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Abstract: When they are disrupted, complex, technical-social systems, such as maritime ports, require operators to negotiate a resilient
solution that satisfies a broad range of individual business and societal needs without compromising the long-term integrity of the system. In
order to achieve this, port operators must make complex tradeoffs among various objectives. For example, during operational disruptions, port
operators in some systems may create formal and informal procedures (i.e., protocols) to shift from decentralized to centralized decision-
making temporarily. In this context, the term port operator refers to any entity private or public operating within the port. Within this shift
from decentralized to centralized decision-making, we found two high-level heuristics, which can be categorized as feasibility and priori-
tization. Feasibility assessments are generally safety-based and tend to be very risk-averse, whereas prioritization rules allow more flexibility.
This paper explores—within an empirical context—how varying these prioritization rules define the trade-off space for vessel-move sequenc-
ing decisions. This trade-off space describes the qualitative impact of the heuristic across different industry segments. This article demon-
strates that prioritization rules can alter the recovery dynamic without compromising existing safety protocols. DOI: 10.1061/(ASCE)
IS.1943-555X.0000606. © 2021 American Society of Civil Engineers.

Introduction

The global economy is largely dependent upon maritime infrastruc-
ture to support the large volume of goods transported between con-
tinents. The US receives 45.7% by value and 67.02% by ton of its
imports by vessel (Bureau of Transportation Statistics 2018). Ports
are vulnerable to a number of threats, from malicious actors to
climate-induced challenges. In order for a port to remain a competi-
tive business entity, it must be equipped both organizationally and
physically to cope with these challenges. If the recovery of a dis-
rupted port is poorly managed, the effects can ripple throughout the
economy, causing increased gas prices, increased food processes,
shortages of consumer goods on store shelves, and potentially seri-
ous environmental hazards resulting from stressed chemical and
energy production facilities. The ability to cope effectively and
broadly defines resilience.

An important part of coping in complex social-technical infra-
structure systems is the ability to identify and manage trade-offs by
collectively processing information and directing the application of
limited resources. Systems characterized by complexity and decen-
tralized governance rely heavily on well-established strategic heu-
ristics for collaborating rather than the optimization for effectively
navigating disruptions wrought with uncertainty and sophisticated
impacts (Amodeo and Francis 2019). Andersson and Ostrom (2008)
described such governance systems as responses to collective action

problem-solving. Transportation systems, such as ports and inland
waterways, rely heavily on common use resources that must be col-
lectively managed through these governance systems. In a related
work, Dietz et al. (2003) laid out five characteristics for effective
governance: an ability to monitor the resources, gradual variation
in consumption dynamics over time, personal engagement of stake-
holders, ability to easily prevent new users, and a willingness to en-
force rules. Simon (1981) characterizes intelligent systems as ones
that are goal-oriented, adaptive, and capable of learning—language
strikingly similar to that used by resilience scholars. However,
Simon also expresses concerns about the use of optimization in com-
plex systems centered on how one defines optimal and how prob-
lems are formulated. This tension is clearly at play in the Hurricane
Harvey Port of Houston case study presented in this article. While
optimization and simulation are widely applied in the resilience re-
search literature, there exists an opportunity to study this problem
from the perspective of how real-world empirical heuristic variants
impact the quality of a response within a particular governance
framework as systems shift from decentralized to centralized gov-
ernance when disrupted (Amodeo and Francis 2019).

Semiempirical research efforts into the resilience of inland
waterways exist but tend to focus on optimization (e.g., Baroud
et al. 2014; Nair et al. 2010). These examples tend to assume high
degrees of centralization as a prerequisite for solution search and
selection. The research reported in this article is part of a larger
mixed-methods case study in which we conducted semistructured
interviews and an empirical simulation to explore these governance
dynamics (Amodeo and Francis 2019). The objective of the current
article is to contribute to the field of resilience—specifically, the
resilience of inland waterways—by exploring the contribution of
empirically identified and modeled decision heuristics used during
a recovery effort. These heuristics are the mechanisms by which a
system flexes in the face of disruption.

This article makes three specific contributions:
• First, the model of the system and heuristics is a significant con-

tribution. Previous attempts to model the recovery efforts in the
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Port of Houston never took off due to a perception of insur-
mountable complexity. While intuition remains a factor, the
model presented is capable of expanding to meet additional
requirements.

• Second, we have empirically and quantifiably explored the con-
tribution of the decision and safety protocols themselves as op-
posed to generic high-level strategies. The decision space is
constrained by the level of risk-averse rules applied. However,
modifying priorities within these safety rules produces a differ-
ent recovery quality. This contribution can help operators reas-
sess their prioritization process based on localized and current
needs while fixing safety protocols.

• Third, we have demonstrated a method for assessing the
trade-off space defined by variations in protocols in an envi-
ronment defined by common user resources. While this article
does not explicitly measure resilience, the dynamics explored
in this study are crucial in capturing the dynamics of macro-
cognitive system behaviors in future investigations in resil-
ience science.
The remainder of this paper proceeds as follows. In the next

section, a theoretical background positions the current research
in the current infrastructure resilience space. The “Method” section
provides methodological discussions. The subsequent two sections
present the model validation and numerical experiments, respec-
tively, and a discussion follows.

Theoretical Background

The concept of rebound or recovery is a popular method of defin-
ing resilience in the infrastructure field. The faster a system can
recover, the more resilient it is considered. Previous work empha-
sized the optimization of recovery times or budgets (Baroud et al.
2014, 2015; Nair et al. 2010). These works made an important con-
tribution to demonstrating the trade-offs associated with various
decisions. The optimization formulations assume a high level of
control, centralized data collection, and centralized knowledge
management that can quickly be implemented during disruption
characterized by uncertainty. The current article does not contradict
this earlier work but explores a different dynamic of the problem.
In the current context, the physical component recovery occurs ex-
ternal to the model, and the recovery decisions in question pertain
to the decision-makers operating within the constrained space de-
fined by the physical state of the system. The question at hand is not
how or when to fix assets but how operational decisions are made
once the state defined by the asset recovery decisions is made. For
example, our work might assume that the state of the waterway is
the function of recovery sequencing decisions, such as those de-
scribed by Baroud et al. (2015). Insight from the data collection
process involved with the current article indicates that the sequenc-
ing of recovery activities is influenced by demand for services, as
well as resource constraints required to quantify a required action
and position the required assets. If this is true, the recovery deci-
sions modeled by earlier authors and the processes modeled in this
study are interdependent and possibly nested processes.

The notion of robustness, as described by Woods (2015), de-
scribes how much damage a system can sustain. Our interviews
indicated that decision-makers consider the broader impacts of their
decisions but were not assessing their alternatives based solely on
economic impact as much as aiming to make the most effective
use of the waterway while treating local stakeholders fairly and
avoiding worse case scenarios that seemed plausible and likely.
While economic analysis is attractive, the issue of fairness and
avoiding worst-case scenarios (i.e., environmental) simply cannot

be overlooked as central to decision-making. Each disruption is
unique, and resilience can only be measured in the context of a
specific disruption (Haimes 2009). Therefore, it is important to
understand how the systems’ decision-making protocols interact
with the physical state of the system in order to understand how
and where to implement planning and response strategies.

In a study of the vessel traffic service in the Port of Rotterdam,
van Westrenen makes the point that resilience is designed in system
property arising from a system’s ability to make an on-the-spot
system redesign to cope (van Westrenen 2014). Van Westrenen
highlights that reorganization to manage scarce resources is a char-
acteristic of resilient control and advocates for more centralized
control of vessel management. The current article focuses on what
van Westrenen refers to as soft constraints within the abstract func-
tion. The tension between centralized and decentralized control is
referred to as the concentrated-deliberate action trade (Hoffman and
Woods 2011). However, the trade-off occurs across the spectrum of
decentralized-centralized control. A 2014 National Academy of
Science port resilience report provides an in-depth discussion on
the factors driving port operations during a recovery, descriptions
of doctrinal response frameworks, attributes of past disruptions, and
findings from stakeholder interviews covering information flow,
physical infrastructure, and regulatory considerations (Southworth
et al. 2014). The Port of Houston transitions from decentralized to
centralized governance when the system is disrupted (Amodeo and
Francis 2019). When governance structures shift, the decision-
making framework is modified appropriately. The heuristics ex-
plored in this work represent the framework for the Port of Houston
under a decentralized governance structure.

Aven (2018) argues that resilience management requires broad
qualitative assessments. This article provides an empirical demon-
stration of these broad qualitative assessments in support of resil-
ience analysis and management. When complex systems respond to
a disruption, their responses often involve the use of resources and
assets in hazardous and vulnerable situations. Therefore, the deci-
sions made during these responses must mitigate the risks of these
hazards so as to avoid further disrupting the system at its most vul-
nerable. This study demonstrates that resilient systems implicitly
integrate risk mitigation into their resilience management strate-
gies. These risk mitigation decisions can define the short term ceil-
ing on service restoration. Van Asselt and Renn (2011) make a
similar point, arguing that risk governance “pertains to the various
ways in which many actors, individuals, and institutions, public and
private, deal with risk surrounded by uncertainty, complexity, and/
or ambiguity.” They propose three principles required to manage
risk: communication and conclusion, integration, and reflection.
The current research provides an empirical investigation into
how a system self-organizes and employs qualitative heuristics that
encode broad qualitative assessments response to apply these prin-
ciples and achieve a resilient response while avoiding further dis-
ruption to the system.

Resilient systems learn from prior events and create structures,
heuristics, and formal and informal means to deal with unforeseen
challenges. This learning is part of sustained adaptability, which
Woods (2015) describes as the ability to manage/regulate the
adaptive capacities of systems that are layered networks and
are also part of larger layered networks. This ability is manifested
over longer time frames, years, or generations. Simon (1981) pre-
sented similar ideas, arguing that intelligent systems exhibit a type
of evolution by passing down knowledge through social systems
and continuously refining their heuristic. In a sense, the categories
proposed by Woods (2015) are not independent skillsets but part
of an iterative resilience management process with both near and
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long-term subprocesses. Table 1 summarizes the four concepts
posed by Woods (2015).

The present authors hold that sustained adaptability is a process
of managing the resilience value chain. System managers and
policymakers assess uncertainty and invest in physical, informa-
tional, and organizational architecture prior to a disruption. For ex-
ample, Baroud et al. (2014) explored the stochastic relationship
among the amount invested in preparedness prior to a disruptive
event, the scale of the disruptions, and the subsequent recovery.
These investments in preparedness are part of sustained adaptability
because they require both insights from past experiences while an-
ticipating potentially different challenges in the future (i.e., previ-
ously unexperienced climate change impacts). Allocating funds
to a response is driven by the particular characteristics of an event
as well as the approach the system stakeholders have adopted in
managing the recovery. However, recovery funds are limited, and
recovery strategies are interdependent. Once a disruption occurs,
the system must navigate the challenges determined by long-term
predisruption investments and near-term preparations. However,
once the immediate challenges have passed, or a new norm is estab-
lished, the systemmust modify its architecture or protocols based on
an updated understanding of uncertainty or a new priority among
trade-offs. Sustained adaptability is the management of this cyclic
process. Fig. 1 presents a process concept map depicting the

Table 1. Summary of the four concepts of resilience proposed by Woods
(2015)

Component
of resilience Description Example

Rebound The ability of a system
to recover from a
surprise or unexpected
disturbance.

A hurricane disrupts a coastal port;
stakeholders must make smart
decisions to restore capability.

Robustness Ability to withstand a
blow to the system.

A city imposes strict building
codes requiring new infrastructure
to employ earthquake-resistant
technology.

Graceful
extensibility

Ability of a system to
flex capabilities to meet
surprise or unexpected
disturbances.

A regional community stands up
an emergency response center
with additional personnel to
respond to the additional
management and information
management requirements.

Sustained
adaptability

Ability of a system to
continue to adapt over
the long term
effectively.

City planners are able to improve
their ability to internalize the city’s
collective historical experience
and new insights for improved
city planning.

Fig. 1. Process concept map describing the resilience value chain where initial uncertainty impacts decisions in the physical, organizational, and
informational architecture and protocols of a system. These, in turn, serve as the framework for a response. The assessment after the response includes
updating the understanding of the dynamics, the uncertainty, and the trade-off priorities. This triggers a process of system self-reflection and sense-
making. A system exhibiting sustained adaptability will consciously conclude this process by taking explicit steps to evolve.
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relationship between design decisions, human responses, and
uncertainty within the resilience value chain. Fig. 1 combines ele-
ments of the concept map developed by Novak (1990) with process
mapping. This process map format is not entirely new. McDaniels
et al. (2008) depicted the disaster management process as an influ-
ence diagram that mapped sources of uncertainty to decisions
before and after the event, referred to as ex-ante and post-ante, re-
spectively. The conceptual difference between the resilience value
chain presented in Fig. 1 and the model presented by McDaniels
et al. (2008) is the framing of the value chain around the four con-
cepts of robustness, graceful extensibility, rebound, and sustained
adaptability.

This article addresses how a system searches for, selects, and
implements a solution. This segment of the resilience value chain
is where a system flexes its adaptive capacity in the near term dur-
ing a recovery effort. In the context presented in this study, a flex-
ible process for collective management of a disrupted system has
evolved as the result of repeated exposures and rounds of collabo-
ration. This process not only affects the evolution of protocols but
also provides input to physical system improvements.

A key stakeholder in the Port of Houston is the vessel traffic
service (VTS) operated by the United States Coast Guard (USCG).
Praetorius and Hollnagel (2014) conducted a study of the VTS
model from the perspective of a joint cognitive system (JCS)
(Hollnagel and Woods 2005). This interview and focus group-
based research analyzed these systems across modes of control
and the following four cornerstones: monitor, respond, anticipate,
and learn. The concept of modes of control is an important lens to
assess as systems resilience. In the context of this article, the con-
trol mode most applicable is tactical, characterized by a small num-
ber of competing goals, with sufficient time, a thorough assessment
of outcomes, and an action plan based on well-established proto-
cols. These strategic control efforts are part of the resilience value
chain, with each short-term tactical control period updating the stra-
tegic control process.

Method

The current article is an in-depth case of the Port of Houston, which
applies a high-level self-organizing approach defined as core-
centric by Amodeo and Francis (2019). Davis et al. (2007) laid
out the appropriate conditions for the use of simulation in theory
building; the theory developed is simple, and the research in ques-
tion involves a fundamental trade-off or tension. The theory pro-
posed in this study is simple; given a fixed set of feasibility and
safety rules, how does varying the prioritization rule impact the
nature of the recovery. The trade-off or tension derives from the
exact nature of the prioritization rules. One set of rules may lead
to a more favorable outcome for one set of stakeholders over
another. Davis et al. (2007) require experimentation for theory
building; this is achieved by modifying prioritization rules and
comparing the recovery outcomes across several different perfor-
mance metrics to study the trade-offs.

Alderson et al. (2015) argue that a more operational approach
toward investigating and planning for resilience is required. The
current article agrees with Alderson et al. that resilience research
should rely on quantitative measures that are meaningful to oper-
ators while employing models that capture domain-specific details.
The current article meets both criteria of an operational model.
First, it measures performance quantitatively. Second, the model
is built around a decision. A slight point of deviation with Alderson
et al. is the degree of prescriptiveness in the current model. The
model in the current paper assumes that the upper bound on the

resilience of the particular system is defined by the feasibility rule
sets. Altering the priority rule sets explore the broad nature of the
recovery by studying several metrics for a diverse set of interests.
Complex systems are characterized as such not only because of the
physical complexity but because of the complex trade-offs among
the interested operators.

System operators have a well-established process, from which
they are unlikely to deviate for experimental purposes. Therefore,
simulation allows us to explore the what-if scenarios without opera-
tional risk while experimentally exploring the trade-off space. In
this paper, the authors explore the trade-off space through a sim-
ulation of responses in the Port of Houston, US, to Hurricane
Harvey in August 2017. The simulation focused on the scheduling
of deep-draft vessels into the Port of Houston along the Houston
Shipping Channel. Deep-draft ocean-going vessels require detailed
coordination for pilots and channel access, for which data was
available. This data was not available for the less coordinated barge
lanes. Therefore, this model focused only on pilot coordinated
moves. While the experimental outcomes cannot be empirically va-
lidated, they provide insights to system operators regarding the im-
pact of the prioritization rule set on the trade-offs made within the
system. The simulation relies on the elicitation of decision-making
heuristics from a few key decision gatekeepers and detailed mod-
eling of the event from historical data sources. The remainder of
this section describes the case study narrative and data sources,
while the following section describes the simulation model.

Port of Houston

The Port of Houston is an industrial hub for both the energy
and general cargo industries (Port of Houston Authority 2018).
It consists of a large variety of stakeholders and is both physically
complex and diverse in the wide range of disruptions it faces.
Disruptions range from routine fog to less occasional allisions, col-
lisions, and hurricanes. The port community has developed a guid-
ing set of principles for collaborating and making transparent
decisions during disruptions. Hurricane Harvey is one noteworthy
occurrence of these principles in practice. Fig. 2 provides a geo-
graphic overview of the Port of Houston.

Hurricane Harvey Narrative

Hurricane Harvey bore down on the Houston Area on August 25,
2017, bringing a large volume of rain and halting commerce
through the Port of Houston waterway for over a week. Although
Houston is accustomed to hurricanes and has procedures for oper-
ating under these conditions, Hurricane Harvey presented novel
challenges, including a high degree of uncertainty over the duration
and magnitude of high-velocity currents. The duration and volume
of rainfall inland resulted in dynamic shoaling conditions due to the
high-volume run-off. Shoaling is the accumulation of sediment de-
posits of sufficient quantity to alter a channel’s navigable depth.
Just prior to the arrival of Hurricane Harvey, most vessels headed
to the open ocean as a safety precaution. The main poststorm ob-
jectives were to allocate resources to validate the safety of the chan-
nel, recover navigability where required, and minimize the impact
on commerce.

In Houston, the USCG operates a vessel traffic service and is
authorized under provisions of 33 USC § 161. The VTS is employed
across the globe (van Westrenen and Praetorius 2014). In the US,
the VTS is primarily an information-sharing body with some
traffic management authority commanded by the USCG Captain of
the Port. In the Port of Houston, the VTS has evolved a unique
role. It forms the nucleus of the Port Coordination Team (PCT).
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The PCT is a roundtable of industries and agencies involved in
the safety, operation, and commerce within the Port of Houston.
Each industry-sector sends a delegate from the constituent firms
to represent its interests. At this round table, information is ex-
changed in structured ways, and recovery approaches are devel-
oped based on the needs expressed and trade-offs identified
through negotiation and compromise. The PCT can be seen as a
method for managing the revelation-reflection on perspective
trade-off (Hoffman and Woods 2011). Aside from information
sharing, the PCT serves as a forum, sharing concerns and provid-
ing new perspectives across industries.

Data Sources

The data come from four general categories: semistructured
interviews, Houston pilot historical logs, port coordination team

meeting summaries, and USACE post–Hurricane Harvey channel
surveys.

Interviews
The Houston Port Coordination Team Standard Operating Pro-
cedure states that there are 19 nonfederal members drawn from
those industries most impacted by a navigational halt in the water-
way. Federal members include USCG, USACE, and NOAA. In
this research, we conducted interviews with 12 managerial level
representatives intimately involved with the PCT process from the
relevant port sector. The interview participants are summarized in
Table 2.

Historical Logs
The Port of Houston Pilots Association provided all vessel
movement logs for the year 2017 in an excel spreadsheet of over

Fig. 2. Overview of the Houston shipping channel showing refineries, terminals, and points of interest identified during industry collaboration
meetings held during the disruption period.
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18,000 entries. Our period of interest was September 1, 2017, to
September 11, 2017, during which period there were roughly
270 vessel moves: 60% supported the chemical and petroleum in-
dustry, and 40% carried containerized or break-bulk cargo. Each
entry contains 66 characteristics per vessel move. These logs were
analyzed and used to develop the following model parameters:
• Vessel arrival times in the Port of Houston and the prestorm

queue sequence;
• Vessel commodities;
• Transit times from the sea buoy to the terminal;
• Turnaround time at the terminal;
• Poststorm inbound sequence;
• Vessel draft; and
• Indication of whether the vessel arrived empty.

Port Coordination Team Meeting Summaries, Pilot
Association Website, and Survey Data
The PCT published the minutes of each daily meeting from
September 1, 2017, to September 11, 2017, providing rich insights
into system dynamics throughout the period. Information elicited
from these notes includes the following:
• Named vessel priorities by industry and refinery where

indicated;
• A timeline for channel sounding and dredges;
• Detailed channel disruption information for named segments of

the waterway;
• Day-by-day channel depths along each segment; and
• Day-by-day listing of daylight movement restrictions along the

channel.
Complementing these notes were a set of yet more detailed

notes published by the West Gulf Maritime Association (WGMA).
These two sources allowed us to construct a network topology.
These reports were coded as followed:
• Identified named segments of the waterway; and
• Identified conditions along the segment for each day, allowing

draft, daylight restrictions, underwater obstructions, and surveys
completed or underway.
Additionally, USACE channel soundings were available online.

The soundings are publicly posted on the USACE website. In order
to create a uniform description of the surveys, the named locations
were plotted with the terminals and USACE surveys. The coordi-
nates for the terminals in the Port of Houston were extracted from
the Houston Pilot Association website. The result was a mapping of
named segments to terminals to survey areas and named segments
expressed as a topology in matrix form. Combining the surveys
with the terminals and named areas, the authors developed a day-
by-day depiction of the state of the waterway that captured depths

and daylight restrictions. Segments of the channels were combined
into 14 unique paths. Each path was identified by the path’s termi-
nal segment.

Simulation Model Design and Implementation

There are two main components to the simulation modeling effort:
the physical model and the decision-making heuristics.

Physical Model

The physical component entails modeling the topology of the net-
work, which describes the movement constraints each day. The
physical model is composed of a series of matrices. Because ves-
sel movement decisions were made on roughly an hourly basis for
11 days, there are 264 decision periods. This is described as a
24 × 11 matrix in which each entry represents a decision period.
This matrix was populated with empirical data, using the actual
number of vessels moved within each hour from the historical
pilot logs. These hourly moves are a function of channel feasibil-
ity and the time involved with transiting and boarding a queued
vessel. The number of vessels moved in a particular hour is de-
pendent upon a large number of factors and could not be modeled
as a variable in the context of the current study. Therefore, the
constraint for feasible vessel moves per hour was parameterized
with the observed data, which is a known feasible and reasonable
realization of the dynamic. The next input matrix mapped indi-
vidual segments of the waterway to recovery days in which
the values represented the channel depth on a given day. A binary
matrix was created to describe daylight restrictions for a segment
on a given day.

The interviews revealed one important part of the system’s
physical structure that could not be modeled effectively due to
the lack of detailed information. Harbor tugs play a critical role
in maneuvering vessels into a berth. Under normal circumstances,
tugs are a constraint due to their limited number and specialized
requirements. Prior to Hurricane Harvey’s landfall, the harbor
tugs were dispersed through the port to spread the risk of their
poststorm unavailability. The availability of the tugs factored
into the feasibility of individual vessel moves. In the absence
of reliable information on tug locations, we assumed sufficient
tugs to support a selected move. This underlines the challenges
of modeling decisions in these systems. In reality, these decisions
are part of an interdependent set of decisions, such as vessel
sequencing, dredger location and dredge sequencing, tug location
decisions, and sounding sequence decisions. As shown by the

Table 2. Summary of port operator interviews conducted within the Port of Houston

Industry sector Role

Petroleum terminals Terminal manager that stores and transships petroleum and chemical products for multiple factories.
Container shipping lines Manager responsible for coordinating vessel arrival and loading/unloading.
Pilots association Gatekeepers responsible for driving vessels within the port and keeping the port safe.
Chemical shipping lines Manager responsible for coordinating vessel arrival and loading/unloading.
Chemical terminals Represents explicitly chemical terminals and shipping interests.
USACE Manages the efforts to sound and dredge the channel.
United States Coast Guard Manages the vessel traffic service.
Texas general land office Provides spill response and environmental assessment.
Harbor tug Coordinates with pilots and vessel agents to maneuver vessels in and out of berths.
Petroleum maritime manager Coordinates the arrival and shore side support for petroleum vessels.
General cargo terminals Port of Houston (publicly-owned) container terminals.
Refinery economics manager Makes decisions impacting the production and operations state of the refinery that inform internal

vessel priority assessments.
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decision to disperse the tugs in Hurricane Harvey, the uncertainty
surrounding the final characteristics of a disruption makes de-
tailed planning a real challenge. For this reason, the model only
focuses on the vessel sequencing decision but recognizes that a
feasibility rule for tug availability is possible given sufficient
information.

Across all the interviews, there was a general agreement that
refineries typically rank as a high priority to avoid risky shutdowns,
known as thermal cycling. Refineries keep operational data closely
held, so it is difficult to ascertain from publicly available data
the degree to which refineries curtailed operations. The Energy
Information Agency’s Division of Energy Infrastructure Security
and Energy Restoration published daily event reports for the dura-
tion of Hurricane Harvey and its subsequent recovery. While a de-
tailed understanding of refinery operational status could not be
developed, news reports combined with vessel movement data
and the meeting minutes indicate that refineries in Houston were
receiving maritime support as early as September 1st and ramping
up around September 4th.

Decision Model

Port Coordination Team
The Port Coordination Team is an open stakeholder body that
convenes for information sharing and coordination across industry
and agency boundaries during disruptions. Interviews revealed the
PCT often discusses vessel movement priorities, and an interest-
ing dynamic was repeatedly and consistently described. From in-
terviews, it was revealed that industry stakeholders are willing to
accommodate a competitor’s immediate requirement to avoid a
refinery shut down or similar emergency at the expense of their
own fewer pressing needs. This is achieved through a process of

communal vetting, enabled by trust and information sharing.
However, all vessel movements are constrained by safety rules
imposed by the USCG and the Houston Pilot Association. As
one interviewee stated, these organizations represent regulatory
control and operational control, respectively. Fig. 3 shows the ba-
sic pilot safety protocol, with a generic prioritization subprocess.
There are three parts to this process. In the first part, individual
firms feed their priorities to their industry representative/advocate
on the PCT. According to the pilots, the most critical reasons for
requesting priority are a crew member health emergency, a refin-
ery in danger of shutting down, low fuel levels on a vessel, and the
risk of perishable cargo spoilage. Next, the pilots determine the
feasibility of a vessel based on safety protocols and professional
judgment. Finally, the pilots prioritize vessel moves while at-
tempting to accommodate stakeholder identified and vetted prior-
ities. The pilot’s goal is to maximize waterway usage while
maintaining fair and transparent decisions.

The PCT convenes after representatives from each industry sec-
tor have collected the requirements of their constituency and vetted
the request as viable and valid. The system can be viewed as a series
of gatekeepers: the industry gatekeepers responsible for collecting
and advocating individual firm demands, the system gatekeepers
responsible for regulating and determining the physical constraints
on the system, and the final arbitrators of the decision. Under this
framework, firms share sensitive operational information that they
otherwise would not share. A baseline heuristic was constructed
from these interviews.

As we can see from the general process detailed previously, the
risk analysis mitigation protocols constrain the vessel sequencing
decision problem. The uncertain state of the channel and the haz-
ards associated with vessel characteristics informs the recovery pro-
cess and resilience management.

Fig. 3. High-level process description for determining vessel moves. The subprocesses are an in-depth set of rules that can be modified. The prior-
itization subprocess emphasized is the focus of this article.
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Baseline Nonrandom Decision Heuristic (BNR)
Based on the 13 interviews and study of the various primary sour-
ces, a baseline heuristic was extracted. The heuristic was then mod-
eled as a simulation implemented in MATLAB version R2019a that
ran for 264 decision periods. Fig. 4 describes the heuristic elicited
from the experts within the system.

Model Validation
Model validation determines how close the baseline heuristic rep-
licates the observed sequence of vessels. Because this is a model
of a one-time event, it was not possible to test the heuristic re-
peatedly on numerous real-world events. Therefore, an alternate
method was required. The sequence of vessel moves represents a
vector in n-dimensional space, where n is the number of vessels
requiring inbound movement (in this case, 255 vessels). The co-
ordinate along each dimension is the order of each vessel in the
sequence. In order to measure the proximity of the simulation to
the observed sequence, the l1-norm shown in Eq. (1) was used at
the distance measure, which is similar to the hamming distance in
this case

Distance ¼
X

i

jxij ð1Þ

The l1-norm is used as the distance measure because it is
the least sensitive measure to extreme deviations from the observed
value.

This norm is the sum of the absolute value of deviations between
each vessel observed and the simulated rank. The distance is scaled
by the maximum possible distance between the observed vector
and some theoretical maximum distance vector. The configuration
of this maximum distance was determined using the following op-
timization problem. The maximum possible distance between the
observed sequence and some theoretical furthest point in the 255-
dimensional spaces is 32,512. All distances are divided by the
maximum possible distance to create a relative distance value.

Maximize

Xn

i¼1

Xn

j¼1

xi;jðjpj − vijÞ

Subject to
• xi;j Binary

•
X

i

ðjpj − vijÞ ¼ 1 ∀ j ∈ J

•
X

j

ðjpj − vijÞ ¼ 1 ∀ i ∈ I

where xi;j = decision variable indicating whether vessel i occupies
position j of the theoretical vector; vi = parameter indicating the
observed position of a vessel i; and pj = parameter indicating a
potential position a vessel could occupy in a theoretical vector.

The calculated distance is divided by the maximum distance that
results in a relative distance value between 0 and 1. For example, a
value of 0.2 means that a simulated vector has a distance from
the A.

The linear integer program was used to find the coordinates in a
255-dimensional space that maximized the distance from the ob-
served vector. The distribution of the distances from the observed
vector is bound between 0 and the solution objective value of this
program. Dividing all distances by the maximum distance creates a
relative distance bound between 0 and 1, therefore allowing for dis-
tribution with lower and upper support to be fit.

The baseline model includes no randomness. However, two al-
ternate versions of the baseline are developed that introduce ran-
dom elements. The validation method determines whether the
baseline model with the expert elicited prioritization rules outper-
forms a random prioritization. The two comparative models are de-
scribed subsequently. The choice of the modifications is designed
to test two important aspects of the baseline: sequencing by arrival
time and sequencing by cargo category.
• Random Feasible First (RFF): The RFF maintains all the fea-

sibility rules as the baseline model but randomly selects one ves-
sel at a time for movement in the current period from the feasible
set. Each selection redefines the feasibility space for subsequent
selections in that decision period by prohibiting multiple selec-
tions to the same terminal within a period. Unlike the baseline
heuristic, this heuristic does not prioritize system identified pri-
orities based on the following commodity categories.

• Baseline randomized within cargo (BRC): This heuristic is
nearly identical with the baseline heuristic; however, rather than
selecting identified priorities by the arrival date within the hier-
archy of commodities, it maintains the cargo prioritization and
hierarchy but randomizes vessel selection within each category.
These two heuristics allow us to validate two aspects of the

model. The RFF heuristics provide insight into whether the com-
modity prioritization in the baseline model is meaningful. The BRC
heuristic provides insight into whether the arrival time component
of the prioritization is captured. Each random heuristic was run for
100 replications. To compare the random processes, the Wilcoxon
Rank Sum test of the empirical cumulative distribution functions
was conducted, and a visual comparison of the nonrandom baseline
process to the random processes was made. The results shown in
Fig. 5 indicates the nonrandom baseline model deviates least from
the observed sequence and, therefore, adequately captures the real-
world dynamics.

Throughout the interviews, there was a prevailing sentiment that
certain industries received priority consideration. Vessels are broadly

Fig. 4. Baseline decision heuristic.
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Fig. 5. Comparison of the empirical cumulative distributions of the relative distances for the two randomized validation heuristics and the single run
of the baseline nonrandom. The Wilcoxon-Rank Sum test indicates that the two random processes have different medians. The baseline randomized
model outperforms the random feasible first model in terms of its relative deviation from the observed. The nonrandom baseline outperforms the vast
majority of the randomized process, indicating that both commodity prioritization and arrival time prioritization are important dynamics captured by
the baseline model.

Fig. 6. Cumulative distribution functions that show the average deviation in the delay for each replication and each of the designated categories.
The deviation is the elapsed time in hours between the arrival and the time a pilot arrives on board. Each empirical cumulative distribution function is
shifted by the observed average delay observed.
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categorized into those carrying energy and chemical products and
those carrying general cargo. The energy and chemical industries
are closely interrelated; they use many of the same terminals, and
many of the products are derived from related refining processes.
General cargo includes both breakbulk cargo and containerized
cargo. Based on these general categories, we assessed the average
delay time for each category for each replication. Additionally, we
assessed the delay for each category for those vessels identified as
urgent priorities. Fig. 6 demonstrates how each process varies in
the delay time as a deviation from the observed delay time. A failure
to reject the null hypothesis in the Wilcoxon-Rank Sum test is an
indication that the heuristics perform at approximately the same
level.

The aim of the validation is to demonstrate that the baseline
model captures the behavior and dynamics exhibited by the system
during the real event. There are some operational factors impacting
the decision that were not captured at the time of the event, and
there is a significant amount of professional judgment that goes
into these decisions. However, the previous analysis shows that
the baseline model deviates significantly less than the random fea-
sible first model and slightly less than the baseline randomized
model, which randomizes only within the commodity category.
This indicates that the priority given to the arrival time and com-
modity is important and captured by the model. The assessment of
the model, based on the deviation between simulated and observed
delays, also indicates that regardless of urgency and commodity,
most vessels are moved within 1–2 days of the observed movement
date. The combination of sequence and simulated timing supports
model validation.

One of the interviewees asserted that sequencing decisions were
made to optimize the use of the waterway. While the idea of best or
optimal was not strictly defined, terminal utilization did arise as an
important concept in several interviews. Therefore, terminal utiliza-
tion was calculated based on both observed and simulated results.
The utilization rate is defined as follows:

Uh ¼
Th

Th þ Sh
ð2Þ

where Uh = utilization rate of terminal h; Th = total time a terminal
was occupied; and Sh = total time terminal h was unoccupied while
there was a vessel waiting for or transiting to that terminal.

This method of calculating terminal utilization mitigates the risk
of penalizing terminals that have low demand or did not receive
demand until the later periods because a terminal only accrues
unutilized time when it is unoccupied and has a vessel waiting to
arrive. The baseline and randomized validation variants all showed
deviation from the observed terminal utilization. However, the base-
line model and BRC model performed similarly to each other and
significantly better than the RFF model, as shown in Fig. 7.

In navigating a solution to the vessel sequencing problem,
the stakeholders and final decision-makers work through a com-
monly understood framework. Across the interviews, there was a
common, albeit informally, articulated understanding of the pro-
cess for sharing information and making decisions. In the next
section, we will demonstrate how the trade-off space across indus-
tries can be assessed and defined by studying alternate decision-
making heuristics.

Numerical Experiments

Decisions to move vessels are made on a very short time horizon.
The pilots take into account explicitly stated priority demands, the
state of the waterway, tug availability, other factors (such as pro-
fessional judgment), and the physical location of a vessel awaiting
inbound movement. Once these inputs are on hand, they create an
updated sequence, which is shared through a digital portal acces-
sible by paying port customers. The feasibility guidelines, which
are largely safety derived, are nonnegotiable for the purpose of this
study. These serve to constrain the decision space. These safety

Fig. 7. Empirical cumulative distribution of the average terminal utilization deviation between the observed and simulated processes over 100
iterations. The RFF deviates the greatest from the observed utilization.
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protocols that define the feasibility are an example of acute-chronic
responsibility trade-off (Hoffman and Woods 2011). The system
creates highly restrictive safety protocols and rarely deviates from
them, trading off short-term opportunities for the improved use of
the waterway in order to avoid the opportunity for a catastrophic
amplification of the existing disruption. The prioritization guide-
lines are the main source of flexibility. However, the system par-
ticipants place a high value on transparency in the process.
Therefore, it is important that the prioritization protocols are not
arbitrary, are widely understood, and are generally adhered to.
However, the choice of prioritization protocol may drive the
trade-offs made within the system.

Different prioritization protocols other than the one elicited are
possible, and these variations can result in different trade-offs
across industries. Several alternate prioritization heuristics were si-
mulated in the Hurricane Harvey context. Each disruption is differ-
ent both quantitatively and qualitatively. Because of this, it is
difficult to make statistical inferences about the impact of a heu-
ristic on a particular industry sector. However, if the prioritization
protocols define the trade-off space in this instance, one can pos-
tulate that it will have similar impacts of varying scales under sim-
ilar circumstances. This insight can assist decision-makers in
mitigating risk in operations (i.e., refining curtailment rates) or re-
routing (perishable cargo). The insight might also help decision-
makers realize that they have transitioned from a routine event to
a novel event and adjust their protocols accordingly (Kayes 2015).
The experimental heuristics are as follows:
• First Come First Feasible First (FCFFF): In this heuristic, the

feasibility assessment is conducted in the same way as the base-
line model; however, feasible vessels are selected in order of
their arrival date in the system. A representative from the general
cargo shipping industry expressed this as a possible alternative
that would be most fair.

• Empty Feasible Petroleum Vessels First (EFPVF): Feasibility
assessments are the same as the baseline model; however, from
the feasible vessels, all empty petroleum tankers are given top
priority, and no other vessels are treated as a priority. In the base-
line, a petroleum vessel is given priority to avoid containment
issues. However, this modification recognizes that empty petro-
leum vessels are most likely to create additional onpremise stor-
age and prevent dangerous overflows. Empty petroleum vessels
are also considered low risk.

• All Priorities Equal (APE): Feasibility assessments are the same
as the baseline model; however, in this alternative, all identified
priorities are treated as equally important and ranked in order of
their arrival date into the system. All vessels not identified as
named priorities are ranked after all named priorities. The logic
behind this alternative is that a vessel identified and elevated by
a priority must be sufficiently important to its sector, and no
sector can be considered intrinsically more important than
another.

• General Cargo First (GCF): This alternative explores the op-
posite end of the priority spectrum by prioritizing all named
general cargo vessels before petroleum and chemical cargo
vessels.

• Daylight Path Preference (DPP): It came up in some conver-
sations that pilots in applying their judgment will at times give
preference to a vessel that is traveling along a daylight restricted
path or that is restricted to daylight hours for some other reason.
While we could not identify vessels restricted to daylight hours
based on construction and cargo, we could identify daylight-
restricted paths. This alternative gives preference to vessels trav-
eling along these paths during daylight hours.

Model Comparisons

The experimental heuristics were run deterministically: a single
replication with no random elements based on observed and mod-
eled system data. The goal is to determine how varying the priori-
tization heuristic, without altering the safety protocols, defines the
trade-off space in the system. Any decision naturally includes a
trade-off that can ultimately be mapped to specific vessels, termi-
nals, and factories. However, this level of detail is not achievable
with the currently available data. Therefore, the trade-off space is
defined broadly as the aggregate impact on a specific industry and
is measured by the mean and median of the average delay time for
the vessels within an industry. Delay time is the time lapse be-
tween when a vessel contacts the pilot dispatcher and the time that
a pilot arrives on board the vessel. Terminals make their money by
managing a physical location for multimodal clients to transship
cargo across modes. To terminal operators, the ability to keep a
terminal operating and quickly transition between customers is
one of their top priorities. Therefore, a terminal utilization rate
was also evaluated.

Results

A common feature of resilience research is to ascertain the speed
of recovery. As discussed previously, the system can continue to
operate and maintain core functionality or “the persistence of rela-
tionships, rather than stability in quantitative measures of state var-
iables,” as stated by Park et al. (2013). Under normal operating
circumstances, decentralized coordination occurs through a network
of agents, vessels, terminals, and pilots. During a disruption, these
normal relationships still exist, but part of the coordination takes
place in full view of the public and with the added constraint im-
posed by the temporary controls imposed by the regulatory and op-
erational control functions manifest in the Coast Guard and pilots,
respectively. It is this temporary modification of component inter-
actions that allow for long term persistence. Under this governance
scheme, the increased level of control asserted on otherwise inde-
pendent operators affect the outcome.

Based on our numerical experiments, there are two primary
takeaways. First, the choice of heuristic used under the core-centric
self-organized system has the potential to noticeably impact the
quality of port services to be expected by industry participants.
Core-centric self-organizing is a strategy by which a sociotechnical
decentralized, under normal conditions, coalesces around a predes-
ignated but generally inactive node for coordination and collabo-
ration during a disruption (Amodeo and Francis 2019). Second, the
fact that there are marginal changes across the trade-off space in
several recovery dimensions indicates that the safety control mea-
sures significantly limit the options available to a given heuristic.
This is a high-level trade-off to carefully preserve the core function-
ality during a period of increased brittleness.

The aim of the research presented in this article is not to make
prescriptions but to demonstrate that decision-making heuristics
within the context of ongoing physical recovery impact resilience
and that these heuristics impose trade-offs that should be consid-
ered beforehand. Based on the median values of the five metrics,
trade-offs pertaining to the delay time for vessels identified as ur-
gent priority presents the most variation across heuristics. This is
true regardless of commodity. Based on Fig. 8, it seems that there is
relatively little trade-off opportunity across the heuristics. The one
notable exception seems to be the DPP heuristic, a dynamic worthy
of further exploration.

The DPP heuristic gives preference to vessels traveling along
a daylight path but preserves the baseline heuristic’s hierarchy
within this: petroleum, chemical, and general cargo vessels
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identified as a priority. Preserving priorities—but adding a control
measure to prioritize by path constraints—increases flow through
the waterway earlier on in the recovery while also increasing the
number of feasible solutions during the night hours. Fig. 9 gives
support to this postulate because the initial drop in the backlog

about 4 days into the recovery remains consistently lower than
other heuristics.

A further explanation for the increased performance of the DPP
can be seen in Fig. 10. In this figure, we can see that the DPP heu-
ristic resulted in a moderate number of terminals experiencing an

Fig. 9. Time-series plot of the backlog over 264 decision periods. The heuristic that prioritizes vessels traveling along a daylight-only restricted path
appears to have a stronger downward trend in reducing the backlog of queued vessels.

Fig. 8. Industry and commodity impact by the heuristic. Notice that the DPP heuristic outperforms on all measures and that the FCFFF and APE
heuristics have identical performances.
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increase in utilization; however, it is important to notice that those
showing a decrease in utilization experienced a small average de-
crease relative to the nearly 15% average increase in utilization for
those that did experience an increase. In the DPP, more than any
other, the increased gain in utilization dominates over those cases
with decreased utilization.

Fig. 11 reenforces this story. Starting on September 1, 2017,
the first day of vessel movements following Hurricane Harvey,
the DPP heuristics shows the steepest decline in average delay. The
DPP heuristic is unique among the other heuristics in that it has
a forward-looking element. Unlike the others, which place little
weight on future feasibility space, the DPP heuristic deliberately

Fig. 10. Radar plot comparing the percent of terminals showing increased utilization and the average rate of increased or decreased utilization over
the baseline model.

Fig. 11. Comparison of how each heuristic compared with regards to reducing the time between the time a vessel contacted the pilot dispatcher and
the time the pilot boarded the vessel. The metric of interest is the average delay for all vessels arriving on a given day.
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makes present decisions in a way that increases the size of the fu-
ture feasibility space. In the scenario currently modeled, this results
in increased efficiency of terminal utilization.

The current study demonstrated that even if the rules that define
a feasible solution set are rigid and tightly constrain the decision
set, there are high-level operational trade-offs that can be defined,
measured, and managed. The current study proved this case by cre-
ating a detailed model of a particular disruptive event and overlay-
ing two interacting subproblems: feasibility determination and a
heuristic search and selection of the feasibility space. Based on this
analysis, there are five recommendations:
• First, prioritizing purely on arrival time, as suggested by at least

one interviewee, is likely to produce a poorer solution for all
segments and urgency categories.

• Second, incorporating some form of forward-looking rules, such
as daylight path restrictions, into the prioritization hierarchy
may improve terminal utilization and rapid reduction in
backlog.

• Third, primary prioritization of a relatively low-density com-
modity category may result in poorer recovery performance
across the board.

• Fourth, systems of this scale should maintain centralized
decision-making processes for these scenarios. Furthermore,
these centralized processes should apply hybrid heuristics that
consider stated vessel priorities while leveraging information
gathering and an analytical framework to incorporate forward-
looking system states into the decision.

• Fifth, ports should adopt similar tools to the one presented in
this study to test heuristics in advance.

Discussion

The main research question this article addresses is whether or not
policies that enforce risk-averse behavior and subsystem prioritiza-
tion impact the recovery trade-off from the perspective of multiple
stakeholders. More specifically, the article studies how the trade-off
space is defined by the prioritization rules but constrained by the
risk mitigation rule set. In this in-depth empirical case study, the
empirical response of a real system to a real event was modeled.
Hypothetical alternate prioritization methods for sequencing ves-
sels within the already safety constrained feasibility space were de-
veloped and tested through simulation. While previous works have
focused on decision-making to improve and prepare the system,
this current article explores the impact of decisions nested within
the prescriptive context emphasized by other studies. This article
acknowledges that there are frontline decision-makers who are
aware of and constrained by broader recovery activities but who
contribute to recovery by continuing operations while taking the
ongoing broader recovery efforts as inputs to the short term struggle
to persist. At this level, there are trade-offs—whether they are
explicitly identified, measured, and discussed remains unclear.

The first contribution of this research is the model itself. The
modeling effort contained two parts. First, the physical model of
the system as the foundational context for decision-making is im-
portant. There are no known computational models that attempt to
model the complex port system of the Texas Gulf Coast. Certainly,
gaps remain. However, filling these gaps is feasible from a model
perspective if broad industry and in-depth industry interest become
available, along with more detailed data collection apparatuses.
However, this model serves as a baseline and proof of concept.
It is our hope that this model serves as the foundation for future
decision support tools. Second, the modeling of the decision heu-
ristics is a novel contribution. One interviewee felt that a single

heuristic could not be developed because the process primarily con-
sisted of senior stakeholders sitting around a table exchanging ideas
and developing a solution based on context specifics. However,
after interviewing multiple stakeholders, we hold that the truth lies
between a rigid heuristic and the dynamic position held by the
aforementioned interviewee. The current model has limitations,
as previously discussed, but it demonstrates that key tensions
and dynamics can be captured. Furthermore, it demonstrates that
such a model may be useful as a decision support tool to assist
decision-makers in becoming more transparent about the trade-offs
that are currently and implicitly accepted.

The second contribution is the impact of the near-term decision-
making heuristic on resilience. There are two broad levels of
decision-making that impact resilience. The highest level is the
strategic decisions regarding physical network recovery. The sec-
ond level consists of the immediate operational decisions taking
place in the constrained environment. Our findings demonstrate
that the heuristic applied to carry out the second level does involve
trade-offs that result in various degrees of resilience from the per-
spective of an individual sector perspective. The method presented
in this study would allow the system to understand the trade-off
involved with a particular heuristic on these goals. The demonstra-
tion of these trade-offs is the third theoretical contribution and can
provide insights for future prescriptive exploration.

It is our hope that resilience studies continue the efforts pre-
sented in this study by collecting data and modeling complex sys-
tems responding to real-world disruptions.

Data Availability Statement

Some or all data, models, or code generated or used during the
study are proprietary or confidential in nature and may only be pro-
vided with restrictions (e.g., anonymized semistructured interview
data): (1) vessel movement data is proprietary and cannot be made
publicly available per an agreement with the party that provided it;
(2) meeting notes and daily summaries are proprietary and cannot
be made publicly available per an agreement with the party that
provided it; and (3) simulation code can be made available upon
request.
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