, 5 : Brn(1) = Bg(z,06) such that:

(d) ®,.5(Brn(1)) € M is open and @, 5 : Brn(1l) = @4 5(Brn (1)) is a C*° diffeomor-
phism.

(e) ®; ;v = hysoren, where hys € C®(Brn(l)), hes(t) =~ A(x,0) Vt, and
hesllcmBrn1)) S Alx,6), Ym (where the implicit constant depends on m, but
not on x € K or 6 € (0,1]). Here, and in the rest of the paper, ore, denotes the
usual Lebesgue density on R™.

Let V" 0= 504 W;, so that Y” 9 is a C° vector field on B (1).

(f) HYjI’5|Cm,(BRn(1);Rn) <1, Ve € K,0 € (0,1],m € N, where the implicit constant
depends on m, but not on x or .

& The results that follow are local and do not depend on the choice of v, so long as it is strictly positive
and smooth.
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(9) Yf"s(u)7 e Yﬁ’é(u) span the tangent space uniformly in u,x,d in the sense that
max inf ‘det(Y-x’éu ~-~Y-x’6u)‘%1, xeK,de(0,1].
15 dn€{1,.,N} u€Bg N (1) il ¥, 7 ) (0.1]

(h) Je = 1 such that Bs(x,€d) C @, 5(Br~(1)) C Bg(z,9), Yz € K,d € (0,1].

Remark 3.10. The most important aspects of Theorem 3.9 are (f) and (g); and these
allow us to see the maps @, 5 as “scaling maps”. Indeed, for ¢ small, one tends to think
of §% W; as a “small” vector field. However, ®, s gives a coordinate system in which
§%W; is of “unit size”: not only are @;’55‘11 Wi, ..., @;,55” Wy smooth uniformly in x
and 6 (i.e., (f)), but they also span the tangent space uniformly in x and § (i.e., (g)). See
[27, Section 7.1.1] for some more comments in this direction.

Remark 3.11. (c¢) is the main estimate needed to show that the balls Bg(z,d) when
paired with the density v locally give a space of homogeneous type. Because of this, one
has access to the Calderén-Zygmund theory of singular integrals with respect to these
balls. This has had many uses: see the remarks at the end of Chapter 2 of [30] for a
history of these ideas.

3.2.2. Sub-Hermitian geometry

Let M be a connected complex manifold of complex dimension n. Let Lq,..., L, be
C®°, T%! vector fields on M such that V¢ € M, spanc{L1(¢),...,Lm({)} = Tg’lM. Our
goal in this section is to describe a complex analog of the results in Section 3.2.1 with
respect to the vector fields Ly, ..., L,,. The main point is to achieve as much as possible
using only holomorphic maps, so that these results can be applied to questions in several
complex variables.

To each L; we assign a formal degree 5, € [1,00). We assume

1,1 7 2,1 3,07 N
Lj Ll = Y el [LipLl= Y Lt Y, L, oy € C(M).
B1<B8;+B% Bi1<B;j+Bx Bi1<B;+PBk

Let (Wl, dl), ey (ng, dgm) = (2R6(L1), 51)» ey (QRE(Lm)7 5m)7 (QIHI(Ll)7 51)7 ey
(2Im(Ly, ), Bm). Fix a strictly positive, smooth density v on M. It is immediate to verify
that the list (Wq,dy), ..., (Wam, day,) satisfies all the hypotheses of Section 3.2.1. Thus
we obtain balls Bg((, d) and an associated metric ps = pp, and Theorem 3.9 applies. The
main problem is that the definitions of pg and pp use the underlying smooth structure
on M and not the complex structure, and the scaling maps ®, 5 from Theorem 3.9 are
only guaranteed to be smooth, not holomorphic. In particular, when rescaling 6% L; by
computing @;75651 L; we do not know that @;76(551 L; continues to be a T%! vector field;
i.e., we do not know @;’5551 L; is spanned by %, ceey %. The results in this section fix

these problems.



B. Street / Advances in Mathematics 368 (2020) 107137 21

First, we define a metric using the complex structure on M, which we will see is
locally equivalent to ps = pp. This metric is obtained by taking the definition for pg,
and rewriting it with holomorphic maps in place of smooth maps. We say pg((1,(2) < 9
if and only if there exists K € N, holomorphic functions fi,..., fx : Bc(1/2) = M,
and d1,...,0x > 0 with Zl[il 0; < 4 such that:

o fi(Bc(1/2) N fi+1(Bc(1/2)) #0,1<j < K —1.

o dfi(2)Z =0 82,200 Lu(f5(2)), with |32, 184l L (Be1/2)) < 1.
1
s G € fi(Bc(1/2)), G € fx(Bc(1/2)).

pp is clearly an extended metric; once we show it is locally equivalent to pg, it will follow
that py is a metric.

Theorem 3.12.

(a) ¥C1,G € M, ps(Ci,C2) = pr(Cr;C2) < pr (1, Ca)-

Fiz a compact set K C M. We write A < B for A < CB where C can be chosen
independent of ¢,(1,(2 € K and 6 € (0,1]. We write A~ B for A< B and B < A.

(b) pr(¢,¢) S ps(Cr,C2), ¥¢1,0 € K, and therefore py and ps are equivalent on
compact sets.

(c) All of the conclusions of Theorem 3.9 hold (when applied to (W1,dy), ..., (Wam,dom))
and (by identifying R*™ = C™) the maps ®¢ 5 : Ben (1) = Bs(¢,8) € M can be taken
to be holomorphic.

Because ®¢s is holomorphic, (I)Z,ééﬁj[’j is a T%' wector field; in other words,
(I)Z,a‘sﬁij(Z) € spang {%,...,%}, Vz € Bcn(1). We can thus think of <I>Z’555ij
as a map Ben (1) — C™.

(d) ||©Z765ﬂij||Ck(BC”(1);(Cn) <1,V¢ e K, 6 €(0,1],k € N, where the implicit constant
depends on k, but not on ¢ € K or é € (0,1].
(e) ®% 50° Ly (2),... ,@;,ﬁﬁmLm(z) span TOLC™ uniformly in z,¢, 8 in the sense that

max inf |det (®F ;6% L; (2)]...|®% 6% L; (2))|~1,
o et (07,60 Ly ()] [0 5870 Ly, (2)|
V¢ e K,d € (0,1].

Remark 3.13. In Theorem 3.12 we described a C'°° version of sub-Hermitian geometry.
With a very similar proof one can obtain a similar real analytic version; see Remark 7.7.
One can also obtain results for vector fields with only a finite level of smoothness; see
Remark 7.9.
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Remark 3.14. In the above discussion, we studied the vector fields 6%1 L4, ..., 6% L,,. In
many applications, the vector fields depend on ¢ in a more complicated way (such an
example is given in Section 8). Furthermore, in some applications, é ranges over (0, 1]*
instead of (0,1] (as studied in the real setting in [28]). Our proof methods allow us to
study such settings in the same way; see Remark 7.8. We stated results in this setting
for simplicity of presentation, so that the reader can easily see the main ideas.

4. The main results

Let X1,..., X, bereal C! vector fields on a C? manifold 9 and let Ly, ..., L, be com-

plex C! vector fields on M. For each z € M, set £, := spanc{L1(x),..., Ly (z), X1(z),
Xqy(2)}, Z% :=spanc{Xi(x),...,X,(z)}.

Fix zy € M, € > 0. Set r = dimZ,, and n + r = dim.Z,,. Our goal in
this section is to choose a “coordinate system” ® : Bgrryc»(1) — Bx (z0,&) so
that ®*Xy,...,9* X, ®*Lq,...,P*L,, have a desired level of regularity and V(¢,z) €
Brrxcn (1),

spanc{®*X1(t, 2),..., D" X, (t, 2), 2" L1(t, 2), ..., 2" L, (¢, 2)}
e {2 3 o0
—PMC\ O o, 07 07,
where we have given R” x C™ coordinates (t1,...,ty, 21, ..., 2, ). Finally, we wish to pick
this coordinate system so that ®*Xi,...,®*X,, ®*L,,...,®*L,, are normalized in a

way which is useful for applying techniques from analysis.
Let Z1,..., Zgem = X1,...,Xq, L1,..., Ly,. Our three main algebraic assumptions
are as follows:

(i) Yx € Bx, 1(20,€), %, OZ: Ly
(i) 125, 26) = S5 epiZe and (2, Z6] = Y07 €02 + S04 ¢, where ¢ €
C(Bx,.(0,6)),1<a<3,1<jkl<qg+m (here we are giving BX7L(300,§) the
topology induced by the associated metric (2.3)).
(iii) # — dim.%,, Bx r(z0,§) — N, is constant in x (it follows from the other as-
sumptions that this is equivalent to the map x — dim 2 being constant in x; see
Section 4.2).

Under the above hypotheses, Bx 1 (7o,€) is a C2, injectively immersed submanifold
of M (see Proposition A.1), and CT,Bx 1(70,&) = L + L, Vo € Bx p(70,€). In
particular, using Lemma B.1,

dim By, (w0, &) = dim Ty, Bx.1.(w0, §) = dim( L, +-Z%,) = 2dim %, —dim 2, = 2n+r.

Henceforth we view Xi,..., Xy, L1,..., Ly, as C! vector fields on By 1(zo, ).



B. Street / Advances in Mathematics 368 (2020) 107137 23

For a,b € N, we set
Z(a,b) :={(i1,2, -, ia) 1 81, ..,0q € {1,...,0}} ={1,...,b}". (4.1)

For K = (ki,...,kr) € Z(r1,q), we write Xf for the list Xg,,..., Xy, and for J =
(J1s+ -+ Jny) € I(n1,m) we write Ly for the list Lj,,..., L;, . We write A Xg = Xj, A
Xiy Ao AN Xy, and ALy = Lj, ANLj, N+ NLj

Gny

Fix ¢ € (0,1], Ko € Z(r, q), Jo € Z(n, m) such that

- (AXxc(20) AIALs(w0)) | _ o1 (4.2)

KeZ(r,0),7€Z(n1,m) | (A Xk, (20)) A (A Ly (20))

ri+ni=r+n

Jna

See Appendix B.2 for the definition of this quotient. Such a choice of Jy, Ky, and ¢
always exist; see Remark B.6. One cannot necessarily choose Ky, Jy so that (4.2) holds
with ¢ = 1, however if n = 0 or r = 0 (the two most important special cases) one always
can-see Remark B.6. Without loss of generality, reorder X,..., X, and L1,..., Ly, so
that Ko = (1,2,...,7), Jo = (1,2,...,n).

Let W1,..., Wap1q denote the list of vector fields X1, ..., X,,2Re(L1),...,2Re(L,,),
2Im(L4),...,2Im(Ly,); and order Wh,. .., Way, 44 so that

Wi, ... .Wapir = X1,..., X, 2Re(L1), ..., 2Re(Ly,), 2Im(Ly), . . ., 2Im(L,,).  (4.3)

Define %, := spang {W1(),..., Wamiq(2)} = (L + %) N TuBx 1(20,€). Set Py =
(1,...,2n+71) €Z(2n+r,2m+ q) and for any P = (p1,...,pon+tr) € Z2n+1,2m + q)
we write Wp for the list W, ..., W), . andset A\Wp =W, AWp, A---AWp, . . In
particular,

A\ We, = X1 A X A-+ A Xy A2Re(Ly) A2Re(L2) A -+ A 2Re(Ly)

A2Im(Ly) A 2Im(Lo) A -+ - A 2Im(Ly,)

= (A X ) A (Azre(D)n) A (A2im(2)s,)

where A 2Re(L);, and A 2Im(L),,

0

are defined in the obvious way; see (B.2). Note that
By, (w0,§) and Bx, L, (%0,§) are (by definition) equal; see (2.4).

Definition 4.1. For z € MM, U C M, and n > 0, we say Wp, satisfies C(z,n, U) if for every
a € B?"*"(n) the expression

ealW1+U42W2+"‘+a2n+7‘W2n+7‘$

exists in U. More precisely, consider the differential equation

D 500) = Wi (B0)) + -+ + 2 W (B(). E(O) =
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We assume that a solution E : [0,1] — U exists for this differential equation. We have
E(T) = erarWit-tragn i rWangr o

We fix the following two quantities:

o Fix n > 0 so that Wp, satisfies C(zq,n, D).

 Fix o > 0 such that V6 € (0,do], the following holds. If 2 € Bx, r,, (70,§) is
such that Wp, satisfies C(z,0, Bxy, .1, (20,€)) and if t € Bgren+r(d) is such that
eltWitttonerWanir o — » and if Wy(2),. .., Wansr(2) are linearly independent, then
t=0.

Such a choice of 7, §p always exist (see Lemma 4.13). These constants are invariant under
C? diffeomorphisms, and our quantitative results will be in terms of these constants; see
[27, Section 4.1] for a detailed discussion of 1 and dy.

In our main result, we keep track of what parameters each estimate depends on.”
To ease notation, we introduce various notions of “admissible constants”. These will be

constants which only depend on certain parameters.'’

Definition 4.2. We say C' is a 0-admissible constant if C' can be chosen to depend only
on upper bounds for m, ¢, (71, €71, and Hc?”,i||c(BXKO,LJO (z0,6))s L < gkl < m+q,
1<a<3.

Fix so € (1,00) U {w}; when sg € (1,00) the following result concerns the setting of
¢* for s € [sg, 0] (and the results are stronger the closer sg is to 1, but the constants
depend on the choice of sg). When sy = w the following result concerns the real analytic
setting. Thus, there are two cases in what follows: when sg € (1,00) and when sy = w.

Definition 4.3. If 5o € (1,00), for s € [sg, 00), if we say C is a {s}-admissible constant,

it means that we assume cja,i € %}S{KO,LJO(BXK(NLJO(xo’f))’ for 1 < j,k,l < m+g,
1 < a < 3. C can then be chosen to depend only on s, sy, and upper bounds for m, g,
-1 ¢—1 ,—1 s—1 N/ ;

g ) g I/ 50 , and ||C;‘L7k |<55S(K0=LJO(BXKO*LJO(’”U’Q)’ 1< ]7kal <m+gq 1 <a<3

For s € (0, sg), we define {s}-admissible constants to be {so}-admissible constants.

Definition 4.4. If sg = w, and if we say C' is an {w}-admissible constant, it means that we
assume c‘;,i € %)?::,LJO’ 1<j4,k,l<m+gq,1<a<3.C can be chosen to depend only

on upper bounds for m, ¢, ¢~', €1, =, 55, and ||c;L,lC
1<a<3.

|,Q¢;(;(’:,LJ07 1< jvkal <m-+g,

9 Keeping track of constants in our main theorem is essential for applications. For example, to prove the
results in Sections 3.2.1, 3.2.2, and 7.2 we will apply Theorem 4.5 infinitely many times, and the constants
must be uniform over all these applications.

10 The various notions of admissible constants may vary from section to section, but we are explicit about
how they are defined whenever they are used. See Remark 11.2 for how this varying notation is exploited
in the proofs.
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Whenever we define a notion of x-admissible constant (where * can be any symbol),
we write A <, B for A < CB, where C' is a positive *-admissible constant. We write
A=, Bfor A<, Band B <, A.

In what follows, we give R" x C” coordinates (t, z), where t = (t1,...,t.) € R" and
z=(21,...,2,) € C". We write & for the column vector [8‘?1 voooy7-]T and Z for the
column vector [8%1, cee 8‘; 1T

Theorem 4.5. There ezists a 0-admissible constant x € (0,&] such that:
(1) Yy € Bxy,. Ly, (£0,X),
(A X)) A (ALsu) #0. AWr,) #0
In particular, X, (y), L1, (y) is a basis for £, and Wp,(y) is a basis for #,. Recall,
Wy = spang{W1i(y), ..., Wamq(y)}-

(“) vy € BXKO,LJO (.’Eo, X):

(AXx(®) AALs(y) ’% .
WAXK W) AANLiw)| °

AWe(y)
/\ WPU (y)

(iii) ¥x' € (0,Xx], Bxy,.L,, (T0,X’) is an open subset of Bx 1(w0,§), and is therefore a
submanifold.

JEL(n1,m),KEI(r1,q)
ni+ri=n+r

max ~q 1.
PeZ(2n+r,2m+q)

For the rest of the theorem, we assume:

N :

o If sy € (1,00), we assume c';,k € %)SCOKO,LJO (Bxyeq.Lsy (70,6)), V1 < j, k1 < m+gq,
1<a<3.

o If 5o = w, we assume c?,lc € %;OK’:)LJO, V1i<jkl<m-+gqg,1<a<3.

There exists o C* map © : Bgrycn (1) = Bxy, Ly, (%0, x) and {so}-admissible constants
&1,& > 0 such that:

(iv) ®(Brrxcn (1)) is an open subset of Bx,. 1, (To,x) and is therefore a submanifold
of Bx,r(20,&).
(v) ®: Brrycn(1) = ®(Brrxcn(1)) is a C?-diffeomorphism.
(vi) Bx,1(%0,82) € Bxy, Ly, (70,§1) € ®(Brrxcn(1)) C Bxy, L, (70, X) € Bx, (o,
£)-
(vii) ®(0) =



26 B. Street / Advances in Mathematics 368 (2020) 107137

There exists an {so}-admissible constant K > 1 and a matriv A : Brrxcn(l) —
Mm% (+7)(C) such that:

(viii) A(0) = 0.
(iz)

Jo

0 *
{Zg} KNI+ A) {ﬁ,ﬁfﬂ ,

where we have written ®* X, for the column vector of vector fields [D*Xq,...,
®*X,|" and similarly for ®* L, .
(x) o If so € (1,00), [[Allgs+1(BgrycnyMmtnxminy Sgsp 1, Vs € (0,00), and
Al %041 (Brr on (1);ME+m x4y < 1

o If 50 = w, [[Allgrsoniaotnxmeny < 3, where we have identified R™ x C™ =
Rr+2n'

Note that in either case, this implies the matriz (I + A(()) is invertible, V( €

Brrxcn(1).

2i) V¢ € Brrycn(1),1<k<gq,1<j<m
() C xC ’ q, J ’

" 0 0
D* X1 (C) EspanR{a—tl,...,at },

. 9 o a 9
d Lj(C)€SpanC{6—tl,...,at ,8—2’1,...,5}.

(xii) o If sg € (1,00), we have Vs € (0,00), 1 <k <gq,1<j<m,

19" Xk llgs+1(Barcen (iR7) Sgsp L 127 Ljllgst1(Brr con (1)s0r+m) Sy 1-

o Ifsg=uw, we have for 1 <k <q, 1 <j<m,

||®*Xk‘||ed2"+""1(R7') s{w} 1, |‘®*LjHd2"+7"1(c7'+") §{w} ]_.

Remark 4.6. In the language of Section 6, the map ® : Brrxc»(1) = Bx, (0,&) from
Theorem 4.5 is an E-map; where Bx (¢, &) is given the E-manifold structure with the
associated elliptic structure .Z. In particular, when r = 0, £ is a complex structure and
the E-manifold structure on Bx (o, &) is the complex manifold structure associated to
Z (via the Newlander-Nirenberg theorem). In this case, ® : Ben (1) — Bx,(%0,§) is a
holomorphic map (see Remark 6.12). This is particularly important for applications to
several complex variables. For example this is used in Sections 3.1.2, 3.2.2, and 8.2 to
guarantee the desired coordinate charts are holomorphic.
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4.1. Densities

In many applications, one wishes to change variables in an integral using the coordi-
nate chart given in Theorem 4.5 (see, e.g., the settings in Sections 3.2.1, 3.2.2, and 7.2'1).
Thus, it is important to understand pullbacks of certain densities via the map ®. We
present such results in this section. We refer the reader to [11] for a quick introduction
to densities (see also [22] where densities are called 1-densities). In this section, we take
all the assumptions as in Theorem 4.5 and let ® be as in that theorem.

Let x € (0,£] be as in Theorem 4.5 and let v be a real C* density on Bx 1., (€0, X)-
Suppose, for 1 <k <r, 1 <5 <n,

‘CXkV:fliVa ELjV:szV’ fk1)7szEO(BXKO,LJO(IO7X))7

where Ly denotes the Lie derivative with respect to V, and L is defined as Lrer; +
1LImL; -

Definition 4.7. If we say C' is a [so; v]-admissible constant, it means C' is a {so }-admissible

(z0,x))»
1 < j < n. This definition applies in either case:

constant which is also allowed to depend on upper bounds for || f,%||c( Bxy 1,

0’7Jo
2

1<k <r, and ||f; ||C(BXKO,LJ0 (20,X))>

s0 € (1,00) or 59 = w.

Definition 4.8. If sg € (1,00), for s > 0, if we say C is a {s;v}-admissible constant it

means that we assume f, f? € %;KOVLJO (Bxyey Ly (T0,X)), 1 <k <r, 1<j<n Cis

allowed to depend on anything an {s}-admissible constant is allowed to depend on, and

is also allowed to depend on upper bounds for || fl]l«: vy L<E<r,

XKq Ly
and ||fj2||<g}3(K o, By iy (@0,0)) 1 < j < n. For s <0, we define {s;v}-admissible
0’ 0] h

(Bx gL gy (%05
constants to be [sq; v]-admissible constants.

If s = w we fix some rg > 0; the results which follow depend on the choice of rq.
Definition 4.9. If sy = w, if we say C is an {w;v}-admissible constant, it means that we
assume fi, ij € %;;;?LJO. C' is allowed to depend on anything an {w}-admissible con-

stant may depend on, and is allowed to depend on upper bounds for r(;l, | fi ||d)1(0»T0L ,
Ko»

Jo
1<k<r and ||ff||d;?<.roLJ ,1<j<n.
0’ 0

Theorem 4.10. Define h € C(Brrycn (1)) by ®*v = horep, where ovea, denotes the usual
Lebesgue density on R” x C™.

' For example, such changes of variables were important in the study of multi-parameter singular integrals
and singular radon transforms in [30,24,29,26].
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(i) V¢ € Brrxcn (1),
h(C) ~sg; v(X1, ..., Xpy 2Re(L1), . .., 2Re(Ly ), 2Im(Ly), . . ., 2Im(Ly,)) (x0).

In particular, h(¢) always has the same sign, and is either never zero or always zero.
(ii) o If sg € (1,00), for s > 0,

[l & (Barwen (1)
Sto—1y V(X150 Xp, 2Re(L1), . .., 2Re(Ly), 2Im(Ly ), . . ., 2Im( Ly, ) ) (z0)| -

° IfSOZW,

[ P ——

S/{w;l/} |V(X1’ cee 7X7“7 QRG(Ll)v AR QRG(Ln)a QIm(Ll)a AR QIm(Ln))(xON .
Corollary 4.11. Let & > 0 be as in Theorem 4.5. Then,

V(Bx g, Ly, (70,82)) Rsou) V(Bx,L(20,&2))
%[So;l/] Z/(Xl, . ,X,«, QRG(Ll), ey QRG( n)7 QIm(Ll), ey QIIH(L"))(.T()),

and therefore

[V(Bx sy L1y (%0,62))| ®isen) [V(Bx, (w0, &2)|
%[5041’] |Z/(X1,...,XT,QRQ(Ll),...,QRe( ) QIIII(LI), ,QIm(Ln))($0)|

~ Xz, 2Re(L) 7, 2Im(L (4.5)
0 ez max (X, 2Re(L) 7, 2 (L) 7) (o)

~ W .
0 PGI(2£Ln+:(2m+q)| v(We)(xo)|

4.2. Some comments on the assumptions

Because Wi, ..., Wan 44 span the tangent space of Bx,r(xo,&) at every point (see
Proposition A.1) and Bx 1(%o0,§) is a 2n + r dimensional manifold, it follows that z —
dim %, taking Bx 1.(z0,§) — N, is constant. However, the hypothesis that z — dim.%,
is constant does not follow from the other assumptions. The next example elucidates
this:

Example 4.12 On C, consider the vector fields Ly = %, Lo = 2%, X = Za% +z

and Xy = 3 ( (,i Zaz) We then have

1
(L1, Lo] = [ X1, X2] = [L2, X1] = [L2, X2] =0, [L1,X1] =L, [L1,Xs]= ;le
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and the vector fields L1, Lo, X1, Xo, L1, Ly span the complexified tangent space at every
point (in fact L; and L; do). However,

. 2, z#0,
dimspanc{L1(z), L2(2), X1(2), Xa(2)} = {1 0
, z=0.
The assumption that x — dim.%, is constant is equivalent to the assumption that
x +— dim Z is constant. Indeed, by Lemma B.1, and the fact that dim %, = 2n +r =
dim Bx, 1. (%0, &), we have

ntr = dim ¥, = dim(Z,+.Z,) = 2dim(Z,)—dim(Z, [ | Z) = 2dim(Z,)—dim(2;,).

In particular, in the two most important special cases &, = 2, Vz, or 2, = {0} Vz,
the hypothesis that x — dim %, is constant does follow from the other assumptions.

A choice of 1,09 > 0, as in the hypotheses of Theorem 4.5, always exist. In fact, they
can be chosen uniformly on compact sets, as the next lemma shows.

Lemma 4.13. Let W = W1y, ..., Wy be a list of C' vector fields on a C? manifold M and
let K € M be a compact set.

(i) In > 0 such that Vxg € K, W satisfies C(xo,n, M).
(i) 359 > 0 such that V0 € SN~ if x € K is such that ;W1 (z) + -+ + OnWx(x) # 0,
then ¥r € (0, o],

67’01W1+"'+7’0NWN:E 7& .

Proof. (i) is a simple consequence of the Phragmén-Lindel6f Principle. (ii) is proved in
[27, Proposition 4.14]. O

Despite the fact that a choice of 1,d¢ > 0 always exist (as described in Lemma 4.13),
n and &y are diffeomorphic invariant quantities,'? and the proof of existence of these
constants in Lemma 4.13 depends on the C* norms of the vector fields Wy,..., Wy in
some fixed coordinate system (which is not a diffeomorphic invariant quantity). Thus, we
state all of our results in terms of 1 and §y to preserve the quantitative diffeomorphism
invariance. See Section 4.3.

4.8. Diffeomorphism invariance

The main results of this paper are invariant under arbitrary C? diffeomorphisms. This
is true quantitatively. For example, consider Theorem 4.5. Let Xy,..., X4, L1,..., Ly,

2 Je., n and Jp remain unchanged when the entire setting is pushed forward under a C? diffeomorphism.
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be the vector fields on 9 from Theorem 4.5 and let ¥ : 9 — 9 be a C?
diffeomorphism. Then Xi,..., X4, L1,..., Ly, satisfy the conditions of Theorem 4.5
at the point zg € 9 if and only if ¥, Xq,..., ¥, Xy, V. Ly,..., VL, satisfy the
conditions at W(xg). Moreover, any constant which is #-admissible (where * is
any symbol) with respect to Xi,...,Xy, L1,..., Ly, is *xadmissible with respect to
V. Xq,... 0. X, U, Ly,...,¥,L,,. Finally, if ® is the map guaranteed by Theorem 4.5
when applied to Xi,..., X4, L1,..., Ly, then ¥ o @ is the map given by Theorem 4.5
when applied to ¥, Xq,..., V. X,, U, Lq,..., U, L, (as can be seen by tracing through
the proof). Thus the main results (and, indeed, the entire proofs) are invariant under
arbitrary C? diffeomorphisms.

4.4. The Frobenius theorem and singular foliations

We now describe a consequence of Theorem 4.5 which is not used in the rest of the
paper: it provides coordinate charts on leaves of singular foliations, which behave well
in a quantitative way near singular points.

Let 9t be a smooth manifold and let Xi,..., X, be real C*° vector fields on 9.
Suppose

q
X5, Xi] = > _chpXi, e ce(m).
=1

For x € M, let 2, := spang{X1(z),...,X,(x)}. Under these hypotheses, the real Frobe-
nius theorem applies to the distribution 2 to foliate 97 into leaves. The tangent bundle
to each leaf is given by 2 restricted to the leaf. Note that this may be a singular fo-
liation: different leaves may have different dimensions, since  — dim £ might not be
constant in x. For x € 9, let Leaf, denote the leaf passing through z; thus Leaf, is an
injectively immersed C*° submanifold of 2.

Definition 4.14. We say = € 901 is a singular point of the foliation if z — dim.Z, is not
constant on any neighborhood of x (equivalently, if x — dim Leaf, is not constant on
any neighborhood of ).

Leaf, is a manifold, and is therefore defined by an atlas. For applications in analysis,
it is sometimes important to have quantitative control of the charts which define the
atlas. An interesting aspect of Theorem 4.5 is that it yields coordinate charts which
behave well whether or not one is near a singular point.

Indeed, let K € 9N be a compact set. Lemma 4.13 and some straightforward estimates
show that Theorem 4.5 (in the case m = 0) applies to the vector fields X, ..., X, (with,
e.g., so = 3/2), uniformly for ¢ € K. Thus, any constant which is {s}-admissible (for any
s € (0,00)) in the sense of Theorem 4.5 can be taken independent of xg € K. The map
® provided by Theorem 4.5 can be seen as a coordinate chart on Leaf,,, centered at xg,
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which has good estimates which are uniform in xg. In particular, as x¢ € K approaches
a singular point in C, the estimates remain uniform.

The above holds in the complex setting as well. Again let 9 be a smooth manifold,
and let Lq,..., L, be C* complex vector fields on 9. Suppose

[Lj Il =Y _eiplas Ly Lel =D cnLa+ Y ki, ¢ € C=(M).
=1 =1 =1

For € M, set L, := spanc{Li(x),..., Ly, (2)}; we assume %, (.Z, = {0}, Vo € M.
Under the above assumptions, the real Frobenius theorem applies to the distribution
L + Z to foliate M into leaves; as before this may be a singular foliation. Let Leaf,
denote the leaf passing through x. For each x € M, .Z (restricted to Leaf,) defines a
complex structure on Leaf,, and the classical Newlander-Nirenberg theorem therefore
gives Leaf, the structure of a complex manifold. As in the real case, Theorem 4.5 applies
uniformly as the base point x ranges over compact sets (in this case, we take ¢ = 0), in
the sense that {s}-admissible constants (for any s € (0,00)) may be taken independent
of xy as x( ranges over a compact set. The map ® provided by Theorem 4.5 can be seen
as a holomorphic coordinate chart near zy, which has estimates which are uniform on
compact sets; whether or not that compact set contains a singular point.

Remark 4.15. A previous (and weaker) version of the above ideas (originally described
in [28]) was an essential point in the work of the author and Stein on singular Radon
transforms [24,29,26,25]. For example, a corollary of one of the main results of [25] is
the following. Suppose :(x) is real analytic function defined on a neighborhood of the
origin of (t,z) € RN x R™, mapping to R", and satisfying vo(x) = z. Define an operator
acting on functions f(x) defined near the origin in € R™ by

Tf(z) = () / Fw () K () dt,

where K (t) is a Calderén-Zygmund kernel supported near ¢ = 0, and ¢ € C§°(R") is
supported near = 0. Then, T : L? — LP for 1 < p < oo; see [25] for a more precise
statement and further details. This result does not follow from the foundational work of
Christ, Nagel, Stein, and Wainger on singular Radon transforms [8]; however, the only
additional ingredient necessary to conclude this result (beyond the theory in [8]) is the
above described uniformity of coordinate charts near singular points (though the theory
in [25] proceeds by proving a more general result, and concluding the above result as a
corollary).

Remark 4.16. One way to view the above discussion is that Theorem 4.5 is quantitatively
invariant under C? diffeomorphisms (see Section 4.3), and being “nearly” a singular point
is not a diffeomorphically invariant concept. Indeed, consider the real case described
above. Fix zo € M and let k := dim 2, = dim Leaf,, and N := dim 9. Pick a coordi-
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nate system on 9 near x. In this coordinate system, we may think of X (zo), ..., Xq(z0)
as vectors in RY which span a k dimensional subspace of R™. Let ¢ := min|det B|,
where B ranges over all k& x k submatrices of the N x ¢ matrix (Xi(zo)|---|Xq(x0)).

Then, o > 0. One might say x¢ is “nearly” a singular point if ¢ is small. However, o
is not invariant under diffeomorphisms: the above procedure depended on the choice of
coordinate system. This is one way of intuitively understanding why the estimates in
Theorem 4.5 do not depend on a lower bound for ¢ > 0.

Remark 4.17. While we described the above for smooth vector fields, similar remarks
hold for vector fields with a finite level of smoothness using the same ideas.

4.5. Proof outline

Theorem 4.5 is the central result of this paper. If all we wanted was a coordinate
system like @ in which the vector fields were normalized and had the desired regularity,
but did not have the key property given in Theorem 4.5 (xi),'? then Theorem 4.5 would
be an easy consequence of the main results in [27,31] applied to Wi,..., Way,44 (see
Section 12 for a detailed statement of this). In particular, in the case when ¢ = 0 (and
M is given the complex structure induced by £ via the Newlander-Nirenberg theorem—
see Remark 4.6), then if we did not require that ® be holomorphic, Theorem 4.5 would
be a simple consequence of the results in [27,31].

The proof proceeds as follows. We apply the results from [27,31] (see Section 12) to
yield a candidate chart ®( satisfying all the conclusions of Theorem 4.5 without the key
property discussed above. Then, we apply the main technical result of [33] to obtain
another map ®; such that if we set ® = &y o &, & satisfies all the conclusions of
Theorem 4.5.

As described above, in this paper we construct the map ® as a composition of two
maps ® = ®go0®P;. When s € (1,00), g is constructed in [31] as a composition of three
maps (one of which was a simple dilation map). When s € (1,00), ®; was constructed
in [33] as a composition of four maps (two of which were simple dilation maps). Thus, if
s0 € (1,00), when all the proofs are unraveled, ® is a composition of seven maps, three
of which are simple dilation maps. When sg = w, ® is considerably simpler.

5. Notation

If f : M — N isaC! map between C! manifolds, we write df (x) : T, M — T, N for the
usual differential. We extend this to be a complex linear map df (z) : CT,M — CT,N,
where CT, M = T, M ®@g C denotes the complexified tangent space. Even if the manifold
M has additional structure (e.g., in the case of a complex manifold), df (z) is defined in
terms of the underlying real manifold structure.

e}

13 And replacing % with z= in Theorem 4.5 (ix), where = € R2",
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When working on R” x C™ we will often use coordinates (¢, z) where t = (¢1,...,t.) €
R™ and z = (#1,...,2,) € C". We write

0 _9_

oty 0z,

8 )
O _oam| 9 _lom
ot |7 oz

0 el

ot 0Zn

At times we will instead use coordinates (u,w) where u € R” and w € C™ and define %
and 3% similarly.

We identify R” x R?" & R” x C™ via the map (t1,...,t, X1, .., T2n) = (t1, ...t 21+
ITpt1,- - Ty + %2y, ). Thus, given a function G(¢,z) : R" x C™* — R* x C™, we may also
think of G as function G(¢,z) = (G1(t, ), ..., Gsram(t,x)) : R” x R?" — R x R*™. For
such a function, we write

0G4 L. 0G1 0G4 L. 090G,
oty ot Oz OTan
dit,0)G =
0Gstom . OGsiyam  OGsyam . OGsiom
8t1 8t7- 8$1 B;czn

We write Inxny € MV*N to denote the N x N identity matrix, and Ogqxp € M**? to
denote the a x b zero matrix.

6. E-manifolds

The results in this paper simultaneously deal with the setting of real vector fields (on
a real manifold) and the setting of complex vector fields (on a complex manifold). It is
more convenient to work in a category of manifolds which contains both real manifolds
and complex manifolds as full subcategories. We define these manifolds here, and call
them E-manifolds.'* This category of manifolds was also used in [33], and we refer the
reader to that reference for a more detailed description.

Remark 6.1. “E” in the name E-manifolds stands for “elliptic”. Indeed, using the termi-
nology of [35, Definition 1.2.3], a complex manifold is a manifold endowed with a complex
structure, a CR-manifold is a manifold endowed with a CR structure, and an E-manifold
is a manifold endowed with an elliptic structure; see Theorem 6.22 and [33] for a more
detailed discussion. Unfortunately, the name “elliptic manifold” is already taken by an
unrelated concept.

4 The manifold structure we discuss here is well-known to experts, but we could not find a name for the
category of such manifolds, and decided to call them E-manifolds for lack of a better name.
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Definition 6.2. Let U; C R"™ x C™ and Uy C R™ x C™ be open sets. We give R"™ x C™
coordinates (¢, z) and R"2 x C"2 coordinates (u,w). We say a C! map f : Uy — Us is an
E-map if

df(t’z)i df(t’z)i ESpanC{ : o . }’

oty 0% ur’ T Buy, 0w O,

V(t,z) eUp, 1 <k<ry,1<j<mn.

For s € (1,00 U{w}, we say f is a 6, E-map if f is an E-map and f € 6 _(U1; R"™ x
Cm2).

Remark 6.3. Suppose Uy, Us C R” x C™ and f : Uy — Us is an E-map which is also a
C!-diffeomorphism. Then, f~!: Uy — U; is an E-map.

Remark 6.4. Note that when r; =7 = 0,ifU; C RYxC™ =2 C™, U, C ROxC™ =2 C"=,
then f:U; — U, is an E-map if and only if it is holomorphic.

Definition 6.5. Let M be a Hausdorff, paracompact topological space and fix n,r € N,
s € (1,00l U{w}. We say {(¢a,Va) : @ € T} (where 7 is some index set) is a €° E-
atlas of dimension (r,n) if {V, : @ € Z} is an open cover for M, ¢, : Vo, = U, is a
homeomorphism where U, C R” x C" is open, and ¢g o ¢  : o (Vs NV,) — Up is a
6. E-map, Va, .

Definition 6.6. A ¢° E-manifold M of dimension (r,n) is a Hausdorff, paracompact
topological space M endowed with a ¢’° E-atlas of dimension (r,n).

Remark 6.7. On may analogously define C™ E-manifolds in the obvious way. C'*° E-
manifolds and °° E-manifolds are the same (because 62% is the usual space of smooth
functions).

Definition 6.8. For s € (0,00] U {w}, let M and N be ¢**! E-manifolds with ¢**1 E-
atlases {(¢a,Va)} and {(¢5, Wp)}, respectively. We say f : M — N is a 51" E-map if
Yo fogrlisa ‘Klf)il E-map, Va, g.

Lemma 6.9. For s € (0,00] U {w}, let My, Ma, and M3 be €T E-manifolds and f :
My — My and fy : My — M;s be %{Zﬁl E-maps. Then, foo f1 : My — Ms is a ‘Klf)il
E-map.

Proof. See [33, Lemma 4.10] for a proof of this standard result. O

Lemma 6.10. For s € (0,00] U {w}, let My and Ms be €°T* E-manifolds and let f :
M, — Ms be a ‘5121'1 E-map which is also a C* diffeomorphism. Then, f~1 : My — M,
is a €51 E-map.

loc
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Proof. See [33, Lemma 4.11] for a proof of this standard result. O

Definition 6.11. Suppose s € (0, 00]U{w}, and M; and My are €**! E-manifolds. We say
f: My — My is a €t E-diffeomorphism if f : M7 — My is invertible and f : M7 — My
and f~': M, — M, are %lf)i'l E-maps.

Remark 6.12. For s € (1,00] U {w} the category of €* E-manifolds, whose objects are

%° E-manifolds and morphisms are %;°

o E-maps, contains both 4’ real manifolds and

complex manifolds as full subcategories. The real manifolds of dimension r are those
with E-dimension (r,0), while the complex manifolds of complex dimension n are those
with E-dimension (0, 7). That complex manifolds (with morphisms given by holomorphic
maps) embed as a full subcategory follows from Remark 6.4. The isomorphisms in the
category of €° E-manifolds are the €° E-diffeomorphisms.

Remark 6.13. Note that open subsets of R” x C™ are ¥“ E-manifolds of dimension (r,n),
by using the atlas consisting of one coordinate chart (the identity map). Henceforth, we
give such sets this E-manifold structure.

As mentioned above, ¥* E-manifolds of dimension (r,0) are exactly the ¢’® manifolds
of dimension r, in the usual sense (in particular, one may take Definition 6.6 in the
case n = 0 as the definition of a €* manifolds of dimension r). There is a natural
forgetful functor taking 4’* E-manifolds of dimension (r,n) to € manifolds of dimension
2n + r. Thus, one may define any of the usual objects from manifolds on E-manifolds.
For example, we have the following standard definitions on 4® manifolds, and therefore
on ¢* E-manifolds.'”

Definition 6.14. For s € (0, co]U{w} let M be a ¢’**! manifold of dimension r, with €1
atlas {(da, Va)}; here ¢y, : V,, — U, is a €°T1 diffeomorphism and U, C R" is open. We
say a complex vector field X on M is a €° vector field if (¢4 ). X € 6. (Ua; CT), Vo

Definition 6.15. For s € (0,00] U {w}, a ¢° sub-bundle .Z of CTM of rank m € N is a
disjoint union

z= ) L ccrm
CeEM

such that:

o V(e M, % is an m-dimensional vector subspace of CT: M.

15 The following standard definitions can all be found in [35] in the case s = 0o, and in [33] for finite levels
of smoothness.
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e V(o € M, there exists an open neighborhood U C M of {, and a finite collection of
complex ¢ vector fields Ly, ..., Lg on U, such that V¢ € U,

spanc{L1(C), ., Lx(¢)} = Z.

Definition 6.16. For a ** sub-bundle .# of CTM, we define & by %, = {Z: z € %}
It is easy to see that .Z is a € sub-bundle of CT M.

Definition 6.17. Let W C M be open, L a complex vector field on W, and £ a €¢*
sub-bundle of CTM. We say L is a section of .Z over W if V¢ € W, L(¢) € %;. We say
L is a €*° section of .Z over W if L is a section of .Z over W and L is a ¢° complex
vector field on W.

Definition 6.18. Let .Z be a €*™! sub-bundle of CTM. We say £ is a ¢**! formally
integrable structure if the following holds. For all W C M open, and all €**! sections
Ly and Ly of £ over W, we have [Ly, Lo] is a section of . over W.

Definition 6.19. Let . be a €°*! formally integrable structure on M. We say .Z is a
¢+ elliptic structure if £ + £ = CT; M, V¢ € M.

For s € (0,00] U {w}, on a €2 E-manifold of dimension (r,n), there is a naturally
associated €**1 elliptic structure on M defined as follows. Let (¢q,Va) be an E-atlas
for M. For ¢ € M let ¢ € V,, for some a. We set:

0 0 0
D?C = Span(c{d(bal((ba(c))a—tl, . e 7d(bgl((ba(c))a—tr,d(b;l(@a(c))a—zl7 ey
0
003 (@0(0) - |

It is straightforward to check that Z; C CT, M is well-defined'® and .Z = Ucenr Zc is
a ¢**! elliptic structure on M. As remarked above, an E-manifold of dimension (0,n)
is a complex manifold; in this case .Z equals T%' M.

Definition 6.20. We call .Z the elliptic structure associated to the E-manifold M.
Lemma 6.21. Suppose M and M are ¢* E-manifolds with associated elliptic structures
Z and . Then a 65, map f: M — M is a 6}, E-map if and only if df ()L, C L),
Ve e M.

Proof. This follows immediately from the definitions. O

16 Je., Z¢ does not depend on which a we pick with ¢ € V.
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It turns out that the elliptic structure .Z associated to the E-manifold M uniquely
determines the E-manifold structure as the following theorem shows.

Theorem 6.22. Let s € (0,00] U {w} and let M be a €*T2 manifold. For each { € M, let
Z: be a vector subspace of CT:M, and let £ = U(eM Z:. The following are equivalent:

(i) There is a €2 E-manifold structure M, compatible with its €°%? structure, such
that £ is the €°1 elliptic structure associated to M.
(ii) &£ is a €51 elliptic structure.

Moreover, under these conditions, the E-manifold structure given in (i) is unique in the
sense that of M is given another €°1? E-manifold structure, compatible with its €512
structure, with respect to which £ is the associated elliptic sub-bundle, then the identity
map M — M is a €°1? E-diffeomorphism between these two €°1? E-manifold structures
on M.

Comments on the proof. The case s = w of this result is classical. The case s = oo
is due to Nirenberg [23]. In the special case of complex manifolds (i.e., E-manifolds of
dimension (0,n)) this is the Newlander-Nirenberg Theorem [21] with sharp regularity,
as proved by Malgrange [15]. The full result can be found in [33, Theorem 4.18]. O

6.1. CR manifolds

There is another, related, category of manifolds of substantial interest, where the
original scaling maps of Nagel, Stein, and Wainger [19] have been widely used: CR
manifolds. Theorem 6.22 characterizes E-manifolds as manifolds endowed with an elliptic
structure. CR manifolds are defined in a similar way.

Definition 6.23. Let # be a €**! formally integrable structure on M. We say # is a
€*+1 CR structure if #; N #; = {0}, V¢ € M.

Definition 6.24. A €512 CR manifold M is a €°*2 manifold M endowed with at ¥5+!
CR structure on M.

Notice that a CR structure, #, is an elliptic structure if and only if #; EB% =CT:M,
V¢ € M. This is precisely the definition of a complex structure. There does not seem to
be a natural way, given an arbitrary E-manifold, to see it as a CR manifold. Nor is there
a natural way, given an arbitrary CR manifold, to see it as an E-manifold. Nevertheless,
many of the classical examples of CR manifolds can be naturally given the structure of
an E-manifold. Indeed, given a CR structure %, it is often the case that there is another
sub-bundle, 7, of CTM such that # & .7 is an elliptic structure.

The simplest example of this is the three dimensional Heisenberg group H*. As a man-
ifold, H! is diffeomorphic to C x R and we give it coordinates (z,t) € C x R. We give H*
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a CR structure by setting #/(. ;) := spanc {% — iz% } By setting .7, ) := spangc {%},
we have # @ .7 is an elliptic structure on H'. In many examples of CR manifolds one
has a similar setting: there are local coordinates (z1,...,2n,t1,...,t.) € C™ X R” such

that the CR structure, 7, is contained in the span of %, ceey %, a%v ceey % in such at

way that if one takes .7, ;) := spanc {6%1’ ce 6%}’ then # & .7 is an elliptic structure.
See Section 8.4 for a discussion of one way the results of this paper can be applied to
CR manifolds.

Remark 6.25. A major distinction between CR structures and elliptic structures is that
elliptic structures of dimension (r,n) have a single canonical example. Indeed, R” x C"
is naturally an E-manifold with associated elliptic structure .Z given by

_ ) o 0 ) o
.,g(—Spanc{a—h,...,a,a—h,...,a—u}, VCGR x C™.

Theorem 6.22 shows that given any elliptic structure .Z, there is a local coordinate
system in which & is given by ,,2/”\, where n +r = dim.%; and r = dim (fg OZ)
(here, n and r are constant in (—see [33, Section 3]). Theorem 4.5 can be thought of
as a quantitative, diffeomorphic invariant version of a coordinate system which sees an
elliptic structure as this canonical example. Since there is no similar canonical example
of a CR structure, it is not immediately clear what an analog of Theorem 4.5 would be
for general CR structures.

7. Corollaries revisited

In this section, we generalize the results from Section 3 using the language of E-
manifolds. This unifies the complex and real settings.

7.1. Optimal smoothness

Let Xi,...,X, be real C! vector fields on a connected C? manifold M and let
Li,...,L,, be complex C' vector fields on M. For € M set

Ly = span(c{Xl(x), LR Xq(x)v Ll(x)v cees Lm(x)}a Xy 1= Span(C{Xl(x)v s 7Xq(x)}
(7.1)
We assume:

o L+ L =CT,M,Vz e M.
« 2, =%,N%,, VYreM.

Theorem 7.1 (The local theorem). Fix xo € M, s € (1,00] U {w}, and set r := dim 25,
and n+r:=dim .Z,,. The following three conditions are equivalent:
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(i) There exists an open neighborhood V.C M of x¢ and a C* diffeomorphism ® : U —
V', where U CR" x C™ is open, such thatV(t,z) e U, 1 <k<gq,1<j<m,

0 0
& X (t, z) € spang {8—7517...,%},

0 o 0 0
(I)*Lt7 € AL 0ttt Ay Y a= vt a= (0
i(t,2) € spanc {au at, 07, 8zn}
and ®* Xy, € €T (U;R"), ®*L; € ¢5T1(U;Cn).
(i) Reorder Xi,...,X, so that Xi(zo),...,Xr(x0) are linearly independent, and
reorder Ly,...,L, so that Li(xq),...,Ln(z0), X1(20),...,X;(x0) are linearly
independent. Let Zy,...,Zp+r denote the list Xi,...,X,,L1,...,Ly,, and let

Y1, Yiiq—(r4n) denote the list Xyi1,..., Xy, Lnt1,..., Lim. There exists an
open neighborhood V-C M of g such that:

n+r Al L~ n+r A2 L7 n+r A3 =3
. [Z Zi] = w21, and[ Zi] = Yool CZi+ 202 €21, where & k €

%L (V), 1<J,k T<ntr, 1§a§3.
« V=002, where b € €5TE(V), 1< j<m+q—(r+n), 1<I<n+r.
Furthermore, the map x — dlm %,V — N is constant in x.

(iii) Let Zu, ..., Zmtq denote the list Xi,...,Xq,L1,...,Ly,. There exists a neighbor-
hood V. C M of x such that [Z;, Zy) = E;'Hl_q cj1 Y 70 and [Z;, Z) = S Cjzngl +
Z?H{q c:;,chl, where c k € %XL( ), 1<a<3,1<jkl <m+q. Furthermore,
the map x — dim XI, V — N is constant in x.

Theorem 7.2 (The global theorem). For s € (1,00]U{w} the following two conditions are
equivalent:

(i) There exists a €2 E-manifold structure on M, compatible with its C? structure,
such that X1,...,Xq,L1,...,Ly, are €5+ vector fields on M and £ (as defined in
(7.1)) is the associated elliptic structure (see Definition 6.20).

(ii) For each xo € M, any of the three equivalent conditions from Theorem 7.1 hold for
this choice of xg.

Furthermore, under these conditions, the €2 E-manifold structure in (i) is unique, in
the sense that if M has another €512 E-manifold structure satisfying the conclusions
of (i), then the identity map M — M is a €°+? E-diffeomorphism between these two
E-manifold structures. Finally, when s € (1,00], there is a third equivalent condition:

(itt) Let Zi,...,Zmiq denote the list Xi,...,Xq,L1,...,Ly. Then, [Z;,Zy] =
S cjllchl and [Z;,Zy) = S j,chl + Soyta c?,chl, where Yz € M, there
exists an open neighborhood V.C M of x such that cJ k v € ‘KXL( ), 1 <a<3,
1 <4k, 1 <m+ q. Furthermore, the map x — dim.%,, M — N is constant.
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Remark 7.3. For a discussion of results like Theorems 7.1 and 7.2 using the easier to
understand Hoélder spaces, see Section 14.

7.2. Sub-E geometry

Let M be a connected C*° E-manifold of dimension (r,n) and let .Z be the associated
elliptic structure. For z € M, set 2, := £,N.%,, so that r = dim 2, and n+r = dim .%,,
Vz € M. Fix a strictly positive C* density v on M.'" Suppose Xi,..., X, are C>
real vector fields on M and Lq,..., L, are C* complex vector fields on M such that
Xy =spanc{Xi(x),..., X,(z)} and £, = spanc{Xi(x),..., X4(2), L1(x),..., Ln(2)},
Ve e M.

To each X}, we assign a formal degree f;, € [1,00), and to each L; we assign a formal
degree fj1q € [1,00). We let Zi,..., Zy4q denote the list Xy,...,Xg, L1,..., Ly, so
that Z; has assigned formal degree ;.

We assume:

25,26 = Y e (23, Zel= Y. Szt Y, S, € CF(M).
B1<B;+ Bk B1<B;+PBk BL1<B;+PBk
(7.2)
For 6 € (0,1] write 6°X for the list 6°1X7,...,8% X, and write 6°L = §P+1 Ly, ...,
§Pa+m [, Using the notation from Section 4 it makes sense to write, for K € Z(ry,q),
J € I(n1,m), (N6°X)k) A\ (A(6°L) ). We assume: YK € M compact, 3¢ € (0, 1] such
that Vz € K, 6 € (0,1], 3Ko(=,0) € Z(r,q), Jo(x,0) € Z(n,m) such that

(A(°X(2)) k) A\ ((6”L(2))s)

su max < ¢ (7.3)

Y
vek KeZ(ry,a),J€Z(n,m) | (NP X (2)) ko(2,6)) N\ (P L(2)) sy (,5))
6€(0,1] ri+ni=r+n

Remark 7.4. The existence of Ky(x,6), Jo(x,d), and ¢ as in (7.3) does not follow from
the other hypotheses. However, it is immediate to see that if r = 0 or n = 0, one may
always find Jy(z,0) and Ko(x,d) so that (7.3) holds with ¢ = 1. This accounts for the
two most important special cases: the ones in Sections 3.2.1 and 3.2.2.

Under these hypotheses, we will study two metrics on M (and show these two metrics
are equivalent on compact sets). The first metric is a standard sub-Riemannian metric
and we will define it in two different ways, denoted by ps and pr. We will show that
ps = pr. Both of the definitions pg and pp are defined extrinsically: they are defined
by using the underlying manifold structure on M using maps which are not necessarily
E-maps. The second metric, pg, has a definition which is similar to that of pg, but it is
defined intrinsically on M: it is defined entirely within the category of E-manifolds.

17 The results that follow are local and do not depend on the choice of density.
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For x € M, § > 0 set Bg(x,0) := Bssx 551 (x,1) (where the later ball is defined in
(2.4)) and set pg(z,y) :=inf{d > 0:y € Bg(x,9)}.
Let (W1,d1),. .., (Wam+q, dam+q) denote the list of vector fields with formal degrees

(X17 ﬁl)v B (an Bq)’ (QRG(L1)7 Bq-‘rl)’ R (QRQ(LW)’ 6q+m)7 (QIm(L1)7 6q+1)7 AR
(QIm(Lm),ﬂan)'

We say pr(x,y) < 0 if and only if 3K € N, C* functions fi,..., fk : Br(1/2) = M,
and 01,...,0x > 0 with Zszl 0; <6, such that:

o J10) = SISO WAf5(1)), with (1321552l e (e (1/2)) < 1.
« fi(Br(1/2))N fi+1(Br(1/2)) #0, 1 <j < K — 1.
« =€ fi(Br(1/2)), y € fx(Br(1/2)).

Set Bp(z,0) :={y € M : pp(z,y) < d}.
Finally, we define py. We say pg(z,y) < § if and only if 3K € N, C* E-maps
fioooo fic s Brxe(1/2) = M, and 6y,..., 0 with 35, ; < 4, such that:

(1) Because f; is an E-map, we may write

Q

af;(t2) 2 = 37 st (4, 2055 X (£ (1, 2) +Zsl+q (t z)&ﬁ”q\;_ J(f(t2)),

k=1 =1

2 0 < 2
df](tz\/_a_ ZSJQtzéﬁka(fjtz —|—Zsl+q, 5’Bl+q\/_ 1(f5 (¢, 2)).

The choice of s;’s is not necessarily unique. Let S;(t, z) denote the (¢ + 2m) x 3
matrix such that the (I, a) component of S;(¢,z) is given by

s at,2), 0<I<m+gqga=12

0 m+q+1<Ii<2m+gq,a=1,2
sho(tz), 0<I<qorm+q+1<I<2m+gqa=3
0, q+1<1l<m+q,a=3.

In particula S] (t z) is a matrix representation of df;(t, z) thought of as taking the
basis 2 56 \/— 8z’ \/_ az to the spanning set

2 2 2
Sl I Sy N ARty R A

mo ) —m
v o at et

B1 Bq Bq+1 2
01 X1, 00Xy, 0 %

We assume
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||Sj ||LOO(BRX(C(l/Q);M(qu%n)XS) <1

The choice of S; may not be unique,'® and we only ask for the existence of such an S;.
(2) fi(Brxc(1/2)) N fi+1(Brxc(1/2)) #0, 1 <j < K — 1.
(3) = € fi(Brxc(1/2)), y € fx(Brxc(1/2)).

Set Bu(z,0) :={y € M : pu(z,y) < §}.

Remark 7.5. A consequence of (1) is the following. We identify R x C with R? in the
usual way. Let S;(¢,x1,22) be a (2m + ¢) x 3 matrix representation of df;(t, z1,x2)
thought as taking the basis %, %, 3%2 to the spanning set 6?1W1(fj(t,x1,x2),...,

6?2m+qW2m+q(fj (t,21,x2)). Then if (1) holds we may choose §j so that

||S]‘||Loo(BR3(1/2);M(q+27u)><3) < 1. (7.4)

Define, for z € M, § > 0,

A(z,0) := max v(@) (6 Wy, (), ..., 6%2ner Wy, ().

J1s--sdentr€{1,....2m+q}

Theorem 7.6.

(a) Y,y € M, ps(z,y) = pr(z,y) < pu(r,y).

Fiz a compact set K € M. We write A < B for A < CB, where C is a positive constant
which can be chosen independent of x,y € K, § > 0. We write A ~ B for A < B and
B < A. There exists 61 ~ 1 such that:

(b) pu(z,y) < ps(z,y), and therefore ps and py are equivalent on compact sets.

(c) v(Bg(z,96)) =~ v(Bu(x,0)) = Alx,0), x € K, § € (0,1].

(d) v(Bs(x,20)) S v(Bs(z,9d)), Ve € K, § € (0,81/2]; the same holds with Bg replaced
by By

For each x € IC, 6 € (0,1], there exists a C*>° E-map ®y 5 : Brrxcn(1) = Bg(x,0) such
that

(e) @y s5(Brrxcn(1)) € M is open and @y 5 : Brrxcn(l) = ®(Brrycn(1)) is a C
diffeomorphism.

(f) @;,(w = hgz,50Leb, where ore, denotes the usual Lebesgue density on R” x C",
hes € C(Brrxcn (1)), and [|he sllomBrron)) S Az, 0), Ym (where the implicit

8 The choice of S; is not unique if m +q¢ > n +r.
19 This is the key estimate that shows that the balls Bgs(z, d), when paired with the density v, locally give
a space of homogeneous type.
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constant may depend on m). Also, hy 5(t,z) ~ A(x,0), V(t,z) € Brrxcn(1l), where
the implicit constant does not depend on x € IC, § € (0,1], or (t,2) € Brrxcn(1).

Let 2;?’5 = @;’5657' Zj, so that 2;6’6 is a C* vector field on Brrxcn(1).
Sed
(9) Z7°(t,2) € spanc {8%1’ e 6itr’ 3%1, R %}, Y(t,z) € Brrxcn(1).

In light of (g), we may think of 2;”’5 as a map Brryxcn(1) = C™", and we henceforth
do this.

1,6 5x,6 . .
(h) Z7°(t,2), ... Zy,(t, 2) span spanc {8%17 e Z%, 8%17 o %} uniformly in t, z,
x,0 in the sense that
max inf ‘det (2?’5(15, 2)| 1250 (¢, z)) ’ ~1,
Giresintr €41, ;m+q} (£,2)€Brrxcn (1) J1 Jntr
Ve e K,6 € (0,1].

In fact, forx € KC, 6 € (0,1],

max lnf
k1,....kr€{1,....,q} (t,2)EBRrrxcn (1)
J1seerdn€{1,...,m}

[det (% 55%1 X, (8, 2)] - - | @0 567 X, (£, 2)| @3 567179 Ly, (1, 2)|
|¢;555jn+qun(t7z))| ~ 1.

(i) ||2f76HCk(BRTch(l);(fﬁﬁ»n) <1, Ve e K, 6 €(0,1] (where the implicit constant may
depend on k € N).

(j) 3R ~ 1 such that ®, s(Brrxcn(1)) € Bu(z, Rd), v € K, § € (0,1].

(k) e ~ 1 such that Bg(z,ed) C @, s(Brrxcn(1)) € Bg(z,d), z € K, 6 € (0,1].

Remark 7.7. In Theorem 7.6 we stated a result for C°° vector fields. A similar result,
with a similar proof, can be stated for real analytic vector fields, where one can ensure
the map @, s is real analytic and the vector fields 2;0’5 are real analytic in a quantitative
way. This proceeds by using the case sp = w in Theorem 4.5 (instead of sy € (1,00)).
In the setting of real vector fields, this was done in [32]. We leave the details to the

interested reader.

Remark 7.8. In this section, we described geometries where the vector fields at scale
§ where given by 6% X1, .. .,(554Xq,55<1+1L1, ..., 68aem [ for some fixed vector fields
X1,...,Xq,L1,..., Ly. It is straightforward to generalize Theorem 7.6 to work in a
setting where the vector fields have a more complicated dependance on 4. In this setting,
one would take, for each § € (0,1], a collection of vector fields X?¢,... ,Xg, L9,.... L2,
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and place appropriate axioms on these vector fields so that the proof of Theorem 7.6
works uniformly for § € (0, 1]. This approach was described in the real setting in [27,32].
An example in the complex setting is described in Section 8. Using the same ideas,
the results in this paper generalize the result in the multi-parameter stetting of [28].
Here, we fix some p € N, p > 1 and for each 6 € (0,1]* we are given vector fields
X9,..., X2, L3, ..., LY, and proceed in the same way. We leave further details to the
interested reader.

Remark 7.9. The assumption that the vector fields are C*° is not essential. In fact,
because Theorem 4.5 is stated for C'! vector fields, one need only assume the given vector
fields are C'. Then, as in Remark 7.8, one assumes that the hypotheses of Theorem 4.5
hold uniformly in the relevant parameters. See [27, Section 7.3] for a description of this
in the real setting.

8. An example from several complex variables

In Sections 1.2.2, 3.2, and 7.2 we described how to use the coordinate system ® from
Theorem 4.5 as a generalized scaling map. In these settings, we applied Theorem 4.5 to
a family of vector fields which depended on ¢ € (0, 1]. For example, in Section 3.2.2, the
vector fields were 6% Ly, ..., 6% L,,, where Ly, ..., L,, were sections of T%' M satisfying
certain properties (and M was a complex manifold). In these settings, the vector fields
depend on 4 in a very simple way; and we presented results in these settings for simplicity.
However, Theorem 4.5 allows one to consider vector fields which depend on ¢ (and on the
base point) in much more complicated ways. This can be important in applications, and
to describe these ideas we present an important setting which arises in several complex
variables: extremal bases.

Extremal bases were first used by McNeal [16] to study Bergman kernels and invariant
metrics associated to convex domains of finite type; see also [12]. More generally, extremal
bases can be used to study lineally convex domains [9] (see also [4, Section 7.1]). They can
also be used to study Bergman and Szeg6 kernels and invariant metrics on pseudoconvex
domains of finite type with comparable eigenvalues [14,5,6,7]. Finally, they have been
used to study pseudoconvex domains of finite type with locally diagonalizable Levi forms
[3,2,4]. All of these settings have been generalized to one abstract setting by Charpentier
and Dupain [4]. The presentation below is closely related to the ideas of [4], though
expressed in a different way.

As can be seen from the above mentioned works, extremal bases are closely related
to a notion of distance in many complex domains; and scaling techniques are central in
using extremal bases to study objects like Bergman and Szegd kernels (many of the above
papers use some kind of scaling). See [17] for a particularly straightforward explanation
of the form scaling takes in some of these examples. In this section, we show how to use
Theorem 4.5 to understand this scaling in a more abstract way. The idea is to rephrase
the notion of an extremal basis in a way which is quantitatively invariant under arbitrary
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biholomorphisms. We hope that this will give the reader some idea of how to apply the
results of this paper to questions in several complex variables, perhaps even beyond the
setting of extremal bases.

Following the philosophy of this paper, we describe the scaling associated to extremal
bases in three steps:

o Extremal bases at the unit scale: because we wish to scale a small scale into the
unit scale, first we must introduce what we mean by the unit scale. This is the
setting where classical techniques from several complex variables can be used to
prove estimates.

o Extremal bases in a biholomorphic invariant setting: using Theorem 4.5, we rephrase
the unit scale from the previous point in a way which is quantitatively invariant
under arbitrary biholomorphisms. Because of this, we completely remove the notion
of “scale,” because that notion depends on a choice of coordinate system.

o Extremal bases at small scales: here we introduce the notion of extremal bases at
small scales, by seeing it as a special case of the biholomorphically invariant version
of the previous point. Because of this, it will immediately follow that the setting of
small scales is biholomorphically equivalent to the unit scale.

After introducing these three steps, we describe the similar setting of CR manifolds.

Though it will not play a role in our discussion, the setting to keep in mind is the
following. 91 is a complex manifold, and Q = {¢ € M : p(¢) < 0} is relatively compact
domain, where p € C*°(M;R) is a defining function of Q such that dp({) # 0, V¢ €
09 = {p = 0}. All of the above mentioned papers concern pseudoconvex domains near
points of finite type.

While the scaling maps of Nagel, Stein, and Wainger [19] have long been used in such
problems (see, e.g., [14]), we will see that the results of this paper allow us to have similar
scaling maps which are holomorphic, as opposed to the smooth maps given in [19]; thus
they do not destroy the complex nature of the problem.

Remark 8.1. Other than a new way of viewing extremal bases, the perspective here
may not bring much new to this well-studied concept. However, we hope the general
outline may be useful for other problems in several complex variables. Indeed, as we
will explain, the idea is to take a known result at the unit scale, rewrite it in a way
which is quantitatively invariant under biholomorphisms (using Theorem 4.5). This then
automatically gives a quantitative result at small scales, since the notion of scale is not
invariant under biholomorphisms.

8.1. Extremal bases at the unit scale

Fix n € N and let p € C*®(Bc«(1);R) satisfy p(0) = 0 and dp(¢) # 0, V¢ € Ben(1).
Let L,, be a smooth section of T%! Bcx (1) (i.e., Ly, is a complex vector field spanned by
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6%1, cey azﬂ ) be such that L, p(¢) # 0, V¢ € Ben(1). For example, one often takes
L=y %0
= 0z; 0z’

2
so that L,p=>_ %
J

Let Li,...,L,—1 be smooth sections of T%!Bcx (1) such that Ljp = 0 on Bcn(1),
and such that L1 (¢), ..., Ln(¢) span 7" Ben, V¢ € Bea(1). Given 6 = (61,...,6,1) €
Cn1 with |6 =1, set Ly = Z;:ll 0;L;. Set Z¢ = {[Lg, Lg|}, and recursively set
20 —{[Lo, 2),[L4,7): Z € Z0_} for j > 2.

Definition 8.2. We say L1,..., L,,p is an extremal system if there exists K € N such
that

K
{le"'7Ln71aL_17"'7muLn}U UZJQ
j=1

spans CTCBCH(l), VC € B(Cn(l), |0‘ =1.

Along with an extremal system, strictly plurisubharmonic functions are often used.
Thus, we assume we are given a function H € C®(Bcn(1);R) such that 09H is strictly
positive definite on Bc-(1).

Remark 8.3. Given an extremal system and plurisubharmonic function, as above, there
are many estimates one can prove using now standard techniques (usually, this occurs
under the additional qualitative assumption that the domain is weakly pseudoconvex, see
the above mentioned works for details). These estimates often depend on the following
quantities (or something similar):

(i) Upper bounds for n and K.

(ii) Upper bounds for |[p|lcv(Ben (1)) and maxi<j<n | Lj|leN (Ben (1);c7), Where N can
be chosen to depend only on upper bounds for K, n, and the particular estimate
being shown.

(iii) A lower bound, > 0, for infec g (1) [Lnp()]-

(iv) A lower bound, > 0, for infeecp .. (1) |det(L1(§)| -++|Ln(C))], where this matrix has

é)

columns Ly, ..., L,, written in terms of 8z1 T

(v) A lower bound, > 0, for

inf max
CEBcn (1) Zze UK | 2¢
[6]=1

det (L1<<>| L (OIE Q)] - mmw«;))

i=1"3j
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where in the above matrix, the vector fields are written in terms of 6%17 cee 3%, %,
5 n
) ﬁ" .

(vi) An upper bound for || H | ¢3(Ben(1))-

(vii) A lower bound, > 0, for the quadratic form O0H on B¢ (1). Equivalently, using (ii)
and (iv), for w = (w1, ...,w,) € C™ with |w| =1, set L, = > w,L;. The estimates
may depend on a lower bound, > 0, for:

Cﬁ%ﬂ) (OFH(C); Lu(€). Lu(0)) . (8.1)

Thus, if one has an infinite collection of extremal systems and plurisubharmonic func-
tions, such that the above quantities can be chosen uniformly over this infinite collection,
then one can prove the above mentioned estimates, uniformly over the infinite collection.
See [17] for some easy to understand examples of such estimates. Note that all of the
above quantities except for (i) depend on the choice of coordinate system: if one applies
a biholomorphism to this setting, it destroys all of the above constants. The next section
fixes this problem.

Remark 8.4. In (vii), we assumed that the quadratic form O9H was bounded away from 0.
In the famous work of Catlin [1], subelliptic estimates are shown using plurisubharmonic
functions where this bound can be chosen very large. While the form being positive
definite does not depend on the choice of holomorphic coordinate system, the lower
bound for the form does depend on the choice of coordinate system. In Section 8.3, we
will assume the existence of a plurisubharmonic function adapted to each scale; those
adapted to a small scale will have a large lower bound when viewed in a fixed coordinate
system independent of the scale (see Remark 8.8).

8.2. Extremal bases invariant under biholomorphisms

In this section, we present extremal bases again. Qualitatively, this is exactly the same
as what is written in Section 8.1; the difference here is that our quantitative assumptions
will be written in a way which is invariant under biholomorphisms (as opposed to the
quantitative assumptions in Remark 8.3 which depended on the choice of coordinate
system).

Let 9 be a complex manifold of complex dimension n. Fix a point {; € 9t and
p € C°(M;R) with p({y) = 0. Let Ly,..., L, be smooth sections of 7?19 and fix
& > 0. We take the following assumptions and definitions:

(1) VC € BL(<07§)7 Spa’nC{Ll(C)7 te 7Ln(<)} = TO,liD't'
(11) cl = infCGBL(CmE) |an(<)| > 0.
(i) For 1 <j<n-—1, Ljp(¢) =0 for ¢ € Br(¢p,&).
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(iv) Due to (i), we may write [L;, L] = >, c;’,iLl and [L;, L] = Y, ci’,chl +

> cf,lcfl For each N € N, take Cy (which we assume to be finite?’) so that
N
a,l m .
5 llon (Bo o D Impllomucoe) < Cny 1<jkl<nl1<a<3.
m=1

(v) For each § € C"~! with |§| = 1, define Zf interms of Ly, ..., L,_1 asin Section 8.1.
We assume that there exists K € N such that V¢ € B (¢, €),

n n—1
Lo(Q)=>_ay’(OL;(Q)+ > a??(OL; () + > b5%(Q)Z(0),
j=1 j=1 zeUk, z¢
with
D:= sup oy (O] + a3’ (O] + b% ()] < 0.
CEBL(€0,¢)

10|=0,ZzeUl, 27

(vi) Let 1,00 > 0 be as in Theorem 4.5. In applications, usually Ly, ..., L, are often
given in a coordinate system in which their C* norms are very small, and then 7
and &y can be bounded below in terms of the C' norms in this coordinate system
(see, e.g., Lemma 4.13 and the discussion following it).

(vii) We suppose we are given a function H € C3 (B((p,€); R). For w € C™ with |w| = 1,
define L, = 377, w;L;. We assume,

c2i= it (90H(C): Lu(0), Lu(Q)) > 0.
Jw|=1

Proposition 8.5. In the above setting, there is a biholomorphism ® : Bcn(l) —
®(Bcn (1)) € Br(Co, &), with ®(0) = (o, such that ®*Ly,...,®*L,, ®*p is an extremal
system with plurisubharmonic function ®*H. Moreover, all of the estimates described in
Remark 8.3 can be bounded in terms of upper bounds for n, K, 01—17 Cn (where N can
be chosen to depend only on n, K, and the particular estimate being shown), D, n~1,
ot €Y exty and | Hles (B, (co0))-

Proof. This follows immediately from Theorem 4.5 (and that theorem includes more
properties of ®), by applying the theorem to Li,..., L, (we are talking m = n and
g = 0)—that ® is holomorphic is the essence of Remark 4.6.

20 Oy can always be chosen to be finite, so long as Br (€o, &) is relatively compact in 91, which can be
guaranteed by taking ¢ small enough; though it is the particular value of Cny which is important, not just
that it is finite.



B. Street / Advances in Mathematics 368 (2020) 107137 49

There are two parts which do not follow directly from the statement of Theo-
rem 4.5. To estimate || ®*p||cn (B 5 (1)) we would like to have estimates on [|pllo~ (5, (¢,.€))-
To obtain this, note that it follows easily from (iii) and (iv) that [|plley (s, (¢ &

N
2m=1 1L PlleBLco.0) < O

The other part that does not follow directly from the statement of Theorem 4.5 is a
lower bound for (8.1). The key here is that this quantity is invariant under biholomor-
phisms. Indeed, since ® is a biholomorphism,

(90(2"H)(2); (2" Lw)(2), (P*La)(2)) = (00H(®(2)); L (®(2)), Lu(®(2))) -
Thus, (8.1) is bounded below by ca. O

Definition 8.6. Let 7 be an index set, and suppose for each ¢ € Z, we are given 9", ¢,
Ly, ..., LY, p*, and H" as above, satisfying the above estimates uniformly (i.e., there
are upper bounds for the quantities discussed in Proposition 8.5 which can be chosen
independent of ¢). We say that the collection LY, ..., L., ¢}, p*, H" is an extremal system
with adapted plurisubharmonic function, uniformly in ..

Remark 8.7. Combining Definition 8.6 and Proposition 8.5, we see that if L}, ..., LY,
¢g, p*, H' is an extremal system with adapted plurisubharmonic function, uniformly in
t, then for each ¢ € Z, there exists a biholomorphism ®, : Bcn(1) = @,(Bcen (1)) C
M, with ®,(0) = ¢4 such that ®FLY, ... OFLL, DFp', O*H' is an extremal system
with plurisubharmonic function on Bgn (1), satisfying all of the estimates outlined in
Remark 8.3, uniformly in ¢.

8.8. Extremal bases at small scales

Let 91 be a complex manifold of complex dimension n and fix {, € 9, and let
p € C®(MGR). Let £ C {¢ € M : p({) = 0}, and suppose L,, is a smooth section of
TO19M such that infeex [Lnp(€)] > 0. To work at scale § € (0, 1], we wish to replace p
with 62p and L,, with §2L,,.

To do this, we assume that for each § € (0, 1], (o € K, we are given smooth sections of
T defined near (p, L‘IS’C7 ey Li’gl, and a real valued smooth function H¢? defined
near (y, such that

Lo LY 62,672 p, HY ¢,
is an extremal system with adapted plurisubharmonic function, uniformly in ¢ € (0, 1],
o € K. Thus, using Remark 8.7, for each 6 € (0,1], {, € K, there is a bi-
holomorphism ®¢, 5 : Ben(l) = ®¢.5(Bcn(1)), with ®¢, 5(0) = (o and such that
DF LY, B LN BF 502 L,, ®F 507 2p, BF sH is an extremal system at the
unit scale, uniformly in (o € K and § € (0, 1] (in the sense that the constants described
in Remark 8.3 can be chosen uniformly in {p and §).
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If one imagines 9t has having some fixed coordinate system, independent of 4, then
P 5 takes points which look to be of distance ~ §2 from {p = 0} and “rescales” them to
have distance ~ 1 from {®f 50 = 0}.

Remark 8.8. In the coordinate system ®. s, the quadratic form 85@21 sH? is bounded
above and below, uniformly in ¢ € K, § € (0, 1]. However, if one starts with a fixed coor-
dinate system on 9 (independent of § € (0,1]), then in terms of this coordinate system,
OOH® has a large lower bound (as § — 0), since the vector fields L‘ls’(:7 e L‘Z{El, 6%L,,
are small in this fixed coordinate system.

In applications, a major difficulty is showing such an extremal basis and adapted
plurisubharmonic function exists at each scale. As mentioned before, this has been done
in many settings, and was abstracted in [4]. Indeed, if L1, ..., L, isa (M, K, {, ) extremal
basis as in [4, Definition 3.1], then one can obtain an extremal basis at scale ¢ (in the
sense discussed here) by considering F(Ly,¢,8)" 2Ly, ..., F(Ly_1,¢,6) 2L, _1,6%L,,
and 6~2p, where these terms are all defined in [4] (adapted plurisubharmonic functions
are described in [4, Section 5]). While the results in this paper do not help find such
an extremal basis, perhaps they will help make clear what to look for in other similar
situations. Indeed, once one has a result on the unit scale, to translate the result to small
scales it often suffices to write the unit scale result in a way which is invariant under
biholomorphisms using Theorem 4.5, as we did in Section 8.2. Then one can immediately
translate the setting to small scales as we did in Section 8.3.

8.4. CR manifolds

Instead of studying extremal bases on a neighborhood of a point on the boundary
of a complex domain, one could try to work directly on the boundary by working with
abstract CR manifolds; this is the approach taken, for example, in [14] (which addressed
the “comparable eigenvalue” setting).

Let 91 be a smooth manifold of dimension 2n—1 endowed with a smooth CR structure
W of rank n — 1 (so that # © # has codimension 1 in CT9N). Fix a point ¢, € M and
pick a smooth real vector field T, defined near (y, such that

Weo + Wy +spanc{T(Co)} = CTM.

If we pick smooth sections L1,...,L,_1 of # near (y, these can play the role that the
vector fields of the same name did in Section 8.2. We then take the same assumptions as
(iv), (i), and (vi) from Section 8.2, where we replace L,, with T, L,, with 0, and remove
p from (iv); thus we obtain constants &, Cn, D, K, 7, and dy as in those assumptions.
In this setting, Theorem 4.5 applies with X1,..., X, = Re(L1),Im(L1),...,Re(Ly_1),
Im(Ly,,—1),T, to obtain a C*° diffeomorphism?! @ : Brycn-1(1) = ®(Bgrycn-1(1)) with

21 Throughout we identify R2"~! with R x C™~ !,
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®(0) = {p and such that ®*Ly,...,D*L, 1, ®*T satisfy good estimates at the unit scale.
Namely, we obtain Remark 8.3 (ii) and (v), where in (ii) we replace L, with T" and p
with 0, and in (v) we replace L, with 0 and the vector fields are written in terms of
the standard basis for vector fields on R x C"~! = R?*~1-and these quantities can be
estimated in terms of upper bounds for €1, n, K, Cy (where N can be chosen to depend
only on n, K, and the estimate at hand), D, n~', and &;*.

Thus, Theorem 4.5 allows us to rewrite a setting at the “unit scale” in a way which
is invariant under arbitrary diffeomorphisms; which, as in Section 8.3, allows us to view
these maps as scaling maps. In Section 8.2 we asked that the map be bioholomorphic. It
does not make a priori sense to insist that the map ® given here is a CR map because
R x C"~! does not have a canonical CR structure. We could give Brycn-1(1) the CR
structure ®*%, and then ® is automatically a CR map, but this does not add much
useful information.

However, in the special case that one can choose T so that the bundle #; + CT(¢)
is formally integrable (and therefore an elliptic structure), then we can do more. In this

case, we can choose ® so that ®*Ly,...,®*L,,_1, ®*T are all spanned by 6%1, cee %, %
(where R x C"~! is given coordinates (t,z1,...,2,)). One can see this by applying

Theorem 4.5 to the vector fields Ly,...,L,—1 and X3 =T (withm=n—1and ¢ =1).
In many of the standard examples of CR manifolds, one can find such a T—see Section 6.1.

9. Function spaces revisited

In this section we present the basic properties of the function spaces introduced in
Section 2; most of these properties were proved in [27,31,32], and we refer the reader to
those references for proofs and a further discussion of the results not proved here. We
take W1,..., Wy to be real C! vector fields on a C? manifold M as in Section 2.

Lemma 9.1.

(i) For0<s1 <s3 <1, meN, [[fllgme iy <3l fllemez (-
(i@) N flleprany < W llegrr any-
(iii) For s € (0,1], m € N, [[fllgarmary < 5l fllegpsan)-
(iv) For 0 < s1 < sy <00, ||fllgzrary < 15l fllezz )
(v) If U C M is an open set, then ||fllcmswy < |fllomsnn and [[fllegw) <
I fll&s, (ar) -
(vi) C"(Bra(r)) € @™ and || fllanr < | fllcwr(Ban ) -
(vii) /™" C C"/2(Bra(r/2)) and || f|lceorr2pn(rjzy) < | fllamr-
(viii) Suppose W = Wh,..., Wy satisfies C(xo,r, M). Then, Cyy" (M) C <" and
e < I less o,
(iz) For any s € (0,7), W; : Cyp" (M) — CW’(M). In particular, W; : C,(M) —
Cyy (M).
(x) For any s € (1,00] U{w}, W; : €5 (M) — €571 (M).
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Proof. (i), (ii), (iii), (iv), and (v) are contained in [27, Lemma 8.1]. (vi), (vii), (viii), (ix)
are contained in [32]. For s € (1,00], (x) follows immediately from the definitions. For
s =w, (x) follows from (ix); where we are using the convention w =w —1. O

Remark 9.2. Let Q2 C R™ be an open set. In analogy with Lemma 9.1 (iii), for m € N,
s € [0,1] with m + s > 0, we have C™*(Q) C €™ "5(Q). If Q is a bounded Lipschitz
domain and s € (0, 1), then we have the reverse containment as well € +4(Q) C C™*(Q)
(see [36, Theorem 1.118 (i)]). Because of this, one might hope for the reverse inequality
to the one in Lemma 9.1 (iii) for s € (0,1). One can obtain such an estimate, but it
requires additional hypotheses on the vector fields. This is discussed in [31].

Proposition 9.3. The spaces Cyy° (M), €5 (M), C™(Q), €°(Q2), C' (M), ",
C¥"™(M), and /™" are algebras. In fact, if % denotes any one of these spaces, then

1f9llz < Callfllellgller-

When & € {Cy" (M), 3>",C¥ (M), ™"}, we may take Coy = 1; i.e., these spaces
are Banach algebras.”> When % € {Cy° (M), €5, (M), C™5(Q),4°(Q)}, these spaces
have multiplicative inverses for functions which are bounded away from zero: if f € ¥
with inf, | f(z)] > co > 0, then f(z)~! = f(lm) € % . Furthermore, ||f(z)"!||a < C where
C' can be chosen to depend only on %, co, and an upper bound for ||f| .

Proof. The proofs for Cjy*(M) and C™5(Q2) are straightforward and standard, and we
leave the proofs to the reader. The results for 63, (M) and €°(Q2) are in [27, Proposition
8.3]. The results for Cy" (M), <", C¥"(M), and &/™" are in [32]. O

Remark 9.4. For s € (0,00] U {w}, suppose A € &°(Q;M**F) is such that
inf;cq |det A(t)| > 0. Then it follows that A(-)~1 € €*(£; MF**); where we write A(-)~*
for the function t + A(¢)~!. Indeed, for s € (0, 00|, this follows from Proposition 9.3
using the cofactor representation of A(-)~!. For s = w, this is standard. When s € (0, 00),
[A() " [l can be bounded in terms of s, k, n, a lower bound for inf,cq | det A(t)| > 0,
and an upper bound for ||Al[s(q)-

Lemma 9.5. Let D1,Dy > 0, 81 > 0, s3 > s1, so > 1, f € €% (Brn(D1)), g €
€2 (Brm (D2); R™) with g(Brm(D2)) C Brn(D1). Then, fog € €% (Bgrm (D)) and
[[f o4l

s2, D1, Do, m, n, and an upper bound for ||g

51 (Bpm (Ds)) < Cllfll@s1 (Bgn (Dy)), where C' can be chosen to depend only on sy,

€2 (Brm (D2))-

Proof. This is proved in [31]. O

22 This remains true for the analogous spaces taking values in a Banach algebra.
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Lemma 9.6. Let n1,m2 > 0, ny,ne € N, and let & be a Banach space. Suppose f €
AL, g € T (R™) with ||l grnamege1y < M. Then, fog e /™" (Z7) with
1f © gllarnzme < [ fllarmiim .

Proof. This is immediate from the definitions. O

Lemma 9.7. Fiz 0 < 1y < m1, and suppose f € ™M (Z"), where X is a Banach space.
Then, for each j =1,...,n, %f(t) € g™m(Z) and Ha%jf”g{nmz < C|| fllagnm, where
C' can be chosen to depend only on m1 and 1.

Proof. Without loss of generality, we prove the result for j = 1. We let e; denote the
first standard basis element: e; = (1,0,...,0) € N™. Suppose f(t) = an%. Then,

9 a—ey
3_t1f(t) =2 0150 Cam. Hence,

0 o |ca| la—e1| ‘coz| || (nQ)la (651
HatlfH N Z (oz—el)!772 _Z ol h T m

/™2 a1>0 «

T2 lad aq
sup(—) N g
a m m

IN

completing the proof. O

Proposition 9.8. Let Y1,...,Yn be C! vector fields on an open ball B C R™. Suppose
Y1,..., YN span the tangent space at every point in the sense that for 1 < j <mn,

(9 N
_ k k
a—tj_;bjyk, vk e C(B).

Fiz s € (0,00]U{w} and suppose Yy € €~ 1(B;R"), b? € ¢*"1(B),Vj, k. Then, €°(B) =
€¢(B). Here we use the convention that for s € (—1,0], €%(B) := C%+1/2(B).

Proof. The case s € (0,00] is contained in [27, Proposition 8.12], while the case s = w
is discussed in [32]. The case s = w is part of a more general result due to Nelson [20,
Theorem 2]. [27,32] also contain quantitative versions of this result. 0O

10. Proofs of corollaries

10.1. Optimal smoothness

In this section, we prove Theorems 7.1 and 7.2, and describe how Theorems 3.1, 3.3,
3.5, and 3.6 are consequences of Theorems 7.1 and 7.2.
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Proof of Theorem 7.1. (i)=-(ii): Suppose the conditions of (i) hold and without loss of
generality we may assume 0 € U and ®(0) = z¢; reorder the vector fields as in (ii).
Because dim 2, = r and dim .%,, = n + r, we have

spanc{®*X4(0,0),...,9*X,.(0,0),®*L(0,0),...,9*L,(0,0)}

— Spal, ey S ATy ey A
patic {8751 ot, 071 0Zn,

Writing X, for the column vector of vector fields [ X1, ..., X,]" and L, for the column
vector [Ly,...,L,]T and using the hypotheses of (i), we may write
* 0
(b XKO B ot
oLy, | =P |a|
o0z

where B € €°T1(U; M("+7)*("+7)) is such that B(0,0) is invertible. Letting Uy C U be
a sufficiently small open ball centered at (0,0), we have that |det B(t,z)| is bounded
away from 0 on Uy. Thus, on Uy, B is invertible and B(-)~! € €5+ (Uy; M(»+7)x (7))
(see Remark 9.4); and we have

e
B {@*LJOO

I
L — |

9

31 . (10.1)
0z

Thus, for z € ®(Up),

dim.%, > dimspanc{X;(z),..., X, (z), Li(x),..., L,(x)}

= dim span i 0 i i =n+r
— p C atl,...,atr,8217...,azn = .
The hypothesis (i) implies for € ®(U) =V,

dim %, = dimspanc{Xi(x),...,X4(z), L1(2),..., Ln(z)}

< di 0 o 0 0 n

111 Spall Ty ey Ty A =n T.

= CPERC \ B o, 07,0 0z,

This shows that the map z — dim %, ®(Up) — N is the constant function n + r.
Since ®*Z; € span(c{aitl, cey 8%’ 8%1’ cey 8%} we can think of ®*Z; as a function

taking values in C™*". We have <I>*2j € ¢5T1(U;C"), and therefore [@*Ej,fp*é}c] €
€*(U;C™*") and it follows from (10.1) and Proposition 9.3 that
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n+r
= > Al x5 Al
072,02, = Y en®* 2y, & € 6 (Uy). (10.2)

=1

Similarly, since [@*2]», @*Z_k] € ¢°(U;C?"*r), we have

- n+r n+r _
[0°Z;, 0" Z) = > & @ Z+ Y &0 Z), &l € € (Uy). (10.3)
=1 =1
Furthermore, since ®*Y}(t, z) € spanc {aitl’ e %, a;gl, N } and ®*Y; € ¢€*TH(U;
C™™), (10.1) and Proposition 9.3 imply
n—i—r~ N B
DY = Z 0o 7, b e e T (Uy). (10.4)
=1

Proposition 9.8, combined with (10.1), shows Eq’llﬂ € ¢°(Uo) = €3+ x.¢-1(Uo) and 132 €
¢ (Un) = Gty oL (U0), Vi k.l a. Let & = & 0 @71 bl = bl o @71, and Vj =
®(Uy). Proposition 2.1 shows é?,i € €% (Vo) and (S (5)5(11(‘/0). Pushing forward
(10.2), (10.3), and (10.4) via @ gives

n+r - n—+r n+r n+r
2,2 =S "7, 12,20 =52 +5 7, v, =S 127
[ J k}* C]k 1) [ Iz k]* C]k 1+ C]k I i = 4l
=1 =1

Along with the above remarks on é‘;,i and bé», this completes the proof of (ii) with V'
replaced by Vj.
(ii)=-(iii): Suppose (ii) holds. First, we wish to show that

m+q

=D i i e Eh V). (10.5)
=1

Z; and Zy are each either of the form Zl or Y, for some ! (where Z and Y] are as in
(ii)). When Z; and Zj are both of the form Z, for some [, (10.5) is contained in (ii).
We address the case when Z; =Y),, Z; =Y, for some l1,l5. The remaining case (when
Z; = le and Z, =Y,) is similar, and we leave it to the reader. We have,

(Z5, Zk] = Vi, Vi) lelszlg,Zbuzu

= Wb Zy, Z0) + YR (20,0 2y — > b (2,6 2,

l3,l4 lg,lg l3,la

Using Lemma 9.1 (x) and Proposition 9.3, we have bﬁf(ZBbﬁZ),béi (2141)5?) € Cx (V).
Also, we have
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S U7 2 = Y S el 2

13,14 l37l4 15

and by Proposition 9.3, bl3 bl4éll3lf4 € €% (V). Combining the above remarks, we have

n+r
Zi) =Y ez, e €€ (V).
1

Since each Z; is of the form Zp for some I, (10.5) follows. A similar proof shows
> 2,1 8l 2l 3l
(2526 = Dzt )i iy € Gxi(V),
1 1

and we leave the details to the reader. This completes the proof of (iii).

(iii)=-(i): This is a consequence of Theorem 4.5; and we include a few remarks on
this. First, a choice of 1,d9 > 0 as in the hypotheses of Theorem 4.5 always exist; see
Lemma 4.13. A choice of Jy, Ky, and ¢ > 0 as in the hypotheses also always exist; see
Remark B.6. We take £ > 0 so small Bx 1(zg,§) C V.

First we address the case s € (1, 00]. In this case, pick so € (1, 5]\ {oo} (the choice of
so does not matter). We have, directly from the definitions

& € € (V) C Chp(Bx £(w0,€) € G, 1, (Bxiy Ly (70,€))
C CXoey Ly By Ly (€0, 6)).

Thus, all of the hypotheses of Theorem 4.5 hold for this choice of sg. The map guaranteed
by Theorem 4.5 satisfies the conclusions of (i) and this completes the proof in the case
€ (1, 0.
When s = w, we wish to apply Theorem 4.5 in the case sy = w. There is a slight
discrepancy between the hypotheses of Theorem 4.5 and (iii). Namely, we are currently
assuming c‘;,i € CY'P (V) for some 7o > 0, while Theorem 4.5 assumes cj k € szf;(’K: Ly,

and c;l,lC is continuous near xg. However, Cj:k € C’;"(?(V) clearly implies c; ,i is continuous
near xg, and using Lemma 9.1 (viii) we have C}} C C;;’D’LIO C ,sz{;f(’:,mo, so by shrink-
ing 1 so that n < rg, these hypotheses follow. Wlth these remarks, Theorem 4.5 applies
to yield the coordinate chart ® as in that theorem, which satisfies all the conclusions of
(i). This completes the proof. O

Before we prove Theorem 7.2, we require two lemmas.

Lemma 10.1. Fiz s € (0,00] U {w} and suppose My and My are €°72 manifolds. Let
Zy,...,Zn be complex €t wector fields on My such that Zy,...Zn,Zy,...,ZN span
the complexified tangent space to My at every point. Let U : My — My be a C? dif-
feomorphism such that V,.Z; is a €°' vector field, V1 < j < N. Then, U is a €**?
diffeomorphism.
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Proof. By taking real an imaginary parts, it suffices to prove the result in the case
Z1,...,Zn are real and span the tangent space at every point. In the case s € (0, o],
this is proved in [31]. In the case s = w, this is proved in [32]. O

Lemma 10.2. (T(;, ., (R" x C™))Nspanc {Bitl’ cey ﬁitr’ 8%17"'7 agn} = spanR{aitl, cey
7 )
ot [*

Proof. This is immediate. O

Proof of Theorem 7.2. (i)=-(ii): The inverses of the coordinate charts from the atlas
given in (i) satisfy the conditions in Theorem 7.1 (i) (this uses Lemma 10.2); and so (ii)
follows.

(ii)=(i): Assume that (ii) holds. Using the characterization in Theorem 7.1 (iii), we
have that x — dim.%,, M — N is locally constant, and since M is connected, x +>
dim .%,, M — N is constant. By the discussion in Section 4.2 we also have z — dim %,
M — N is constant. Set r := dim 2, and n+r := dim %, (so that n and r do not depend
on z, by the above discussion). Now, we use the characterization given in Theorem 7.1
(i). Thus, for each x € M, there is a neighborhood V,, C M of x and a C? diffeomorphism
b, : U, — V,, where U, C R"xC™ is open, such that V(t,2) € U,, 1 <k <gq,1 <j<m,

(I)$Xk(t7z) S spanpg {a—h7...7a—t,‘},
@LLj(t7Z) S Span(c {8—1517...78—t,r’8—21"."—8§n}’

and ®: Xy € €°THU,;R"), ®:L; € €5 (Uy; €71, Our desired atlas is {(®,1, V) :
x € M}-once we show this is a ¢*72 E-atlas, (i) will follow. For z,y € M, set ¥, , :=
®tod, : 1 (V, NV,) = Uy,; we wish to show that ¥, , is a %12 E-map. Note that

AWy (, 2) (P Xk ) (t, 2) = (P Xk) (Vo y (T, 2)),

) . ) (10.6)
d\I’z,y(t, Z)((I)xL])(t7 Z) = ((I)ij)(\Ilrﬁy(tv Z))ﬂ vja k.
In other words,
(Vo) @ X = @y Xip, (Vo) @y Ly = QL5 Vi, k. (10.7)

Since dim.Z, =n+r, Yy € M, we have V(¢,z) € U,

spanc{®:X1(t, 2),..., 05X (¢, 2), ®5La(t, 2), ..., 2oL (t, 2)}

_ o0 99 9 (108)
= Spang atl,...,atr7azl,...7azn.

Combining (10.8) and (10.6) shows that ¥, , is an E-map. (10.8) implies
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PEX(t,2), ..., PEX (2, 2), PEL1 (L, 2), ..., PELy(t, 2), PEL1 (¢, 2), ..., PE Ly (2, 2)

span the complexified tangent space at every point of U,. Since these vector fields are
also ¢’**1 by hypothesis, (10.7) and Lemma 10.1 show that ¥, ,, is ‘Klf)iz This completes
the proof of (i).

(iii)=-(ii): This is obvious, and holds for s € (0, 00] U {w}.

(i)=(iii), for s € (0,00]: Assuming that (i) holds (where M is an E-manifold of
dimension (r,n)), a simple partltlon of unity argument shows that we may write
2, Zk] = S w2 and (2, Zy) = Y00 ¢ 2+ S0 € 20, where ¢ : M — C

and ca’,i are locally in ¢°. We WlSh to show Vzy € M, 3V C M open with zg € V and

] k v € €% (V). Fix 1o € M and let W C M be a neighborhood of z¢ such that there
is a €72 diffeomorphism ® : Brrycn (1) = W with ®(0) = zg. Let Yi,..., Y, 12m de-
note the list ®* X5, ..., ®* X, 20*Re(Ly),...,20*Re(Ly, ), 20*Im(Ly), ... ,20*Im(L,,).
Yi,..., Y40, are €51 vector fields on Brrycn(1) and span the tangent space at ev-
ery point. We conclude Y7, ..., Y, 0., satisfy all the hypotheses of Proposition 9.8 with
B := Brrxcn(1/2). Thus, by Proposition 9.8, cj koq) € ¢*(B) = %3 (B). Proposition 2.1
shows c;l,i € €% (®(B)), completing the proof with V = ®(B).

Finally, we turn to the uniqueness claimed in the theorem; that under the equiv-
alent hypotheses (i) and (ii), the E-manifold structure given in (i) is unique. Indeed,
suppose there are two such structures on M. Under these conditions, the identity map
M — M is ‘51;1'2 by Lemma 10.1 (here we have applied Lemma 10.1 with the vec-
tor fields Xi,..., Xy, L1,...,Ly,). That the identity map is a ‘KIZJCFQ E-map follows from
Lemma 6.21. It follows that the identity map is a ¢**? E-diffeomorphism, as claimed. O

Proof of Theorems 3.1 and 3.3. In the setting of Theorems 3.1 and 3.3, because
Wi,...,Wx span the tangent space at every point, we have dimspang{W;(z),...,
Wy (z)} = dim M = n, Vz; in particular, the map  — dimspang {Wi(x),..., Wx(z)}
is constant. With this in mind, Theorems 3.1 and 3.3 are immediate consequences of the
case m = 0 of Theorems 7.1 and 7.2. O

Proof of Theorems 3.5 and 3.6. In the setting of Theorems 3.5 and 3.6, we have
dim % = n, V¢ € M. Thus, the map ¢ — dim.Z; is constant. Also, in the context of
Theorem 3.6, E-maps are holomorphic (and E-diffeomorphisms are biholomorphisms);
this is because complex manifolds embed into E-manifolds as a full sub-category (see
Remark 6.12). With these remarks in hand, Theorems 3.5 and 3.6 are immediate conse-
quences of the case ¢ = 0 of Theorems 7.1 and 7.2. O

10.2. Sub-E geometry

In this section, we prove Theorem 7.6. In light of Remark 7.4, Theorem 3.9 is a special
case of Theorem 7.6. Theorem 3.12 is also a special case of Theorem 7.6:



B. Street / Advances in Mathematics 368 (2020) 107137 59

Proof of Theorem 3.12. In light of Remark 7.4, the hypotheses of Theorem 3.12 imply
the hypotheses of Theorem 7.6. The main issue in seeing Theorem 3.12 as a special case
of Theorem 7.6 is that the definitions of py in the two theorems are not obviously the
same. However, if M is a complex manifold and f(¢,2) : Brxc(1/2) = M is an E-map,
then f must be constant in ¢ and is therefore a holomorphic map B¢ (1/2) — M. Indeed,
df (t, z) 5 is both a T]?(t ») tangent vector and a real tangent vector, and we conclude
df (t, Z)E = 0. Using this, it is easy to see that the definition of py in Theorem 7.6 is
the same as the definition of py in Theorem 3.12 when M is a complex manifold. O

The rest of this section is devoted to the proof of Theorem 7.6.

Lemma 10.3. lim,_,, pr(z,y) = 0, where the limit is taken in the usual topology on
M —recall, M is a manifold and therefore comes equipped with a topology which we are
referring to as the “usual topology.”

Proof. Fix € > 0; we wish to find a neighborhood N C M of = such that Vy € N,
pr(z,y) < e. Reorder W1,...,Wap4q so that Wi(x),..., Wayy,(z) form a basis for
T, M and set

T(ty, ..., topey) 1= etWrT FlansrWanir gy

Since aitj | oY (t) = Wj(z) it follows from the inverse function theorem that there exists
an open neighborhood U of 0 € R2"*" such that W(U) is open and ¥ : U — W(U) is
a O diffeomorphism. Set 0 < ¢ < (32(2n + 7))~/ and let B := {t = (t1,...,tonsr) :
|t;| < ce?i}; take ¢ so small that B C U and set N = ¥(B). N is clearly open since ¥
is a diffeomorphism. Thus, it remains to show N C Bp(x,¢). Take y € N, so that there
exists t € B with y = U(t). Define f : Br(1/2) — M by
f(s) = 648(751W1+'--+t2n+7-W2n+,.)1,7

so that f € C*, f(0) ==z, f(1/4) =y, and

2n+r 2n—+r

Z‘“W ZM LW,(f(s)).

Since

2n+r ts 2 2n+r 1 1
419 < - <<,
Z(edj> _;2(271—&—?")_2

j=1

it follows that pr(x,y) < €, completing the proof. O

Lemma 10.4. The metric topology induced by pr is the same as the usual topology on M.
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Proof. Lemma 10.3 shows that the usual topology on M is finer than the metric topology
induced pg. That the metric topology induced by pg is finer than the usual topology
is a straightforward application of the Phragmén-Lindel6f Theorem; and we leave the
details to the reader.”> 0O

Proof of Theorem 7.6 (a). We begin by showing pr < pg. Suppose pg(:z: y) < 9.
Then, there exists vy : [0,1] — M, v(0) = z, y(1) = y, ¥'(t) = > a;(t)6%W;(y(t)),
13 la;1? Loy < 1. For ¢ > 0, let v, : [0,1] — M be functions such that
’yg|(0)1) € C®, v, 720, ~v in C([0,1]), and ~.(¢t) = 207 (#)(6 + o)L W;(v,(t)) with
1> |b‘j7|2H ;o < 1-this can be achieved by simple argument using mollifiers and the
fact that Wh,..., W44 are smooth and span the tangent space at every point. Set
o =Y(0), Yo == Y5 (1 — o), so that lim, oz, =  and lim, oy, = y. Using the func-
tion f, : Br(1/2) — M given by f,(t) := 7,(t + 1/2), it follows from the definition of
pr that pp(zs,y,) < d + 0. Thus, we have

0
pr(2,Y) < pp(@,20) + pr(To,Yo) + pF (Yo, y) < 6+ 0 + pr(2,24) + pr (Yo, y) = 3,

where in the last step we have used Lemma 10.3. We conclude pp(z,y) < ps(z,y).

Next, we show pg < pr. Suppose pr(x,y) < ¢ and let fi,..., fx,01,...,0x be as in
the definition of pp. For wi,ws € f;(Br(1/2)), we will show pg(wi,ws) < J;. Notice,
this will complete the proof since we may find &1, ..., &1 with &;,&41 € f;(Br(1/2)),
x=¢&1, y =£&r41, and so using the triangle inequality for pg, we have

~

L
ps(,y) < ps(& &) Z (&1 &41) <Z<5 <4,

Jj=1 Jj=1 Jj=1

which will prove pg(z,y) < pr(z,y).
Given wy, W € f](BR(l/z)), we have w; = fj(tl), Wy = fj(tg) for some t1,ta €
Br(1/2). Set v(r) := f;((1 — )ty + rt2). Then,

m+q

Y (r) = F((L =)t 4 rta) (b — ta) = Y (1 — t2)s5(6)67 Wi £5(1)),

=1

with [|37, [s5[?[l < 1. Since [t; — t2| < 1, it follows from the definition of ps that
ps(wi,we) < &5, completing the proof of pg < pp.

Finally, we show pr < pp. Suppose pg(z,y) < 0. Take d1,...,0x and f1,..., fx asin
the definition of prr. We will show that if w1, wa € f;(Bexr(1/2)), then pp(wi, ws) < §;.
The result will then follow from the triangle inequality, just as in the proof of pg < pp.

23 Another way to prove Lemma 10.4 is as follows. We see below in the proof of Theorem 7.6 (a) that
ps < pr—and the proof of this inequality does not use Lemma 10.4. Thus the metric topology induced
by pr is finer than the metric topology induced by psg. That the metric topology induced by pg is finer
than the usual topology follows from [27, Lemma A.1]. Alternatively, one can easily adapt the proof of [27,
Lemma A.1] to directly prove that the metric topology induced by pp is finer than the usual topology.
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Let wy = f;(&) and wy = f;(&2) with &1,& € Brxc(1/2). Fix € > 0 small (depending
on &1,&) and set n(r) = (5 — (L + €)r)é& + (3 + (1 + €)r)&. Note (if € > 0 is small
enough), 1 : Br(1/2) — Brxc(1/2). Set g(r) := f;(n(r)). Let {3 = (1+¢€) (&2 — &1), and
we henceforth think of 3 as an element of Bgs(1), by identifying R x C with R®. We
have

g'(r) = dfs(n(r)n’(r) = df(n(r))&s.
Let §j(t, x1,22) be the matrix from Remark 7.5. We have
2m+q N
g'(r) = Z (Sj(t, 21, 22)& 105 Wilg(r)),

=1

where (§j(t,z)£3)l denotes the [-th component of the vector §j(t,z)§3. Since |&3] < 1
and using (7.4), we have

Since g(—1/(2(1+¢€))) = w1 and g(1/(2(1 + €)) = wo, it follows that pp(wi,w2) < 9,
as desired. O

<1
1o°

‘ 2

> | S

l

Completion of the proof of Theorem 7.6. We will prove the theorem by applying Theo-
rems 4.5 and 4.10 and Corollary 4.11 to 6°X,6°L, as the base point z( ranges over K
and as & ranges over (0, 1] (where §°X and §°L are defined in Section 7.2). Thus, our
first goal is to show that the hypotheses of these results are satisfied uniformly for 2y € K
and § € (0,1]; so that any type of admissible constant in those results can be chosen
independently of 2y € K and § € (0, 1]. For notational simplicity, we turn to calling the
base point x instead of zg.
For 6 € (0, 1], we multiply both sides of (7.2) by §% 8% to see

(65 Z;, 6% 7] = Z (6ﬂj+ﬂk’—ﬂlc}:]l€)6ﬁl 7,
B1<B;+Br

[651Zj,65’€Z_k]: Z (5/8j+5k—ﬂlc§:]lc)5ﬁlzl+ Z (561'*'5’”&0?,’,2)6[3!71.
Bi<B;~+Prk Bi1<B;+Bk

Setting ZJ‘S := 6P Z; and

. _ l .
Ll §Bi+Bk ﬁlC?;k if B < Bj + B
aok 0 otherwise,

we have
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(22, 20) = enzl, (20.2)) = ch,‘jZZJch”Zé.
l

With this notation, 6% X, %L is the same as the list Z9, .. anJrq
For § € (0,1], ¢ l % e > and Z9 € C*, uniformly in §. Thus if Q@ € M is a relatively

compact open set Wlth K C €, we have, directly from the definitions,

a’17

|Cp () 5 1, Vj,k;,l,a, Vp € Na

||C sBx,58L

where the implicit constant may depend on p, but does not depend on 6 € (0,1]. It
follows from Lemma 9.1 (ii) and (iii) that

a,l,é

Ils= @ S 1, Vi kla, s>0,6¢c(0,1], (10.9)

HC s8x,58L

where the implicit constant may depend on s, but does not depend on ¢ € (0, 1]. We
take & € (0,1] so small By r(z,§) C Q, Vo € K; as a consequence, Bgsx so1,(2,&) C
Bx,p(x,&) CQ,Vz e K, 6 € (0,1]. By Lemma 9.1 (v) and (10.9) we have

a,l,0
Gk

<1, Vikla, s>06€(0,1],z€K,
%§5X,55L(B53X,53L($75))

where the implicit constant does not depend on 6 € (0,1] or x € K. We also have
CZJsI/ = fJv where f € C* uniformly for § € (0,1] (this follows directly from the
definitions and the fact that v is a strictly positive, C* density). Similar to the above
discussion, we have

157l

sBx,58L

(Bss x.56 1 (2:6)) § 1, V5, s> 0,0 € (O, 1],% eK.

The existence of 7 > 0 and o > 0 (independent of z € K and ¢ € (0,1]) as in the
hypotheses of Theorem 4.5 (when applied to §° X, 6% L at the base point z) follows from
Lemma 4.13; indeed Lemma 4.13 directly gives the existence of these constants for x € K
when § = 1 and it is immediate from the definitions of n and Jy that the same constants
may be used V§ € (0,1]. The existence of Jy = Jo(x,0) € Z(r,q), Ko = Ko(z,0) €
Z(n,m), and ¢ € (0,1] (independent of z € K, § € (0,1]) as in Theorem 4.5 (when
applied to 67X, 6% L at the base point x) follows from the hypothesis (7.3).

Thus, Theorems 4.5 and 4.10 and Corollary 4.11 apply (with, e.g., s9 = 3/2-the
choice of sg € (1,00) is irrelevant for what follows), uniformly for x € K, 6 € (0,1].
In particular, any positive {s}-admissible constant from those results (for any s > 0)
can be chosen independent of z € K, § € (0,1] (and is therefore ~ 1 in the sense of
this theorem); and similarly for any other kind of admissible constant. We let & =~ 1
(0 <& <€¢<1)and K = 1 be the constants of the same name from Theorem 4.5, and
let @, 5 : Brrxcn(1l) = Bssx sor(x,§) be the map guaranteed by Theorem 4.5 when
applied to 6% X, 6°L at the base point z € K.



B. Street / Advances in Mathematics 368 (2020) 107137 63

We turn to proving (k). By Theorem 4.5 (vi) we have
Bss x501(2,§2) © Pas(Brrxcn (1)) € Bssx,561.(2,§) € Bsox sor(w,1) = Bs(w,6).
We set € = &, and the proof of (k) will be complete once we show
Bs(2,£0) C Bsox so1(2,&2). (10.10)

Take y € Bg(z,&0d). Thus, Iy : [0,1] — M, v(0) = =z, v(1) = y, ¥'(t) =
dj <d, .
> a;(t)€57 6% W, ((t)), with |3 |a;]?|| Lo (j0,1)) < 1. Hence,

O DG LGOI Sl e

J

< 1.

I,

It follows that y = v(1) € Bss x 561 (2, &2), completing the proof of (k).

(g) follows from Theorem 4.5 (xi). (h) follows from Theorem 4.5 (ix) using the fact
that if A is as in that result, || A(t, z)||ppotmxmin < %, Vt, 2 by Theorem 4.5 (x) and
therefore I + A(t, 2) is invertible with ||(I 4+ A(t, 2)) " [Me+mxmin < 3, Vi, 2.

Since |||lgx < |||l¢#+1, VE € N, by definition, (i) follows from Theorem 4.5 (xii).
Similarly, (f) follows from Theorem 4.10 (i) and (ii).

(e) follows from Theorem 4.5 (iv) and (v); except that (v) only guarantees ®, 5 is a
C? diffeomorphism. That @, 5 is C follows by combining (i) and Lemma 10.1.

Next, we prove (j). Let y € @, 5(Brrxcn(1)). We will show y € By (z, RJ) for some
R =~ 1 to be chosen later. By (h) and (i) we may write

m+q m-+q

m& —>x,0
E akméz E 93,5Zl )

where,
o) e sllor(Buryeny) ST, VP EN.
We have
m-+q
d®, s(t,2) Zakzé (t,2) 20 (B, 5(t, 2)),
m+q
dd, 5(t, 2) Z 25t 2) 2 (Bys(t, 2)).

Let y = ®, 5(to, 20) for some (to, 20) € Brrxcn(1). Define

t
f(s,w) =Py (25—0,211)2—0)

ltol " |20
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so that f : Brxc(1/2) = M, f(0,0) =z and y € f(Brxc(1/2)). We have

9 m+q m+q

df(s,w)g = (s, w)Z) (f(s,w)), Z bi(s,w)Z (f(s,w)),

t
= ke (2ieniy) (2i)
— “Ttal” ™ Teal ) Tl

where (2t—°> denotes the kth component of 22,

Tie] and b is defined similarly. In partic-

It K
ular

il Lo (B e (1/2)> ||l;l||L°°(BR><£C(1/2)) S
For R > 1 set @ := a;/(R"), so that we have

m+q

m+q
Z (s,w) Z (f(s,w)), Z bR (s, w)ZF (f(s,w)).

By taking R to be a sufficiently large admissible constant, we see that f satisfies the
hypotheses of the definition of py with K =1 (i.e., we are using f; = f and §; = RJ).
This proves y € f(Brxc(1/2)) C Bu(x, RS), completing the proof of (j).

We turn to (b). Because K is compact with respect to the usual topology on M,
pr induces the usual topology on M (Lemma 10.4), and pr = pg, it follows from
Lemma 10.4 that K is compact with respect to the metric topology induced by pg. A
simple compactness argument shows that to prove (b), it suffices to show that there
exists € > 0 such that if ps(x,y) < €, xz,y € K, then py(z,y) < ps(z,y). We take
¢ = ¢, where € > 0 is from (k). If ps(z,y) < €d (for some ¢ € (0,1]), we have (by (k) and
(j)) v € Bs(z,€d) C @, s(Brrxcn (1)) € By (x, RS). Hence py(z,y) < R§. We conclude
that if ps(x,y) < e with ,y € K, then py(z,y) < ?pg(%y). This completes the proof
of (b).

Next we prove (c). Corollary 4.11 shows
V(Bsox,son(7,&2)) = A(x,0) ~ Az, €6), (10.11)

where in the second =, we have used the formula for A and the fact that € ~ 1. Using
this, (10.10), and the fact that we chose € = &3, we have

v(Bs(x,€0)) < v(Bssx sor(x,&2)) S Alw, €0). (10.12)

Conversely, again using (10.11), we have
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A(z,0) Sv(Bssxsor(w, &) < v(Bssx o, 1)) = v(Bs(x,9)). (10.13)

Since (10.12) and (10.13) hold V6 € (0,1], it follows that v(Bg(z,d)) ~ A(z,d), Vd €
(0,€]. By (a) we have (for ¢ € (0,¢€]),

v(By(z,9)) <v(Bgs(z,9)) = Az, 9). (10.14)
By (j) and (k), we have (for § € (0,1])
Az, RS) = A(z,€d) = v(Bg(z,€d)) < v(Bg(z, RJ)), (10.15)

where in the first ~, we have used R,e =~ 1 and the formula for A. Combining (10.14)
and (10.15), we have for ¢ € (0, min{e, 1/R}],

v(By(z,9)) = Az, 9).
This completes the proof of (c). (d) is a consequence of (c¢) and the formula for A. O
11. Nirenberg’s theorem for elliptic structures

In this section, we present the main technical result from [33]. This can be seen as
a sharp (in terms of regularity) version of Nirenberg’s theorem that formally integrable
elliptic structures are integrable [23]. Here, unlike the setting of Theorem 4.5, we assume
the vector fields already have the desired regularity, and that we have good estimates on
the coefficients in a given coordinate system. The goal is to pick a new coordinate system
in which the vector fields are spanned by 6%, ceey Bitr’ 6%17 ceey 3%", while maintaining
the regularity of the vector fields.

Fix so € (0,00) U {w} and let X;,...,X,, Ly,...,L, be complex vector fields on

Brrycn (1) with:

e If 59 € (0,00), X, Lj; € %80+1<BRT><(CW,<1);CT+2”).
e If sg =w, Xk,Lj S dr+2n,1((cr+2n)'

We suppose:

e V(€ BRT'XC"(D) [Xk17}1;72](<)’ [kaLj](C)’ [Ljusz}(C) € spanC{Xl(C),. .- 7X7’(<)7

Under these hypotheses, Nirenberg’s theorem?* implies that there exists a map ®; :
Brrxcn (1) = Brrxcn (1), with ®1(0) = 0, ®; is a diffeomorphism onto its image (which

24 Originally, Nirenberg considered only the case of C™ vector fields and worked in the case when
X1,...,X, were real.
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is an open neighborhood of 0 € Brrycn» (1)), and such that &7 Xy (u,w), ®7L;(u,w) €

spanc {8%1, ceey ai, Bimﬂ ceey 8;%}7 V(u,w) (here we are giving the domain space R” x

C™ coordinates (u,w)). In [33] this is improved to a quantitative version which gives @4
the optimal regularity (namely, when sq € (0,00), ®; is in €*°"2, and when sop = w, ®;
is real analytic). Unlike the results in the rest of this paper, the results in this section are
not quantitatively diffeomorphically invariant: the estimates depend on the particular
coordinate system we are using (the standard coordinate system on R” x C™).

Definition 11.1. If sy € (0,00), for s > s if we say C is an {s}-admissible constant, it
means that we assume X, L; € € (Brrxcn(1); C™27), Vj, k. C can then be cho-

sen to depend only on n, 7, s, so, and upper bounds for || Xp||¢s+1(Brr, cn(1)) and

xCn

| Ljllgst1(Brrycn()y, 1 <k <7, 1 < j < n. For s < 59, we define {s}-admissible
constants to be {sp}-admissible constants.

Remark 11.2. In Definition 11.1 we have defined admissible constants differently than
they were defined in Definitions 4.2, 4.3, and 4.4. This reuse of notation is justified
when we turn to the proof of the main theorem (Theorem 4.5). Indeed, when we apply
Theorem 11.4 in the proof Theorem 4.5, we apply it to a choice of vector fields in such
a way that constants which are admissible in the sense of Theorem 11.4 are admissible
in the sense of Theorem 4.5. Thus, in the particular application of Theorem 11.4 used to
prove Theorem 4.5, the definitions of admissible constants do coincide.

Definition 11.3. If s = w, we say C is an {w}-admissible constant if C' can be chosen
to depend only on n, r, and upper bounds for || Xy||m2ntrt, ||Lj||w2ntra, 1 < k <7,
1<j<n.

Theorem 11.4. There exists an {so}-admissible constant K1 > 1 and a map &,
Brrxcn (1) = Brrxcn(1) such that

(Z) o Ifsg€ (0,00), ®, € %SO+2(BRT><C%(].);RT X (Cn) and H¢1||(g5+2(B]R7‘ch(1)) S{s}
1, Vs > 0.
o Ifsg=w, ®; € Z?F " ER" x C") and ||®1] gzntre < 1.
(ii) ®1(0) = 0 and d ) P1(0) = Kfll(r+2n)x(r+2n). See Section 5 for the notation
d(t,w)'
(ZZZ) V(¢ e B]Rrx(cn(l), det d(t7w)‘l)1(<') R {so} 1.
(iv) ®1(Brrxcn(1)) € Brrxcn (1) is an open set and @1 : Brrycn(1l) = @1 (Brrxcn (1))

is a diffeomorphism.?

25 By diffeomorphism we mean that ®; : Brrycn (1) = ®1(Br-xc» (1)) is a bijection and d®; is everywhere
nonsingular.
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(0
] 5]

where A : Brrycn (1) — MO+ X041)(C) - A(0) = 0 and
o If 80 € (0,00), [[Allgat1(Bgr,cn(1)Mertmxmtny Sgsy 1, Vs >0 and

IA]

RN,

€0 (Brrxen (MO0 X () S

o If So = W, HA”'Q{2W,+T,1(M(7L+T)><(n+r)) < %

In either case, note that this implies (I + A) is an invertible matriz on Brrycn(1).
(vi) Suppose Z is another complex vector field on Brrxcn(1). Then,

o If so € (0,00), [| 21 Z]|zs+1(Byrcon (1) Sty 12

° If So = W, H‘I’TZ||¢2n+r,1 S{w} ‘|Z||%2n+r,1 .

[++1(Barxen (1)), V5 > 0.

Proof. This is [33, Theorem 7.3]. O
12. The real case

The case when m = 0 of Theorem 4.5 (i.e., when there are no complex vector fields),
was the subject of the series [27,31,32]. In this section, we present a simplified version of
this for use in proving Theorem 4.5.

Let Wy,...,Wg be C'! real vector fields on a C? manifold 9. Fix o € 9 and let
N := dimspang {Wi(zo), ..., Wg(xo)}. Fix &, ¢ € (0,1]. We assume that on By (zo,§),
the W; satisfy

Q
(Wi, Wil =Y i Wi, by € C(Bw(xo,9),
=1

where By (z0,£) is given the metric topology induced by the corresponding sub-
Riemannian metric (2.3). Under the above hypotheses, By (g, ) is a C?, injectively im-
mersed submanifold of 9 of dimension NV and T, By (zo, ) = spang{Wi(z),..., Wo(z)},
Vz € Bw(xo,€) (see Proposition A.1). Henceforth we view Wi,...,Wq as C! vector
fields on By (o, §).

Let Py € Z(N, Q) be such that A Wp,(x0) # 0 and moreover

AWp(zo)

max — | < _1.
PeZ(N,Q) | \ W, (o) =<

Without loss of generality, reorder the vector fields so that Py = (1,...,N).
We take n > 0 and dg > 0 as in Theorem 4.5; i.e.,



68 B. Street / Advances in Mathematics 368 (2020) 107137

o Fix n > 0 so that Wp, satisfies C(xq,n,M).

e Fix dp > 0 such that ¥§ € (0,d], the following holds. If 2 € By, (v0,§) is
such that Wp, satisfies C(z,0, Bw,, (%0,§)) and if ¢ € Bg2n+r(d) is such that
ettWitttaner Wy 5 — 5 and if Wi (2), ..., Wi (2) are linearly independent, then t = 0.

Definition 12.1. We say C' is a 0-admissible constant if C' can be chosen to depend only
on upper bounds for Q, ¢, €1, and [le! . lo(pu, (o 1 < 5 ksl < Q.
b 0 ’

Fix s € (1,00) U {w}.

Definition 12.2. Suppose sg € (1,00). For s € [sg,00) if we say C is an {s}-admissible
constant it means that we assume C.lj,k € CngVpo (Bwp, (70,§)). C is allowed to depend

only on s, 89, and upper bounds for (71, ¢, n~! 55t Q, and ||c§-’k

(g‘;‘VPO (BWPO (x0,£))»
1<4,k,1 <Q.For s e (0,s0), we define {s}-admissible constants to be {sg}-admissible
constants.

Definition 12.3. Suppose sy = w. If we say C is an {sg }-admissible constant it means that
we assume cé, s € ﬁf’vgf,‘;: C is allowed to depend only on anything a 0-admissible constant

may depend on, as well as upper bounds for !, 65, and ||c§ ilzon, 1< 5,k 1 < Q.
; o
Proposition 12.4. There exists a 0-admissible constant x € (0,&] such that

(Z) vy € BWPO (IEOaX)7 /\WPO(y) 7{ 0.
(ZZ) Vy € BWPO (:L'()a X)7

AWp(y)

max —— ="~ 1.
PEI(N.Q) /\Wpo(y)‘ ’

(i) ¥x' € (0,x], Bwp, (T0,X’) is an open subset of Bw (zo,x), and is therefore a sub-
manifold.

For the remainder of the proposition, we assume:

o Ifsp € (1,00), we assume cé,k € ‘f‘f[}’PO (Bwp, (%0,§))-

_ ! :
o If so =w, we assume c}; € ,vagf,‘;:
There exists a C? map ®¢ : Br~ (1) — By, (w0, X) such that:

(iv) ®o(Brw (1)) is an open subset of Bw,, (7o, X) and is therefore a submanifold.
(v) ®¢(0) = zo.

(vi) ®¢ : Brn (1) — ®o(Bgrn (1)) is a C? diffeomorphism.

(vii) o If so € (1,00), [|R5Wjllget1(Byw ()RY) Stsp 1, Vs >0, 1 <5 < Q.
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o Ifso=w, [GWjllavimry) Sty 1, 1 <5 < Q.
(viii) There exists an {sg}-admissible constant Ko > 1 such that

0

(PSWPO = Ko(]-i-Ao)a,

where Ao : Brw (1) — MY*N(R), Ao(0) = 0, supyep, 1) [Ao(t)mvxv < 3,
and:

o If so € (1,00), [[Aolls(Byn (1)Mrxny Sgsy 1, Vs > 0.

. IfSO = w, ||A0H’Q{N,1(MN><N) S 5-

12.1. Densities

We take the same setting as Proposition 12.4, and let x € (0,£] be as in that propo-
sition. Let v be a real C* density on By, (%o, x) and suppose for 1 < j < N (recall, we
are assuming Py = (1,...,N)),

EW].V = fj% fj S C(BWPO (5607 X))

Definition 12.5. If we say C is a [so;v]|-admissible constant, it means that C is

a {sp}-admissible constant, which is also allowed to depend on upper bounds for

Ifillc(Bw, (o)) 1 < 3 < N. This definition holds in both cases: s € (1,00) and
0

So = W.

Definition 12.6. If so € (1,00), for s > 0 if we say C is an {s;v}-admissible constant
it means that f; € %ﬁVPO(BWPO (20,X)). C is then allowed to depend on anything an
{s}-admissible constant may depend on, and is allowed to depend on upper bounds for
| f; Givp, (Buy (20,05 1< j < N.For s <0, we define {s;v}-admissible constants to be

[s0; v]-admissible constants.

If sg = w, we fix some number r9 > 0.

Definition 12.7. If 5o = w and if we say C is a {w; v}-admissible constant, it means that
we assume f; € szfv?,‘;;(’, 1 < j < N. C is then allowed to depend on anything a {w}-

admissible constant may depend on, and is allowed to depend on upper bounds for r; !
and [|fjll o0, 1 <5 < N.

Proposition 12.8. Define hg € C*(Bgn (1)) by ®5v = hoore,. Then,

(a) ho(t) Rsgu) V(Wh, ..., Wn)(x0), Vt € Brn(1).2° In particular, ho(t) always has the
same sign, and is either never zero or always zero.

26 Recall, we are assuming without loss of generality that Py = (1,..., N).
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(b) o Ifsp € (1l,00), for s >0,

Iholles (Byn (1)) Sts—131 [V(Wi, ..o, W) (20)]-
o Ifsp=w,
[0l v mintrror Sgwy VWi, .., W) (o).
12.2. Proofs

In this section, we discuss the proofs of Proposition 12.4 and Proposition 12.8. When
S0 € (1,00), Proposition 12.4 and Proposition 12.8 follow directly from the main results
in [31], and so we focus on the case sg = w.

The main results of [32] are very similar to Proposition 12.4 and Proposition 12.8
when sg = w. (i), (ii), and (iii) of Proposition 12.4 are directly contained in [32]. The
main result of [32] shows that there exists an {w}-admissible constant 7 € (0,1] and a
map

© : Brw (7)) — By, (20, €)

such that
o (S(B]RN (7)) is an open subset of BWP0 (zo,x) and is therefore a submanifold of
Bw (z0,§). .
e ®: Bpn(f) — ®(Bgrn~(h)) is a C? diffeomorphism, and ®(0) = .
1O Willorvamyy Sqe 1, 1 <5 < Q.

> Wp, = (I +,Z)%,

where A : Bgn (7)) — MY*N(R), A(0) = 0, and || A v < L.
Define ¥ : Bgrw~ (1) — Bgrw (7)) by U(t) = #t, and set ®¢ := ® o 0. The remainder of
Proposition 12.4 follows from the above properties of ®, with Ky := /! and Ay := Ao V.
Now let v be a real C' density on By, (o, X) as in Proposition 12.8. The main result
on densities in [32] shows that if A € C'(Bgn (7)) is defined by ®*v = hopep, then
° }:L(t) Rlw;] V(Wh L) W{V)(IO), Vt € Brn (ﬁ)
o hegNmintiro} and |7]] g7 min gm0 S{w;y} 1.
Note that hg = (ho W) det d¥ = #Nh o U. Since 7 ~1w} 1, Proposition 12.8 follows from
the above estimates on h.
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13. Proofs of the main results

In this section, we prove Theorem 4.5, Theorem 4.10, and Corollary 4.11.

Note that, by the definitions, By, (z0,¢) = Bxy,.L,, (0, &), Civp, (U)= CRregrLon, (U),
and MV?,ZO = M;go Ly, (with equality of norms). It follows from the hypotheses that we
may write (for 1 < j, k < 2m + q)

2m+-q
[ijwk] = Z é_l]'7kM7 5§,k € C(BWPO (IOag))a

=1

Hé.lj’kHC(BWPD (z0,6)) So 1, and

o If 59 € (1,00), ||5§-’k||cg‘3vpo(3wpo (z0,x)) 5{3} 1, Vs > 0.

o If 59 = et zgn < 1.
S0 w, HC],kHJz{W%: ~{w}
Recall,

Wpy, = Wi, ..., Wanir = X1,..., Xp, 2Re(L1), .. ., 2Re(Ly), 2Im(Ly), . . ., 2Im(Ly,).

(13.1)
Combining (4.2) with Proposition B.5 (i), we see
/\ Wp (fCO) -1 2n+r
ot A (o] S (267 V2n+r) 7 S L. 13.2
PEI(QnJrj,(Qerq) /\Wpo(xo) - ( ¢ \/7) ~0 ( )

In light of these remarks, and the definition of n and &g, Proposition 12.4 applies to the
vector fields Wi, ..., Wap4q (with N = 2n + r) and any constant which is *-admissible
in the sense of Proposition 12.4 is *-admissible in the sense of this section (where * is
any symbol).

We take the 0-admissible constant x € (0,&] from Proposition 12.4. By Proposi-
tion 12.4 (i) and (ii), Yy € Bw,, (70, X), AWp,(y) # 0 and

AWpr(y) ‘
max |———%|~g 1. 13.3
PeI(N,Q) | A Wg, (y) 0 ( )

By hypothesis, dim.%¢;, = dim.%,, = 2n +r and dim %, = dim2Z,, = r, Vy €
Bw,, (0, X) € Bx,1(0,§). Combining this with (13.3), Proposition B.5 (ii) implies
Vy S BWPO (IO7X) = BXK07LJ0 (anX)v

(/\ Xk (y)) A (/\ LJo(y)) #0,

and moreover
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X L
JeZ(n1,m). KeT(ria) | (A Xico (4)) A (A Lo (y)
ni+ri=n+r
Since the left hand side of (13.4) is > 1, it follows that the left hand side of (13.4) is
~o 1. Theorem 4.5 (i) and (ii) follow. Theorem 4.5 (iii) follows from Proposition 12.4
(iii). Since dim.%, = dim.%,, = 2n + r, Vo € Bx r(z0,&), Theorem 4.5 (i) implies
that Xi(z),..., X (2), L1(2),..., Ln(z) form a basis for &, Vo € Bx, 1, (0, X). In
particular, for € Bx, 1, (%0, X), 1 <k, k1,ka < ¢, 1 < j,j1,j2 < m,

Xi(@), Lj(@), [Xiy, X, )(2), [Lyy s L, )(2), [X, L] (%)

(13.5)
€ %, =spanc{X1(z),..., X (x), L1(x),..., Ly(x)}.

Let ®q : Brr+2n(1) = Bx L, (Z0,x) be the map from Proposition 12.4.

o If 5o € (1,00), Proposition 12.4 (vii) gives || ®5Wl[¢s+1(Byansr 1)) Ssp 1, 1 < J <
2m + q, and therefore

90Xk lws+1(Byn (1))s 1P0Lj les+1(Bgonsr(1)) Sgsp 1 1 <7 <m, 1<k <q.
(13.6)
o If 5o = w, Proposition 12.4 (vii) gives [|®{Wl|g2ntr1 Sy 1, 1 < j < 2m + ¢, and
therefore

||®6Xk||%2n+r,l7 ||@8Lj||d2n+r,1 5{0)} 17 1 S] < m, 1 < k < q. (137)

We identify R7T2" =2 R” x C", via the map (t1,...,tr, T1,...,Ton) — (t1,.. ., tr, 21 +
1Tpi1,y ... Ty + iTay). Let Ko > 1 be the {sg}-admissible constant called Ky in Propo-
sition 12.4. By Proposition 12.4 (viii) (and since Py = (1,...,2n 4 r)), we have

F) .
(I)*Rf— ”r Ot ; . —= 1y
ok Wi(0) tja r+1<j<2n

Oxj_r

Using this and (13.1) shows, for 1 <k <r, 1 <j <n,

0

PIK; 1 X (0) = =
J

0 N
8Tk’ (DoKzle(O)

Pulling (13.5) back via ®, (and multiplying by K;?), we have for 1 < k, ki, ko < 7,
1 <4,51,J2 <n, ¢ € Brrycn(1),

(DGKy X, , PG Ky Xy, | (€), [R6K5 'Ly, , RKy 'Ly, | (€), [®5K5 ' Xk, RoK5 'Ly ()
€ spanc {®5K5 ' X1(C), ... K, ' X, (C), ®5 K5 L1 (C), ..., R5K S ' Ly(Q)} -
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The above remarks show that Theorem 11.4 applies to the vector fields
PIK, X, O K, X, O K, Ly, O K, Ly,

and any constant which is {s}-admissible in the sense of Theorem 11.4 is {s}-admissible
in the sense of this section. We let K7 > 1 be the {sq}-admissible constant from Theo-
rem 11.4, and ®; : Brrycn (1) = Brrxcn (1) and A : Brrycn (1) — MO+X+0)(C) be
as in Theorem 11.4. Set K = K9 K, and ® = ®go®;. Note that &* = &7 ®{. Theorem 4.5
(iv) follows from Theorem 11.4 (iv) and Proposition 12.4 (iv) and (vi). Theorem 4.5 (v)
follows from Theorem 11.4 (i) and (iv) and Proposition 12.4 (vi). Theorem 4.5 (vii) fol-
lows from Theorem 11.4 (ii) and Proposition 12.4 (v). Theorem 4.5 (viii) and (x) follow
from Theorem 11.4 (v).
Using Theorem 11.4 (v) we have

Js] -1
21 OrOLK; X ] O* X,
la%‘| _Kl (I+"4) |:q)»1«q)y6K2—1LJO =K (I+A) (b*LJo .

Theorem 4.5 (ix) follows.
Because X1(7),..., X (2), Li(x),..., Ln(x) forms a basis for £, Vo € Bx, 1, (%o,
X)s

(I)*Xl (C)v ) (I)*XT(C)a q>*L1 (C)v ) (I)*Ln((:)

forms a basis for (*.%)¢, V¢ € Brrxcn(1). Theorem 4.5 (x) (which we have already
shown) implies that

sup A Mr+mxram) <
(€BRrrxcn (1)

W~ =

In particular, the matrix I 4+ A(¢) is invertible, V¢ € Bgrrycn(1). Hence, Theorem 4.5
(ix) (which we have already proved) implies, V¢ € Brrxcn (1),

(®*ZL)¢ =spanc {2 X1((),..., "X, (C), D" L1(¢),..., D" L, ()}

—spand 29 9 0
= spang 81517'”7815,«,(9?1"”’85" .

Since Xy(x),Lj(z) € L, Vo, 1 <k < ¢, 1 < j < m, it follows that for 1 < k < g,
1< j<mand V(¢ € Brrxcn(l) we have

x * 0
@ Xk(()a@ Lj(C)ESpanC{a_tlw”vat ’6517.“’5

Because ®* X}, is a real vector field, we conclude for 1 < k < g,
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0 0

Q*Xk;(c) S Spang {atl, ey 87

}7 V¢ € Brrxcn (1)
Theorem 4.5 (xi) follows. Since ®* = ®7®j, Theorem 4.5 (xii) follows by combining
Theorem 11.4 (vi), (13.6), and (13.7).

All that remains of Theorem 4.5 is (vi). We already have, by the range of @,
that ®(Brrxcn(1)) € Bxy,,Ls,(To,X) € Bx,r(70,€) and the final two contain-
ments in (vi) follow. Let & € (0,€] be a constant to be chosen later, and suppose
Y € Bxy, Ly, (T0,61) = Bwp, (70,&1). Thus, there exists v : [0,1] = Bwp, (20,&1) with

¥(0) = wo, ¥(1) =y, ¥/ (t) = 3521 by (DG W, (v (1)), 13 b (8)]?[| £ < 1. Define
to :=sup{t € [0,1] : y(t') € ®(Brrxc»(1/2)),¥0 <t' < t}.

We want to show that by taking & > 0 to be a sufficiently small { s }-admissible constant,
we have tg = 1 and (1) € ®(Brrxcn(1/2)). Note that ty > 0, since y(0) = zo = ©(0).

Suppose to < 1. Then [®~*(y(to))| = 1/2. Using that [|2*W; | c(Bgr, cn (1)R+27) S{so}
1 (by Theorem 4.5 (xii) and the definition of the W;), and ®(0) = zo (by Theorem 4.5
(vii)) and therefore ®~1(y(0)) = ®~*(z0) = 0, we have

tg 2n—+r

1/2 =" /di 1o /Zb )EL(@ W) (@ o (1)) dt
0

§{So} §1~

This a contradiction if & is a sufficiently small {so}-admissible constant, which proves
the second containment in Theorem 4.5 (vi). The existence of & > 0 as in Theorem 4.5
(vi) follows from [27, Lemma 9.35]. This completes the proof of Theorem 4.5.

Now let v be a density as in Section 4.1. Proposition 12.8 applies to v, and any constant
which is [sg; 7] or {s;v}-admissible in the sense of that proposition is [sg; ] or {s;v}-
admissible, respectively, in the sense of this section. Let hy be as in Proposition 12.8 so
that ®Fv = hoore,. Thus,

hopep, = ®*v = @ThOULeb = (hg o ®1) det d®ioLep-
We conclude h = (hg o ®1) det d®;. Proposition 12.8 (a) combined with Theorem 11.4
(iii) yields Theorem 4.10 (i).
Combining Proposition 12.8 (b) with Theorem 11.4 (i) (and using Lemmas 9.5 and 9.6)
shows:

o If 59 € (1,00), for s > 0,

1o © @1llws (Brrcn (1)
Sts—1 (X1, X 2Re(Ly), - . ., 2Re(Ly, ), 2Im(Ly), . . ., 2Im(L,,) ) (w0)] -
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o If 59 =w,

170 © @1 | gy2ntrimin 1,0}
Sty (X1, ..., Xo, 2Re(Ly), - . ., 2Re(Ly,), 2Im(Ly), . . ., 2Im(L,,) ) (z0)] -

Also by Theorem 11.4 (i) (and using Proposition 9.3 and Lemma 9.7) we have:

o If 59 € (1,00), for s > 0, [[det dP1[|s (Brr,cn (1)) S{s—13 1-
o If So = W, Hdetd@l‘ldmwrr,l Sj{w} 1.

Combining the above estimates and using Proposition 9.3 yields Theorem 4.10 (ii).
Finally, we turn to Corollary 4.11. To prove this, we introduce a corollary of Theo-
rem 4.5.

Corollary 13.1. Let @, &1, and & be as in Theorem 4.5. Then, there exist {so}-admissible
constants 0 < £ < & < & and amap @ : Brryxcn (1) = Bxy, L, (T0,&2), which satisfies
all the same estimates as ®, so that

Bx,1(0,81) € Bxy,,L,, (T0,83) C O(Bgrxcn (1)) C Bx L, (%0, &2) € Bx, (20, &2)
C Bx Ly, (70,81) € ®(Brrxcn (1)) € Bxy,, 15, (T0sX) € Bxy, L5, (20, &)

Proof. After applying Theorem 4.5 to obtain ®, &1, and &3, we apply Theorem 4.5 again
with € replaced by & to obtain &3, &4, and ® as above. O

Proof of Corollary 4.11. Using Theorem 4.10 (i), we have

v(®(Brrxcn(1))) = / V= / D'y = / h(t,z) dt dzx
@(Brrxcn (1)) Brrycn (1) Brrxcn (1)

%[SO;V] Z/(Xl, e ,X,«, QRe(Ll), ey 2Re(Ln), 21111([/1)7 ey QIm(Ln))(Z‘o),

with the same result with ® replaced by </I;, where ® is as in Corollary 13.1. Since

@(Brrxcn(1)) € Bxy,,Ly, (%0,§2) € Bx, (70, §2) € P(Brrxcn (1)),

and since h(t,z) always has the same sign (Theorem 4.10 (i)), (4.4) follows.
We turn to (4.5). It follows from the definitions that

[v(X1, ..., Xr, 2Re(L1), ..., 2Re(Ly,), 2Im(Ly), . . ., 2Im(L, ) (x0)|

< Xx,2Re(L) 7, 2Im(L
7K€I(7'7£r)1?]}él-(n,7n)|y( K e( )J m( )J)(x0)|

< W '
- PeI(2Ir?+aj,<2m+q) [v(Wp)(zo)|
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Thus, with (4.4) in hand, to prove (4.5) it suffices to show

max |V(WP)(‘TO)| 50 |V(X17 s 7X7"a QRG(Ll)a R QRG(LTL)’ 2Im(L1)a R
PeZ(2n+r,2m+q)
2Im(Ly)) (o) ;
i.e., we wish to show
W < 144 . 13.8
pep, [W(We)(z0)| So W) (ao) (138)

Since Wp, (o) forms a basis for the tangent space T, Bx. 1 (z0o,€), if the right hand side
is 0, the left hand side must be zero as well. If the right hand side is nonzero, it follows
from Lemma B.4 that

[v(Wp)(zo)|

_ AWp(xo)
max —_— Y = max
PeZ(2n+r,2m+q) |V(Wpo)($0)| PeZI(2n+r,2m+q)

ATPO) e g
AWp, (zo) | ~°

where the final inequality follows from (13.2). (13.8) follows, which completes the
proof. O

Remark 13.2. The most important special case of Theorem 4.5 is the case when r = 0.
In that case, we can always pick Jy so that (4.2) holds with ¢ = 1. However, even in this
case, because of (13.1), we require Proposition 12.4 in the general case ¢ € (0,1]. Thus,
even for the reader only interested in Theorem 4.5 in the case ¢ = 1, it is important that
we at least have Proposition 12.4 for general ¢ € (0,1]. In any case, having Theorem 4.5
for general ¢ € (0, 1] gives additional, convenient flexibility in applications, even when
r=0.

14. Holder spaces

Let Q C R™ be a bounded, Lipschitz domain. It follows immediately from the
definitions that for ¢ € N, s € [0,1] with g + s > 0, we have the containment
C9%(2) C €975(Q). For ¢ € N, s € (0,1) we also have the reverse containment
€9t5(Q) C C95(Q); this follows easily from [36, Theorem 1.118 (i)].

When we move to the corresponding spaces with respect to C' real vector fields
Wi,...,Wy on a C? manifold M, we have similar results. For any g € N, s € [0, 1],
g+ s > 0, we have C%°(M) C €5 °(M); this follows from Lemma 9.1. The reverse
containment for g € N, s € (0,1) requires more hypotheses on the vector fields. This is
described in [31].

In a similar vein, we can create Holder versions of Theorem 7.1 and Theorem 7.2. We
present these here.

Let Xi,...,X, be real C' vector fields on a connected C? manifold M and let
Li,...,L,, be complex C' vector fields on M. For z € M set
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Ly =spanc{X1(z),..., Xq(x), L1(x),...,Ln(2)}, 25 :=spanc{Xi(x),...,Xq(z)}.
(14.1)

We assume:

o Lo+ Ly =CT,M,Yz e M.
. %I=$$QZ7V1‘EM.

Corollary 14.1 (The local result). Fiz o € M, g € N, g > 1, s € (0,1), and set
r:=dim 2, and n+r :=dim .Z,,. The following three conditions are equivalent:

(i) There exists an open neighborhood V.C M of x¢ and a C? diffeomorphism ® : U —
V, where U CR"™ x C™ is open, such thatV(t,z) e U, 1<k <gq, 1<j<m,

0 0
O* X (t, z) € spang {8_151""’87}’

0 o 0 0
O L (t ey Ty ey ey —
](7Z)€SpanC{atl7 78t7«7021’ aazn}
and ®* X, € CITLS(U;R™), ®*L; € CITH5(U;CTHn).
(ii) Reorder Xi,...,X, so that Xi(zo),...,Xr(x0) are linearly independent, and
reorder Ly,..., Ly so that Li(xo),...,Ln(z0), X1(z0),..., Xr(x0) are linearly
independent. Let Zy,...,Zn+r denote the list Xy,...,X,,Ly,...,L,, and let

Y1, -, Yiogrg—(r4n) denote the list X,y1,...,Xq, Lyny1,. .., L. There exists an
open neighborhood V-C M of x sucithat.
o Z;,2) = Ajl L7, and [Z;, Zy) = S Alel + 3 A‘”Zl, where c],i €

L (v), 1<3,k I<n+r,1<a<3.
. V= Z"”blZl, where b} € Cg(J,rLl’S(V), 1<j<m+q—(r+n),1<Ii<n+r.
Furthermore, the map x — dlm %,V — N is constant in x.

(iii) Let Zu, ..., Zmtq denote the list Xi,...,Xq,L1,...,Ly,. There exists a neighbor-
hood V- C M of x such that [Z;, Zy) = Z;n'sl_q cj1 Y 70 and [Z;, Z) = S Cjzngl +
Z?Hl'q c:;,chl, where c k € C%L(V), 1 <a <3,1<j,k,1 < m+q. Furthermore,
the map z — dim fz, V — N is constant in x.

Proof. (i)=(ii)=-(iii) has a nearly identical proof to the corresponding parts of The-
orem 7.1, and we leave the details to the reader. Assume (iii) holds. Then, since
(V) C C@%T(V) (by Lemma 9.1 (iii)) we have that Theorem 7.1 (iii) holds (with s
replaced by g + s). Therefore Theorem 7.1 (i) holds (again, with s replaced by g + s);
we may shrink U in Theorem 7.1 (i) so that it is a Euclidean ball. This establishes all
of (i), except that it shows ®* X, € €It (U;R"), ®*L; € €I 51 (U;C"*") instead
of ®*X;, € C9TLs(U;R"), ®*L; € C9TL5(U;C™™"). However, since U is a ball and

€ (0,1) (this is the only place we use s # 0,1), it follows from [36, Theorem 1.118
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(i)] that €95+ (U;R") = C9+1:5(U;R"). This establishes (iii)=>(i) and completes the
proof. O

Remark 14.2. The only place where g > 1, s # 0, 1 was used in the proof of Corollary 14.1
was the implication (iii)=-(i). The implications (i)=-(ii)=-(iii) hold for ¢ € N and s €
[0,1] with the same proof.

Corollary 14.3 (The global result). For ¢ € N, g > 1, s € (0,1) the following three
conditions are equivalent:

(i) There exists a CI+2° E-manifold structure on M, compatible with its C? structure,
such that X1,...,Xg,L1,..., Ly, are C9T55 vector fields on M and £ (as defined
in (14.1)) is the associated elliptic structure (see Definition 6.20).

(ii) For each xo € M, any of the three equivalent conditions from Corollary 1.1 hold
for this choice of .

(tit) Let Zi,...,Zmyq denote the list Xi,...,Xq,L1,...,Ly. Then, [Z;, Zy] =
Soa c}y’llﬂZl and [Z;, Zg) = St ci’llﬂZl + Sota cg’,iz, where Yz € M, there
exists an open neighborhood V. C M of x such that c;,lc v € C’ggfL(V), 1<ac<3,

1 <j,k, 1 <m+q. Furthermore, the map x — dim %, M — N is constant.

Furthermore, under these conditions, the C9t%* E-manifold structure in (i) is unique, in
the sense that if M has another C972° E-manifold structure satisfying the conclusions
of (i), then the identity map M — M is a C97%% E-diffeomorphism between these two
E-manifold structures.

Proof. With Corollary 14.1 in hand, the proof is nearly identical to the proof of Theo-
rem 7.2, and we leave the details to the interested reader. O

When s € {0, 1}, the use of Zygmund spaces (as in Theorem 7.1 and Theorem 7.2) is
essential. Indeed, the above results do not hold with s € {0,1}, at least in the special
case when n > 1, » = 0. This follows from the next lemma.

Lemma 14.4. Fiz n > 1, g € N. There exists an open neighborhood V! C C™ of 0 and
complez vector fields Ly, ..., L, € CITH(V';C*) such that

(i) For every ¢ € V, L1(C),..., Ln(¢),L1(C), ..., Ln(C) form a basis for CT V.
(ii) [Lj L] = S eppla and (L, Te) = S, élo + Y08, ¢y T, where ¢y, €
CI(V"),1<a<3,1<jkl<n.
(iii) There does not exist a C? diffeomorphism ® : U — V, where V. C V' is an open
neighborhood of 0 and U C C™ is open such that ®*Ly,...,®*L, € C9Y(U) and
V¢ eU,
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®*L1(C),...,P"L,(C) € spang {8821’ cey égn} .
Proof. The idea of the proof is that our results (e.g., Theorem 3.5) imply the sharp
regularity of the classical Newlander-Nirenberg theorem, and it is a result of Liding Yao
[37] that sharp results for the classical Newlander-Nirenberg theorem require Zygmund
spaces. Indeed, he exhibits a set complex vector fields Li,...,L, € CITHV';C?"),
defined on an open neighborhood V' of the origin in C™ such that

e Forevery C €V, Li({),..., Ln(¢), L1(¢),- .., Ly(¢) form a basis for CT,V'.
o There does not exist a C9t11 diffeomorphism ® : U — V, where V C V' is an open
neighborhood of 0 and U C C™ is open such that V( € U,

0 0
d*L .., 9L, — e, = .
Q) L (Q) € spane { v
To see why this choice of L1, ..., L, satisfies the conclusion of them lemma, note that

m

m m
Ly L) =S ciin, LT =Y Ain+ > &,
=t =1 =1
AL eCi(V), 1<a<3,1<jkl<n

Since Ly,...,L, € C9TL(V';C?"), it follows immediately from the definitions that
CI(V') C CY(V'). Now suppose, for contradiction, ® : U — V is a C? diffeomor-
phism as in (iii). Then, the obvious of analog of Lemma 10.1 for Holder spaces shows
® ¢ C9TL1(U), contradicting the choice of Ly,...,L,. O

Appendix A. Immersed submanifolds

Let W1, ..., Wy be real C! vector fields on a C? manifold 9. For x,y € 9, define
p(x,y) asin (2.3). Fix o € M and let Z := {y € M : p(x0,y) < 00}. p is a metric on Z,
and we give Z the topology induced by p (this is finer?” than the topology as a subspace
of M, and may be strictly finer). Let M C Z be a connected open subset of Z containing
xo. We give M the topology of a subspace of Z.

Proposition A.l. Suppose [W;, W] = leil cé.’le, where Cé‘,k : M — R are locally
bounded. Then, there is a C? manifold structure on M (compatible with its topology)
such that:

o The inclusion M — M is a C? injective immersion.

27 See [27, Lemma A.1] for a proof that this topology is finer than the subspace topology.
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o« Wi,...,Wn are C* vector fields tangent to M.
o Wi,...,Wn span the tangent space at every point of M.

Furthermore, this C? structure is unique in the sense that if M is given another C?
structure (compatible with its topology) such that the inclusion map M < M is a C?
injective immersion, then the identity map M — M is a C? diffeomorphism between
these two C? structures on M.

Proposition A.1 is standard; see [27, Appendix A] for a proof.
Appendix B. Linear algebra
B.1. Real and complex vector spaces

Let ¥ be a real vector space and let ¥C = ¥ ®g C be its complexification. We
consider ¥ < ¥C as a real subspace by identifying v with v ® 1. There are natural
maps:

Re:7C =¥, Im:vC v, complex conjugation : yC - yC,

defined as follows. Every v € ¥C can be written uniquely as v = v; ® 1 + vy @ i, with
v1,v2 € V. Then, Re(v) := v, Im(v) :=vo, and T:=v1 ® 1 — 03 Q@ 4.

Lemma B.1. Let £ C ¥C be a finite dimensional complex subspace. Then, dim(Z +
L) +dim(ZNZ) = 2dim(2).

Proof. It is a standard fact that dim(.Z + Z) + dim(Z (%) = dim(Z) + dim(Z).
Using that w +— w, . — £ is an anti-linear isomorphism, the result follows. O

Lemma B.2. Let & C ¥ be a finite dimensional subspace. Let x,...,x, € LN LNV
be a basis for L(NZL and let 1y, ...,l, € L. The following are equivalent:

(i) x1,...,2.,Re(ly),...,Re(ly), Im(ly),...,Im(l,) is a basis for £ + 2.
(ii) x1,...,@p,l1,..., 1y is a basis for ZL.

Proof. Clearly r = dim(.¥¢ N.Z).

(i)=(ii): Suppose (i) holds. Then dim(.Z+.%) = 2n+r. Lemma B.1 implies dim(.%) =
n + r. Thus, once we show z1,...,x,,11,...,[, are linearly independent, they will form
a basis. Suppose

Zakxk + Z(bJ + iCj)lj =0, (B.l)
k=1 j=1
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with ar, € C, b;,c¢; € R. We wish to show a = b; = ¢; =0, Vj, k. Applying Re to (B.1),
we see

zn:R(ak a:k—I—ZbRe chm
j=1

k=1

Since x1,...,2,,Re(l1),...,Re(l,),Im(l1),...,Im(l,) are linearly independent by hy-
pothesis, we see Re(ay) = b; = ¢; =0, Vj, k. Plugging this into (B.1) we have

Z iIm(ag)zr = 0.
k=1

Since 1, . . ., z, are linearly independent, we see Im(ay) = 0, Vk. Thus, a = b; = ¢; =0,
V4, k and (ii) follows.

(ii)=(i): Suppose z1, ..., Ty, l1,...,l, form a basis for .Z. Then, dim(.¥) = n+r and
Lemma B.1 shows dim(.Z + .Z) = 2n + r. Thus, once we show z1,...,z,,Re(ly),...,
Re(l,),Im(ly),...,Im(l,) span .Z + Z it will follow that they are a basis. But it is
immediate to verify that Re(.#) spans £ + ¢, thus since Re(z;) = x;, Re(iz;) = 0, and
Re(—il;) = Im(l;), it follows that x1,...,2,,Re(l1),...,Re(l,),Im(l1),...,Im(l,) span
% + £, which completes the proof. O

Lemma B.3. Let £ C ¥ be a finite dimensional complex subspace. Suppose x1, ..., x, €
ZLNZLNY is a basis for £ (L and extend this to a basis x1,...,Tr 11, .. 1, € L.
Suppose z € £ and

= Z arpTy + Z bjRe(lj) + Z chm(l])
k=1 j=1 j=1

= Z drxi + Z €jRe(l]‘) + Z fJIm(l])
k=1 j=1 j=1

with ay, bj, c;, di, e;, fj € R. Then,

Z*ZakJrzdkkarZ —icy)l

Proof. Set 2o = Y7, (ak +idy)ay + D27 (bj —icj)ly; we wish to show 2 = 2. Clearly
Re(z — 209) = 0. We have

n

Im(z — z9) = 2(67 + ¢;)Re(l Z (1)

Jj=1

€ spanc{Re(l1),...,Re(l,), Im(l1),...,Im(l,)}.
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However, since Re(z — 29) = 0,

1 1 —
Im(z — 2z) = Z(z —2p) = —E(E—%) € fﬂf = spanc{z1,..., 2y}

Thus,

Im(z — zo) € spanc{Re(l1),...,Re(ln),Im(l1),...,Im(l,)} ﬂspanc{xl, R

Since x1,...,2.,Re(l1),...,Re(ln),Im(ly),...,Im(l,) are linearly independent (by
Lemma B.2), it follows that Im(z — z9) = 0, which completes the proof. O

B.2. Wedge products

Let & be a one dimensional vector space over a field F (we will always be using
F =C or R). For z1,22 € &, z1 # 0 we set

z9 /\(2’2)
—= = el,
z1 A(Zl)

where A : 2 — F is any non-zero linear functional. It is easy to see that z—f is independent
of the choice of A.

Let # be an N-dimensional vector space over [, so that /\N W is a one-dimensional
vector space over F. Let wy,...,wy € # be a basis for # and let wi,...,wy € #.
Using the above definition, it makes sense to consider

/ / /
wiy Awy A -+ ANwyy

wl/\wg/\~--/\wN'
Lemma B.4. In the above setting, the following three quantities are equal:

!’ !’ !’
(Z) Wy AW N ANW
w1 Awa A ANwn *

(ii) det(B), where B is the linear transformation defined by Bw; = w.
(iii) det(C), where C is the N x N matriz with components c%, where wj = 3 ckwy.

Proof. Clearly (ii) and (iii) are equal. To see that (i) and (ii) are equal, let B be as in
(ii). Then, we have

wy Awy A=~ Awy  (Bwy) A(Bwg) A--- A(Bwy)  det(B)(wiy Awa A+~ Awy)

wy ANwa A - Nwpn wyr ANwg N - ANwn w1 Awg A+ ANwpy

= det(B),

completing the proof. O
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Let ¥ be a real vector space and let € be its complexification. Let .2 C #C be a
finite dimensional subspace and let 2" := .2 (.Z; note that 2" = 2. Set r = dim(Z")
and n+r = dim(Z). Set # = (L +.Z) ¥ = spang{Re(l) : 1 € £} C ¥ (so that #
is a real vector space). By Lemma B.1, dim(%#') = 2n +r.

Fix z1,...,2g € Z (¥ and lh,...,l,, € Z such that 2" = spanc{z1,...,2,} and
Z = spanc{z1,...,2q,01,...,lm}. For K = (k1,...,ky,) € Z(r1,q) (where Z(r1,q) =
{1,..., g} see (4.1)), set \ Xk = xp, AT, A+ A, . For J = (j1, ..., jn,) € Z(n1,m)
set

NLs=1, Al ANl \2Re(L) = 2Re(l,) A 2Re(lj,) A -+ A 2Re(l;,,),

/\ 2Im(L) s :=2Im(l;,) A 2Im(l;,) A -+ A 2Im(l;, ).
(B.2)

Let w1, ..., Wam+tq denote the list z1,..., x4, 2Re(l1),. .., 2Re(ly,), 2Im(ly), ..., 2Im(l,,),
so that # = spang{wi, ..., Wam+q}. For P = (p1,...,p2n+r) € Z(2n + 7,2m + q), we
set AWp 1= wp, ANwp, A=+ ANwp,, .-

Proposition B.5. Fiz ¢ € (0,1], Jy € Z(n,m), Ko € Z(r,q).

(i) Suppose (A Xr,) N(\Ly,) # 0 and moreover,

e (AXx) A(A L)
JeI(n1,m),K€EL(r1,q) (/\ XKo) /\ (/\ LJO)

ni+ri=n+r

<¢n

Then, (A Xk,) N\ (A2Re(L) ) A (A2Im(L),) # 0 and moreover,

/\WP —1 2n-+r
(A X A NZReAL) 1) A A 2| = (¢ V2"+7">( ')
B.3

(i) Conversely, suppose (\ Xk,) N\ (A2Re(L)s,) A (A2Im(L)s,) # 0 and moreover,

max
PeZ(2n+r,2m+q)

AWp
(A Xxo) N (A2Re(L).s,) A (A2Im(L) )

Then, (A Xk,) N\ (A Lys,) # 0 and moreover,

(AXx) N(ALy)
(A Xko) AN (A Lsy)

<¢h

max
PeZ(2n+r,2m+q)

<(@cWarn)"T. (B

JE€I(ni,m),Ke€Z(r1,q)

ni+ri=n—+r
Remark B.6. A choice of Ky, Jy, and ¢ as in (i) or (ii) always exist: take Ko = (k1, ..., k)
and Jo = (j1,...,7n) so that z,, ..., Tk, ..., 1;, form a basis for £. With this choice,
the conditions for (i) and (ii) then hold for some ¢ € (0,1]. If 2" (spanc{li,...,lm} =
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{0}, one may pick Jy and Ky so that the conditions of (i) hold with ¢ = 1. This occurs
in the two most important special cases: 7 = 0 or m = 0.

Remark B.7. The estimates (B.3) and (B.4) are not optimal; however, we do not know
the optimal estimates, and so content ourselves with proving the simplest estimates
which are sufficient for our purposes.

Proof. Suppose Ky, Jo, and ¢ are as in (i); let Ko = (k1,..., k), Jo = (J1,---,Jn)-
Since dim.Z = n + r and since zk,,...,%k,,lj,...,1;, are linearly independent, it
follows that xz,,...,%k,,l;,...,l;, are a basis for 2. By Lemma B.2, xy,..., 7,
2Re(l},),...,2Re(l;,), 2Im(l;, ), ..., 2Im(l;, ) are a basis for #', and therefore (A Xx,) A

(A2Re(L)s,) A (A2Im(L),) # 0.
Let P = (p1,...,Dontr) €EZ(2n+7,2m +q). We claim, for t =1,...,2n+r,

n

ks N n 1 N B
wp, = Y afwg, + ¥ by 2Re(l;,) + > e 2Im(l;,), Slafl, 167], 2] < ¢Vt a, B
a=1 p=1 B=1
(B.5)
By its definition w,, = 2Re(z), where z € {%xl, . %xq, liyeoiylmy =iy, .oy =il b

Using Cramer’s rule, we have

"Ly A ATy N2 AT N AT, Ay A AL
2=

Tk,

—~ Ty Ao AN, ANl A A,
z":xkl/\---/\%,/\ljl/\-~-Aljﬁ_1/\z/\ljﬁ+1/\---/\lj"l.
Ty Noo ANz, Ay Ao A, e

B=1

T n
=: Z doy, + Z epljss
a=1 B=1

where |d,|, les] < (7! by hypothesis. Thus,

I

wy, =2Re(2) =2+Z =Y (do +da)zr, + Y _(eply,) + (€5lj,)
B=1

a=1

= Z 2Re(dy) K, + Z Re(eg)2Re(l;,) + Z —Im(eg)2Im(l;,).
a=1 p=1 p=1

(B.5) follows.
Using (B.5), Lemma B.4 shows

AW
(A Xxo) A (AN2Re(L).so) A (A 2Im(L) 1)
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is equal to the determinant of a (2n 4 7) x (2n + r) matrix, all of whose components are
bounded by 2¢~!. (B.3) now follows from Hadamard’s inequality.
Suppose Ky, Jo, and ¢ are as in (ii); let Ko = (k1,..., k), Jo = (j1,.-.,Jn). Since

Thys - -5 Tk, 2Re(ly)), .-, 2Re(ly,), 2Im(l, ), . . ., 2Im(1;,)

are linearly independent, and since dim%# = 2n + r, it follows that they are a ba-
sis for #. By Lemma B.2, zy,,...,2r,0;,...,l; is a basis for £, and therefore

(A Xwo) AN(ALsy) #O0.
Let J € Z(ny,m), K € Z(r1,q) with ny +7m1 =n+r. ( AXg) ANALs) =21 Az A
-+ A Zn4r, where each z; is of the form ) or [; for some j or k. We claim

2t = Z g?xka + Z htﬂljﬁv |g£x|7 |htﬁ| < 4C_1>Vta avﬁ~ (BG)
a=1 B=1

Indeed, suppose z; = [; for some j. Then,

2Re(z) = > afwp, + > b 2Re(ly,) + Y ¢/ 2Im(l;,),
a=1 B=1 B=1

where, by Cramer’s rule,

/\ Wpt‘oz
(A Xx,) N (A2Re(L)5o) A\ (A 2Im(L) 5,)’

and A Wp, , is defined by replacing xx, with 2Re(z;) in (A Xk,) A (A2Re(L)s,) A
(A2Im(L),,), and therefore |a$| < ¢~*, by hypothesis. Similarly, [b7],[cf| < ¢~1. Simi-
larly,

a
ay =

T n n
2mz = > dfw, + Y e 2Re(ly,) + Y fP2Re(ly,), |d] el 171 < ¢V @, B.
a=1 B=1 B=1

(B.6) now follows from Lemma B.3 (with, in fact, 4(~! replaced by 2¢~1). A similar
proof works when z; = x;, for some k, yielding (B.6).
Using (B.6), Lemma B.4 shows

(AXx) AN(A L)
(A Xxo) N(A L)

is equal to the determinant of an (n + r) x (n + r) matrix, all of whose components are
bounded by 4¢~1. (B.4) now follows from Hadamard’s inequality. O
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