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Abstract—Future advances in the medical Internet of Things
(IoT) will require sensors that are unobtrusive and passively
powered. With the use of wireless, wearable, and passive
knitted smart garment sensors, we monitor infant respiratory
activity. We improve the utility of multi-tag Radio Frequency
Identification (RFID) measurements via fusion learning across
various features from multiple tags to determine the magnitude
and temporal information of the artifacts. In this paper, we
develop an algorithm that classifies and separates respiratory
activity via a Regime Hidden Markov Model compounded
with higher-order features of Minkowski and Mahalanobis
distances. Our algorithm improves respiratory rate detection
by increasing the Signal to Noise Ratio (SNR) on average from
17.12 dB to 34.74 dB. The effectiveness of our algorithm in
increasing SNR shows that higher-order features can improve
signal strength detection in RFID systems. Our algorithm can
be extended to include more feature sources and can be used
in a variety of machine learning algorithms for respiratory
data classification, and other applications. Further work on
the algorithm will include accurate parameterization of the
algorithm’s window size.

Keywords-Sensor fusion, Machine learning algorithms, Signal
denoising

I. INTRODUCTION

The applications of Radio-Frequency Identification
(RFID) technology have grown beyond its original applica-
tions of inventory, tolling, or keyless entry into vehicles and
buildings [1]. As RFID has became ubiquitous in many of
today’s industries, its popularity has lead to many advanced
uses such as tracking of human motion, gesture recognition,
and epidermal implants in healthcare [2]. However, there are
limitations which encourage research into refining the use of
RFID beyond its original use. Foremost and subject to public
scrutiny are the challenges of privacy and overuse of RFID
technology [3]. More relevant to our paper are the physical
limitations of read range, path loss, and changes in antenna
characteristics upon contact with different surfaces, such as
the human body [4].

The main focus of this paper is infant respiratory monitor-
ing using RFID technology and knitted antennas as a strain-
gauge sensor. Fig. 1 shows our device called the “Bellyband”
worn by a medical mannequin simulator (Laerdal SimBaby)

Figure 1: The Bellyband can be seen here worn around the
Laerdal SimBaby’s waist. There are no wired connections
or additional nodes required for its function. As the torso
expands upon inhalation, the band will stretch, causing
changes in the Received Signal Strength Indicator (RSSI),
which we then use to infer breathing patterns.

used to simulate medical scenarios. The tensile characteris-
tics of knitted antennas is what facilitates the quantification
of strain on the antenna. This is possible because the strength
of a signal transmitted from an RFID tag changes as: i.)
the surface area of the antenna changes, ii.) the resonant
frequency of the antenna changes, and iii.) coupling between
the antenna and the inductively-coupled RFID chip varies.
These electromagnetic effects decrease the Received Signal
Strength Indicator (RSSI) values received from the RFID
tag [5]. Therefore, tracking the change in RSSI values allows
us to track electromagnetic changes to the antenna and infer
changes in breathing state. From there, we can compare our
predictions to ground truth data to ascertain the accuracy of
our system.

The use of wearable knitted tensile antennas for monitor-
ing of strain-gauge based activities poses its own problems
through multipath fading and electromagnetic coupling. The
desired RFID signal and multipath reflections from other
objects in the room will interfere with each other, resulting
in constructive and destructive interference and temporal
lag (i.e., multipath fading). Because a signal propagated
through RFID can be very weak, even small-scale fading
has been shown to cause significant loss in signal reso-
lution [6]. In this study, we use a second stationary, non-
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stretched reference antenna to model temporal artifacts and
the multipath fading profile of the “main” Bellyband antenna
worn about the abdomen. With this profile, we create a
time-series representing the similarity of the two signals
using the Mahalanobis distance measure, from which we
can infer respiratory activity. This algorithm can remove
non-respiratory artifacts from the Bellyband’s RFID signal,
regardless of it coming from fading or any other source.

We first use a Regime Hidden Markov Model to cluster
respirations via predicting data from the main antenna as
belonging to one of two distributions, one that contains
data where the Bellyband is stretched, and another where
it is fixed relaxed. This is repeated with the reference
antenna’s signal, clustering its data points into two distri-
butions containing coupled and non-coupled data. Using a
Markov Chain Monte Carlo (MCMC) we then perform a
Metropolis random-walk [7] to further refine the predicted
prior distributions.

A Z-test is used in real-time to separate data points from
each antenna into one of the distributions predicted by the
MCMC. In order to compare the signals received from each
antenna with respect to time, they are sampled by a sliding
window. Because of the non-tethered nature of a passive
wearable textile-based sensor, this also has the potential
to detect and remove mechanical artifacts like a person
ambulatory during monitoring.

II. RELATED WORK

A. Respiration Monitoring

The invasive nature of respiratory monitoring methods can
be limiting in specific medical contexts where ambulatory
patients cannot be tethered to electrodes or a CO2 moni-
toring apparatus. The use of masks, belts, or nose pieces
can also be disturbing to the subject resulting in deviation
from the normal tidal volume or respiratory rate of automatic
breathing [8], [9]. For example, the use of belts for the
detection of sleep apnea has similar obtrusive effects due to
restriction of a patient’s breathing or loosening of the belt if
there is movement during sleep [10]. The use of a wearable
tensile antenna rectifies many of these issues by utilizing
RFID backscatter signal strength and the measurement of
strain-gauge movements to detect respiratory artifacts. This
provides comfort and allows a patient to be ambulatory.

B. RFID for Biomedical Sensing

Many studies have proposed novel approaches to the use
of RFID technology. To alleviate discomfort of patients and
increase reliability of sleep apnea diagnosis, an experimental
contactless ultra-wide band system is being developed [10].
We have previously applied RFID technology to detection
of sleep apnea [11], uterine activity during labor [12],
monitoring of heart rate [13], and management of Deep
Vein Thrombosis (DVT) [14]. We have previously proposed
a sensor-fusion framework for the reclassification of data

misclassified by a single main antenna for the detection of
sleep apnea [15]. However, in this study we aim to expand
upon a data fusion setup to denoise a signal and facilitate
the prediction of respiratory artifacts with greater accuracy.
With this sensor-fusion framework, we can also identify and
remove data transmitted from the reference antenna when
it is coupled to the main antenna. These RFID applica-
tions overcome limitations due to the physical properties
of RF transmission from passive RFID tags. Some studies
aim to increase the accuracy of interrogating backscatter
signals [16], [17]. One study analyzes other RFID signal
features such as channel state information, which could be
used in our future work [18].

C. Deep Learning

Deep Learning is a popular mechanism used to denoise
RF signals via residual learning. Deep Learning methods
estimate the denoised signal by adding a white Gaussian
noise channel and Rayleigh fading channel effects [19]. An-
other use of Deep Learning is convolutional autoencoders,
which are trained to find a deep embedding for data inputs
by repeatedly convolving the data with a random process.
Specifically, one study [20] removed noise contamination of
signals via unsupervised convolutional autoencoders. These
autoencoders significantly improved signal-to-noise ratio
without any prior knowledge of the model.

Other research [21] has leveraged channel state informa-
tion and Principal Component Analysis to denoise extracted
features. These researchers used a mean filter to remove
most noise, but it also removed significant details relating
to accurate information. A low-pass Butterworth filter also
removed noise, but had slow fall off. There has also been
some research in leveraging radio frequency channel fluctu-
ation for activity recognition. The velocity of an entity was
estimated by analyzing the RSSI pattern of the moving node
and exploited the fluctuation in the time evolution of the
strength received of the signal [22]. Another approach for
denoising RF data applies a non-local approach that exploits
redundancy in the signal and uses a weighted average of
the most similar components [23]. The proposed approach,
Coherent Denoising for Elastography (CODE), had superior
results to its competitors (i) GLobal Ultrasound Elastography
(GLUE) [24], and; (ii) Dynamic Programming Analytic
Minimization elastography (DPAM) [25].

III. APPROACH

A. Overview

Each stage of our proposed algorithm is captured in Fig. 2.
These stages include: i.) input of two RF channels, ii.) state
classification and separation, iii.) sliding window processing,
iv.) high-order feature extraction, and v.) sensor fusion with
Mahalanobis distance. Lastly, the SNR and accuracy of rate
estimation of our input and output signals are measured and
compared to quantify the increase in signal quality.



Figure 2: Outline of each processing step of the algorithm.

At the input level, two RFID features are read from our
sensor framework for each tag interrogation: RSSI values
and the Doppler shift. We compute the tag velocity by
observing the change in Doppler shift with respect to the
interrogation frequency and interrogator antenna gain [17].
The RSSI values represent the change in electromagnetic
properties of the main antenna and velocity represents non-
respiratory movement, which can be used to discern and
remove incidental movement of the wearer.

For each antenna, a Regime Hidden Markov Model pre-
dicts two hidden states [26]. A Metropolis random walk is
performed using a Markov Chain Monte Carlo (MCMC) to
refine the predicted distributions describing these states [7].
With a Z-test, RSSI and velocity data from each tag are
then separated. Each data point is grouped into one of

the distributions predicted by the MCMC, which describe
stretching or fixed relaxed states for the main antenna and
coupled or non-coupled states for the reference antenna.
With this application, the Mahalanobis distance [27] is
computed between the main antenna and reference antenna
distributions within each sliding window and interpolated
over the entire data set.

RSSI values are discrete in nature, and with noise effects
included, respiration would lead to only small changes
in RSSI amplitude. Because of this small dynamic range,
signals can have very low resolution, resulting in a high
covariance between the two distributions being measured.
The Mahalanobis distance requires the inverse (2x2) co-
variance matrix of these two distributions; if the covariance
is too high, the distribution matrix will be singular and an
inverse matrix cannot be computed. To mitigate a singlular
matrix, a windowed Minkowski distance [28] is added
is a higher-order feature as outlined in Section III-D to
decrease covariance. However, in case a singular matrix is
still encountered, the identity matrix is used instead of its
inverse.

Calculating a windowed Mahalanobis distance with the
three signal features illustrated in Fig. 4 and interpolating
over the data set outputs a final “denoised” signal. We quan-
tify the increase in breathing signal quality by calculating
and comparing the Signal to Noise Ratio of the raw input
and final transformed signals.

B. State Classification using Switching HMM and MCMC

Since the two RFID tags may be coupled due to close
proximity, a Switching Hidden Markov Model (Switching

Figure 3: A plot illustrating the separated states of the main
antenna in comparison to its input signal. The highlighted
segments of the input signal are those that correspond to one
of the antenna’s two states.



HMM) and Markov Chain Monte Carlo (MCMC) are lever-
aged to predict two distributions representing an estimated
grouping of the data points from the main antenna corre-
sponding to respiratory activity and data points correspond-
ing to non-respiratory pauses between breaths (“noise”). The
distribution with a lower mean, implying the main antenna
is stretched and out of phase with the interrogator, represents
stretching (“inhaled”) data. The distribution with a greater
mean, implying the main antenna is resting and in phase,
represents fixed-relaxed (“exhaled”) data. A Z-test is then
used to classify each point in time as belonging to one
distribution or another. This separation is illustrated in Fig. 3.
This classification is repeated with the reference antenna,
classifying data into coupled and non-coupled distributions.
Data points belonging to the reference antenna’s coupled
state are then ignored to mitigate coupling between the main
and reference tags during wearer movements.

The Switching HMM uses a semi-unsupervised approach,
initialized with 30 seconds of data assumed to contain
respiratory data. The respiratory rate is not provided to the
Switching HMM and instead it searches for neighboring
clusters of data belonging to either of its hidden states.
Following classification, we predict which distributions rep-
resent the main antenna’s stretching or fixed relaxed states,
and the reference antenna’s coupled or non-coupled states.
The data points of each antenna are classified as belonging
to one of these hidden states by estimating the means and
standard deviations of these “hidden” distributions [26].
Once the distributions are estimated, gradient descent and
maximum likelihood estimation are combined to identify
probabilities of a data point being assigned to a given class.
Gradient descent is then able to find a point of convergence
within the Switching HMM. The distributions estimated by
the Switching HMM are then used by the MCMC to perform
a “random walk” to converge to an accurate representation
of the distributions that correspond to each of the antenna’s
states without needing to train on a large data set.

C. Sliding Window Processing

The prediction process is iterated over both the main
and reference antennas. The features of each predicted
distribution are then handed to a Z-test which assigns each
point in time to one antenna or the other, for each respective
signal. The signal from the main antenna now only contains
stretching state data, and that of the reference antenna only
contains non-coupled state data; we now consider only
these two signal distributions. Timestamps are preserved to
maintain temporal alignment of these two signals. Once each
point is attributed to one distribution or another, we apply
a sliding window of size n (one quarter of the estimated
respiratory rate) and a stride k = n

4 to sample data from the
two distributions of interest.

D. High-order Feature Extraction with Minkowski Distance

After separating RSSI and Doppler values into two dis-
tributions, the windowed Mahalanobis distance measures
between the two distributions fails because of a high co-
variance between the main and reference antennas when a
low-resolution signal is present. The Minkowski distance
(Equation 1) is a metric in a normed vector space that
can be considered a generalization of both the Euclidean
(order 2) and Manhattan distance (order 1) [28]. We set
the order h to 20 for the Minkowski distance to increase
its concentration leveraging Chebyshev’s inequality [28].
The Minkowski distance apart from the supremum distance
(Chebyshev distance) can also be represented as a multi-
ple of the power mean of the component-wise differences
between the two entities.

d(i, j) =
h

√
|xi1 − xj1|h + |xi2 − xj2|h + · · ·+ |xip − xjp|h

(1)
Because there is only one value per window instead of

a time series, these values aren’t immediately appended to
their respective windows. Instead they are placed in the
exact point of time where the window begins with respect
to the whole data set. A linear interpolation of these discrete
points seen in Fig. 4 is then calculated. The same windowed
sampling algorithm as before is applied to these time series
and then combined with the existing windows.

E. Mahalanobis Distance

Once we have increased the dimensionality, these win-
dowed distributions no longer have high covariance and can
be used in the Mahalanobis distance measure. This measure
outputs an N × N matrix where N is the length of the

Figure 4: A plot of the three features of the main antenna’s
signal used for the Mahalanobis distance: i.) RSSI in dB,
ii.) Velocity in m/s, iii.) Minkowski distance.
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windowed distributions being compared. To output a single
distance measure we take the Euclidean distance of the
diagonal of this output matrix, which then represents the
number of standard deviations the two distributions are from
each other. Low deviation indicates similarity of the main
and reference signals.

We use the Mahalanobis distance (Equation 2) to compute
the distance between an observation in the main signal and
the concurrent observation in the reference signal. Note
that −→x is an n-dimensional observation, −→rµ is the mean
of the n-dimensional reference distribution observations,
and S is an n × n covariance matrix of the main and
reference distributions, where n is the dimensionality of each
distribution.

DM (−→x ) =
√

(−→x −−→rµ)S−1(−→x −−→rµ)T (2)

For each window, we compute the covariance matrix S
of the reference and main distributions. We calculate the
Mahalanobis distance DM for the distribution x in the main
window against the distribution rµ in the reference window
and the covariance matrix S. Subtracting the distributions
and multiplying by the inverse covariance matrix yields
the number of standard deviations squared between every
observation in both distributions, an N × N matrix. The
square root of the diagonal of this N × N matrix yields
the final Mahalanobis distance between the two windowed
distributions.

IV. EXPERIMENTAL SETUP

A. Channel Emulation Hardware

We construct a channel emulation board (Fig. 5) that
allows us to emulate wireless channels in a wired and
controlled setup without the need of reader and tag/sensor
antennas [29]. The emulation board is a 30 mm×21 mm×
1.5 mm FR4-based PCB (Printed Circuit Board) structure.
A Monza R6 RFID chip is soldered at one end of the board,

and an SMA (Sub-Miniature Version A) connector is sol-
dered on the other end. The RFID chip is a balanced circuit.
In other words, the two pads of the chip are electrically
180◦ apart. On the other hand, the SMA is a unbalanced
connector with a ground conductor. A 1:1 balun (balanced
to unbalanced converter) is placed between the chip and the
connector that converts the balanced ports of the chip to
unbalanced ports, without changing the chip impedance.

We use the Echo Ridge DYnamic Spectrum Environment
Emulator (DYSE) [30] to provide time-varying channel
characteristics. Fig. 6 shows the hardware setup for dual-
channel emulation. An Impinj Speedway R420 RFID reader
is connected to a 2:1 power divider. The two output ports
of the divider are isolated from each other. As a result, we
create two independent channels; each channel consists of a
couple of RF circulators, a DYSE channel, an RF attenuator,
and one emulation board. Each circulator has three RF ports
that allow RF signals in a certain circular fashion (1 to 2,
2 to 3, and 3 to 1). This behavior of RF circulators allows
us to separate the forward and reverse channels. Since the
Monza R6 chip is passive, it is dependent on the power
from the reader for running its circuitry and communication.
The RFID chip on the emulation board accepts a fixed
amount of power coming from the reader via the forward
path and reflects the rest by modifying the chip impedance.
We observe that emulating the reverse path is equivalent
to the simultaneous emulation of both forward and reverse
paths. Moreover, the DYSE has a maximum power tolerance
around −15 dBm, which is very close to the wake-up
threshold of the RFID chip (≈ 16 dBm). We place an
attenuator on the forward path and the DYSE on the reverse.
The return signal reflected from the emulation board passes
through a DYSE channel that emulates the gain variation
of the wearable antenna. Upon passing through the separate
DYSE channels, the return signals from both RFID chips
are combined and delivered to the reader.



B. Data Collection

Our DYnamic Spectrum Environment emulator uses one
emulation board fit with a Monza R6 RFID tag for each
channel emulated. The fluctuating attenuation of signal
strength in one channel represents the RSSI activity of a
stretching Bellyband main antenna in clean experimental
conditions. The fixed attenuation in the other channel repre-
sents the “noisy” RSSI activity of a non-coupled reference
antenna under normal conditions. Because the emulation
doesn’t incorporate any multipath or temporal delay fea-
tures, we augment the emulated output signal with Rayleigh
fading. The Rayleigh fading model exhibits the effect of
interfering signals coming from all directions surrounding
the interrogator.

C. Rayleigh Fading Model

With the DYSE, one reference and two main signals
are produced at rates of 0, 15, and 30 breaths/minute,
respectively. To create a collection of viable data sets for
experimentation, these signals are iteratively transformed
with random sampling from a Rayleigh fading model which
emulates multi-path fading and temporal lag.

A two-dimensional epsilon factor ε is randomly sampled
from a Rayleigh distribution p(x, y) parameterized by the
data set’s original features and added to each data point.
Here each data point (x, y) corresponds to a pair of RSSI
and velocity values recorded at any given point in time.
This factor is normalized according to the mean of the
Rayleigh distribution µ. A noise factor C is used to scale
the introduced fading to emulate environments which induce
different levels of interference (ε = p(x,y)−µ

µ ·C). According
to its value, ε may also be displaced in time by a factor equal
to the floor of its magnitude. The resulting data point is then
rounded to the nearest discrete RSSI value. This approach
can be considered a “worst-case scenario” that would result
from the signal being received by the interrogator from all
directions.

Figure 7: The experimental setup using emulated data. The
faded signals are the input signals of Fig. 2. The main
antenna and output signals of Fig. 2 are used in the SNR
calculation.

D. Quantification

Once we compute a single-channel transformed signal, we
compare it to the raw input signal from the main antenna
using an SNR calculation. For the sake of experiment, we
isolate data with a known ground-truth respiratory rate. For
each signal, a Fast Fourier Transform is calculated and
the spectral centroid ω nearest our desired frequency is
calculated and isolated. The frequencies fbin and magnitudes
Pbin,dB of the bins immediately neighboring the desired
frequency bin k = −1, 0, 1 are used, as shown in Equation 3.

ω =

1∑
k=−1

fbinPbin,dB

1∑
k=−1

Pbin,dB

(3)

The magnitude of this frequency centroid is Psignal,dB

and the sum of the magnitudes of all other bins is Pnoise,dB.
To normalize the numerator, the magnitude of the desired
frequency bin is multiplied by the total number of frequency
bins less the three bins (k = −1, 0, 1) used to locate the
centroid (N − 3), as shown in Equation 4.

SNRdB = Psignal,dB −
Pnoise,dB

N − 3
(4)

The increase in SNR, ∆SNR, from the raw signal to
transformed signal and the final Psignal,dB are used to quan-
tify the increase in signal quality from using our denoising
algorithm. An increase in SNR without loss of Psignal,dB

would signify filtering of unwanted high-frequency compo-
nents without the loss of respiratory information. A greater
Psignal,dB would in turn suggest the transformed signal more
accurately represents the actual respiratory signal.

V. RESULTS AND DISCUSSION

With our DYSE wireless channel emulation system we
emulated two attenuating signals, one corresponding to 15
breaths per minute, and the other 30 breaths per minute,
each for 60 seconds. A 60 second, 0 breaths per minute
signal is emulated and added to each data set as the reference
antenna’s signal. After being passed through our Rayleigh
fading model, the first 30 seconds of data are used for
classification and training by the switching Markov model
and MCMC simulation.

Fig. 8a represents the remaining 30 seconds of data that
is used as input to our Mahalanobis algorithm from a signal
with a breathing rate of 30 breaths per minute, a sampling
rate of 40 Hz, and a noise scale C = 3. The “inhaled”
stretching state corresponds to regions with lower RSSI
values. When the wearer exhales, the RSSI will then increase
as the antenna compresses and returns to its “exhaled” fixed-
relaxed state. The high-frequency components of the signal
resulting from fading decrease SNR and are what interfere



(a) Raw input signal of attenuating antenna. (b) Transformed signal.

(c) FFT of raw attenuating signal. The presence of high-
frequency components can be seen above 1 Hz.

(d) FFT of transformed signal. Unwanted high-frequency com-
ponents above 1 Hz have been filtered out.

Figure 8: The input signal, its transformation, and their respective FFTs from our emulated experimental setup with a
breathing rate of 30 breaths per minute, a window size n = 1 second, a window slide k = 0.25 seconds, and a noise scale
C = 3.

Table I: The results of each set of experiments using emulated data. Each row contains outputs averaged over 20 trials for
each value used for noise scale C. Here, Psignal,dB is the magnitude of the spectral centroid as outlined in Section IV-D,
the magnitude of which is measured in decibels (dB).

Average: Raw Signal SNR Raw Signal
Psignal,dB

Transformed
Signal SNR

Transformed
Signal Psignal,dB

Increase in SNR

15 breaths per minute, 2 second sliding window.
C = 1 22.17 dB -5.30 dB 46.75 dB 9.11 dB 24.58 dB
C = 2 20.99 dB -3.74 dB 39.30 dB -1.28 dB 18.30 dB
C = 3 20.20 dB -2.94 dB 33.66 dB -9.03 dB 13.46 dB

30 breaths per minute 1 second sliding window.
C = 1 16.57 dB -10.71 dB 26.25 dB -9.84 dB 9.67 dB
C = 2 12.98 dB -11.84 dB 30.88 dB -8.33 dB 17.89 dB
C = 3 9.80 dB -13.68 dB 31.61 dB -7.45 dB 21.81 dB

with accurate classification and prediction of respiratory ar-
tifacts such as rate, breathing state, or cessation of breathing.

Fig. 8b represents the transformed signal after being
passed through our algorithm. This signal represents the
number of standard deviations each window of attenuating
data points is from the concurrent window of stationary data
points across the N dimensions used for analysis. In this
case, the standard deviations are measured with respect to
the decibels of the original input signals. So, the output
signal itself represents the similarity of the attenuating
and stationary signals with respect to time, interpreted in
decibels.

Comparing Fig. 8b to Fig. 8a shows a large decrease in the
high-frequency components that decrease SNR and inhibit
breathing state classification. The spectral centroid of the

input signal shown in Fig. 8a has frequency of 0.484 Hz
and a magnitude of −13.29 dB, and that the output has
a frequency of 0.517 Hz and a magnitude of −6.84 dB.
With this increased magnitude and decreased high-frequency
components, we can yield a closer estimate of the desired
respiratory rate, with a change in SNR of 20.68 dB.

Figures 8c and 8d represent the two signals’ Fast Fourier
Transforms (FFTs), respectively. The spectral centroid used
in our SNR calculation of each is the point (x, y) high-
lighted in red, where x is its frequency and y its magnitude.
A logarithmic horizontal axis is used in order to analyze the
frequency bins neighboring the spectral centroid, which only
make up a very small portion of the entire spectrum. A large
decrease in the high-frequency components of the signal
can be observed between the raw and transformed signal



FFTs for frequencies greater than 1 Hz. In this regard, the
Mahalanobis distance transformation behaves as a high-pass
filter, attenuating frequency components above the spectral
centroid and increasing the SNR of the breathing signal.

In figures 8a through 8d, a sliding window length n = 1
second and window slide k = 0.25 seconds were used.
These values were chosen according to results gained by
manual testing. Because of the discrete nature of frequency
bins, decoupling of the relationship between breathing rate
and sliding window parameters results in spectral leakage.
Improper parameterization then can lead to inaccurate pre-
dictions of the spectral centroid, a decrease in SNR, and
potentially a loss of respiratory information. Therefore, we
use the current estimate of the respiratory rate to assign our
algorithm parameters over time. Table I shows results aver-
aged across 20 trials of each scenario. The raw signal is that
read directly from the main antenna, and the transformed is
that output by our algorithm. SNR values and the magnitude
of the spectral centroids are calculated for each trial then
averaged across each scenario.

For each triplet of scenarios with unique values of C, SNR
and Psignal,dB both decrease as C is increased. However, the
change in SNR tends to increase because more unwanted
high-frequency components are being filtered out of the
signal. This high-pass filtering effect of the Mahalanobis
distance algorithm can also be seen in Figures 8b and 8d.
Overall, as fading becomes a greater factor in the destruction
of the input signal, our Mahalanobis algorithm becomes
more effective, which can be seen as C is increased.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an algorithm that fuses two
RFID signals to remove multipath fading and temporal
artifacts. One signal is received from a main antenna that
transmits respiratory strain-gauge data. The other is received
from a stationary reference antenna that represents the main
antenna’s fixed-relaxed state. A Regime Hidden Markov
Model, Markov Chain Monte Carlo, and Z-test are used
to separate each signal into two hidden states. The states
identified as the main antenna’s stretching state and reference
antenna’s non-coupled state are then used for sensor fusion.

Sliding window sampling is applied to the separated data,
and a Minkowski distance is then calculated between each
window’s RSSI and velocity values. A Mahalanobis distance
is then used to measure the number of standard deviations
between concurrent windows. These windowed distances
are then interpolated over the entire dataset to output a
final denoised strain-gauge signal from the fusion of our
reference and main antennas. A comparison of the raw and
transformed signals’ SNRs are then leveraged to quantify
the improvement in signal quality. The average SNR of
all faded signals before transformation was 17.12 dB. The
average of all transformed signals was 34.74 dB (an average
improvement of 17.62 dB).

This algorithm monitors physical changes in RFID sig-
nals. Combining it with systems monitoring biological sig-
nals can lay the foundation for ML-based respiratory artifact
prediction. This can include adaptive filtering dependent
upon the breathing rate, correlation of heart and breath-
ing rates, and the detection of other respiratory artifacts.
Accurate respiratory classification by the Bellyband can be
applied to dynamic scenarios such as ventilators producing
oxygen in phase with breathing or active life-support sys-
tems. The SNR algorithm designed for this study can be
also used to quantify the increase in signal quality by other
transformation algorithms.
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