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The effective angle of attack of an airfoil is a composite mathematical expression from
quasi-steady thin-airfoil theory that combines the geometric contribution to angle of attack
with pitching and plunging effects. For a maneuvering airfoil, the instantaneous effective
angle of attack is a virtual angle that corresponds to the equivalent lift based on a steady, lift
versus angle of attack curve. The existing expression for effective angle of attack depends on
attached-flow, thin-airfoil, small-angle, and small-camber-slope assumptions. This paper derives
a new expression for effective angle of attack that relaxes the small-angle and small-camber-slope
assumptions. The new expression includes effects from pitching, plunging, and surging motions,
as well as spatial nonuniformity of the flow. The proposed expression simplifies to the existing
quasi-steady expression by invoking the appropriate assumptions. Further, the proposed
expression leads to a replacement for the classic, zero-lift angle of attack equation for steady
flow past a thin airfoil, which is compared to experimental values for cambered NACA 4-digit
airfoils. The new expression is also used for lift-equivalent motion design for a maneuvering
airfoil to emulate the effective angle of attack of a non-maneuvering airfoil encountering a
transverse gust under a quasi-steady assumption. Computational Fluid Dynamics simulations
support the use of the proposed effective angle of attack expression for lift-equivalent motion
design, subject to an attached-flow assumption.

I. Nomenclature
Greek Letters
𝛼, ¤𝛼 = angle of attack, angle of attack rate
𝛼eff = effective angle of attack
𝛽 = side-slip angle
𝛾 = vortex sheet strength per unit length
Γ = total circulation
𝜃 = angular coordinate along mean camber line
𝜃 = dummy angle for angular identities
𝜃0 = angular coordinate of evaluation location on mean camber line
𝜃𝑔, ¤𝜃𝑔 = geometric angle of attack, pitch rate
𝜉 = location along camber line
𝜌 = density of air
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𝑎 = coordinate of pitch axis in semi-chords
𝐴𝑛, 𝐵𝑛 = Fourier series coefficients in thin-airfoil theory
𝐶𝑛, 𝐷𝑛 = Fourier series coefficients for pitching and plunging control signals
𝑏 = semi-chord length, 𝑐/2
𝑐 = chord length
𝐶 = name of center of rotation point
𝐶𝑙 = sectional lift coefficient
𝑑𝑧/𝑑𝑥 = slope of the mean camber line
𝐺 = name of center of mass point
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¤ℎ = plunge rate
𝑘 = reduced frequency
𝐿 = gust width
𝐿 ′ = lift per unit length
𝑁 = name of leading edge point (nose) of airfoil
𝑂 = name of origin point for inertial frame
𝑃 = name of point along the camber line
Re𝑐 = chord-based Reynolds number
¤𝑠 = surge rate
𝑉 = constant, characteristic flow speed
𝑉n = nondimensionalized flow component normal to the camber line
𝑉∞ = magnitude of freestream velocity
𝑉∞,n = magnitude of normal component of freestream velocity
𝑉𝑔 = maximum velocity of gust encounter
𝑤in = induced flow component
𝑤in,n = component of induced velocity normal to the camber line

Vectors, Reference Frames, Components
B = Body-fixed reference frame
�̂�𝑥 , �̂�𝑦 , �̂�𝑧 = basis vectors of the body frame
𝒆𝑥 , 𝒆𝑧 = basis vectors of frame I
I = Inertial reference frame fixed in space at point 𝑂
�̂�𝑥 , �̂�𝑧 = basis vectors of frame N
N = Body-fixed reference frame at point 𝑁 , the nose of the airfoil
𝒓𝑃/𝑂 = position vector of point 𝑃 relative to point 𝑂
R = Rotating reference frame located at point 𝐶, the axis of rotation
(𝑠, ℎ) = coordinates of point 𝐶 in reference frame I
(𝑢, 𝑣, 𝑤) = components of I𝒗G/O expressed in the body frame
(𝑢′, 𝑣′, 𝑤′) = components of I𝒗G/flow expressed in frame B,

= components of I𝒗P/flow expressed in frame R,
= components of I𝒗flow/P expressed in frame N

(𝑢𝑥 , 𝑢𝑧) = external flow components in the inertial reference
I𝒗G/flow, I𝒗P/flow = flow-relative velocity vectors
I𝒗𝐺/𝑂 = inertial velocity of point 𝐺 relative to point 𝑂
�̂�𝑥 , �̂�𝑦 , �̂�𝑧 = basis vectors of the wind frame
I𝝎R = angular velocity of frame R relative to frame I
W = wind frame located at point 𝐺
(𝑥, 𝑧) = coordinates of point 𝑃 in reference frame N
(𝑥𝐶 , 𝑧𝐶 ) = coordinates of point 𝐶 in reference frame N

II. Introduction

Thin-airfoil theory has proven to be effective for predicting the aerodynamic forces exerted on airfoils with attached
flow and small angles of attack. Steady thin-airfoil theory assumes that a sufficiently thin airfoil with a steady and

attached flow can be represented by a thin sheet of vortices along its mean camber line, which acts as a streamline of the
flow [1]. Quasi-steady thin airfoil theory, an adaptation of the steady theory, incorporates slowly varying pitch, surge,
and plunge motions of the airfoil [2]. As an extension of quasi-steady thin-airfoil theory, the works of Theodorsen
[3], Wagner [4], Sears [5], von Kármán [2], and others contributed to the unsteady thin-airfoil theory that examines
airfoil motions with prominent acceleration terms and flow or wake unsteadiness. Theodorsen developed an unsteady
lift model that includes the effects of added mass and wake vorticity [3]. Wagner proposed an unsteady aerodynamic
model similar to Theodorsen’s that simulates the response of a step change in angle of attack [4]. Although many of
these models have limiting assumptions for inviscid, incompressible, and attached flow, they are still widely used as
fundamental tools in unsteady aerodynamics research [6].
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The motion of a wing in a flowfield is considered quasi-steady provided that the aerodynamic forces can be written
as static outputs of the flow parameters [7]. A quasi-steady assumption may be made when unsteady effects are very
small and may be neglected [8]. Unsteadiness can be categorized using the reduced frequency

𝑘 =
𝜔𝑏

𝑉∞
, (1)

where 𝜔 is a characteristic angular frequency, 𝑏 is the semi-chord, and 𝑉∞ is the freestream flow speed. If 𝑘 = 0, the
airfoil is not maneuvering, and the flow condition is steady [8]. A common definition for the quasi-steady regime is
0 ≤ 𝑘 ≤ 0.05 [8]. However, Brunton et al. [7] have shown that at low Reynolds numbers, a quasi-steady assumption
holds well for a sinusoidally plunging plate up to 𝑘 = 0.25. Motions with larger reduced frequencies are generally
considered to require unsteady modeling.

Across the steady, quasi-steady, and unsteady thin-airfoil theories, a useful concept for comparing the lift generated
by various airfoil motions is effective angle of attack. The effective angle of attack of an airfoil represents a composite
view of the flow along the airfoil that considers various sources of flow-relative motion. Leishman [8] presented an
effective angle of attack for a quasi-steady thin airfoil undergoing pitching and plunging maneuvers using the concept of
virtual camber. Sedky et al. [9] included transverse gust effects into this expression with the use of virtual camber.
Peters [10, 11] and Peters et al. [12] combined unsteady motions through large angles and unsteady freestream effects
into a comprehensive, state-space airloads model. Continuing the state-space modeling approach, Brunton et al. [13]
investigated the lift generation of a pure plunging flat plate through 2D simulation, and the effective angle of attack
was applied as a state variable in their empirical state-space representations of Theodorsen’s lift model. Ramesh et
al. [14] used the Leading Edge Suction Parameter (LESP), which is related the effective angle of attack through the
zeroth Fourier coefficient of the airfoil’s bound circulation, to modulate the shedding of vorticity at the leading edge in a
discrete-vortex model. Several authors have also used either the effective angle of attack or the LESP as an internal state
variable in a dynamic model of the lift. For example, Sedky et al. [9] incorporated the effective angle of attack as a state
variable in a dynamic Goman-Khrabrov (GK) model for a pitching wing. Narsipur et al. [15] similarly incorporated the
related LESP quantity as a state variable in a GK model.

Visbal and Garmann [16] used the effective angle of attack as a tool for interpreting the state of the wing when
analyzing lift-equivalent motions for pitching and plunging. Many other works [9, 13, 16–18] have also used effective
angle of attack due to its ability to incorporate kinematic effects and its interpretability, even though applications with
separated flow, large amplitude motions, or large amplitude gust encounters often violate the assumptions underlying
the effective angle of attack derivation from thin-airfoil theory. Given the common use of effective angle of attack,
this paper seeks to reduce the number of assumptions involved in its derivation by removing the small-angle and
small-camber-slope assumptions. Some works [9, 13, 16] consider effective angle of attack as an integral, composite
quantity for the wing, while other works [17, 18] apply the effective angle of attack at a single point on the chord. This
paper seeks to unify the terminology by presenting a composite (i.e., spatially integrated) effective angle of attack
expression that accounts for variety of flow conditions and kinematics.

A new expression is derived based on three modifications to the derivation of effective angle of attack presented
in [8]: (i) we include a formal kinematic analysis for the motion of an arbitrary point on the mean camber line of the
airfoil to include all quasi-steady kinematic contributions (e.g., pitching, plunging, and surging motions); (ii) we utilize
an expression of angle of attack based on the relative velocity of the fluid to include freestream nonuniformity (e.g.,
gusts) and apply it locally at each point on the camber line; and (iii) we incorporate useful trigonometric identities to
retain nonlinearities that would otherwise be removed by simplifying assumptions. These alterations produce a useful
effective angle of attack expression that includes the effects of surging, plunging, and pitching motion, as well as free
stream nonuniformity.

Freestream nonuniformity refers to spatial variation in the freestream velocity distribution. Understanding the
aerodynamic forces occurring in the presence of freestream nonuniformity is relevant to flow disturbance problems for
aircraft, including gust encounters [19] and landing in the presence of wind shear [20]. Progress has been made on
specific classes of nonuniformity. For example, recent works by Hammer et al. [21] and Naguib and Koochesfahani [20]
have investigated the effects of shear flow on a 2D symmetric airfoil and a moving cylinder, respectively. The present
work applies to thin airfoils and requires that the velocity distribution be known. Due to use of the Kutta-Joukowski
theorem [1], which establishes the proportional relationship between sectional lift and bound circulation in an airfoil,
the velocity distribution in the proposed effective angle of attack must also correspond to a potential (i.e., irrotational)
flow. If the flow is not a potential flow, the effective angle of attack expression can still be evaluated using a known
velocity distribution, however, the resulting value must be regarded as an approximate solution under the assumption of
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the Kutta-Joukowski relation between lift and the circulation. Although, this quantity is not rigorous, it may be useful.
Sections VII and VIII calculate the (approximate) effective angle of attack for an airfoil encountering a transverse gust
described by a sine-squared vertical velocity profile. The CFD results of Section VIII show that the effective angle of
attack can provide a reasonable prediction of the lift force during a transverse gust encounter, subject to the attached
flow assumption used in its derivation.

The new expression has a reduced dependence on the small-angle and small-camber-slope assumptions. Although
we do not explicitly invoke a small-angle assumption, the assumption of flow attachment implicitly limits the work
to relatively small angles. Similarly, we remove the small-camber-slope assumption from the derivation, however,
it still partially appears (implicitly) in a derivation step that projects the bound circulation onto the horizontal axis.
Nonetheless, our new expression is a useful extension of the previous expression for effective angle of attack from
quasi-steady thin airfoil theory. Additionally, in contrast to other methods of calculating an effective angle of attack
(e.g., see [8]), our approach does not require calculation of a virtual camber, thereby simplifying the calculation and
allowing effective angle of attack to be applied to (physically) cambered airfoils.

Several special cases can be derived from the proposed expression. For a pitching and plunging airfoil without
camber, re-applying the small-angle and small-camber-slope assumptions yields the classic expression for quasi-steady
effective angle of attack. For examining the angle of attack contribution due to a transverse flow, the proposed expression
provides the correct proportional relationship between lift and components of the flow velocity. Comparison is made to
experimental data of the zero-lift angle for steady flow past cambered airfoils. The proposed expression provides a minor
deviation from the existing theory, yielding zero-lift angles that are smaller in magnitude than the existing theory. In
Section VIII, Computational Fluid Dynamics (CFD) simulations are presented for steady flow past a NACA 0012, 2412
and 6412 airfoils, which allows for a comparison between the existing theory, the proposed theory, and CFD results.

A useful application for the proposed effective angle of attack expression is to compare disparate aerodynamic
scenarios. Leung et al. [17] designed motions of a wing to replicate a transverse gust encounter by calculating a
pointwise effective angle of attack at representation locations on the airfoil chord. Using a composite (i.e., non-local)
version of effective angle of attack, we construct a framework for lift-equivalent motion design under a quasi-steady
assumption. In particular, we formulate an optimal control problem that designs an optimal maneuver for an airfoil to
match a desired effective angle of attack profile. We apply the framework to design a motion profile for a maneuvering
airfoil that emulates the aerodynamic response of a non-maneuvering airfoil during a transverse gust encounter. Section
VII shows that different solutions to match the effective angle of attack are possible depending on the type of motion
inputs, the number of inputs, and the initial guess of the inputs.

The outline of this paper is as follows: Section III reviews effective angle of attack in classical thin-airfoil theory.
Section IV provides a kinematic analysis of motion of an arbitrary point on the mean camber line of a thin airfoil. Section
V uses the kinematics of the airfoil, an expression for angle of attack from aircraft flight dynamics applied locally, and
trigonometric identities to derive a new expression for effective angle of attack. Section VI examines special cases
of the expression, and Section VII uses the expression to create a framework for applications that involve creating an
airfoil motion profile that matches a desired effective angle of attack trajectory. Section VIII presents CFD simulations
to examine the performance of the proposed theory for steady-flow conditions and in the design of a lift-equivalent
pitching maneuver to mimic a gust encounter. Section IX concludes the paper and discusses ongoing work.

III. Effective Angle of Attack in Thin-Airfoil Theory
This section reviews thin airfoil theory as detailed by Anderson in [1] and the derivation of a prior expression for

effective angle of attack as presented by Leishman in [8].
Thin-airfoil theory provides a potential-flow-based method of predicting the aerodynamic loading on an airfoil

from the freestream flow conditions and the geometric and kinematic characteristics of the airfoil. Thin-airfoil theory
represents a sufficiently thin airfoil using a vortex sheet placed along the mean camber line, as shown in Fig. 1(a). For a
thin airfoil with chord length 𝑐 and with small camber, the camber line is close to the chord line. A helpful analytical
approximation projects the vortex sheet onto the chord line so that the sheet strength (i.e., the circulation strength per
unit length) may be expressed as 𝛾 = 𝛾(𝑥). The vortex sheet must satisfy the Kutta condition that the flow leaves
smoothly at the trailing edge of the airfoil [1], which results in an end condition of 𝛾(𝑐) = 0. The vortex sheet acts as a
streamline of the flow so that the velocity component normal to the camber line must be zero at all points along the
camber line [1]. Determining the proper circulation-strength distribution to meet these requirements results in a total
circulation that can be used to determine the lift force and pitching moment experienced by the airfoil [1].

Let 𝑤in,n be the component of the flow velocity induced by the vortex sheet that is normal to the camber line (i.e., the
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(a) (b) (c)

Fig. 1 a) Vortex sheet on the mean camber line. b) Geometry for finding the normal component of freestream
velocity 𝑉∞,n. c) Velocity induced by the vortex sheet on the chord line. (Figures adapted from [1].)

induced flow component arising from vortex sheet elements along the camber line). For camber line to be a streamline,
the normal component of the impinging flow and the normal component of the velocity induced by the vortex sheet
must cancel such that

𝑉∞,n + 𝑤in,n = 0, (2)

where 𝑉∞,n is the normal component of the freestream velocity that can be found by inspection of Fig. 1(b). The slope
of camber line is 𝑑𝑧/𝑑𝑥, and Fig. 1(b) shows that

𝑉∞,n = 𝑉∞ sin
(
𝛼 + tan−1

(
− 𝑑𝑧

𝑑𝑥

))
. (3)

Classical thin-airfoil theory makes a small-angle assumption, sin 𝜃 ≈ tan 𝜃 ≈ 𝜃, to simplify (3), such that

𝑉∞,n = 𝑉∞

(
𝛼 − 𝑑𝑧

𝑑𝑥

)
. (4)

Thin-airfoil theory also simplifies calculations by placing the vortex sheet on the chord line (i.e., assuming the
airfoil’s camber is small). Figure 1(c) illustrates the calculation of the velocity component 𝑤in that is induced by the
vortex sheet and is normal to the chord line. The velocity 𝑑𝑤in at point 𝑥 induced by the sheet element at point 𝜉 is
given by

𝑑𝑤in = − 𝛾(𝜉)𝑑𝜉
2𝜋(𝑥 − 𝜉) . (5)

The velocity 𝑤in (𝑥) at point 𝑥 induced by the vortex sheet can be obtained by integration from the leading edge at 𝑥 = 0
to the trailing edge at 𝑥 = 𝑐 such that

𝑤in (𝑥) = −
∫ 𝑐

0

𝛾(𝜉)𝑑𝜉
2𝜋(𝑥 − 𝜉) . (6)

Under the assumption that 𝑤in ≈ 𝑤in,n and using (2) to equate the normal velocity components to enforce the camber
line as a streamline leads to the Fundamental Equation of Thin Airfoil Theory [1]

𝑉∞

(
𝛼 − 𝑑𝑧

𝑑𝑥

)
=

1
2𝜋

∫ 𝑐

0

𝛾(𝜉)𝑑𝜉
𝑥 − 𝜉

. (7)

Equation (7) states that normal flow component at point 𝑥 equals to the induced velocity from the vortex sheet due to
the integration of the vortex sheet along the chord. If the flow condition 𝑉∞, geometric flow angle 𝛼, and the slope of
the camber line 𝑑𝑧/𝑑𝑥 are specified in (7), the vortex sheet strength 𝛾(𝜉) can be found to enforce the Kutta condition
and satisfy the streamline condition present in (7). However, the left-hand side of the equation is derived based on
small-angle and small-camber-slope assumptions. Section V re-visits this derivation and removes these assumptions
from this step.

Parameterizing by an angular coordinate 𝜃 under the change of variables

𝑥 =
𝑐

2
(1 − cos 𝜃) , (8)
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aids in evaluating the integrals involved in solving (7) for 𝛾(𝜉), leading to

𝑉∞

(
𝛼 − 𝑑𝑧

𝑑𝑥

)
=

1
2𝜋

∫ 𝜋

0

𝛾(𝜃) sin 𝜃𝑑𝜃
cos 𝜃 − cos 𝜃0

. (9)

The integral equation (9) can be solved for the circulation distribution [1]

𝛾(𝜃) = 2𝑉∞

(
𝐴0

1 + cos 𝜃
sin 𝜃

+
∞∑︁
𝑛=1

𝐴𝑛 sin 𝑛𝜃

)
. (10)

Plugging in (10) into (9) and evaluating using the trigonometric integral identities [1]∫ 𝜋

0

sin 𝑛𝜃 sin 𝜃𝑑𝜃
cos 𝜃 − cos 𝜃0

= −𝜋 cos 𝑛𝜃0, (11)

and, ∫ 𝜋

0

cos 𝑛𝜃𝑑𝜃
cos 𝜃 − cos 𝜃0

=
𝜋 sin 𝑛𝜃0

sin 𝜃0
, (12)

leads to the slope of the camber line represented as a cosine series expansion [1]

𝑑𝑧

𝑑𝑥
= (𝛼 − 𝐴0) +

∞∑︁
𝑛=1

𝐴𝑛 cos 𝑛𝜃0. (13)

In Fourier analysis, functions of the form 𝑓 (𝜃) = 𝐵0 +
∑∞

𝑛=1 𝐵𝑛 cos 𝑛𝜃 have Fourier coefficients that can be found by
taking the inner product of both sides with another cosine function and utilizing the orthogonality of cosine harmonics,
leading to [1]

𝐵0 =
1
𝜋

∫ 𝜋

0
𝑓 (𝜃)𝑑𝜃 (14)

𝐵𝑛 =
2
𝜋

∫ 𝜋

0
𝑓 (𝜃) cos 𝑛𝜃𝑑𝜃. (15)

Applying this method, the Fourier coefficients of (13) become

𝐴0 = 𝛼 − 1
𝜋

∫ 𝜋

0

𝑑𝑧

𝑑𝑥
𝑑𝜃0, (16)

𝐴𝑛 =
2
𝜋

∫ 𝜋

0

𝑑𝑧

𝑑𝑥
cos 𝑛𝜃0𝑑𝜃0. (17)

The remainder of the derivation of the lift coefficient from thin-airfoil theory follows from integration of the
circulation distribution and application of the Kutta-Joukowski theorem. The total circulation of the vortex sheet on the
camber line is [1]

Γ =

∫ 𝑐

0
𝛾(𝜉)𝑑𝜉 =

𝑐

2

∫ 𝜋

0
𝛾(𝜃) sin 𝜃𝑑𝜃,

and plugging in the assumed form of 𝛾 gives the total bound circulation

Γ = 𝜋𝑐𝑉∞

(
𝐴0 +

𝐴1

2

)
. (18)

Note that due to integral identity (11) only the 𝐴0 and 𝐴1 Fourier coefficients survive. Using the Kutta-Joukowski
theorem, the resulting coefficient of lift per unit span [1]

𝐶𝑙 =
𝐿 ′

1
2 𝜌𝑉

2
∞𝑐

=
𝜌𝑉∞Γ
1
2 𝜌𝑉

2
∞𝑐

= 2𝜋
(
𝐴0 +

𝐴1

2

)
. (19)
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The linear relationship 𝐶𝑙 = 2𝜋𝛼 can be compared to (19) and the terms within the parentheses of (19) can be defined
as an effective angle of attack

𝛼eff = 𝐴0 +
𝐴1

2
. (20)

Substitution of (16) and (17) leads to the final expression for the lift coefficient in steady, thin-airfoil theory [1]

𝐶𝑙 = 2𝜋
(
𝛼 + 1

𝜋

∫ 𝜋

0

𝑑𝑧

𝑑𝑥
(cos 𝜃0 − 1) 𝑑𝜃0

)
︸                                      ︷︷                                      ︸

𝛼eff

, (21)

in which the integral term incorporates the effect of camber.
For a quasi-steady theory, Leishman [8] gives a textbook derivation of the expression for effective angle of attack

for a symmetric, thin airfoil of semi-chord length 𝑏 that is undergoing pitching and plunging motions. The kinematic
motions of the symmetric airfoil induce relative flow velocities along the chord. The resulting lift can be compared to
the lift produced by a virtual stationary airfoil with camber and a geometric angle of attack. The kinematic effects due
to plunge rate ¤ℎ and pitch rate ¤𝛼 prescribe a distribution of the relative velocity along the chord that can be used to find
the virtual camber distribution. Equations (16), (17), and (19) from thin-airfoil theory apply to the virtual airfoil leading
to the quasi-steady effective angle of attack [8]

𝛼eff = 𝛼 +
¤ℎ
𝑉∞

+ 𝑏

(
1
2
− 𝑎

)
¤𝛼
𝑉∞

, (22)

where the pitch axis is located 𝑎 semi-chords from the mid-chord. Sedky et al. [9] use virtual camber to include
additional effects from a transverse gust 𝑉𝑔, providing a quasi-steady effective angle of attack

𝛼eff = 𝛼 +
¤ℎ
𝑉∞

+ 𝑏

(
1
2
− 𝑎

)
¤𝛼
𝑉∞

+ 1
𝜋

∫ 𝜋

0

𝑉𝑔 (𝜃0)
𝑉∞

(cos 𝜃0 − 1) 𝑑𝜃0.

IV. Local Angle of Attack for a Point on the Camber Line
The motion of an airfoil alters the inertial velocity, i.e., the time rate of change of position vector with respect to the

inertial frame, of each point on the camber line. These velocity changes also alter the local velocity relative to the flow
and the associated local angle of attack. This section derives the kinematics for an arbitrary point 𝑃 on the camber line
during the two-dimensional motion of an airfoil. Using these kinematics, this section calculates the local angle of attack
at point 𝑃. The notational conventions in this section are based on [22] for engineering dynamics and [23] for aircraft
flight dynamics.

Let B =

(
𝐺, �̂�𝑥 , �̂�𝑦 , �̂�𝑧

)
be a body-fixed reference frame (i.e., the body frame) with unit vectors �̂�𝑥 , �̂�𝑦 , and �̂�𝑧 ,

that is located at the center of mass 𝐺 of an aircraft flying as shown in Fig. 2(a). In aircraft flight dynamics (e.g.,
see [23]), it is useful to also construct a reference frame located at the center of mass 𝐺 that is known as the wind
frame W =

(
𝐺, �̂�𝑥 , �̂�𝑦 , �̂�𝑧

)
. The wind frame has the �̂�𝑥 direction aligned in the opposing direction of the relative

wind experienced by the aircraft, causing the aerodynamic forces of lift, drag, and side force to act along the reference
directions in this frame. To construct the wind frame, rotate the body frame through an angle of attack 𝛼 about the −�̂�𝑦
axis of the body frame, followed by a rotation through a side-slip angle 𝛽 about the −�̂�𝑧 direction. These rotations are
left-handed rotations (i.e., rotations about the negative direction of the axis in the right-handed sense) to ensure matching
of the definitions of these angles between flight dynamics and historical aerodynamics literature [23]. The wind frame
can provide a formal way to calculate the local angle of attack at a point based on kinematics and the flowfield.

Let I = (𝑂, 𝒆𝑥 , 𝒆𝑦 , 𝒆𝑧) be an inertial reference frame fixed in space at point 𝑂 with unit vectors 𝒆𝑥 , 𝒆𝑦 , and 𝒆𝑧 .
The aerodynamic characteristics of the aircraft’s dynamics are determined by the velocity of the aircraft relative to the
surrounding air, which is given by [23]

I𝒗G/flow = I𝒗𝐺/𝑂 − I𝒗flow/O, (23)

where I𝒗𝐺/𝑂 is the inertial velocity of the aircraft’s center of mass and I𝒗flow/O is the inertial velocity of the wind. The
left superscript I indicates that the vector was derived using time differentiation with respect to the inertial frame.

7



(a) (b)

Fig. 2 a) Aircraft flight dynamics conventions for the body frame and the wind frame. b) Thin airfoil geometry
and relevant reference frames.

Using the body frame B, the relative velocity components can be expressed as [23]

[I𝒗G/flow]𝐵 =


𝑢′

𝑣′

𝑤′

B =


𝑢

𝑣

𝑤

B −

𝑢flow

𝑣flow

𝑤flow

B, (24)

where 𝑢, 𝑣, and 𝑤 are the aircraft’s velocity components and 𝑢flow, 𝑣flow, and 𝑤flow are the freestream wind components.
The notation [𝒗]B indicates that the array entries are components of the vector 𝒗 expressed in frame B.

Based on the geometry shown in Fig. 2(a), the angle of attack is given by the components of (24) as [23]

𝛼 = tan−1
(
𝑤′

𝑢′

)
= tan−1

(
𝑤 − 𝑤flow

𝑢 − 𝑢flow

)
. (25)

The angle of attack (25) includes both the motion of the vehicle and the freestream air flow. This expression applies at
the center of mass 𝐺 of the aircraft and is useful in deriving the aircraft’s equations of motion using Euler’s first law for
rigid body motion, in which the aircraft is abstracted as a point mass located at the center of mass. In the following, the
point-wise applicability of (25) enables application at individual points along the camber line of an airfoil to produce a
local angle of attack at each point on the camber line. If the air is quiescent or the wind components are known from a
model or measurements, only determining the 𝑢 and 𝑤 components of the inertial velocity in (25) is needed. The 𝑢flow
and 𝑤flow components may come from impinging flow due to wind or represent flow components from wake effects,
downwash/upwash, or induced flow from nearby coherent flow structures.

To derive the kinematics of a point along the mean camber line of an airfoil, consider a thin airfoil that can be
represented by its mean camber line in Fig. 2(b). Figure 2(b) presents reference frames that are relevant to the
construction of the kinematics. Let R = (𝐶, �̂�𝑥 , �̂�𝑦 , �̂�𝑧) be a reference frame that translates and rotates with the airfoil
and is located at point 𝐶, which is the center of rotation for pitching maneuvers. Frame R is aligned with the body
frame B of the vehicle but the center of rotation 𝐶 may be offset from the center of mass 𝐺. The orientations of frames
R and I match the common convention in aircraft flight dynamics, in which the body-𝑥 direction extends out of the
nose of the aircraft and the body-𝑧 direction extends downward from the fuselage. For convenience, we also define
reference frame N = (𝑁, �̂�𝑥 , �̂�𝑦 , �̂�𝑧) located at point 𝑁 , which is the nose of the airfoil. The orientation of frame N
matches the orientation often used in the aerodynamics literature (e.g., see [1, 8]), although it is sometimes located at
the midchord (e.g., see [12]).

Let 𝒓𝑃/𝑂 be the position of an arbitrary point 𝑃 on the camber line of the airfoil relative to point 𝑂. Finding the
inertial velocity of point 𝑃 so that we can replace point 𝐺 with point 𝑃 in (23) and (24) for calculation of a local angle
of attack at point 𝑃 using (25). Vector addition gives the position of point 𝑃 relative to point 𝑂

𝒓𝑃/𝑂 = 𝒓𝐶/𝑂 + 𝒓𝑃/𝐶 , (26)

where point 𝐶 is the center of rotation for pitching maneuvers. Taking the inertial time derivative of (26) gives the
inertial velocity of point 𝑃

I𝒗𝑃/𝑂 = I𝒗𝐶/𝑂 + I𝒗𝑃/𝐶 . (27)
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The vector I𝒗𝐶/𝑂 is the inertial velocity of the pitching center 𝐶, and I𝒗𝑃/𝐶 velocity of point 𝑃 relative to point 𝐶.
Since frame R rotates with respect to frame I with angular velocity I𝝎R , the Transport Equation [22]

I𝒗𝑃/𝐶 = R𝒗𝑃/𝐶 + I𝝎R × 𝒓𝑃/𝐶 , (28)

is needed to differentiate 𝒓𝑃/𝐶 . Note that R𝒗𝑃/𝐶 , which is the time rate of change of the vector 𝒓𝑃/𝐶 in frame R, is zero
since point 𝑃 is stationary in R. Since many thin-airfoil theory calculations occur in frame N , consider the positions of
points 𝐶 relative to point 𝑁 . From the geometry shown in Fig. 2(b), the position vector 𝒓𝑃/𝐶 can be written as

𝒓𝑃/𝐶 = 𝒓𝑃/𝑁 − 𝒓𝐶/𝑁 . (29)

Collecting (29), (27), and (28) provides the inertial velocity of the point 𝑃 as

I𝒗𝑃/𝑂 = I𝒗𝐶/𝑂 + I𝝎R ×
(
𝒓𝑃/𝑁 − 𝒓𝐶/𝑁

)
. (30)

To select coordinates, let the coordinates of 𝒓𝑃/𝑁 expressed in frame N be (𝑥, 𝑧) and the coordinates of 𝒓𝐶/𝑁
expressed in frame N be (𝑥𝐶 , 𝑧𝐶 ). The vector 𝒓𝑃/𝐶 can be written in coordinates as(

𝒓𝑃/𝑁 − 𝒓𝐶/𝑁
)
= (𝑥 − 𝑥𝐶 ) �̂�𝑥 + (𝑧 − 𝑧𝐶 ) �̂�𝑧 . (31)

Also let (𝑠, ℎ) be the coordinates of 𝒓𝐶/𝑂 expressed in frame I so that 𝒓𝐶/𝑂 = 𝑠𝒆𝑥 + ℎ𝒆𝑧 and the inertial velocity of the
point 𝐶 relative to 𝑂 is I𝒗𝐶/𝑂 = ¤𝑠𝒆𝑥 + ¤ℎ𝒆𝑧 , where ¤𝑠 and ¤ℎ represent the surge and plunge rates of the airfoil, respectively.

To calculate the angular velocity I𝝎R in (28), examine the orientation of the airfoil. The chord line of the airfoil is
oriented at an angle 𝜃𝑔 relative to frame I. The angle 𝜃𝑔 is an Euler angle for the pitch orientation of the airfoil. We
also sometimes refer to 𝜃𝑔 as a geometric angle of attack, since it corresponds with the angle of attack from traditional
wind-tunnel testing for a non-maneuvering airfoil in the presence of a freestream flow in the −𝑒𝑥 direction. The local
angle of attack is formally specified by (25) and involves the freestream wind components as well as the motion of the
airfoil. The pitch rate is ¤𝜃𝑔, so the angular velocity becomes I𝝎R = ¤𝜃𝑔𝒆𝑦 = ¤𝜃𝑔 �̂�𝑦 .

Substituting I𝝎R into (30), the inertial velocity of point 𝑃 becomes

I𝒗𝑃/𝑂 = I𝒗𝐶/𝑂 + ¤𝜃𝑔 �̂�𝑦 ×
[
− (𝑥 − 𝑥𝐶 ) �̂�𝑥 − (𝑧 − 𝑧𝐶 ) �̂�𝑧

]
,

= ¤𝑠𝒆𝑥 + ¤ℎ𝒆𝑧 − ¤𝜃𝑔 (𝑧 − 𝑧𝐶 ) �̂�𝑥 + ¤𝜃𝑔 (𝑥 − 𝑥𝐶 ) �̂�𝑧 .

Transforming the inertial unit vectors using 𝒆𝑥 = cos 𝜃𝑔 �̂�𝑥 + sin 𝜃𝑔 �̂�𝑧 and 𝒆𝑧 = − sin 𝜃𝑔 �̂�𝑥 + cos 𝜃𝑔 �̂�𝑧 provides

I𝒗𝑃/𝑂 =
[
¤𝑠 cos 𝜃𝑔 − ¤ℎ sin 𝜃𝑔 − ¤𝜃𝑔 (𝑧 − 𝑧𝐶 )

]
�̂�𝑥 +

[
¤𝑠 sin 𝜃𝑔 + ¤ℎ cos 𝜃𝑔 + ¤𝜃𝑔 (𝑥 − 𝑥𝐶 )

]
�̂�𝑧 , (32)

which is the inertial velocity of point 𝑃 due to the two-dimensional kinematic motions of pitching at a rate of ¤𝜃𝑔 about
point 𝐶, plunging at a rate of ¤ℎ, and surging at a rate of ¤𝑠. Replacing 𝐺 with 𝑃 in (23) (and allowing for the slight abuse
of notation in which (𝑢′, 𝑤′) now represent the velocity components of point 𝑃 instead of point 𝐺), the relative velocity
components become

𝑢′ = ¤𝑠 cos 𝜃𝑔 − ¤ℎ sin 𝜃𝑔 − ¤𝜃𝑔 (𝑧 − 𝑧𝐶 ) − 𝑢flow, (33)
𝑤′ = ¤𝑠 sin 𝜃𝑔 + ¤ℎ cos 𝜃𝑔 + ¤𝜃𝑔 (𝑥 − 𝑥𝐶 ) − 𝑤flow. (34)

If convenient, the components (𝑢flow, 𝑤flow) of the external flow vector I𝒗flow/O may be written in terms of the
inertial-frame components (𝑢𝑥 , 𝑢𝑧) so that

𝑢flow = 𝑢𝑥 cos 𝜃𝑔 − 𝑢𝑧 sin 𝜃𝑔, (35)
𝑤flow = 𝑢𝑥 sin 𝜃𝑔 + 𝑢𝑧 cos 𝜃𝑔 . (36)

Many aerodynamic calculations from thin-airfoil theory are performed in frame N instead of frame B. Moreover, the
relative velocity I𝒗flow/P is often considered instead of the I𝒗P/flow, which is used in the construction of (25). However,
the relationship [

I𝒗P/flow

]
B
=

[
I𝒗flow/P

]
N
=

[
𝑢′

𝑤′

]
N
, (37)
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shows that (𝑢′, 𝑤′) are the pertinent relative velocity components for the calculation of the local angle of attack in either
convention. Plugging the 𝑢′ and 𝑤′ components from (33) and (34) into (25) yields the local angle of attack

𝛼 = tan−1

(
¤𝑠 sin 𝜃𝑔 + ¤ℎ cos 𝜃𝑔 + ¤𝜃𝑔 (𝑥 − 𝑥𝐶 ) − 𝑤flow

¤𝑠 cos 𝜃𝑔 − ¤ℎ sin 𝜃𝑔 − ¤𝜃𝑔 (𝑧 − 𝑧𝐶 ) − 𝑢flow

)
, (38)

which applies to an arbitrary point 𝑃 on the camber line of a maneuvering airfoil in a nonuniform freestream.

V. A New Expression for the Effective Angle of Attack of an Airfoil
This section derives a new expression for effective angle of attack that does not require the calculation of virtual

camber. The new expression includes pitch, plunge, and surge motions of the airfoil, as well as freestream nonuniformity.
From thin-airfoil theory, the induced velocity component in the �̂�𝑧 direction is given by (6) and the change of

variables (8) as

𝑤in (𝜃0) = − 1
2𝜋

∫ 𝜋

0

𝛾(𝜃) sin 𝜃𝑑𝜃
(cos 𝜃 − cos 𝜃0)

. (39)

Using 𝑤in ≈ 𝑤in,n and 𝑤in,n = −𝑉∞,n changes the expression to be in terms of the normal, freestream velocity component

𝑉∞,n (𝜃0) =
1

2𝜋

∫ 𝜋

0

𝛾(𝜃) sin 𝜃𝑑𝜃
(cos 𝜃 − cos 𝜃0)

. (40)

The derivation in Section III proceeds by assuming a functional form of the circulation distribution 𝛾(𝜃) to satisfy (40).
A key observation that allows for the removal of the small-angle and small-camber-slope assumptions is that the form of
the circulation distribution that solves the integral equation (40) is unrelated to the small-angle and small-camber-slope
assumptions made on the left-hand-side of (9). However, note that the small-camber-slope assumption still partially
remains implicitly in the small-camber assumption that projects the vortex sheet located on the x-axis. Even though
these assumptions and the form of 𝛾(𝜃) are often presented concurrently in the thin-airfoil theory derivation (e.g., see
[1]), circulation distribution (10) solves the integral equation (40) to yield a cosine-series representation of 𝑉∞,n (𝜃0)
without requiring simplifications of 𝑉∞,n (𝜃0). This observation is widely known and has previously been utilized by
several authors (e.g., see [12, 14, 24–26].)

The circulation distribution (10) in thin-airfoil theory corresponds to a cosine-series representation of the flow
impinging normal to the camber line

𝑉∞,n (𝜃) = 𝑉∞

(
𝐴0 −

∞∑︁
𝑛=1

𝐴𝑛 cos 𝑛𝜃

)
, (41)

which is found by inserting the circulation distribution (10) into the right-hand side of (40) and allowing the specific
𝜃0 to be a general 𝜃 location. Under a different convention of the angular coordinate and Fourier coefficients, such
that 𝜙 = 𝜃 − 𝜋 and 𝛾𝑛 = 𝑉∞𝐴𝑛, the authors in [12] compactly represent the right-hand side of (41) as the cosine-series∑∞

𝑛=0 𝛾𝑛 cos (𝑛𝜙). Since the freestream flow can be spatially nonuniform and the airfoil freely maneuvers, we replace
the symbol 𝑉∞,n by 𝑉n to reflect the fact that the freestream is less well-defined. 𝑉n (𝜃) represents the local, relative
flow component that is normal to the camber line at the location 𝜃. A constant, characteristic speed is also needed for
nondimensionalization. Let𝑉 be a constant, characteristic speed associated with the problem, such as the steady speed of
a moving airfoil or a spatially averaged wind speed for a stationary airfoil in an nonuniform flow. Define𝑉n (𝜃) = 𝑉n (𝜃)/𝑉
to be the nondimensional flow component impinging perpendicular to the camber line. This nondimensionalization
ensures that the Fourier coefficients are also nondimensional, and (41) becomes

𝑉n (𝜃) = 𝑉

(
𝐴0 −

∞∑︁
𝑛=1

𝐴𝑛 cos 𝑛𝜃

)
. (42)

Utilizing the cosine-series representation of 𝑉n (𝜃) in (42) and evaluating it at a specific 𝜃0 location, we re-perform the
thin-airfoil theory derivation and express the Fourier coefficients and effective angle of attack in terms of 𝑉n. The
condition of no flow across the camber line leads to the integral equation

𝑉

(
𝐴0 −

∞∑︁
𝑛=1

𝐴𝑛 cos 𝑛𝜃0

)
=

1
2𝜋

∫ 𝜋

0

𝛾(𝜃) sin 𝜃𝑑𝜃
(cos 𝜃 − cos 𝜃0)

. (43)
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The circulation distribution 𝛾(𝜃) takes the same form as (10), except 𝑉 replaces 𝑉∞, so that

𝛾(𝜃) = 2𝑉

(
𝐴0

1 + cos 𝜃
sin 𝜃

+
∞∑︁
𝑛=1

𝐴𝑛 sin 𝑛𝜃

)
. (44)

Note that the form of the 𝛾(𝜃) distribution in 44 retains the Kutta condition 𝛾(𝜋) = 0 from the classical thin-airfoil theory.
Substitution verifies that (44) satisfies the integral equation (43). Fourier analysis provides the Fourier coefficients
through (14) and (15), which become

𝐴0 =
1
𝜋

∫ 𝜋

0
𝑉n (𝜃0)𝑑𝜃0, (45)

𝐴𝑛 = − 2
𝜋

∫ 𝜋

0
𝑉n (𝜃0) cos 𝑛𝜃0𝑑𝜃0. (46)

Since the effective angle of attack given in terms of the Fourier coefficients in (20) remains unchanged by the choices
made in this section, substitution of (45) and (46) into (20) provides the effective angle of attack

𝛼eff = − 1
𝜋

∫ 𝜋

0
𝑉n (𝜃0) (cos 𝜃0 − 1)𝑑𝜃0. (47)

The geometry shown in Fig. 1(b) can be used to obtain an expression for 𝑉n (𝜃0). Replacing 𝑉∞ with ‖I𝒗flow/P‖ and
inserting the local angle of attack expression (25) into (3) yields

𝑉n =

√︁
(𝑢′)2 + (𝑤′)2

𝑉
sin

[
tan−1

(
𝑤′

𝑢′

)
+ tan−1

(
− 𝑑𝑧

𝑑𝑥

)]
. (48)

Invoking the trigonometric identity

sin(𝜃1 − 𝜃2) = sin 𝜃1 cos 𝜃2 − cos 𝜃1 sin 𝜃2, (49)

transforms (48) into

sin
[
tan−1

(
𝑤′

𝑢′

)
+ tan−1

(
− 𝑑𝑧

𝑑𝑥

)]
= sin

(
tan−1

(
𝑤′

𝑢′

))
cos

(
tan−1

(
𝑑𝑧

𝑑𝑥

))
− cos

(
tan−1

(
𝑤′

𝑢′

))
sin

(
tan−1

(
𝑑𝑧

𝑑𝑥

))
.

Note that the derivation in Section III retains the angle of attack 𝛼, however, invoking the local angle of attack (25)
replaces 𝛼 with a term that contains flow components (𝑢′, 𝑤′) evaluated at that location. The presence of the arctangent
function that results from the use of the local angle of attack (25) enables use of the additional trigonometric identities,

sin
(
tan−1 𝜃

)
=

𝜃
√

1 + 𝜃2
, and cos

(
tan−1 𝜃

)
=

1
√

1 + 𝜃2
, (50)

which leads to

𝑉n =
√︁
(𝑢′)2 + (𝑤′)2

𝑤′

𝑢′ − 𝑑𝑧
𝑑𝑥

𝑉

√︄(
1 +

(
𝑤′
𝑢′

)2
) (

1 +
(
𝑑𝑧
𝑑𝑥

)2
) . (51)

Under the mild assumption that 𝑢′ > 0 (to avoid having to consider a sgn(𝑢′) term), (51) can be rewritten as

𝑉n =
𝑤′ − 𝑢′ 𝑑𝑧

𝑑𝑥

𝑉

√︂
1 +

(
𝑑𝑧
𝑑𝑥

)2
. (52)

For flows in which 𝑢′ changes sign (e.g., pulsatile flow), the sgn(𝑢′) term must be maintained. Using (52) to eliminate
𝑉n from (47) leads to a new expression for effective angle of attack,

𝛼eff = − 1
𝜋

∫
𝜋

0

𝑤′ − 𝑢′ 𝑑𝑧
𝑑𝑥

𝑉

√︂
1 +

(
𝑑𝑧
𝑑𝑥

)2
(cos 𝜃0 − 1) 𝑑𝜃0, (53)
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where

𝑢′ (𝜃0) = ( ¤𝑠 − 𝑢𝑥) cos 𝜃𝑔 −
( ¤ℎ − 𝑢𝑧

)
sin 𝜃𝑔 − ¤𝜃𝑔 (𝑧 (𝜃0) − 𝑧𝐶 ) , (54)

𝑤′ (𝜃0) = ( ¤𝑠 − 𝑢𝑥) sin 𝜃𝑔 +
( ¤ℎ − 𝑢𝑧

)
cos 𝜃𝑔 + ¤𝜃𝑔

( 𝑐
2
(1 − cos 𝜃0) − 𝑥𝐶

)
. (55)

Equations (54) and (55) are based on the relative flow components (33) and (34) after expressing the wind components
in the inertial frame and using the change of variables (8). The freestream components 𝑢𝑥 and 𝑢𝑧 may also be functions
of 𝜃0 if there is spatial nonuniformity in the surrounding flowfield.

The use of the Kutta-Joukowski theorem [1] in the creation of the 𝛼eff definition (20) limits (53) to spatially
nonuniform flows that are potential (i.e., irrotational) flows, since potential flow is used for the derivation of this
theorem. If the freestream flow has distributed vorticity, a flow velocity function can still be used to calculate an effective
angle of attack using (53), subject to the assumption of a Kutta-Joukowski relation between sectional lift and bound
circulation. Equations (53)-(55) are important because they provide a simple formula for calculating effective angle of
attack under various flow conditions and kinematics. Reducing the small-angle and small-camber-slope assumptions

has also allowed more terms to be maintained. Using (50), the 1/
√︃

1 + (𝑑𝑧/𝑑𝑥)2 term is often well approximated by 1
in many applications. However, the pitch axis location (𝑥𝑐 , 𝑧𝑐) in 𝑢′ and 𝑤′ may play an important role in applications
where these values are large. For example, although it is not examined in this paper, the 𝑢′ (𝑑𝑧/𝑑𝑥) term may increase
in importance for vertical-axis wind turbine applications in which 𝑧𝑐 is large.

VI. Special Cases
This section examines implications of the proposed effective angle of attack expression for several applications,

including a maneuvering symmetric airfoil, a thin airfoil encountering a transverse flow, and a cambered airfoil in steady,
uniform flow. In addition to showing that the proposed expression (53) properly encompasses the prior effective angle
of attack expression (22), this section presents a new expression for the zero-lift angle of attack for a cambered thin
airfoil that replaces the classical expression.

A. Effective Angle of Attack for Maneuvering Symmetric Airfoil
We consider whether the proposed expression for effective angle of attack (53) properly encompasses the previous

effective angle of attack expression (22) for a pitching and plunging thin airfoil under the appropriate simplifying
assumptions. The example in [8] (see pg. 430) considers a thin airfoil without camber (i.e., 𝑑𝑧/𝑑𝑥 = 0) in a freestream
of flow speed 𝑉 = 𝑉∞. Plugging into (53) leads to

𝛼eff = − 1
𝜋

∫ 𝜋

0

𝑤′

𝑉∞
(cos 𝜃0 − 1) 𝑑𝜃0. (56)

The derivation of (22) also considers the relative velocity between the airfoil motion and the freestream, so we may
assume that incident wind is in the inertial 𝒆𝑥 direction with 𝑢𝑥 = −𝑉∞ and the airfoil is not surging forward (i.e., ¤𝑠 = 0).
The thin airfoil has a geometric angle of attack 𝜃𝑔 = 𝛼 and pitches at a rate of ¤𝜃𝑔 = ¤𝛼 about a point on the chord line
located at (𝑥𝐶 , 𝑧𝐶 ) = (𝑏 + 𝑎𝑏, 0). The airfoil has a plunge rate of ¤ℎ. Plugging these expressions into (53) — (55), and
using 𝑐 = 2𝑏 gives

𝛼eff = − 1
𝜋

𝑉∞ sin𝛼 + ¤ℎ cos𝛼 − ¤𝛼 (𝑏 + 𝑎𝑏)
𝑉∞

∫ 𝜋

0
(cos 𝜃0 − 1) 𝑑𝜃0 +

¤𝛼𝑏
𝜋𝑉∞

∫ 𝜋

0
(cos 𝜃0 − 1)2 𝑑𝜃0. (57)

The two integrals shown in (57) can be evaluated analytically to yield −𝜋 and 3𝜋/2, from left to right, respectively.
Continued calculation reduces the effective angle of attack to

𝛼eff = sin𝛼 +
¤ℎ
𝑉∞

cos𝛼 + 𝑏

(
1
2
− 𝑎

)
¤𝛼
𝑉∞

. (58)

Equation (58) is the effective angle of attack for a flat, thin airfoil pitching about 𝑎𝑏 and plunging at a rate of ¤ℎ. The first
term is a geometric angle of attack contribution. The second term is a plunge-rate contribution, and the third term
is a pitch-rate contribution. Note that if the small angle assumption is applied, so that sin𝛼 ≈ 𝛼 and cos𝛼 ≈ 1, (58)
successfully recovers the traditional effective angle of attack expression (22).
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B. Angle of Attack Contribution for Transverse Flow
Consider the scenario of a flat plate or symmetric airfoil (i.e. 𝑑𝑧/𝑑𝑥 = 0) in a steady freestream, at a constant

geometric angle of attack, and encountering a transverse flow (e.g., see [9]). The need to incorporate the effect of a
transverse flow in an angle of attack calculation often occurs in rotorcraft research, in which rotor blades experience
downwash [12] or in fixed-wing flight applications in the presence of three-dimensional effects, such as wing-tip vortices
[1]. A common practice is to add a local angle of attack contribution tan−1 (𝑤/𝑉∞) due to the transverse flow component
𝑤 to the geometric angle of attack, yielding [9]

𝛼eff = 𝜃𝑔 + tan−1
(
𝑤

𝑉∞

)
. (59)

Peters et al. [12] note that although (59) is commonly implemented, it is known to be incorrect, because at zero
geometric angle of attack, the lift should be proportional to 2𝜋𝜌𝑏𝑉2

∞ (𝑤/𝑉∞), not 2𝜋𝜌𝑏𝑉2
∞ tan−1 (𝑤/𝑉∞).

Let the freestream be 𝑢𝑥 = −𝑉∞ and take 𝑉 = 𝑉∞. For this problem, we have ¤𝑠 = ¤ℎ = ¤𝜃𝑔 = 0. If the transverse flow
component 𝑢𝑧 is evaluated at a single, representative location, then substitution into (53) leads to

𝛼eff = sin 𝜃𝑔 −
𝑢𝑧

𝑉∞
cos 𝜃𝑔 . (60)

Equation (60) is a corrected version of (59), where 𝑤 = −𝑢𝑧 cos 𝜃𝑔 due to the change of reference frames. The
transverse-flow contribution to 𝛼eff is (𝑤/𝑉∞), not tan−1 (𝑤/𝑉∞), which agrees with the remark of Peters et al. [12].

C. Zero-Lift Angle for a Thin Airfoil
Consider the steady flow past a thin airfoil with the slope of the camber line 𝑑𝑧/𝑑𝑥 at a fixed geometric angle of

attack 𝜃𝑔 in a uniform freestream in the horizontal direction. The zero-lift angle from thin-airfoil theory is [1]

𝛼𝑙=0 = − 1
𝜋

∫ 𝜋

0

𝑑𝑧

𝑑𝑥
(cos 𝜃0 − 1) 𝑑𝜃0. (61)

We find the zero-lift angle for the present theory by setting 𝐶𝑙 = 2𝜋𝛼eff = 0, where 𝛼eff is specified by (53). We also set
𝑢𝑥 = −𝑉∞ and 𝑢𝑧 = ¤𝑠 = ¤ℎ = ¤𝜃𝑔 = 0 and solve for the geometric angle of attack 𝜃𝑔 at zero lift

𝜃𝑔,𝑙=0 = tan−1 ©«
∫ 𝜋

0 sin
(
tan−1

(
𝑑𝑧
𝑑𝑥

))
(cos 𝜃0 − 1) 𝑑𝜃0∫ 𝜋

0 cos
(
tan−1

(
𝑑𝑧
𝑑𝑥

))
(cos 𝜃0 − 1) 𝑑𝜃0

ª®®¬ . (62)

Note that (62) does not readily simplify since the slope of the camber line 𝑑𝑧/𝑑𝑥 is a function of the variable of
integration 𝜃0. Equation (62) replaces the classical result for the zero-lift angle (61).

For a more accessible comparison to existing results from thin-airfoil theory, consider instead the value of the lift
coefficient at zero geometric angle of attack. Substituting 𝜃𝑔 = 0 into 𝐶𝑙 = 2𝜋𝛼eff, where 𝛼eff is specified by (53) results
in

𝐶𝑙

(
𝜃𝑔 = 0

)
= 2𝜋

[
− 1
𝜋

∫ 𝜋

0
sin

(
tan−1

(
𝑑𝑧

𝑑𝑥

))
(cos 𝜃0 − 1) 𝑑𝜃0

]
. (63)

Equation (63) is directly comparable to the result from thin-airfoil theory that can be obtained by inserting (61) into
𝐶𝑙 = 2𝜋(𝛼 − 𝛼𝑙=0) for 𝛼 = 0. From this comparison, the two equations are identical under the approximation that

sin
(
tan−1

(
𝑑𝑧

𝑑𝑥

))
≈ 𝑑𝑧

𝑑𝑥
.

Equation (63) shows that the proposed theory of this paper encompasses the steady thin-airfoil theory results, but does
so without explicitly invoking a small-camber-slope assumption.

Table 1 presents the results of a comparison of thin-airfoil theory in (61), the present theory in (62), and experimental
data obtained from the literature in [27] for several four-digit NACA airfoils. The equations for the camber lines of the
four-digit NACA airfoil series can be found in [28]. Table 1 does not included a comparison to the data of [12], because
Peters et al. [12] include additional approximations related to the truncation of a Fourier series that must be fit to the
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Table 1 Comparison of the zero-lift angle for four-digit NACA airfoils.

NACA airfoil Thin-airfoil theory in (61) Proposed theory in (62) Experiment in [27]
𝛼𝑙=0 (deg) 𝜃𝑔,𝑙=0 (deg) 𝛼𝑙=0 (deg) ±0.15 deg

0012 0.000 0.000 0.0
2412 -2.077 -2.076 -2.0
4412 -4.155 -4.142 -4.1
6412 -6.232 -6.191 -6.1
6712 -9.130 -8.787 -7.4
8318 -7.672 -7.636 -7.4

camber line of the airfoil— these approximations complicate the comparisons. However, we note that the proposed
expression (62) has the advantage that it does not require fitting a Fourier series to the camber line prior to calculation.

For airfoils NACA 0012, 2412, 4412, and 6412, both theories offer predictions that lie within the estimated ±0.15
degree experimental uncertainty found in [27, 29]. For the NACA 2412 airfoil, there is very little difference between the
theories. As the maximum camber grows and moves towards the tail of the airfoil, such as in the cases of the NACA
6412 and NACA 6712 airfoils, the difference between the estimates increases. The case of the NACA 6712 airfoil shows
that if the location of maximum camber moves very far aft on the chord, both theories have difficulty predicting the true
value.

The experimental uncertainty is too large to conclude that the proposed theory provides an improvement over the
existing thin-airfoil theory. However, Table 1 shows that the proposed theory produces zero-lift angle estimates that are
consistently smaller or equal in magnitude for all cases, which is a trend that is the direction of the experimental values.
If an improvement exists, it should be noted that the magnitude of the improvement only accounts for a small portion of
the difference between the existing theory and experiment, which is presumably attributable to modeling assumptions
related to airfoil thickness and viscous effects.

VII. Effective Angle of Attack Matching
This section uses the proposed effective of attack expression for creation of a motion profile for a maneuvering airfoil

to mimic a specified lift response. In particular, this section examines how to match the effective angles of attack for a
non-maneuvering airfoil that encounters a small-amplitude, transverse gust and another, freely maneuvering airfoil that
does not encounter a gust. A small-amplitude, transverse gust is defined similar to [30] to have a gust ratio GR ≤ 0.2.
Gust encounters are an active area of unsteady aerodynamics research [18, 31]. However, creating experimental setups
to study unsteady flow phenomena, such as gust encounters can be challenging [17]. Effective angle of attack matching
provides a method for creating motion profiles to mimic or closely approximate an aerodynamic response.

Section VII.A presents a framework for choosing input signals to match a desired angle of attack. Section VII.B
uses pitching or plunging inputs individually, and Section VII.C uses both pitching and plunging inputs.

A. Optimal Control Problem Description
Consider a NACA 2412 cambered airfoil traveling with constant, horizontal speed ¤𝑠 = 0.4𝑚/𝑠 at a constant geometric

angle of attack 𝜃𝑔,0 = 0◦ and encountering a transverse, sine-squared gust at 𝑡 = 0. The transverse gust has a sine-squared
velocity profile [9]

𝑢𝑧 (𝑥, 𝑡) =
{

−𝑉max sin2 ( ¤𝑠𝑡−𝑥
𝐿

𝜋
)

if 0 ≤ ¤𝑠𝑡−𝑥
𝐿

≤ 1,
0 otherwise,

(64)

where 𝑉max is the maximum speed of the gust and 𝐿 is the gust width. Note that the piecewise construction of this
function permits the evaluation of the gust velocity along the chord if the location 𝑥 is either inside or outside of the
gust region. Consider also an airfoil that does not encounter a gust but tries to mimic the effect of the gust by pitching
and plunging. The maneuvering airfoil has the same surge rate ¤𝑠 and the same initial geometric angle of attack 𝜃𝑔,0.
By letting 𝑉max = 0.2 ¤𝑠 and assuming a chord of 𝑐 = 0.1 m, the simulated gust encounter corresponds to gust ratio
𝐺𝑅 = 𝑉max/¤𝑠 = 0.2 at a chord-based Reynolds number of 𝑅𝑒𝑐 ≈ 2, 660 in air or 𝑅𝑒𝑐 ≈ 39, 800 in water.

Let 𝛼(1)
eff and 𝛼

(2)
eff be the effective angles of attack for airfoils 1 and 2 respectively, where airfoil 1 encounters the gust
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and airfoil 2 does not. To perform matching of the effective angle of attack, we construct the following constrained
optimization problem to find the optimal (open-loop) control input 𝑢 that solves

min
𝑢

𝐽 (𝑢) = 1
2

∫ 𝑡 𝑓

𝑡0

(
𝛼

(1)
eff (𝑡) − 𝛼

(2)
eff

(
𝜃𝑔, 𝑢

) )2
d𝑡 (65)

subject to ¤𝜃𝑔 = 𝑢1, with 𝜃𝑔 (0) = 𝜃𝑔,0,

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑡𝑜 ¤ℎ = 𝑢2, with ℎ(0) = 0.

The control inputs 𝑢1 and 𝑢2 command the pitch rate ¤𝜃𝑔 and plunge rate ¤ℎ, respectively. The effective angle of attack for
the gust encounter 𝛼(1)

eff (𝑡) is a function of time only since it can be calculated using the known gust profile. The 𝑧(𝑥)
and 𝑑𝑧/𝑑𝑥 terms in 𝛼eff correspond to the appropriate NACA airfoil equation for the mean camber line of a NACA
2412 airfoil, which can be found in [28]. The characteristic speed 𝑉 for this problem is set to 𝑉 =

√︁
¤𝑠2 +𝑉2

max. For the
maneuvering airfoil, the effective angle of attack 𝛼

(2)
eff is a function of the airfoil motion variables 𝜃𝑔, ¤𝜃𝑔, and ¤ℎ.

To solve the constrained optimal control problem (65) computationally, we assume a Fourier-series parameterization
of the control inputs [32]

𝑢1 (𝑡) = 𝐶0 +
𝑁∑︁
𝑛=1

𝐶2𝑛−1 sin(𝑛𝜔𝑡) + 𝐶2𝑛 cos(𝑛𝜔𝑡), (66)

𝑢2 (𝑡) = 𝐷0 +
𝑁∑︁
𝑛=1

𝐷2𝑛−1 sin(𝑛𝜔𝑡) + 𝐷2𝑛 cos(𝑛𝜔𝑡), (67)

where 𝜔 = 2𝜋/𝑇 . The parameterizations in (66) and (67) restrict the spaces of possible solutions for 𝑢1 (𝑡) and 𝑢2 (𝑡)
from an infinite-dimensional spaces of continuous curves on the interval [0, 𝑇] to the finite-dimensional space of Fourier
coefficients. That is, given the Fourier coefficients 𝐶𝑛 and 𝐷𝑛 for 𝑛 = 0, . . . , 2𝑁 , continuous curves 𝑢1 (𝑡) and 𝑢2 (𝑡) are
completely specified on the interval [0, 𝑇]. Larger values of 𝑁 allow for more complex curves. In the examples of this
section, we select 𝑁 = 6, since this value was found to provide adequate degrees of freedom to match the effective
angles of attack. The coefficients 𝐶0, and 𝐷0 allow for constant offsets. For pre-specified controls 𝑢1 (𝑡), and 𝑢2 (𝑡), the
differential equation constraints in (65) can be readily integrated and plugged into the cost function to eliminate the
constraint, yielding an unconstrained problem. The unconstrained optimization problem is solved using the numerical
optimization function fminunc in MATLAB® [33].

B. Effective Angle of Attack Matching with a Single Input
To examine the ability of a single input to match the effective angle of attack of a gust encounter, consider either

pure pitching or pure plunging motion. For pure pitching motion, the plunging input is set to 𝑢2 (𝑡) = 0 during the entire
maneuver. Conversely, for pure plunging motion, the pitching input is set to 𝑢1 (𝑡) = 0.

Given an initial guess of Fourier coefficients for the appropriate control input in either (66) or (67), the corresponding
effective angle of attack for the pitching or plunging motion can be calculated and the optimization can be initiated. It
was found that optimization solver occasionally converged to local minima, indicating that the optimization problem
(65) is nonconvex. To address this problem, we considered various random values of initial guesses for the Fourier
coefficients and separately solved the optimization problem from each initial guess. Across all solves considered, the
solution with the lowest cost 𝐽 was selected. For the pure pitching motion, with an initial guess of Fourier coefficients
𝐶0 = 0, 𝐶1 = 0.0586, and 𝐶𝑛 = 0 for 𝑛 = 2, . . . , 12, the results of the optimization are shown in Fig. 3(a) and Fig. 3(b).
This initial guess for the 𝐶𝑛 Fourier coefficients resulted in accurate and indistinguishable matching of the 𝛼eff curves,
as shown in Fig. 3(a). The resulting control signal 𝑢1 (𝑡) is shown in Fig. 3(b) as a dashed red line and consists of a
pitch-up, then pitch-down maneuver.

For the pure plunging motion with an initial guess of Fourier coefficients 𝐷0 = 0.0264, 𝐷1 = 0, 𝐷2 = −0.0264, and
𝐷𝑛 = 0 for 𝑛 = 3, . . . , 12, the results of the optimization are shown in Fig. 3(c) and Fig. 3(d). The optimization routine
was able to closely match the 𝛼eff curves, as shown in Fig. 3(c). The resulting control signal 𝑢2 (𝑡) is shown in Fig. 3(d)
as a dashed red line and consists of a positive plunging maneuver. The optimal solution notably contained a nonzero
Fourier coefficient 𝐷0 to offset the plunging effect at the initial time. The control inputs in Fig. 3(c) and Fig. 3(d)
illustrate a pitch-plunge equivalence, since either pure pitching or pure plunging motion can match the effective angle
of attack of a small-amplitude, transverse gust encounter. However, the plunge input profile in Fig. 3(d) is notably
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(a) (b)

(c) (d)

Fig. 3 Effective angles of attack for an airfoil encountering a gust and an airfoil mimicking a gust encounter
through pitching only (Fig. 3a) and plunging only (Fig. 3c). Pitch rate initial guess, iterations (thin lines) and
optimal profile (Fig. 3b). Plunge-rate initial guess and optimal profile (Fig. 3d).

smoother, suggesting that the plunging input is more well-suited for mimicking a small-amplitude, transverse gust
encounter.

C. Effective Angle of Attack Matching for Combined Pitching and Plunging Inputs
This section examines the simultaneous design of pitching input 𝑢1 (𝑡) and plunging input 𝑢2 (𝑡). Using both control

parameterizations (66) and (67) in the optimal control problem (65) leads control solutions that combine both pitching
and plunging. Figure 4 shows the results of matching the effective angle of attack using combined pitching and plunging
motions. Using several inputs, multiple solutions become possible. Figures 4(a) and 4(b) show that the results from one
solution, and Figs. 4(c) and 4(d) show the results from another solution with different profiles for pitching and plunging.

The first solution was generated with an initial guess of Fourier coefficients 𝐶0 = 0, 𝐶1 = 0.0168, and 𝐶𝑛 = 0 for
𝑛 = 2, . . . , 12, for 𝑢1 (𝑡), combined with an initial guess of Fourier coefficients 𝐷0 = 0.0264, 𝐷1 = 0, 𝐷2 = −0.0264,
and 𝐷𝑛 = 0 for 𝑛 = 3, . . . , 12, for 𝑢2 (𝑡). The initial guess of the pitching and plunging inputs for the maneuvering airfoil
resulted in a similar effective angle of attack profile in Fig. 4(a), so the optimal maneuvers in Fig. 4(b) are close to the
inputs of the initial guess. The alternate solution shown in Figs. 4(c) and 4(d) was based on an initial guess of Fourier
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(a) (b)

(c) (d)

Fig. 4 Effective angle of attack profiles from different initial guesses for an airfoil maneuvering to mimic a gust
encounter through pitching and plunging (Fig. 4a and 4c). Rate inputs calculated by the matching optimization
from different initial guesses (Fig. 4b and 4d).

coefficients 𝐶0 = 0, 𝐶1 = 0.0586, and 𝐶𝑛 = 0 for 𝑛 = 2, . . . , 12, for 𝑢1 (𝑡), combined with an initial guess of Fourier
coefficients 𝐷0 = 0, 𝐷1 = −0.0120, and 𝐷𝑛 = 0 for 𝑛 = 2, . . . , 12, for 𝑢2 (𝑡). For this initial guess, the effective angle of
attack did not match the desired effective angle of attack as closely in Fig. 4(c). However, the optimization solver was
still able to find an input combination to match the effective angle of attack 𝛼

(1)
eff for the airfoil in a gust encounter. Fig.

4(b) shows optimal control inputs for a pitch-up then pitch-down maneuver, combined with a positive plunge maneuver.
Fig. 4(d) provides another solution of optimal control inputs with a larger pitch-up then pitch-down maneuver, plus a
small-amplitude plunging cycle. Notably, the first solution in Fig. 4(b) has more plunge actuation and is smoother,
which is consistent with the findings of Section VII.B that slow plunging is well-suited to mimic a small-amplitude
transverse gust. The second solution in Fig. 4(d) employs more pitching than plunging actuation. Even though an
additional plunge input is present, Fig. 4(d) exhibits the same bumps in the pitching input curve that are present in Fig.
3(b) for a single pitching input.

The four solutions shown in this section for matching the effective angle of attack confirm that different kinematic
motions can emulate the effective angle of attack in a transverse gust encounter, which implies the same lift response
under a quasi-steady assumption. Although the effective angle of attack matching problem of this section is focused on
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(a) (b)

Fig. 5 Geometry and boundary conditions for CFD simulations. a) Configuration for the steady-flow and gust
encounter simulations. b) Configuration and mesh for the pitching simulation.

emulation of a gust encounter, the provided framework that utilizes the proposed effective angle of attack expression
(53) and the optimal control formulation (65) is applicable to various other problems of aerodynamic force equivalence.
For example, there has been significant work on pitch-plunge equivalence (e.g., see [16]) as well as more general, three
degree-of-freedom motions for gust encounter emulation (e.g., see [17]).

VIII. Computational Fluid Dynamics Simulations
This section presents CFD simulations that demonstrate the efficacy of the proposed effective angle of attack theory

from Sections V and VI , as well as the effective angle of attack matching framework from Section VII. Steady-flow
past several NACA airfoils was simulated. A gust encounter with a NACA 2412 airfoil was simulated, and a pitching
maneuver designed to mimic a gust encounter was simulated for the same airfoil.

A. CFD methods
The commercially available software package COMSOL Multiphysics® v. 5.5 [34] was used to perform the

two-dimensional simulations in this section. The simulation domain consisted of the union of a half-circle and a
rectangle, as shown in Fig. 5(a). The fluid was assumed to be air at standard temperature and pressure. An airfoil
model was drawn in the half-circle portion of the domain with the trailing-edge point coincident with the center of the
semi-circle. Inlet, open, and no-slip boundary conditions were applied as shown in Fig. 5(a). For the steady-flow and
gust encounter simulations, the airfoil remained in a horizontal orientation and the flow velocity was prescribed on the
inlet boundary to achieve the desired angle of attack or to impose a transverse gust velocity. For the pitching simulation,
a concentric circular domain was added in Fig. 5(b) to enclose the airfoil so that the mesh near the airfoil could be
rotated independently from the surrounding domain without the need to re-mesh [35]. A flow-continuity boundary
condition was applied on the circle, and the circular domain was rotated for the maneuver.

Steady-flow simulations were performed using a turbulent flow solver. The solver implements the Reynolds-Averaged
Navier-Stokes (RANS) and continuity equations with a Shear Stress Transport (SST) turbulence model. Following [36],
the freestream turbulent kinetic energy was set to 𝑘∞ = 0.1𝜈∞𝑉/(50𝑐), and the freestream specific dissipation rate was
set to 𝜔∞ = 10𝑉/(50𝑐) for the chord-based Reynolds number of Re𝑐 = 6 × 106. The example simulation [36] provided
by COMSOL Multiphysics® for flow past a NACA 0012 compares very well with the experimental data of [37]. For
each airfoil considered in steady flow, the Reynolds number was set to Re𝑐 = 6× 106. In this regime, the lift vs. angle of
attack curves are rather invariant to changes in the Reynolds number, and thin-airfoil theory is known to perform well.

Since a primary use of the angle of attack matching from Section VII is for the design of laboratory experiments
to simulate gust encounters, the low Reynolds number 𝑅𝑒𝑐 ≈ 2, 660 in air was considered for the gust encounter and
pitching simulations. A similar Reynolds number of 𝑅𝑒𝑐 ≈ 39, 800 in water can be achieved in a towing tank setup
similar to [18], but this configuration is not examined here. Due to the Reynolds number, a laminar flow solver was
selected in COMSOL Multiphysics®. The solver implements the Navier-Stokes equations and the continuity equation
with an incompressibility constraint. For all simulations, mesh convergence was checked by sequentially reducing the
physics-controlled mesh size option in COMSOL Multiphysics® and including additional boundary layer elements near
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(a) NACA 0012 (b) NACA 2412 (c) NACA 6412

Fig. 6 Comparison of thin-airfoil theory, the proposed theory, and CFD simulation on plots of 𝐶𝐿 vs. geometric
angle of attack 𝜃𝑔 for steady flow at Re = 6 × 106 past airfoils: (a) NACA 0012, (b) NACA 2412, and (c) NACA
6412. Plot (a) contains experimental data from [37].

the surface of the airfoil as necessary until the lift curve plots did not change with mesh size.

B. CFD results for steady-flow simulations
Simulations were performed for steady-flow past NACA 0012, 2412, and 6412 airfoils to compare the coefficients of

lift from the proposed theory to those obtained from thin-airfoil theory and CFD simulation. Figure 6 presents the
results of these calculations. Similar to [36], Figure 6(a) contains the experimental data of Ladson [37] which very
closely agrees with the theory and CFD simulations. Note that for the two cambered airfoils, NACA 2412 and 6412, the
thin-airfoil theory curve based on (21) includes the effects of camber, leading to a lift offset at zero angle of attack. The
NACA 2412 airfoil is used subsequently in this section in time-varying simulations for a gust encounter and a pitching
maneuver. Due largely to the flow being attached at these angles of attack, all three methods give similar lift curves in
each of the figures. For each airfoil, the proposed theory lies between the thin-airfoil prediction and the CFD curve, as
clearly seen in the case of the highly cambered NACA 6412 airfoil. The proposed theory very modestly improves the
steady-flow lift predictions of thin-airfoil theory. However, viscous affects and remaining thin-airfoil-theory assumptions
may be responsible for the differences between the solutions from CFD and the proposed theory.

C. CFD results for effective angle of attack matching
To validate the effective angle of attack matching framework presented in Section VII, CFD simulations of a NACA

2412 airfoil encountering a transverse gust and a NACA 2412 airfoil pitching in a uniform flow were performed.
Two-dimensional simulations were performed because a transverse gust encounter could be readily implemented in
COMSOL Multiphysics® using a time-varying inlet boundary condition. The flow field during the entry period of
a gust encounter (i.e., just prior to the lift peak) has been shown to be quasi-two-dimensional [30] for the same gust
ratio simulated here (GR= 0.2). However, Grubb et al. [38] have shown for GR= 1.0, three-dimensional simulation is
necessary to match experimental data. The results of this section validate the two-dimensional effective angle of attack
theory of this paper; results do not capture three dimensional effects that may be important in a real gust encounter.
The boundary condition implemented the sine-squared gust profile and parameter values from Section VII. During
the simulation, the gust traversed along the boundary of the domain at a constant speed with the freestream flow to
encounter the stationary airfoil. Since the gust profile was only specified on the domain boundaries, it was noticed that
the gust deformed within the center of the domain. Figure 7(a) shows the vertical component of velocity at a probe
location coincident with the leading edge of the airfoil for a simulation in which the airfoil was not present. Within the
domain, the gust diffuses outward, increasing its gust width. Additionally, the CFD-simulated gust encounters the airfoil
sooner than the intended ideal gust. An increase in the vertical velocity on the leading side of the gust and a reversal
of the vertical velocity on the trailing side of the gust were observed. These features persisted with additional mesh
refinement and were influenced by the height of the domain. More sophisticated techniques for gust simulation, such
as the Field Velocity Method with gust source terms of [31], exist and are capable of providing profiles closer to the
canonical shape of a sine-squared gust. Nevertheless, since the boundary-specified gust could be readily implemented in
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(a) (b)

(c) (d)

Fig. 7 CFD results: (a) gust profile simulated in CFD compared to the ideal gust shape specified at the boundary.
(b) Lift curves from CFD simulations compared to predictions from effective angle of attack and Küssner’s
theory. (c) Surface plots of the out-of-plane component of vorticity at various points in time. (d) Lift curve for a
simulation using a re-calculated pitching profile.

COMSOL Multiphysics® and the gust profile does not drastically differ from the canonical shape, this method of gust
specification was used. Note that the CFD-simulated gust matches closely in amplitude with the desired gust shape.

Figure 7(b) compares the coefficient of lift histories for the gust encounter and the pitching airfoil, as well as the
prediction from the proposed effective angle of attack theory in Section V. Figure 7(b) also contains the lift prediction
of Küssner’s theory [8] applied to the ideal gust shape. Küssner’s theory has been shown to be a good predictor of
the lift response for GR≤ 0.5 [30]. The two curves calculated from CFD exhibit initial, final, and peak 𝐶𝑙 values that
are below the prediction from effective angle of attack. This discrepancy in the 𝐶𝑙 magnitude may be attributed to
the low Reynolds number, since simulations show that it diminishes as the flow speed is increased and potential flow
theory agrees well with the lift values from CFD at the higher Reynolds number in Fig. 6. Notably, the lift coefficient
curves for the gust encounter and the pitching maneuver match very close in peak amplitude and timing of the lift peak.
The duration of the increase in lift was similar, differing by corresponding features in the vertical gust profile used
for simulation in Fig. 7(a); the lift increase begins early and experiences a trailing dip later in the encounter. Both
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CFD curves have slopes that are similar to the theoretical gust encounter prediction. However, unlike the theory-based
curve, the CFD curves both exhibit a change in slope on the downward-sloping portion of the lift curve (see points
A and C in Fig. 7(b)). Figure 7(c) displays the z-component of the vorticity field when the slope changes occur (see
subplots A and C in Fig. 7(c)). The upper boundary layer rapidly separates from the airfoil as a shear layer of negative
vorticity at this time. Later in the simulations, the shear layer re-attaches at points B and D in Fig. 7(b) for the gust and
pitching maneuver, respectively. In Fig. 7(c), the flow structures created during separation and re-attachment are nearly
identical for the gust-encountering airfoil and the pitching airfoil, which can be attributed to the close matching of
effective angle of attack for these airfoils just prior to the moment of flow separation. However, this example represents
a relatively benign case since the violation of the attached flow assumption occurs only once and in a limited manner; it
is reasonable to expect a gust encounter with massive flow separation to yield a different flowfield behind the wing than
a high-angle-of-attack maneuver would yield.

Although the simulated gust profile in Fig. 7(a) deviated from the ideal gust profile, it is possible to account for these
deviations by re-calculating a pitching maneuver using the effective angle of attack matching in (65) for the non-ideal
gust profile from CFD. Figure 7(d) shows the lift curve for a CFD simulation of the airfoil pitching according to the
re-calculated maneuver. Very good agreement with the gust encounter profile was obtained.

IX. Conclusion
The paper presents a novel expression for a quasi-steady effective angle of attack from thin-airfoil theory that

does not utilize the small-angle approximation or small-camber-slope approximation, although the small-camber
assumption partially remains due to the projection of the bound vortex sheet onto the chord line. The expression
includes kinematic effects related to pitching, plunging, and surging of the airfoil, as well as freestream nonuniformity.
The expression is derived using the local angle of attack due to the relative flow and trigonometric identities so that
these two approximations were not needed. Assumptions of attached flow and a thin airfoil still remain. The resulting
expression properly encompasses existing expressions for effective angle of attack and also provides a new expression
for the zero-lift angle for a cambered thin airfoil in steady-flow conditions. Predicted values of the zero-lift angle for
cambered airfoils are compared to experimental data obtained from literature, showing good agreement. This paper
also applies the proposed effective angle of attack expression to a problem of emulating a transverse gust encounter
using a maneuvering airfoil with four different kinematic motions (i.e., pitching only, plunging only, and two different
pitching and plunging combinations). The results of the proposed optimization framework provide an accurate solution
for matching the effective angle of attack for an airfoil encountering a gust and another that maneuvers to mimic such an
encounter, subject to the assumptions implicit in the effective angle of attack derivation. Computational Fluid Dynamics
(CFD) simulations were performed. Steady-flow simulations validate the proposed theory and compare well with
experimental data, with deviations attributable to modeling assumptions and viscous effects. Unsteady CFD simulations
were performed to compare the lift response of an airfoil in a gust encounter to one of the four kinematic profiles that
was derived to mimic a gust response. For the low gust ratio simulated and a small angle of attack pitching maneuver,
the two lift responses show very good agreement due to the matching of the effective angle of attack. In ongoing work,
we are extending the kinematic analysis of this paper to examine unsteady motion effects (i.e., acceleration effects), and
we are pursuing experimental validation.
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