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The drift-diffusion model (DDM) is a model of sequential sampling
with diffusion signals, where the decision maker accumulates evi-
dence until the process hits either an upper or lower stopping
boundary and then stops and chooses the alternative that cor-
responds to that boundary. In perceptual tasks, the drift of the
process is related to which choice is objectively correct, whereas
in consumption tasks, the drift is related to the relative appeal of
the alternatives. The simplest version of the DDM assumes that
the stopping boundaries are constant over time. More recently, a
number of papers have used nonconstant boundaries to better fit
the data. This paper provides a statistical test for DDMs with gen-
eral, nonconstant boundaries. As a by-product, we show that the
drift and the boundary are uniquely identified. We use our con-
dition to nonparametrically estimate the drift and the boundary
and construct a test statistic based on finite samples.

response times | drift-diffusion model | statistical test

The drift-diffusion model (DDM) is a model of sequential sam-
pling with diffusion (Brownian) signals, where the decision

maker accumulates evidence until the process hits a stopping
boundary and then stops and chooses the alternative that cor-
responds to that boundary. This model has been widely used
in psychology, neuroeconomics, and neuroscience to explain
the observed patterns of choice and response times in a range
of binary-choice decision problems. One class of papers stud-
ies “perception tasks” with an objectively correct answer—e.g.,
“are more of the dots on the screen moving left or moving
right?”; here, the drift of the process is related to which choice
is objectively correct (1, 2). The other class of papers studies
“consumption tasks” (otherwise known as value-based tasks, or
preferential tasks), such as “which of these snacks would you
rather eat?”; here, the drift is related to the relative appeal of
the alternatives (3–11).

The simplest version of the DDM assumes that the stop-
ping boundaries are constant over time (12–15). More recently,
a number of papers use nonconstant boundaries to better fit
the data and, in particular, the observed correlation between
response times and choice accuracy—i.e., that correct responses
are faster than incorrect responses (16–19).

Constant stopping boundaries are optimal for perception tasks,
where the volatility of the signals and the flow cost of sampling
are both constant, and the prior belief is that the drift of the diffu-
sion has only two possible values, depending on which decision
is correct. Even with constant volatility and costs, nonconstant
boundaries are optimal for other priors—for example, when the
difficulty of the task varies from trial to trial and some decision
problems are harder than others. Ref. 17 shows how to com-
putationally derive the optimal boundaries in this case. Ref. 18
characterizes the optimal boundaries for the consumption task:
The decision maker is uncertain about the utility of each choice,
with independent normal priors on the value of each option.

This paper provides a statistical test for DDMs with general
boundaries, without regard to their optimality. We first prove a
characterization theorem: We find a condition on choice proba-
bilities that is satisfied if and only if (iff) the choice probabilities
are generated by some DDM. Moreover, we show that the drift
and the boundary are uniquely identified. We then use our con-

dition to nonparametrically estimate the drift and the boundary
and construct a test statistic based on finite samples.

Recent related work on DDM includes ref. 17, which conducted
a Bayesian estimation of a collapsing boundary model, and ref.
18, which conducted a maximum-likelihood estimation. Ref. 20
estimates collapsing boundaries in a parametric class, allowing
for a random nondecision time at the start. Ref. 21 estimates a
version of the DDM with constant boundaries, but random start-
ing point of the signal-accumulation process; ref. 22 estimates a
similar model where other parameters are made random. Ref. 23
partially characterizes DDM with constant boundary.*

Other work on DDM-like models includes the decision-field
theory of refs. 24–26, which allows the signal process to be mean-
reverting. Refs. 27 and 28 study models where response time is a
deterministic function of the utility difference. Refs. 29–34 study
dynamic costly optimal information acquisition. Alós-Ferrer
et al. show how to recover preferences from data in a random
utility model where the response time is a deterministic function
of the realized utilities (35).

Choice Problems and Choice Processes
The agent is facing a binary choice problem c between action x
and action y . In consumption tasks, x and y are items the agent
is choosing between. To allow for presentation effects, we view
c := (x , y) as an ordered pair, so (x , y) 6= (y , x ); in applications
to laboratory data, we let x denote the left-hand or top-most
action. In perception tasks, x and y are the two answers to the
perceptual question; here, x and y are held constant over all
choice problems, and d encodes the strength of the perceptual
stimulus—e.g., the fraction of dots on the screen moving to the
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left. Let C denote the collection of choice problems observed by
the analyst.

Let t ∈R+ denote time. In each trial, the analyst observes the
action chosen and the decision time. In the limit, as the sample
size grows large, the analyst will have access to the joint distri-
bution over which object is chosen and at which time a choice is
made. We denote by F c(t) the probability that the agent makes
a choice by time t and let pc(t) be the probability that the agent
picks x conditional on stopping at time t . Throughout, we restrict
attention to cases where F has full support and no atoms at time
zero, so that F (0) = 0. We also assume that F has a strictly posi-
tive density F ′> 0 and that limt→∞ F (t) = 1.† These restrictions
imply that the agent never stops immediately, that there is a pos-
itive probability of stopping in every time interval, and that the
agent always eventually stops. We also assume that each option
is chosen with positive conditional probability at each time, so
0< pc(t)< 1 for all t . We call (pc ,F c) a choice process.

Given (pc ,F c), we define the choice imbalance at each time t
to be

I c(t) := pc(t) log

(
pc(t)

1− pc(t)

)
+ (1− pc(t)) log

(
1− pc(t)

pc(t)

)
.

This is the Kullback–Leibler divergence (or relative entropy)
between the binomial distribution of the agent’s time t choice
(pc(t), 1− pc(t)) and the permuted choice distribution (1−
pc(t), pc(t)). As the Kullback–Leibler divergence is a statistical
measure of the similarity between distributions, I c(t) captures
the imbalance of the agent’s choice at time t . Note that I c = 0
means that both choices are equally likely, I c =∞ when pc

equals zero or one, and that I c is symmetric about 0.5. We define
Ī c to be the average choice imbalance,

Ī c :=

∫ ∞
0

I c(t) dF c(t),

T̄ c to be the average decision time,

T̄ c :=

∫ ∞
0

t dF c(t),

and p̄c to be the average choice probability,

p̄c :=

∫ ∞
0

pc(t) dF c(t),

and assume that all of these integrals exist. Finally, we relabel
x and y as needed, so that x is chosen weakly more often—i.e.,
p̄c ≥ 0.5 for all x , y .

DDM Representation
The DDM is commonly used to explain choice processes in
neuroscience and psychology. Throughout, we call a function
b :R+→R a boundary if it is continuous, nonnegative, and even-
tually bounded.‡ The two main ingredients of a DDM are the
stimulus process Z and a boundary function b. In the DDM rep-
resentation, the stimulus process Zt is a Brownian motion with
drift δ and volatility α:

Zt = δ t +αBt , [1]

†Many empirical applications of the DDM include an initial deterministic or stochas-
tic “nondecision time,” where no decision can be made. The assumption in the text
allows for an arbitrarily small probability of stopping on any finite time interval, which
is observationally equivalent to zero probability on any finite dataset.

‡That is, there exists b̄ and T̄ such that b(t)≤ b̄ for all t> T . The model can be extended
to allow the boundary to initially be infinite, which means that the agent never stops
in an initial interval of time.

where Bt is a standard Brownian motion, so, in particular, Z0 =
0. Define the hitting time τ

τ = inf{t ≥ 0 : |Zt | ≥ b(t)}, [2]

i.e., the first time the absolute value of the process Zt hits the
boundary b. Let F ∗(t , δ, b,α) :=P [τ ≤ t ] be the distribution of
the stopping time τ . Likewise, let p∗(t ; δ, b,α) be the conditional
choice probability induced by Eqs. 1 and 2 and a decision rule
that chooses x if Zτ = b(τ) and y if Zτ =−b(τ).

Our goal in this paper is to determine which data are consis-
tent with a DDM representation and, when they are, when the
representation can be uniquely recovered from the data.

Definition 1 (DDM Representation): Choice process (pc ,F c)
has a DDM representation if there exists a drift δc , a volatility
parameter αc > 0 as well as a boundary bc :R+→R+ such that
for all x , y ∈X and t ∈R

pc(t) = p∗ (t , δc , bc ,αc)

and F c(t) =F ∗ (t , δc , bc ,αc).

The original formulation of the DDM was for perception tasks
where the drift δc is a function of the strength of the stimulus pro-
cess in choice problem c. In consumption tasks, researchers typ-
ically assume that the drift δc equals the difference between the
utility of the two items—i.e., δc = u(x )− u(y) for all c = (x , y);
see, e.g., ref. 16. Both formulations require that the boundary
is the same for all decision problems. This corresponds to cases
where the agent treats each decision problem as a random draw
from a fixed environment.§

We are interested in characterizing which choice processes
admit a DDM representation. The following result follows
immediately from rescaling δ and b.

Lemma. If a choice process exhibits a DDM representation for
some α, then it also exhibits a DDM representation for α= 1.

We will, thus, without loss of generality normalize α= 1. We
write p∗(t , δ, b) and F ∗(t , δ, b) as short-hands for p∗(t , δ, b, 1)
and F ∗(t , δ, b, 1).

Characterization
Given a choice process (pc ,F c), define the revealed drift

δ̃c :=

√
Ī c

2T̄ c
. [3]

The revealed drift is high when the agent makes very imbalanced
choices or tends to decide quickly and is low for choices that are
closer to 50–50 or made more slowly.

When δ̃c is nonzero and (pc(t)− 1/2)δ̃c > 0 for all t , we define
the revealed boundary as

b̃c(t) :=
ln pc(t)− ln(1− pc(t))

2δ̃c
. [4]

The revealed boundary follows the log-odds ratio of the agent’s
choice at time t , which is zero whenever the agent’s choice is
balanced and increases in the imbalance of the agent’s choice.
The revealed boundary is smaller for pairs with a larger revealed
drift. In the knife-edge case where the revealed drift is zero, the
revealed boundary is not defined, and our results do not apply.
Similarly, for t such that (pc(t)− 1/2)δ̃c < 0, b̃c(t)< 0, and b̃c is
not a well-defined boundary.

We can extend the identification theorems below to accommo-
date a deterministic nondecision time by allowing the boundary

§ In an optimal stopping model, the shape of the boundary is determined by the agent’s
prior over these draws.
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to be infinite. However, if the nondecision time is stochastic, we
conjecture that its distribution cannot be separately identified
without restrictions on the shape of the boundary.

Characterization for a Fixed Decision Problem. Our first result char-
acterizes the DDM for a fixed decision problem c ∈C , and the
revealed drift and boundary will exactly match the true param-
eters. We rule out the knife-edge case, where the revealed
drift equals zero to ensure that the revealed boundary is well
defined.¶

Theorem 1. For c with δ̃c 6= 0, the choice process (pc ,F c) admits
a DDM representation iff b̃c(t)≥ 0 for all t ≥ 0 and

F c(t) =F ∗(t , δ̃c , b̃c).

Moreover, if such a representation exists, it is unique (up to the
choice of α) and given by δ̃c , b̃c .

Thus, the choice process (pc ,F c) is consistent with DDM
whenever the observed distribution of stopping times F c equals
the distribution of hitting times generated by the revealed
drift δ̃c and revealed boundary b̃c . Theorem 1 shows that for
δ̃c 6= 0, the revealed drift and boundary are the unique candi-
date for a DDM representation. It, thus, allows us to identify
the parameters of the DDM model directly from choice data.
This permits the model to be calibrated to the data without com-
puting the likelihood function, which requires computationally
costly Monte Carlo simulations. More substantially, as Theorem
1 connects the primitives of the model directly to data, it allows
us to better understand both the model and the estimated param-
eters. The estimated drift in the DDM model is a measure of
how imbalanced and quick the agent’s choices are, and the shape
of the estimated boundary follows the imbalance of the agent’s
choices over time. This interpretation makes the empirical con-
tent of the parameters of DDM model more transparent and
the model, thus, more useful. Moreover, as we show, Theorem
1 allows us to test whether the true data-generating process is
indeed a DDM.

Note that this theorem shows that the distribution of stopping
times contains additional information that is not captured by the
mean. For example, a choice process where pc(t) and T̄ c are any
two given constants is only consistent with one possible distribu-
tion of stopping times F c . A test based only on the mean choice
probability and mean stopping time will accept any model that
matches those two numbers and, in particular, will accept a con-
stant boundary regardless of how the choice probability varies
over time, thus leading to false positives.

Characterization for Consumption Tasks. Here, X is the set of con-
sumption alternatives, and each choice problem c consists of a
pair of alternatives, so, in this section we index choice problems
by superscript xy . For consumption tasks, we assume that the
order of the items does not matter. This is formally equivalent to
a condition that we call symmetry:

pxy(t) = 1− pyx (t) and F xy(t) =F yx (t) for all t ∈R+, x , y ∈X .

Definition 2 (DDM Representation): A choice process
(pxy ,F xy)x ,y∈X has a choice-DDM representation if there exists
a utility function u :X →R and a boundary b :R+→R+ such
that, for all x , y ∈X and t ∈R,

¶If the revealed drift equals zero, one needs to recover the boundary from the distribu-
tion of decision times Fc . This is an open problem in the mathematical literature. See
Choice Problems with Zero Drift for further discussion.

pxy(t) = p∗ (t , u(x )− u(y), b)

and F xy(t) =F ∗ (t , u(x )− u(y), b).

Theorem 2. Suppose that the choice process (pxy ,F xy)x ,y∈X has
δ̃xy 6= 0 for all x , y ∈X . It has a choice DDM representation iff :

1) It is symmetric,
2) F xy(t) =F ∗(t , δ̃xy , b̃xy) for all t ≥ 0,
3) b̃(x ,y)(t) = b̃(x ,z)(t) for all x , y , z ∈X and all t ≥ 0,
4) δ̃(x ,y) + δ̃(y,z) = δ̃(x ,z) for all x , y , z ∈X .

Thus, in addition to satisfying the condition from Theorem 1
pairwise, we have two additional consistency conditions imposed
across pairs. Condition (3) follows from our assumption that
the agent uses the same stopping boundary in every menu.
Condition (4) comes from the assumption that the drift in a
given menu depends on the difference of utilities—that is, δxy =

u(x )− u(y).‖

An analogous exercise could be done for perception tasks.
Here, condition (1) would be dropped, and (4) would be replaced
with a different, perhaps more complicated, condition that speci-
fies the drift as a (potentially parametric) function of the stimulus
in choice problem c.∗∗

A Statistical Test for a Fixed Pair of Alternatives
The test we give is based on comparing model predictions
with data estimates. We constructed estimators of the drift and
boundary for this test that are of interest in their own right.
Constructing these estimators was greatly aided by the explicit
formulas for the drift and boundary given in Eqs. 3 and 4. We
estimated choice probabilities nonparametrically and plugged
them in the formulas, replacing expectations with sample aver-
ages, to estimate the revealed drift and boundary. We then
simulated many stopping times using the drift and boundary esti-
mates. Simulation consistently estimated averages implied by the
model, as in refs. 38 and 39. We formed a χ2 test based on differ-
ences of the average over the simulations and over the sample of
functions of the stopping time.

Estimation of Drift and Boundary. An essential ingredient for the
drift and boundary estimators and for the test of the model is an
estimator of the choice probability pc(t) conditional on decision
occurring at time t . We focus on a linear probability estimator
p̂(t) obtained as the predicted value from a linear regression of
observations of the choice indicator data (a vector of zeros and
ones) on functions of t . This estimator will be nonparametric by
virtue of using flexible regressors that are designed to approxi-
mate any function. We consider both power series and piecewise
linear functions for the regressors.

The regularity conditions we give assume that the bound-
ary is bounded. An unbounded boundary would be needed to
accommodate a deterministic nondecision time. Unbounded-
ness is difficult to allow for in regularity conditions involving
nonparametric estimation.

To describe the estimators and the test, let the data con-
sist of n observations (τ1, γ1), . . . , (τn , γn) of the decision time
τi and an indicator variable γi ∈{0, 1} that is equal to one
if choice d is made and zero otherwise, for i = 1, . . . ,n . We
construct p̂ (t) from a linear regression of γi on functions of
G(τi), where G(τ) is a strictly increasing cumulative distribution

‖The proof of Theorem 2 follows from Theorem 1 and the Sincov functional equation;
see, e.g., ref. 36.

**Other exercises along these lines are possible. For instance, ref. 37 models consumption
tasks by an accumulator model where the item-specific signals are correlated. This
amounts to dropping conditions (3) and (4), since it is equivalent to DDM, where both
the drift and the boundary depend on x and y.
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function (CDF) that lies in the unit interval [0, 1]. Use of G(τ)

allows for unbounded τi .†† The resulting choice probability esti-
mator p̂(t) is described in detail in Appendix. Conditions for
p̂(t) to be consistent and have other important large sample
properties are given in Assumptions 2 and 3.

We estimate the revealed drift δ by plugging in p̂(t) for
pd(t) in formula Eq. 3 and replacing expectations with sample
averages. Let

Î (t) := p̂ (t)ln

[
p̂ (t)

1− p̂ (t)

]
+ [1− p̂ (t)] ln

[
1− p̂ (t)

p̂ (t)

]
,

Ī :=
1

n

n∑
i=1

Î (τi), τ̄ :=
1

n

n∑
i=1

τi .

The estimator of δ is then

δ̂ :=

√
Ī

2τ̄
.

The estimator of the boundary b (t) is obtained by plugging in δ̂
and p̂(t) in the expression of equation Eq. 4, giving

b̂(t) :=
1

2δ̂
ln

[
p̂ (t)

1− p̂ (t)

]
.

Testing. The test is based on comparing sample averages of func-
tions of stopping times from the data with simulated averages
implied by the estimators of the revealed drift and boundary. To
describe the test, let mJ (τ) = (m1J (τ), . . . ,mJJ (τ))′ be a J × 1
vector of functions of τ . Examples of mjJ (τ) include indicator
functions for intervals and low-order powers of G(τ). A sample
moment vector is m̄ =

∑n
i=1 mJ (τi)/n .‡‡ To describe the simu-

lations, let {B1
t , . . . ,BS

t } be S independent copies of Brownian
motion and

τ̂s = inf{t ≥ 0 :
∣∣δ̂t +B s

t

∣∣≥ b̂(t)}.

A moment vector predicted by the model is m̂S =∑S
s=1 mJ (τ̂s)/S . Let V̂ be a consistent estimator of the

asymptotic variance of
√
n(m̄ − m̂S ) when the model is correctly

specified, as we will describe below. The test statistic is

Â :=n(m̄ − m̂S )′V̂−1(m̄ − m̂S ).

The model would be rejected if Â exceeds the critical value of a
χ2(J ) distribution.

If J is allowed to grow slowly with n and mJ (τ) is allowed to
grow in dimension and richness as n grows, then this approach
will test all of the restrictions implied by DDM as n grows.
If mJ (τ) is chosen so that any function of τ can be approxi-
mated by a linear combination c′mJ (τ) as J grows, then the
test must reject as J grows when the DDM model is incorrect.
An incorrect DDM model will imply c′m̄ and c′m̂S have dif-
ferent probability limits for some c and J large enough. Also,
Â≥n{c′[m̄ − m̂S ]}2/

{
c′V̂ c

}
, so Â grows as fast as n . Restrict-

ing J to grow slowly with n makes the test reject for large
enough n .

†† In DDM models where b does not reach zero, decision times are not bounded, so it is
important to allow for an unbounded regressor.

‡‡The Kolmogorov–Smirnoff test uses indicator functions, but instead of the average of
m, it takes the supremum. The Cramer–von Mises test takes the sum of squares. We
look at the average of m because the target CDF we are comparing with is not fixed,
but involves estimates of the boundary and drift; ref. 40.

It is straightforward to construct V̂ using the bootstrap.
Each bootstrap replication starts with a random sample Z j

n =

(τ j1 , y j
1), . . . , (τ jn , y j

n) consisting of independent and identically
distributed observations (τ ji , y j

i ), (i = 1, . . . ,n), drawn at ran-
dom with replacement from the data observations. Here, j is
a positive integer that denotes the bootstrap replication with
(j = 1, . . . ,B), so there are B replications. For the j th repli-
cation G j

i , p̂j (t), δ̂j , b̂j (t), and m̄ j are computed exactly as
described above, with Z j

n replacing the actual data. Using
drift coefficient δ̂j and the estimated boundary b̂j (t) from the
j th bootstrap replication, S simulations τ̂ bs , (s = 1, . . . ,S), are
constructed as described above, resimulating for each boot-
strap replication, and m̂ j

S =
∑S

s=1 mJ (τ̂ js )/S calculated. For
∆̂j = m̄ j − m̂ j

S and ∆̄j =
∑B

j=1 ∆̂j/B , a bootstrap variance
estimator V̂B is

V̂B =
n

B

B∑
j=1

(∆̂j − ∆̄j )(∆̂j − ∆̄j )′.

In SI Appendix, section 3, we give another estimator V̂n based on
asymptotic theory. In simulations of synthetic data to follow, we
find that the bootstrap estimator V̂B leads to rejection frequen-
cies that are closer to their nominal values, so we recommend the
bootstrap estimator variance estimator V̂ = V̂B for constructing
Â in practice.

The test statistic is based only on the distribution of decision
times and does not involve model-choice probabilities and alter-
natives chosen in the data. This feature of the test does not
affect its power to detect failures of the DDM model, because
the choice probabilities for the estimated DDM model are equal
to the nonparametric estimates p̂(t). To see this result, note that
there is a one-to-one relationship between the revealed bound-
ary and the choice probabilities (given the revealed drift), with
revealed choice probabilities given by

pc(t) =
exp(2δ̃c b̃(t))

exp(2δ̃c b̃(t)) + 1
.

Plugging in the estimated drift δ̂ and boundary b̂(t) to this
formula gives choice probability pc(t) = p̂(t) equal to the non-
parametric estimate. Thus, the choice probability implied by
the estimated DDM model is unrestricted. The joint distribu-
tion of decision time and choice is completely characterized by
the marginal distribution of decision times and the conditional
choice probability. Nothing is lost in excluding the conditional
choice probability from the test because it is not restricted by the
estimated model.

In formulating conditions for the asymptotic distribution of
this test, we will let mjJ (τ), (j = 1, . . . , J ) be indicator functions
for disjoint intervals. Let τjJ =G−1(j/(J + 1)), (j = 0, . . . , J ),
τJ+1,J =∞. Consider

mjJ (t) =
√
J + 1 ·1(τj ,J ≤ t <τj+1,J ), (j = 1, . . . , J ).

The test based on these functions is based on comparing the
empirical probabilities of intervals with those predicted by the
model. The normalization of multiplying by

√
J + 1 is conve-

nient in making the second moment of these functions of the
same magnitude for different values of J . Note that we have
left out the indicator for the interval (0, 1/(J + 1)). We have
done this to account for the fact that the estimator of the drift
parameter uses some information about τi , so that we are not
able to test all of the implications of the DDM for the distribu-
tion of τi ; we can only test overidentifying restrictions. Also, in
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the Monte Carlo results, we left out the indicator for the inter-
val (J/(J + 1), 1). Leaving out this other endpoint makes actual
rejection rates closer to the nominal ones in our Monte Carlo
study.

We derive results under the following conditions.
Assumption 1. The data (τ1, γ1), . . . , (τn , γn) are indepen-

dently and identically distributed.
This is the basic statistical condition that leads to the data

being more informative as the sample size n grows.
Assumption 2. The probability distribution function (PDF) of

G(τi) is bounded and bounded away from zero.
This assumption is equivalent to the ratio of the PDF of τi to

G ′ being bounded and bounded away from zero. It is straight-
forward to weaken this condition to allow it to only assume that
the PDF is bounded and bounded away from zero on a compact,
connected subset of (0,1), if we assume b is constant on known
intervals near zero and where τ is large.

We also make a smoothness assumption on the boundary
function.

Assumption 3. b(G−1(g)) is bounded and s ≥ 1 times differ-
entiable with bounded derivatives on g ∈ [0, 1] and the qkK (G),
k = 1, . . . ,K are b-splines of order s − 1.

This condition requires that the derivatives of b(t) go to zero
in the tails of the distribution of τi as fast as the PDF of G(t)
does. We also require that the drift parameter be nonzero.

Assumption 4. δ 6= 0.
This assumption is clearly important for the revealed boundary

formula in Eq. 4 (revealed boundary formula). When δ= 0, this
formula does not hold, pc(t) = 1/2 for all t , and the boundary
need not be constant. Consequently, the test given here would
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Fig. 1. Boundary function estimation

Table 1. Rejection rates for test statistic

Boundary estimate 20% 10% 5% 1%

J = 5
Constant 0.172 0.078 0.048 0.014
Linear 0.216 0.104 0.042 0.012
One slope change 0.194 0.108 0.070 0.018
Two slope changes 0.224 0.142 0.080 0.030
J = 8
Constant 0.192 0.106 0.054 0.008
Linear 0.214 0.116 0.066 0.020
One slope change 0.212 0.128 0.076 0.026
Two slope changes 0.248 0.158 0.112 0.060

not be correct. Given this sensitivity of model characteristics to
δ 6= 0, it may make sense to test the null hypothesis that δ= 0.
This null hypothesis can be tested using the estimator δ̂ and
the bootstrap SE SEB (δ̂) = {

∑B
j=1(δ̂j − δ̄B )2/B}1/2. A t statis-

tic
∣∣∣δ̂/SEB (δ̂)

∣∣∣ that is substantially greater than the standard
Gaussian critical value of 1.96 would provide evidence that δ 6= 0.

We need to add other conditions about the smoothness of
CDF of τi as a function of the drift δ and the boundary and about
rates of growth of J and K . They involve much notation, so we
state them in Assumption 5.

We can now state the following result on the limiting dis-
tribution of Â for the asymptotic variance estimator V̂ = V̂n

described in SI Appendix, section 3.
Theorem 3. Suppose that Assumptions 1–5 are satisfied. Then,

for the 1−α quantile c (α, J )of a χ2 distribution with J degrees of
freedom,

P
[
Â≥ c (α, J )

]
−→α.

This test could be extended to multiple-alternatives settings
along the lines of Theorem 2, but we do not do so here.§§

Examples for Synthetic Data
To consider how the estimators and test might work in prac-
tice, we carry out some simulations where synthetic data were
repeatedly generated from a DDM model. In the DDM model,
we set δ0 = .5 throughout and set the boundary to either be con-
stant at −1 and 1. We set the sample size to be n = 1,000 in
each case. We consider three different boundary estimators: a
constant boundary estimator, where p̂(t) is the sample propor-
tion that alternative one is chosen; a p̂(t) depending on cubic
functions (1,G,G2,G3)′; and a continuous, piecewise linear
function of G , where the slope can change when G equals either
0.33 and 0.66. We repeated the generation of the simulated
data and calculation of the estimators and tested 500 times for
each case.

Fig. 1 plots the mean of and pointwise (inner) and uniform
(outer) 0.025 and 0.975 quantile bands for the estimated bound-
ary function. The quantile bands for the constant boundary are
very small because the constant boundary is very precisely esti-
mated relative to the boundaries with cubic and piecewise linear
specifications. The quantile bands for cubic and piecewise lin-
ear boundaries seem large, but are consistent with large sample
approximations, as discussed in SI Appendix. In SI Appendix, we
find that δ̂ is a precise estimator of the drift parameter for sample
size n = 1,000.

Table 1 reports Monte Carlo rejection frequencies for the test
statistic with bootstrap variance estimator. The p̂(t) either does

§§ In allowing J to grow with sample size, this result is like refs. 41 and 42.
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not depend on t or depends on piecewise linear functions of
G(t) with either no slope change, one slope change at G = .5,
or two slope changes at G = 0.33 and 0.66. We consider the
test statistic with bootstrap variance estimator V̂B obtained from
B = 250 bootstrap replications. We set J = 5 with only the mid-
dle three intervals included in the test statistic and J = 8 where
only the middle six intervals are included. Rejection frequencies
are given when critical values are chosen using the asymptotic
χ2 approximation with nominal rejection frequencies of 1%, 5%,
10%, and 20%.

For a test of level 0.10 where the rejection frequencies are
equal to their asymptotic values, the acceptance regions are
0.010 ± 0.006, 0.050 ± 0.016, 0.100 ± 0.022, 0.200 ± 0.030
for asymptotic levels 0.01, 0.05, 0.10, and 0.20, respectively. We
find some tendency of the test statistic to reject too often when
the number of intervals J is larger and the number of slope
changes is larger. In Appendix, we give additional simulation
results for J = 5 for a DDM model with an exponential bound-
ary and for a Poisson model. There, we find that the test has
good power against the Poisson model, but shows little tendency
to reject the DDM model with exponential boundary for p̂(t)
piecewise linear in G with two slope changes. We also give rejec-
tion frequencies for the test for smaller sample sizes n = 250
and n = 500̇. There, we find that the large sample approximation
remains quite accurate for the smaller sample sizes for a con-
stant and linear boundary specification, but the approximation is
considerably worse than for n = 1,000 when slope changes are
included.

The tendency displayed in Table 1 to overreject for larger J
and/or more flexible boundary specifications indicates some dif-
ficulty in reliably testing the implications of the DDM model
with 1,000 observations. This difficulty is not surprising, given
the high variance of the boundary estimator, which could lead
to the local approximation used in the asymptotic theory not
working well. Imposing restrictions on the boundary could help
with this problem, as it does in Table 1, where more parsimo-
nious specifications tend to overeject less often. One potentially
useful nonparametric restriction is monotonicity of the bound-
ary, which could permit inference using the approach of ref.
43. This seems potentially fruitful but is beyond the scope of
this paper.

Appendix
Choice Problems with Zero Drift. When the drift in the DDM
model is zero, p(t) = 1/2 for all t ≥ 0, due to the symmetry of
the problem. This implies the following extension of Theorem 1:

Theorem 4. For c with δ̃c = 0, the choice process (pc ,F c) admits
a DDM representation iff pc ≡ 1/2, and there exists b̃c such that for
all t ≥ 0

F c(t) =F ∗(t , δ̃c , b̃c).

In this case, the boundary is not revealed by the choice prob-
ability. The question of how to recover the boundary from the
distribution of stopping times is known as the “inverse first-
passage time problem.” The existence and uniqueness of the
boundary remains an open problem, even in the simpler case of
a one-sided boundary and a Brownian motion with drift (see the
introduction in ref. 44). Most closely related to our work is ref.
45, whose theorem 3.1 (under some regularity conditions) con-
nects the boundary and the distribution over choice times in our
model through a nonlinear Volterra integral equation, but does
not prove that this equation admits a unique solution.

The Choice Probability Estimator. The choice probability estimator
p̂ (t)considered here is the predicted value from a linear regres-
sion of γi on functions of G(τi). To describe p̂(t), let aK × 1
vector of functions with domain [0, 1] be

qK (G)= (q1K (G), . . . , qKK (G))′.

For example, qK (G) could consist of powers of G or be piece-
wise linear functions of the form one, G , and 1(G >`k−2)(G −
`k−2), (k = 3, . . . ,K ). The p̂(t) we consider is

p̂ (t) := qK (G(t))′β̂, qK
i = qK (G(τi)),

β̂ :=

(
n∑

i=1

qK
i qK

i
′

)
−1

n∑
i=1

qK
i γi .

The transformation G(τ) to the unit interval helps p̂(t) be a good
estimator with unbounded τ . It is helpful for this purpose to have
G(τi) be quite evenly distributed over the unit interval, as near
to uniform as possible. One possible choice of G(τ) is the CDF
of the first passage time of a Brownian motion with drift crossing
a single boundary, with mean and variance matched to that of the
τi observations. Fig. 2 gives a histogram for G(τi) from 100,000
simulations of τi for drift δ0 = .5 and a constant boundary
of −1 and 1.

The histogram is bounded well away from zero and infinity
over most of its range, so that we expect the linear probability
estimator based on this G(τ) should work well. The histogram

Table 2. Rejection rates for test statistic

Boundary estimate 20% 10% 5% 1%

Model: Constant boundary
Constant 0.182 0.096 0.048 0.014
Linear 0.220 0.128 0.060 0.012
One slope change 0.186 0.106 0.060 0.024
Two slope changes 0.236 0.166 0.106 0.056

Model: Exponential boundary
Constant 1.00 1.00 1.00 1.00
Linear 0.354 0.218 0.140 0.050
One slope change 0.262 0.164 0.104 0.036
Two slope changes 0.270 0.152 0.094 0.028

Model: Poisson
Constant 1.00 1.00 1.00 1.00
Linear 0.994 0.988 0.980 0.904
One slope change 0.862 0.798 0.696 0.512
Two slope changes 0.522 0.378 0.282 0.156
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Table 3. Rejection rates for smaller sample size

Boundary estimate 20% 10% 5% 1%

n = 250
Constant 0.216 0.102 0.040 0.010
Linear 0.206 0.116 0.060 0.020
One slope change 0.256 0.178 0.136 0.078
Two slope changes 0.320 0.210 0.168 0.098
n = 500
Constant 0.200 0.084 0.038 0.010
Linear 0.180 0.090 0.048 0.018
One slope change 0.224 0.122 0.072 0.040
Two slope changes 0.294 0.198 0.144 0.064

does suggest that the density may grow as G(τ) approaches zero
and shrink as G(τ) approaches one. We expect this tail behavior
to have little effect on finite sample performance of the estima-
tor. It could also be controlled for if the boundary is constant as
τ approaches zero and infinity, and that restriction is imposed on
the boundary estimator.

Smoothness Conditions for the CDF of τi. To obtain the limiting
distribution of the test statistic, we make use of smoothness
conditions for the CDF of τi as F ∗(t , δ, b) as a function of
the drift δ and boundary b(·). The three key primitive regular-
ity conditions that will be useful involve a Frechet derivative
D(δ̃− δ, b̃− b; δ, b, t) of F ∗(t , δ, b), with respect to δ and b.
We collect these conditions in the following assumption. Let
εpn =

√
n−1K ln(K ) +K−s .

Assumption 5. For |b̃|= supt |b̃(t)|, there is C > 0 not depend-
ing on δ, b, t such that

1)

|F ∗(t , δ̃, b̃)−F ∗(t , δ, b) +D(δ̃− δ, b̃− b; δ, b, t)|

≤C (|δ̃− δ|2 + |b̃− b|2);

2) For each t , there is a constant Dδ
0t and function α0t(t) such

that |α0t(τi)| ≤C ,
∣∣Dδ

0t

∣∣≤C , |d sα0t(t)/dt
s | ≤C for s equal

to the order of the spline plus one, and

D(δ̃− δ, b̃− b; δ, b, t) =Dδ
0t(δ̃− δ)

+E [α0t(τi){b̃(τi)− b(τi)}];

3)

|D(δ, b; δ̃, b̃, t)−D(δ, b; δ0, b0, t)| ≤C (|δ|+ |b|)

× (|δ̃− δ0|+ |b̃− b0|).

4) There is C > 0 such that for ψiδx = I (τi)−E [I (τi)]− δ2{τi −
E [τi ]} and all J ,

(J + 1)E [1(τi < 1/(J + 1))ψ2
iδx ]≥C .

5) Each of the following converge to zero:
√
nJε2

pn , nJ 3/S ,
J 7/2K/(

√
S∆), J 7/2K∆, J 7/2K 3/2εpn , J 5/2K−sα .

Part (1) is Frechet differentiability of the CDF of τi in the drift
and boundary, (2) is implied by mean square continuity of the
derivative and the Riesz Representation Theorem, and (3) is con-
tinuity of the functional derivative D in δ and b. The test statistic
will continue to be asymptotically χ2 for a stronger norm for b
under corresponding stronger rate conditions for J , K , and ∆.

Additional Tests on Synthetic Data. Table 2 gives rejection fre-
quencies for the test on synthetic data from a DDM model
with constant boundary, an exponential boundary b(t) = 1/2 +
2 exp(−3t/2), and a Poisson process. The Poisson process has
p(t) = ea/(ea + eb) and F ∗(t) = 1− e−λt for λ= ea + eb , with
a and b chosen to that p(t) and E [τ ] match those of DDM
model with drift 1/2 and b(t) = 1. Table 2 differs from Table 1
in one boundary slope changing at the sample median of
G(τ1), . . . ,G(τn) rather than at 0.5 and two slopes changing at
the 0.33 and 0.66 quantiles rather than at the values 0.33 and 0.66.
Results in Table 2 are for J = 5 only. We continue to use B = 250
bootstrap replications and report results for 500 synthetic dataset
replications.

We find that for the DDM model with a constant boundary,
the test-rejection frequencies increase as the specification of the
boundary becomes richer, as in Table 1. Remarkably, for a DDM
model with exponential boundary and a piecewise linear estima-
tor with two slope changes, the rejection frequencies are similar
to those where the boundary was constant. Thus, in this example,
specifying an incorrect piecewise linear boundary does not make
the asymptotic approximation worse. We also find that the test has
good power against a Poisson model, with the rejection frequen-
cies being much larger when the data are generated by a Poisson
model than when the data are generated by a DDM model.

To see the effect of smaller samples on the large sample
approximation, we also carried out simulations for n = 250 and
n = 500 for the DDM model with constant boundary and J = 5.
These results are reported in Table 3.

We find that the large sample approximation remains quite
accurate for the smaller sample sizes for a constant and linear
boundary specification, but the approximation is considerably
worse than for n = 1,000 when slope changes are included.

Data Availability. The code for our simulations is available at Open Sci-
ence Framework, https://osf.io/9n6j7/?view only=0c9f90f8d23547c19dfb15-
cdd99417c0.

ACKNOWLEDGMENTS. This research was supported by NSF Grants SES-
1643517, SES-1757140, and SES-1255062. P.S. was supported by a Sloan
Fellowship. David Hughes provided excellent research assistance.

1. R. Ratcliff, G. McKoon, The diffusion decision model: Theory and data for two-choice
decision tasks. Neural Comput. 20, 873–922 (2008).

2. M. N. Shadlen, R. Kiani, Decision making as a window on cognition. Neuron 80, 791–
806 (2013).

3. E. Fehr, A. Rangel, Neuroeconomic foundations of economic choice—recent advances.
J. Econ. Perspect. 25, 3–30 (2011).

4. R. M. Roe, J. R. Busemeyer, J. T. Townsend, Multialternative decision field theory: A
dynamic connectionist model of decision making. Psychol. Rev. 108, 370–392 (2001).

5. J. A. Clithero, Improving out-of-sample predictions using response times and a model
of the decision process. J. Econ. Behav. Organ. 148, 344–375 (2018).

6. I. Krajbich, C. Armel, A. Rangel, Visual fixations and the computation and comparison
of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

7. I. Krajbich, A. Rangel, Multialternative drift-diffusion model predicts the relationship
between visual fixations and choice in value-based decisions. Proc. Natl. Acad. Sci.
U.S.A. 108, 13852–13857 (2011).

8. I. Krajbich, D. Lu, C. Camerer, A. Rangel, The attentional drift-diffusion model extends
to simple purchasing decisions. Front. Psychol. 3, 193 (2012).

9. M. Milosavljevic, J. Malmaud, A. Huth, C. Koch, A. Rangel, The drift diffusion model
can account for value-based choice response times under high and low time pressure.
Judgm. Decis. Mak. 5, 437–449 (2010).

10. I. Krajbich, B. Bartling, T. Hare, E. Fehr, Rethinking fast and slow based on a critique
of reaction-time reverse inference. Nat. Commun. 6, 7455 (2015).

11. E. Reutskaja, R. Nagel, C. F. Camerer, A. Rangel, Search dynamics in consumer choice
under time pressure: An eye-tracking study. Am. Econ. Rev. 101, 900–926 (2011).

12. A. Wald, Sequential Analysis (John Wiley & Sons, New York, NY, 1947).
13. M. Stone, Models for choice-reaction time. Psychometrika 25, 251–260 (1960).
14. W. Edwards, Optimal strategies for seeking information: Models for statistics, choice

reaction times, and human information processing. J. Math. Psychol. 2, 312–329
(1965).

15. R. Ratcliff, A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

Fudenberg et al. PNAS | December 29, 2020 | vol. 117 | no. 52 | 33147

D
ow

nl
oa

de
d 

at
 U

C
L 

Li
br

ar
y 

Se
rv

ic
es

 o
n 

Ap
ril

 2
9,

 2
02

1 

https://osf.io/9n6j7/?view_only=0c9f90f8d23547c19dfb15cdd99417c0
https://osf.io/9n6j7/?view_only=0c9f90f8d23547c19dfb15cdd99417c0


16. M. Milosavljevic, J. Malmaud, A. Huth, C. Koch, A. Rangel, The drift diffusion model
can account for value-based choice response times under high and low time pressure.
Judgm. Decis. Mak. 5, 437–449 (2010).

17. J. Drugowitsch, R. Moreno-Bote, A. K. Churchland, M. N. Shadlen, A. Pouget, The cost
of accumulating evidence in perceptual decision making. J. Neurosci. 32, 3612–3628
(2012).

18. D. Fudenberg, P. Strack, T. Strzalecki, Speed, accuracy, and the optimal timing of
choices. Am. Econ. Rev. 108, 3651–84 (2018).

19. S. Tajima, J. Drugowitsch, N. Patel, A. Pouget, Optimal policy for multi-alternative
decisions. Nat. Neurosci. 22, 1503–1511 (2019).

20. G. E. Hawkins, B. U. Forstmann, E. J. Wagenmakers, R. Ratcliff, S. D. Brown, Revisiting
the evidence for collapsing boundaries and urgency signals in perceptual decision-
making. J. Neurosci. 35, 2476–2484 (2015).

21. K. Chiong, M. Shum, R. Webb, R. Chen, Split-second decision-making in the field:
Response times in mobile advertising. SSRN:3289386 (19 December 2018).

22. R. Ratcliff, A diffusion model account of response time and accuracy in a bright-
ness discrimination task: Fitting real data and failing to fit fake but plausible data.
Psychon. Bull. Rev. 9, 278–291 (2002).

23. C. Baldassi, S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, A behavioral characteriza-
tion of the drift diffusion model and its multialternative extension for choice under
time pressure. Manag. Sci., 10.1287/mnsc.2019.3475 (2020).

24. J. R. Busemeyer, J. T. Townsend, Fundamental derivations from decision field theory.
Math. Soc. Sci. 23, 255–282 (1992).

25. J. R. Busemeyer, J. T. Townsend, Decision field theory: A dynamic-cognitive approach
to decision making in an uncertain environment. Psychol. Rev. 100, 432 (1993).

26. J. R. Busemeyer, J. G. Johnson, “Computational models of decision making” in Black-
well Handbook of Judgment and Decision Making, D. J. Koehler, N. Harvey, Eds.
(Blackwell Publishing, Malden, MA, 2004), pp. 133–154.

27. C. Alós-Ferrer, E. Fehr, N. Netzer, “Time will tell: Recovering preferences when choices
are noisy” (Working Paper 306, Department of Economics, University of Zurich,
Zurich, Switzerland, 2018).

28. F. Echenique, K. Saito, Response time and utility. J. Econ. Behav. Organ. 139, 49–59
(2017).

29. B. Hebert, M. Woodford, Rational inattention when decisions take time.
https://www.nber.org/papers/w26415 (1 October 2019).

30. M. Woodford, “An optimizing neuroeconomic model of discrete choice” (NBER
Working Paper 19897, National Bureau of Economic Research, Cambridge, MA,
2014).

31. Y. K. Che, K. Mierendorff, Optimal dynamic allocation of attention. Am. Econ. Rev.
109, 2993–3029 (2019).

32. A. Liang, X. Mu, V. Syrgkanis, Dynamically aggregating diverse information.
https://papers.ssrn.com/sol3/papers.cfm?abstract id=3385451 (1 July 2019).

33. A. Liang, X. Mu, Complementary information and learning traps. Q. J. Econ. 135,
389–448 (2020).

34. W. Zhong, Optimal dynamic information acquisition. http://www.columbia.edu/∼
wz2269/workingpapers/info acquisition/Dynamic info acquisition main.pdf (1 July
2019).

35. C. Alós-Ferrer, E. Fehr, N. Netzer, Time will tell: Recovering preferences when choices
are noisy. J. Polit. Econ., in press.

36. J. Aczél, Lectures on Functional Equations and Their Applications (Academic Press,
New York, NY, 1966), Vol. 19.

37. P. Natenzon, Random choice and learning. J. Polit. Econ. 127, 419–457 (2019).
38. D. McFadden, A method of simulated moments for estimation of discrete response

models without numerical integration. Econometrica: J. Econ. Soc., 995–1026
(1989).

39. A. Pakes, D. Pollard, Simulation and the asymptotics of optimization estimators.
Econometrica: J. Econ. Soc., 1027–1057 (1989).

40. W. K. Newey, The asymptotic variance of semiparametric estimators. Econometrica,
1349–1382 (1994).

41. R. De Jong, H. J. Bierens, On the limit behavior of a chi-square type test if the num-
ber of conditional moments tested approaches infinity. Econom. Theor. 10, 70–90
(1994).

42. Y. Hong, H. White, Consistent specification testing via nonparametric series
regression. Econometrica: J. Econ. Soc., 1133–1159 (1995).

43. V. Chernozhukov, W. K. Newey, A. Santos, Constrained conditional moment
restriction models. arXiv:1509.06311 (21 September 2015).

44. C. Zucca, L. Sacerdote, On the inverse first-passage-time problem for a Wiener
process. Ann. Appl. Probab. 19, 1319–1346 (2009).

45. A. Buonocore, V. Giorno, A. Nobile, L. Ricciardi, On the two-boundary first-crossing-
time problem for diffusion processes. J. Appl. Probab. 27, 102–114 (1990).

33148 | www.pnas.org/cgi/doi/10.1073/pnas.2011446117 Fudenberg et al.

D
ow

nl
oa

de
d 

at
 U

C
L 

Li
br

ar
y 

Se
rv

ic
es

 o
n 

Ap
ril

 2
9,

 2
02

1 

https://www.nber.org/papers/w26415
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3385451
http://www.columbia.edu/~wz2269/workingpapers/info_acquisition/Dynamic_info_acquisition_main.pdf
http://www.columbia.edu/~wz2269/workingpapers/info_acquisition/Dynamic_info_acquisition_main.pdf
https://www.pnas.org/cgi/doi/10.1073/pnas.2011446117

