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ABSTRACT

We introduce a new pipeline for analyzing and mitigating radio frequency interference (RFI), which
we call Sky-Subtracted Incoherent Noise Spectra (ssins). ssins is designed to identify and remove faint
RFI below the single baseline thermal noise by employing a frequency-matched detection algorithm on

baseline-averaged amplitudes of time-differenced visibilities. We demonstrate the capabilities of ssins
using the Murchison Widefield Array (MWA) in Western Australia. We successfully image aircraft
flying over the array via digital television (DTV) reflection detected using ssins and summarize an

RFI occupancy survey of MWA Epoch of Reionization data. We describe how to use ssins with new
data using a documented, publicly available implementation with comprehensive usage tutorials.

Keywords: methods: data analysis—-methods: statistical—-techniques: interferometric—- telescopes,
dark ages, reionization, first stars

1. INTRODUCTION

Radio frequency interference (RFI) is a ubiquitous
problem in radio astronomy. The omnipresence of an-
thropogenic radio emission and natural emissions from

sources such as lightning make it exceedingly difficult
to place a serviceable radio telescope in a perfectly
radio-quiet location. For instance, the Murchison Wide-
field Array (MWA) (Tingay et al. 2013; Wayth et al.
2018), which is located in the extremely radio-quiet
Murchison Radio Observatory (MRO) in Western Aus-
tralia, regularly observes ORBCOMM satellite trans-
missions (Sokolowski et al. 2016), lightning (Sokolowski
et al. 2016), as well as FM radio signals reflecting off of
satellites (Zhang et al. 2018), meteor trails (Zhang et al.

2018), and even the moon (McKinley et al. 2013, 2018).
The MWA also observes digital television (DTV) trans-
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missions (Offringa et al. 2015; Sokolowski et al. 2016),

which we show several instances of in this work.
The brightness of observed RFI signals can vary by

orders of magnitude. A survey of the RFI environment

of the MRO, including brightness distribution, is pre-
sented in Sokolowski et al. (2016), while an MWA RFI
occupancy study is presented in Offringa et al. (2015).
In Offringa et al. (2013), LOFAR (van Haarlem et al.
2013) is used to study RFI brightness for cases where a
uniform spatial distribution of RFI emitters is appropri-
ate to assume. Fortunately, a remote telescope such as
the MWA does not experience a spatially uniform dis-
tribution of RFI emitters1. However, faint RFI contam-
ination that is below the single baseline thermal noise is

still an undeniable reality of such a telescope.

1 This can be seen for the MRO by reconciling the observed
brightness distribution in Sokolowski et al. (2016) with the the-
oretical brightness distribution of spatially uniform emitters in
Offringa et al. (2013).
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Using the MWA, we study Epoch of Reionization
(EoR) cosmology via redshifted 21-cm emission from
atomic Hydrogen. Reviews on the subject of 21-cm radi-
ation and its role in cosmology are presented in Furlan-
etto et al. (2006) and Morales & Wyithe (2010). The
EoR signal is extremely faint relative to the astrophys-
ical foregrounds and RFI signals. Even observed RFI
signals that are fainter than the single baseline thermal
noise are orders of magnitude brighter than the expected
EoR signal. Hence, subthermal RFI excision is a priority
in our analysis.

In general, RFI mitigation strategies can be deployed
at different stages of the interferometric pipeline. Re-
views of RFI mitigation schemes are presented in An
et al. (2017), and Baan (2019). Given the vast data rates
of modern radio telescopes, it is common to perform
RFI detection offline in the post-correlation stage of the
pipeline. Post-correlation mitigation strategies include
neural network approaches (Burd et al. 2018; Kerrigan

et al. 2019), filters in the uv-plane (Sekhar & Athreya
2018), variants of fringe filters (Athreya 2009; Offringa
et al. 2012a), as well as methods that take advantage of
the cyclostationarity of common RFI signals (Bretteil

& Weber 2005; Hellbourg et al. 2012). Several post-
correlation detection methods are compared in Offringa
et al. (2010), including surface fitting, singular value de-

composition, and combinatorial thresholding algorithms
such as SumThreshold. Successful implementations
of the SumThreshold method are presented in Of-

fringa et al. (2015) and Peck & Fenech (2013) using the
aoflagger2 and SERPent3 software packages, respec-
tively. We use an RFI detection algorithm in this work
similar to SumThreshold, with slight differences.

Currently, all MWA EoR observations are flagged
for RFI during pre-processing using aoflagger. Like
many of the state-of-the-art methods referred to above,

aoflagger flags a single baseline at a time. Clearly,
single baseline flaggers are fundamentally limited to
the sensitivity attainable by a single baseline. As we
will show, there exists RFI observed by the MWA that
evades detection by aoflagger because it is fainter
than the single baseline thermal noise. We offer Sky-
Subtracted Incoherent Noise Spectra (ssins) as a flex-
ible, sensitive, and statistically simple RFI analysis
pipeline to detect, classify, and excise such faint RFI.
ssins was developed for the MWA, and it has also under-

gone limited testing on the Hydrogen Epoch of Reion-

2 https://sourceforge.net/p/aoflagger/wiki/Home/
3 https://github.com/daniellefenech/SERPent

ization Array (HERA) (DeBoer et al. 2017) and the
Long Wavelength Array (LWA) (Taylor et al. 2012).

After explaining the ssins method in detail (§2), we
show several common cases of RFI that are successfully
flagged by ssins in the MWA EoR highband, which ex-
tends from 167.1 Mhz to 197.7 Mhz (§3). We also image
RFI and hypothesize about the source (§4). We then
discuss the implementation of ssins, explain how it can
be customized for different RFI environments, and sum-
marize RFI mitigation efforts for data used in an EoR
power spectrum limit in Barry et al. (2019b) (§5). Fi-
nally, we discuss possibilities for future work (§6).

2. THE METHOD

The measurements from an interferometer can be bro-
ken down into three components: the astrophysical sky
signals, thermal noise, and RFI. We will first separate
the slowly varying sky signal from the modulated RFI
(§2.1), then increase our sensitivity to the faint RFI

signal through successive integrations and frequency-
matched flaggers (§2.2–2.4). In Figures 1–3 we compare
an observation free of RFI (left) with an observation
contaminated by faint RFI (right).

2.1. Sky Subtraction

The first step, sky subtraction, relies on the time vari-
ation of the sky signal being slow relative to the visibil-
ity cadence. We denote the visibility belonging to the ij
antenna pair, time integration, tn, frequency, ν, and po-

larization, p, as Vij(tn, ν, p). By subtracting data from
subsequent time integrations, the majority of the astro-
physical sky signal will be removed while leaving much

of the modulated RFI and thermal noise. We write the
sky-subtracted visibilities as

∆Vij(tn, ν, p) = Vij(tn+1, ν, p)− Vij(tn, ν, p). (1)

What remains has a noise-like component and poten-

tially an RFI-like component.
To separate the thermal noise from the RFI it is help-

ful to understand the statistical properties of the ther-
mal noise. For visibility data, the noise is a circular
complex Gaussian process. In other words, for each vis-
ibility, the real and imaginary components of the noise

are independently and identically distributed Gaussian
random variables with mean equal to zero. Following
standard derivations such as in Zwillinger & Kokoska
(2000), the amplitudes, X, of a circular Gaussian pro-
cess are Rayleigh distributed:

fX(x;σ) =
x

σ2
e−x

2/2σ2

, (2)

where σ2 is the variance of the Gaussian which describes

the real (or imaginary) component of the process. The

https://sourceforge.net/p/aoflagger/wiki/Home/
https://github.com/daniellefenech/SERPent
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Figure 1. Histograms of the amplitudes of time-differenced visibilities for two different two-minute MWA observations, similar
to Figure 8.2 of Barry (2018). (a) belongs to an observation deemed clean by the methods shown in this paper, while (b) belongs
to an observation that is shown to have some digital television contamination (§2.4). The measurements are shown in blue,
while an accompanying Rayleigh-mixture fit is shown in orange with 4σ error bars. These figures are nearly indistinguishable,
despite differences in contamination.

mean of the Rayleigh distribution is

E[X] =

√
π

2
σ, (3)

and the variance is

E[X2]− E[X]2 =
4− π

2
σ2. (4)

Figure 1 shows the Rayleigh-like amplitude distribu-

tions of the sky-subtracted visibilities for our two exam-
ple observations along with a Rayleigh-mixture fit. Be-
cause the observed noise has a frequency dependence,
each frequency channel was fit independently by max-

imum likelihood estimation to form the final model fit
and 4σ errors. The similarity of Figures 1(a) and (b)
shows that the sensitivity of a single visibility is not suf-
ficient to mitigate the faint RFI that we are interested
in.

2.2. The Incoherent Average

We boost our RFI sensitivity by averaging the am-
plitudes of the sky-subtracted visibilities over all of the
baselines in the array, leaving a single dynamic spectrum
per polarization. This is not an entirely novel idea. We
refer the reader to the last two paragraphs of §4.2 in

Offringa et al. (2015). Formally, for an array with NA
antennas, the incoherent average, Y , is

Y (tn, ν, p) =
2

NA(NA − 1)

NA∑
i=1

NA∑
j>i

|∆Vij(tn, ν, p)|. (5)

Since we discard the phase of the sky-subtracted visi-

bilities in the average, we call this an incoherent aver-
age. Note that we do not include autocorrelations in
the average. We refer to the remaining spectra as sky-

subtracted incoherent noise spectra (SSINS), incoherent
noise spectra, or just noise spectra.

Examples of incoherent noise spectra for the same ob-
servations as in Figure 1 are shown in Figure 2. The

spectra in Figure 2(b) actually show some RFI from
digital television broadcasting, although it is extremely
difficult to discern from the surrounding noise even in

this very sensitive space. In order to determine the na-
ture of such features, we boost the contrast in a way
that allows for the rigorous application of statistics.

2.3. Mean Subtraction

Mean subtraction transforms the data so that the data
of a clean observation will be standardized: it will ap-
pear as if it were sampled from a zero-mean, unit width
Gaussian probability distribution. We describe this pro-
cess formally using the central limit theorem.

In our context, we take the central limit theorem
to say the following (see Billingsley (1995)). Let
(X1, X2, ..., XN ) be independent and identically dis-
tributed random variables with finite mean, µ, and vari-

ance, Σ2. Then, as N grows large, the sample means
given by

SN =
1

N

N∑
k=1

Xk (6)
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Figure 2. The incoherent noise spectrum for the E-W polarization corresponding to the histograms in Figure 1, on a two second
cadence. The MWA employs a two-stage polyphase filter bank, involving a coarse channelization and then a fine channelization
of each coarse channel. The periodic banding in frequency that is seen in these spectra is a result of that filter. The spectrum on
the left is clean. However, if one examines the spectrum on the right extremely closely, they may notice a smudge between 174
and 181 Mhz in the first twenty seconds of the observation. This smudge is made much more obvious after the mean-subtraction
transformation, shown in Figure 3, and it is DTV interference.

converge in distribution to a normally distributed ran-
dom variable of mean, µ, and variance, Σ2/N . Let us as-
sume the thermal noise to be independent between base-

lines and ignore baseline-to-baseline noise variation4.
Having averaged over so many baselines5 in Equation 5,
the central limit theorem states that the thermal back-

ground in the incoherent noise spectrum will be very
nearly normally distributed at each frequency with a
mean described by Equation 3 and variance described
by Equation 4, divided by the number of baselines in

the array, which we denote Nbl:

Nbl =
NA(NA − 1)

2
. (7)

Note that the Rayleigh distribution has only a single pa-
rameter, so we can actually relate these two quantities.
Using Equations 3 and 4, and writing the underlying
mean for each frequency as µν , we write the underlying
thermal background distribution for each frequency as

fY (y;µν , Nbl) =

√
Nbl

2πCµ2
ν

exp

[
− Nbl

2Cµ2
ν

(y − µν)2
]
,

(8)
where

C =
4

π
− 1 (9)

4 Statements of the central limit theorem exist for non-
identically distributed sequences, which would be important here
if baseline-to-baseline variation in noise levels were a dominant
effect. See Billingsley (1995).

5 Over 8000 for the MWA

is the ratio of the Rayleigh variance to the square of its
mean.

At this stage, the background distribution for the en-

tire spectrum is a mixture distribution of all the fre-
quencies. If for each frequency we subtract the mean
and normalize with respect to the standard deviation,

then the background for the entire spectrum will be de-
scribed by a single distribution (the standard normal
distribution), thus simplifying the problem.

If there are sufficiently many time samples in an obser-

vation, then an estimation of the means per frequency
can be obtained simply by taking the mean of the spec-
trum in time:

µ̂(ν, p) =
1

Nt − 1

Nt−1∑
n=1

Y (tn, ν, p). (10)

Writing the mean only as a function of frequency and
polarization of course assumes that the thermal process
is at least wide-sense (weakly) stationary in time. In
the event that there is some drift, then a trend line or
trend polynomial can be calculated for each frequency
and polarization. For now, we will work with the sim-
plest, most prevalent case.

Now we consider the quantity

Z(tn, ν, p) =
Y − µ̂√
Cµ̂2/Nbl

(11)

We call this the mean-subtracted incoherent noise spec-
trum. Here, for each data point, we have subtracted

the estimated mean and normalized with respect to the
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Figure 3. Top Row: the mean-subtracted incoherent noise spectra for a single polarization, corresponding to the data in Figure
2. Bottom Row: Histograms for the mean-subtracted incoherent noise spectra in the top plots, shown with vertical lines that
demarcate a point beyond which very few outliers are expected at this data volume. The spectrum in (a) is clean. There are no
discernible features such as clustering in time or frequency and the extent of the data is within the range of outliers expected
for a data volume of this size. The spectrum in (b), however, features a noticeable cluster of positive outliers that extends from
174-181 Mhz in the beginning of the observation, and a slightly less noticeable one from 181-188 Mhz. Not only is this clustering
antithetical to stationary noise, but the data in the brightest feature has outliers as strong as 14σ̂, which is not expected at this
data volume. In correspondence with this reasoning, the purportedly clean observation in (c) looks highly Gaussian, while the
contaminated observation in (d) is clearly deviating from the thermal model.

estimated standard deviation in the corresponding fre-
quency channels and polarizations. Should the observa-
tion be totally clean of RFI and if sky-subtraction indeed
fully removed the sky from the data, then the remain-

ing data, which will be purely thermal, ought to be very
nearly distributed according to

fZ(z) =
1√
2π
e−z

2/2, (12)

otherwise known as the standard normal distribution.
In other words, the quantity in Equation 11 is a z-score

for each sample in the spectrum.

An example of mean-subtraction results following
from Figures 1 and 2 is shown in Figure 3. The accom-
panying histograms are plotted along with a standard
normal distribution. The clean observation in Figure

3(c) conforms to the standard normal distribution ex-
ceedingly well, while the contaminated observation in
Figure 3(d) has outliers well beyond what is expected,
indicating highly non-thermal behavior. Recall that
in Figure 1, it was nearly impossible to discern any
difference between these two observations.

The mean-subtracted spectra are very useful for high-
lighting RFI that is only marginally brighter than the
surrounding thermal noise after incoherently averaging
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over all baselines. In order to programmatically identify
and flag RFI, we deploy a frequency-matched flagger in
the mean-subtracted spectrum.

2.4. The Frequency-Matched Flagger

We extend the probability theory from the previous
section to develop a frequency-matched flagger. We
introduce this development by showing the results of
thresholding on a single-sample basis, and then we show
how information from multiple samples can be incorpo-
rated.

If the total data volume is M , then the expected num-
ber of outliers in a clean mean subtracted spectrum,
Nout, beyond a certain threshold, τ , is

Nout = M erfc

(
τ√
2

)
, (13)

where erfc is the complementary error function:

erfc(x) =
2√
π

∫ ∞
x

dte−t
2

. (14)

This includes both positive and negative outliers. For
a typical two-minute MWA EoR highband observation,

the number of expected outliers when τ = 5 is about
0.05. In other words, about one in twenty observations
ought to have just a single sample of that strength or

greater. Statistically speaking, samples of that strength
are exceedingly unlikely to be thermal and so we can be
confident that those samples are contaminated.

It is tempting to flag all data beyond the significance

threshold initially, but this can be problematic when
there is RFI contamination. Recall that the estimated
mean and standard deviation are determined by a time-

average in each frequency channel, as described in Equa-
tion 11. If RFI that is brighter than the thermal noise
contaminates some times, then the mean estimate for
the contaminated channels will be skewed upward rela-
tive to an estimate drawn from only the clean data. As
a result, some clean data may appear to be outlying in
the negative direction beyond the significance threshold.
For example, consider the bright red cluster followed by
the blue trough in Figure 3(b). As shown in Figure 3(d),
some data in this observation lies beyond the threshold

in the negative direction when the z-scores are initially
calculated. Flagging everything beyond the threshold
initially will inevitably flag some clean data in this case.
We can decrease this type of overflagging by taking an
iterative approach to flagging, wherein the RFI contam-
ination of the mean estimate is progressively removed in
each iteration. This also allows us to probe deeper into

the observation for fainter RFI in each iteration.

Start   

Z

Mean Subtract

Sub-band Sum

ZBFind Max

Zmax(tmax, νmax)
or

Zmax(tmax,Bmax)

Zmax > τFalseEnd   

Flag Y(tmax, νmax) or Y(tmax,Bmax)

(SSINS)
Y

True

Frequency-Matched 
Flagging

Basic Iteration

Figure 4. A flowchart of the iterative flagging procedure
detailed in §2.4. The white area shows the basic iteration
performed on the z-scores calculated in Equation 11, while
the grey shows two additional steps that are included when
frequency-matched flagging is implemented with the z-scores
calculated in Equation 15.

We describe the basic iterative flagging procedure be-
low and present a flow chart in Figure 4. First, we cal-

culate the z-scores of each noise spectrum sample using
mean-subtraction. Next, we identify the time and fre-
quency of the strongest outlier in the mean-subtracted

spectrum that is beyond the threshold in either the pos-
itive or negative direction. Then, we flag this time and
frequency in all polarizations regardless of the polariza-

tion in which the outlier was found. This is done in case
that RFI is present in other polarizations at extremely
faint levels; it is often the case that RFI is not exactly
polarized along the directions measured by the anten-

nas. We then repeat this process until no more outliers
exist beyond the threshold. The results of this process
using τ = 5 on the contaminated observation shown in

previous figures is shown in Figure 5(a). In this fig-
ure, we deviate from the previous convention in Figures
1-3. Now, the same observation is in both panels. We
are comparing differences in flagging between the single-
sample outlier iteration detailed above and a frequency-
matched flagger, detailed in the main text below. We
can see that there appears to be incomplete flagging in
the feature noticed in Figure 3(b), and that another fea-
ture immediately adjacent to it of similar width persists
in the observation at fainter levels. Any individual re-
maining sample in these features lies beneath the signifi-
cance threshold, and so cannot be caught by the method
above at the threshold set. To boost our sensitivity to
faint features such as these, we combine samples of the

mean-subtracted spectrum across frequencies.
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Figure 5. A comparison of single-sample thresholding and frequency-matched flagging on the contaminated observation of
the previous figures. Black data is flagged. In (a), we show the results of iteratively flagging single-sample outliers beyond the
τ = 5 threshold. Leftover RFI persists, since some RFI is beneath this threshold on a single-sample basis. In (b), we show the
results of frequency-matched flagging, where we have used bandwidth information about Western Australian DTV to inform the
flagger. No remaining interference can be seen in the spectrum. A movie of each flagging iteration is available in the ancillary
files.

So far, we have only relied on knowledge of the thermal
background without including any specific information

about the particular source of the RFI. In the exam-
ples shown, data are taken in Western Australia over
the frequencies 167-197 Mhz. A subset of the Western
Australian digital television channels are broadcast in

this observing band and are broadcast 7 Mhz wide, ad-
jacent to one another6. The broad features shown in the
previous figures correspond to DTV channels 6 and 7.

The MWA also sometimes observes DTV channel 8. We
can hunt for these particular contaminants by summing
the mean-subtracted spectrum over the frequencies be-

longing to a particular type of contaminant. A similar
targeted sub-band summing method was employed in §4
of Offringa et al. (2015) exactly for DTV interference.

Formally, if an RFI signal occupies a sub-band, B,

that spans NB frequency channels of the instrument be-
tween the signal’s lower frequency, νL, and upper fre-
quency, νU , we take

ZB(tn, p) =
1√
NB

νU∑
ν=νL

Z(tn, ν, p). (15)

This sum is precisely constructed so that a clean ZB
will be standard normal distributed just like a clean
Z, so that the same significance threshold can be ap-
plied to any sub-band as is applied to a single sample.
When RFI in a sub-band is observed for only part of

6 https://www.acma.gov.au/∼/media/
Licence-Issue-and-Allocation/Publication/pdf/TVRadio
Handbook Electronic edition-pdf.pdf?la=en

the observation, even a sequence of very weak positive
(or negative) outliers at a given time can sum to be

greater in absolute value than the desired significance
threshold, thereby increasing the sensitivity to RFI that
occupies that sub-band. We can then iterate similarly
as in the single-sample case to flag the observation for

sub-band outliers in addition to single-sample outliers,
where now we identify the strongest outlier among all
suspected RFI sub-bands and times in the observation

and then proceed as before. We show an example of the
frequency-matched flagger in Figure 5(b), where it suc-
cessfully excised DTV RFI belonging to multiple broad-

casting channels. A movie showing the status of the
observation in each iteration is available in the ancillary
files.

The ssins frequency-matched flagger can be adapted

to search for any RFI contaminant within the observing
band, including RFI that occupies the entire band. In
§3, we illustrate these adaptive capabilities using specific
examples of common RFI signals that we observe with
the MWA.

3. SOME COMMON RFI OCCUPANTS IN MWA
DATA

The sensitivity boost afforded by the baseline averag-
ing allows ssins to identify a wealth of faint RFI that
goes undetected by single baseline algorithms. However,
RFI that persists throughout the entire observing time
can still evade ssins due to the fact that such RFI will
always contaminate the mean estimation no matter how
deeply it is flagged. We have successfully implemented

https://www.acma.gov.au/~/media/Licence-Issue-and-Allocation/Publication/pdf/TVRadio_Handbook_Electronic_edition-pdf.pdf?la=en
https://www.acma.gov.au/~/media/Licence-Issue-and-Allocation/Publication/pdf/TVRadio_Handbook_Electronic_edition-pdf.pdf?la=en
https://www.acma.gov.au/~/media/Licence-Issue-and-Allocation/Publication/pdf/TVRadio_Handbook_Electronic_edition-pdf.pdf?la=en
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methods in ssins to compensate for this behavior. Be-
low, we explore the behavior of ssins through exam-
ples for three different RFI classifications: broadband
streaks, narrowband RFI, and DTV. In each case, the
data was passed through aoflagger before making the
incoherent noise spectra, except where indicated in §3.2.

3.1. Faint Broadband Streaks

First, we show an observation with faint streaks that
are not band limited. See Figure 6. These streaks
are too faint to be detected by the standard single-
baseline aoflagger implementation and appear to be
quite common in our brief survey of MWA EoR High-
band data. The exact nature of these streaks is so far
unknown. Since they are not band-limited, we cannot
directly appeal to our knowledge of the RFI environment
in the same way that we can with the DTV interference
shown earlier. It is possible that they are instrumental
in origin. Despite not knowing the physical origin of

such events, these streaks still occupy a programmable
sub-band for the frequency-matched flagger, that is, the
whole observing band, and so we can still adequately
flag them using the algorithm in this paper.

3.2. Narrowband Interference

Next we show an example of narrowband interference

observed by the MWA that only occupies one or two
fine frequency channels (Figure 7). Though this RFI is
present in the observation at dramatically fainter levels
after aoflagger, we show the pre-aoflagger spec-

trum in this case because of the interference’s proximity
to a coarse band edge, which makes viewing the event
difficult after routine flagging of the edges.

In this case, there are two interference events that
are present through the entirety of the observation.
The higher frequency line is a full order of magnitude

brighter than the lower frequency line, and they are sep-
arated by exactly one coarse channel. We hypothesize
that the dimmer line is caused by the brighter line’s
proximity to a coarse band edge, which are prone to
aliasing due to the cascaded fourier transform in the
digital signal path7.

Narrowband RFI such as this that persists through-

out the entire observation poses a detection problem for
the ssins algorithm, since the estimation of the ther-
mal parameters will always be contaminated by the
RFI. The statistical properties of the RFI usually do
not perfectly resemble the thermal noise, but even so,

7 See ”Aliases” in https://wiki.mwatelescope.org/display/MP/
Memos?preview=/14156367/18481185/MEMO CascadedFT
2012 05 25.pdf
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Figure 6. The SSINS of an observation which show faint
broadband streaks. The pre-existing flags in (a) and (b) are
over the coarse band edges, which are routinely flagged in
pre-processing due to systematic difficulties. The streaks are
barely noticeable to the eye in (a), but the mean-subtracted
spectrum in (b) shows them prominently. The frequency-
matched flagger excises these streaks neatly, as shown in (c).
These exceedingly faint events are often missed by aoflag-
ger and are not uncommon. They can appear isolated
within an observation, or in series like this.

https://wiki.mwatelescope.org/display/MP/Memos?preview=/14156367/18481185/MEMO_CascadedFT_2012_05_25.pdf
https://wiki.mwatelescope.org/display/MP/Memos?preview=/14156367/18481185/MEMO_CascadedFT_2012_05_25.pdf
https://wiki.mwatelescope.org/display/MP/Memos?preview=/14156367/18481185/MEMO_CascadedFT_2012_05_25.pdf
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Figure 7. Pictured is an example of narrowband RFI that
lasts the entirety of an observation. Note the logarithmic
color scale in (a). This extremely bright event is a full two or-
ders of magnitude brighter than the typical clean spectrum,
and so the finer structure typically seen in an MWA incoher-
ent noise spectrum is washed out in this colormap. We also
note a disturbance precisely one coarse channel wide to the
right of the main interference event in (c), characterized by a
blue trough followed by a red excess. This is the only known
instance of this feature in MWA data so far. Its exact nature
is unknown. It may be related to the sheer brightness of this
RFI event.

such RFI is almost always incompletely flagged by the
ssins frequency-matched flagger. Rarely, there is even
RFI whose brightness varies so little over the course of
the observation that it is totally camouflaged by the
mean-subtraction step. Clearly, narrowband RFI that
only occupies some fraction of the observation does not
have this problem. In Figure 7(c), we show the mean-
subtracted spectrum after frequency-matched flagging.
We can see that the fainter event (alias) was flagged al-
most completely. If we examine the brighter event at the
higher coarse channel, we notice the flag mask is thicker
at some times compared to others. The RFI seems to
occupy two adjacent fine frequency channels. The times
indexed 10 to 20 are missing flags in the higher fine fre-
quency channel, while the times indexed 30 to 48 are
missing flags in the lower fine frequency channel.

We handle incomplete flagging in the following way.
First, note that as we flag more times in a channel, fewer
samples enter into the estimation of the mean. Eventu-

ally, the uncertainty in the estimator will be so high
that the estimate will be untrustworthy. Furthermore,
as more and more data within a channel are flagged, the
chance that clean data remain in that channel dimin-

ishes. Combining these ideas, we set a threshold where
once the amount of remaining unflagged data falls be-
low the threshold, the entire remainder of the channel is

flagged. The exact value that this threshold should take
depends on the RFI environment of the telescope. While
many narrowband events in the MWA survey shown in

§5.2 would demand a threshold as aggressive as 0.7 (flag
if less than 70% remains), an extremely brief survey of
HERA data shows that a threshold of 0.25 successfully
flags many of HERA’s persistent narrowband occupants.

3.3. A DTV Signal

Finally, we show an observation with DTV interfer-
ence that was partially caught by aoflagger. In this
case, the DTV was caught on some baselines, but not

all of them, so we can see a leftover DTV footprint in
the noise spectrum. See Figure 8.

We perform a similar demonstration as with the
fainter DTV events shown in §2.4 by first flagging only
bright single-sample outliers and then checking to see if
fainter occupants lie beneath the single-sample thresh-
old (Figure 8(c)). A notable feature that emerges from
single-sample flagging is that the cluster of significant
outliers around the DTV event seem to span more than
7 Mhz. The excess width of this event is not seen in

the pre-aoflagger spectrum (not shown), indicating
that this is a pre-processing artifact. As described in
Offringa et al. (2012b), aoflagger deploys a mor-
phological detection algorithm that can overflag broad
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Figure 8. The SSINS of a DTV example after applying aoflagger (a), alongside the mean-subtracted spectrm (b), as well as
the results of single-sample iterative flagging (c), and frequency-matched flagging (d). From the flags reported by aoflagger,
we know it was caught on some baselines, however there is clearly leftover DTV corresponding to DTV channel 7. Several
features emerge after single-sample flagging in (c). First, it appears that there is a broadband streak (§3.1) simultaneous with
the DTV interference. Second, it appears there may have been a second DTV interference event later in the observation and
much fainter. Third, the DTV interference seems to have associated outliers that span more than the advertised 7 Mhz, which
is a pre-processing artifact described in the main text. With the frequency-matched flagger we can search for DTV, broadband
streaks, single-sample outliers, and the pre-processing artifact simultaneously. The results are shown in (d), where all notable
features are excised.

contaminants in a baseline by an amount proportional
to the algorithm’s user-set aggression threshold. Indeed,
summing the aoflagger flags for this observation over
the set of baselines does show overflagging of this event
in frequency by an amount similar to the feature we
see in the incoherent noise spectrum. A feature of this
size manifests in the incoherent noise spectrum due to

the fact that visibilities have been averaged in time
and frequency relative to the operating time-frequency
resolution of aoflagger. Flags are applied before
averaging, so time-frequency bins with fewer samples
entering them will have noise that has not been aver-
aged down as much compared to those bins in which all

possible contributing samples were averaged together.
The overflagged bins contributing to the incoherent
noise spectrum are then brighter than the surrounding
uncontaminated ones, thus appearing like RFI to our
statistical test. We can adapt the frequency-matched
flagger with a custom sub-band to identify this pre-
processing artifact. The results of frequency-matched
flagging are shown in Figure 8(d).

This type of DTV interference is extremely common in
MWA EoR Highband Observations. Roughly one third
of the observations included in the EoR limit in Beard-
sley et al. (2016) had some trace of DTV RFI according
to the frequency-matched flagger. These observations
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Figure 9. A full-sky horizon-to-horizon image of the DTV channel 6 event in Figure 3(b), with 52000 GLEAM sources removed
using FHD. Other than the shape of the MWA beam and some diffuse structure not included in the calibration/subtraction
model, the image is largely featureless. However, all the way in the second southern sidelobe lies a faint streak belonging to the
DTV6 event (annotated with a bright red arrow). We hypothesize that the DTV signal is reflecting off of an aircraft on the
southern horizon into the array. This is but one example of a collection of observations that show a similar feature in the second
southern sidelobe, some of which are at the same time of night but on different dates, as one might expect from scheduled flights
to and from Perth.

were subsequently removed in a reduction of the same
data set in Barry et al. (2019b), as discussed in §5.2.
While in this case aoflagger was able to remove some
of the interference, it is often the case that the contami-
nation is beneath the level where aoflagger can make
an appreciable difference.

4. IMAGING DTV INTERFERENCE

The MWA’s extremely remote location makes it un-
likely that it would directly observe a DTV transmis-
sion. However, it is clear from noise spectra such as
those in the previous sections that the MWA is observing
DTV. There are several hypotheses to explain this, in-

cluding tropospheric ducting and reflection off of aircraft
or satellites. We explore these possibilities by imaging
DTV events found using ssins.
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Figure 10. The Stokes I residual image of the DTV event in Figure 8, showing just the primary beam (center lobe in Figure
9). This is 34 seconds of data. The broad North-South streak in the Eastern edge of the primary beam (annotated with a bright
red arrow) suggests possible motion of a source - likely a reflective aircraft. A snapshot-by-snapshot movie is available in the
ancillary files.

The images were made using the Fast Holographic
Deconvolution (FHD) software8 (Sullivan et al. 2012;

Barry et al. 2019a). So that RFI could not drive the
calibration solution, we calibrated on a clean part of
each observation and transferred that calibration to the

contaminated part of the respective observation. In or-
der to see these faint DTV events in the images, it was
necessary to subtract out 52000 sources from the GaLac-
tic and Extragalactic All-sky MWA (GLEAM) catalog
(Hurley-Walker et al. 2017) using FHD. Example im-
ages using the observations from Figures 3(b) and 8 are
shown in Figures 9 and 10, respectively. We separated
Figure 10 into 2s-snapshots and made a movie (avail-
able in the ancillary files), where it is clear that some
sort of flying object moving nearly due North-South is
reflecting DTV into the array.

Due to the nonzero extent of the moving source, we
can rule out the possibility of satellites and near-Earth
asteroids, which would appear point-like. Aircraft are
reflective and fly low enough to appear extended in the
image. The speed (extent) of the object is atypically

8 https://github.com/EoRImaging/FHD

slow (large) for a commercial jet such as a Boeing 737
flying at a typical cruising altitude of 10 km. A par-

allactic estimation of the object’s altitude9 ultimately
proved inconclusive due to the faintness of the RFI (Xi-
ang Zhang, personal communication). As an alternative
candidate, we suggest this could be a slow, low-flying

bush plane whose apparent angular size may be due to
its low height and near-field effects.

5. FREQUENCY-MATCHED FLAGGER
CUSTOMIZATION

In this section, we describe the process of developing a
customized ssins frequency-matched flagger for a radio
telescope. This is an exploratory process wherein the
user becomes familiar with the incoherent noise spectra
of their telescope. Some of the spectra features will be
due to RFI, while other features may point to subtleties

of the instrument. Once equipped with a thorough cat-
alog of sub-bands to search, the user may process large
amounts of data in an automated way. To exemplify

9 See Loi et al. (2016) and citations therein for other uses of
this type of altitude estimation

https://github.com/EoRImaging/FHD
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what can be attained from this process, we summarize
the RFI occupancy analysis for the data used in the EoR
limit presented in Barry et al. (2019b).

5.1. Exploring the Data and Developing a
Frequency-Matched Flagger

The first step to applying ssins to a dataset is acquir-
ing the software. It is implemented in python along
with a comprehensive set of unit tests. It is publicly
available on GitHub10, where the user will also find in-
stallation instructions including the list of dependencies:
pyuvdata11, numpy, scipy, six, h5py, pyyaml, as-
tropy, and optionally matplotlib. There are tutorials
and other documentation available12 with simple usage
examples for getting started.

After becoming familiar with the software, the next
step is to examine the data, typically by hand, with-

out attempting to use the frequency-matched flagger.
While going through a survey of observations baseline
by baseline in a modern radio telescope would be unten-

able, ssins compresses the data of each observation into
two dynamic spectra per polarization: a raw incoher-
ent noise spectrum and its mean-subtracted form. It is

useful to look at both forms of the spectra side-by-side,
particularly if narrow RFI is expected. In this way, an
entire season of observations can be examined in short
order.

While features in the incoherent noise spectra may
correspond well with known factors in the RFI environ-
ment, it is also likely that ssins will reveal RFI and

even other instrumental features that had not been pre-
viously observed or considered. As the user catalogs
the various characteristics of the data, they can build
a dictionary of different sub-bands or single frequencies

that appear commonly occupied. These occupations,
regardless of their physical cause, can be input into the
frequency-matched flagger settings. For example, some
faint features in HERA incoherent noise spectra were
later found to correspond with correlator malfunctions,
some of which had been previously identified in other
cases through other means. While technically this was
not RFI per se, it was a feature that could be identified
and removed with ssins.

Once the set of identifiable contaminants has been col-

lected, the frequency-matched flagger can be deployed
for a first round of flagging. The frequency-matched
flagger is very quick. A 2-minute, 30 Mhz MWA spec-

10 https://github.com/mwilensky768/SSINS
11 https://github.com/RadioAstronomySoftwareGroup/

pyuvdata
12 https://ssins.readthedocs.io/en/latest

trum can be flagged in less than a second, while a 10-
minute, 100 Mhz HERA spectrum that is significantly
more contaminated typically takes between 20 and 60
seconds. As with the initial inspection, the results of the
frequency-matched flagger can be quickly ascertained
by eye. Oftentimes, fainter RFI than could be initially
seen in the noise spectra is unearthed as the frequency-
matched flagger iterates. Of course, the user will wish
to add these to the dictionary of occupants. If no more
identifiable sub-band occupancies are revealed, one may
wish to adjust the parameters of the flagger, such as the
significance threshold. This iterative process of data ex-
amination and deep cleaning is often illuminating.

5.2. Results with a Season of MWA Data

The ssins package itself was developed and tested in
the manner described above using a season’s worth of

data from 2013. This same dataset was used for the
EoR power spectrum limit featured in Beardsley et al.
(2016) as well as Barry et al. (in revidew). Below, we
describe the filter settings for an RFI analysis of this

dataset and also summarize occupancy levels.
The data in this analysis was pre-processed with cot-

ter, which uses aoflagger to identify and flag bright

RFI. Then, ssins was run on the data in order to identify
and catalog leftover faint RFI. We used a significance
threshold of 5 and sought single sample outliers, broad-

band streaks, DTV interference, as well as the broader
DTV sub-band discussed in §3.3, all of which are oc-
cupants detailed in §3. We also completely flagged a
fine frequency channel if it ever reached an occupancy

fraction of 0.7 during frequency-matched flagging. We
present RFI occupancy for the season in Figure 11, sum-
marizing total RFI occupancy as seen by ssins after

aoflagger as well as DTV occupancy. Such figures
can be used to pick out particularly bad days from the
season and search for patterns in time.

The occupancy data from ssins was used to make data
cuts for the sake of improving the EoR limit in Barry
et al. (2019b). We did not reflag the data using ssins,
but instead just used its outputs to develop quality met-

rics for observations. Ultimately, we cut all observations
with any trace of DTV as well as all observations with
greater than 40% occupancy. We found that this im-
proved the limit despite removing roughly 1/3 of the
observations originally included.

6. DISCUSSIONS AND CONCLUSIONS

We have described the ssins RFI detection algorithm
in detail. The substantial sensitivity boost afforded by
the incoherent average over the baselines allows for de-
tection of faint RFI that escapes other high-performing

https://github.com/mwilensky768/SSINS
https://github.com/RadioAstronomySoftwareGroup/pyuvdata
https://github.com/RadioAstronomySoftwareGroup/pyuvdata
https://ssins.readthedocs.io/en/latest
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Figure 11. (a) A scatter plot of the total RFI occupation in a season of data as seen by ssins. (b) A scatter plot of the
DTV occupancy as seen by ssins. In each panel, each circle represents a single two-minute observation. Each line of circles is a
night of observations on the Julian Date (JD) shown on the vertical axis, while the horizontal axis gives that observation’s local
sidereal time (LST) in hours. Black circles were not found to have additional RFI after aoflagger. All observations outside
of the plotted LST range and all missing circles in a night are observations that were removed by a previous jackknife test,
detailed in Beardsley et al. (2016). In (a), the color shows the fraction of samples in the noise spectra found to be contaminated,
disregarding coarse band edges, while in (b), the color shows the fraction of times contaminated by DTV interference, regardless
of which broadcasting channels were identified. These plots provide an occupancy overview of the season, letting one pick out
particularly bad days or times of night by eye, such as the line of high occupancy observations nearest JD 2456600, which was
a day that also had many observations removed by the previous jackknife test.

single-baseline algorithms. We demonstrated its effec-
tiveness on several different types of RFI found in the

MWA EoR highband, including DTV interference. We
have implemented countermeasures for persistent RFI
with some success, but we plan to make improvements

to these detection efforts. Overall, we observe that the
increased sensitivity afforded by ssins helps us under-
stand the general pervasiveness of faint RFI.

Developing a custom ssins frequency-matched flagger

for a new RFI environment is an iterative process that
is often quite instructive. We confirmed the quality of
our own EoR highband frequency-matched flagger by

successfully imaging faint DTV reflected from aircraft
as well as successfully improving the EoR limit in Barry
et al. (2019b). To ease the development process, we have
written tutorials for basic software usage and provided
an overview of how ssins can be used in practice.

Though ssins is capable of detecting fainter RFI than
current state-of-the-art algorithms and is a general im-

provement to the field, we plan to further improve the
methodology to exploit its full capabilities. We propose
the following items as future work:

• Improved Narrowband RFI Detection: The
current implementation tends to underflag narrow-
band RFI that persists through the entire observa-
tion. An algorithm that preliminarily identifies en-
tirely contaminated channels and interpolates over

these channels during mean estimation will allow
for more complete flagging.

• Blind Sub-band Hunting: Presently, the user
must input specific sub-bands into the frequency-
matched flagger that are established from knowl-

edge of the RFI environment or a hand grading
of the data. An algorithm that searches for likely
occupied sub-band candidates would ease analysis
of extremely large data sets.

• EoR RFI Power Spectrum Shape Charac-
terization: The effect of faint RFI on an EoR
power spectrum has not yet been precisely charac-
terized. We aim to theoretically predict particular
RFI footprints in the power spectrum and then
subsequently confirm the presence of these foot-
prints in power spectra made from MWA data.

• Data Retention for EoR Limit: In Barry et al.

(2019b), we used ssins to entirely remove poor-
quality observations from the limit calculation,
rather than propagating flags from the frequency-
matched flagger to the visibilities and keeping any
remaining unflagged data within these observa-
tions. We expect the EoR limit analysis could be
more sensitive if we include remaining clean data

from previously cut observations.
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As ssins is applied to more radio projects in the future,
more possibilities for enhancements will be found. In
this light, we look forward to exploring the full capabil-
ities of the ssins framework.
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