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Abstract

We study the problem of clustering validation, i.e., clustering evaluation with-
out knowledge of ground-truth labels, for the increasingly-popular framework
known as subspace clustering. Existing clustering quality metrics (CQMs) rely
heavily on a notion of distance between points, but common metrics fail to cap-
ture the geometry of subspace clustering. We propose a novel point-to-point
pseudometric for points lying on a union of subspaces and show how this allows
for the application of existing CQMs to the subspace clustering problem. We
provide theoretical and empirical justification for the proposed point-to-point
distance, and then demonstrate on a number of common benchmark datasets
that our proposed methods generally outperform existing graph-based CQMs
in terms of choosing the best clustering and the number of clusters.
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1. Introduction

Clustering has long been one of the most fundamental tools for data ex-
ploration, and from the start researchers have studied how to determine the
quality of a clustering output in order to choose parameters and compare algo-
rithms. In contrast to the supervised learning setting, clustering problems do
not provide any labeled data that can be used as a “hold-out” set for cross-
validation. The problem of clustering quality has been widely studied for the
general clustering problem [1–4]. However, existing methods are not applicable
to the subspace clustering problem [5], a more modern and widely applicable
clustering framework in which the clusters also have low-dimensional structure.

The key ideas in the clustering quality literature are those of intra-cluster
cohesion and inter-cluster dispersion. These notions are defined fundamentally
based on some distance metric chosen appropriately for the application. This
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Figure 1: Data from the Extended Yale Face Database B is known to lie in a union of low-rank
subspaces. Images from subjects 5 and 23 projected onto first three principal components are
shown.

distance metric is applied between points in the dataset or between points and
cluster centers, where the centers are of the same dimension as the data points.

The subspace clustering problem can be formulated as a generalization of
PCA, where we seek a collection of low-dimensional subspaces that best fits
our data; this is known as the Union of Subspaces (UoS) model. We may
think of these subspaces as the cluster centers, in which case there is a natural
notion of point-to-center and center-to-center distances. However, quantifying
point-to-point distance becomes problematic. Intuitively, we wish to define a
metric d(·, ·) such that the distance between points in the same subspace is
small, whereas points on orthogonal subspaces should have maximum distance.
For example, antipodal points always lie in a one-dimensional subspace, and we
therefore desire d(x,−x) = 0. However, this property cannot be achieved by
existing (pseudo) metrics such as the Mahalanobis distance.

In this work, we present what is, to the best of our knowledge, the first
approach to internal clustering validation for the UoS model. We propose a
novel pseudometric for points lying on a union of subspaces, as well as several
clustering quality metrics so that the output of subspace clustering algorithms
can be tuned and fairly compared on unsupervised datasets.

2. Problem Formulation & Related Work

Consider a collection of N unit-norm points X = {x1, . . . , xN} in ambient
space RD, and let X ∈ RD×N denote the matrix whose columns are the elements
of X . We define a K-clustering of X to be a partition of X into K disjoint sets
C = {c1, . . . , cK}, where we assume 1 < K < N to avoid trivial clustering. Let
U1, . . . , UK denote orthonormal bases for K subspaces S1, . . . ,SK obtained by
performing PCA on the points in clusters c1, . . . , cK , and let D = {d1, . . . , dK}
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be the set of dimensions of these subspaces. An example of data lying in two
2-dimensional subspaces is shown in Fig. 1, where the points from subjects 5
and 23 of the Extended Yale Face Database B [6] are shown after projecting
onto their first three principal components via robust PCA [7].

2.1. Subspace Clustering

Subspace clustering algorithms seek to partition X into K clusters such that
the data in each cluster lies near a low-dimensional linear or affine subspace.
This is done in an unsupervised manner, i.e., without knowledge of the subspaces
themselves. This model has applications ranging from structure from motion to
image and handwritten character recognition [8–12].

To accomplish this task, researchers leverage a variety of properties of data
belonging to a union of subspaces. Perhaps the most popular of these is the self-
expressive property, which informally states that points can be most efficiently
represented as a linear combination of other points lying in the same subspace.
Researchers utilize this property by solving sparse regression problems of the
form

min
Z

‖X −XZ‖2F + λ ‖Z‖

subject to diag(Z) = 0,

where ‖Z‖ is the `1-norm in Sparse Subspace Clustering (SSC) [8], the nuclear
norm in Low-Rank Representation (which omits the constraint on Z) [13, 14],
and may include a combination of other norms to account for noisy data or out-
liers. An affinity/similarity matrix is then obtained as |Z| + |Z|T , after which
spectral clustering is performed to obtain the clusters. SSC and its variants
thus require the selection of at least one hyperparameter λ, as well as a thresh-
olding parameter in the case of the Alternating Direction Method of Multipliers
(ADMM) implementation of SSC. In [15], the authors present a range of allow-
able values for λ to guarantee correct clustering, but this range is based on data
parameters such as the inradius of each cluster, which cannot be known a priori,
and the result does not apply when a penalty for sparse outliers is included.

An alternative approach to subspace clustering is that of the Thresholded
Subspace Clustering (TSC) algorithm [16], which leverages the fact that points
within the same subspace have large inner product (on average) relative to
points in different subspaces. TSC is the simplest of all subspace clustering
algorithms and proceeds by forming the matrix

∣∣XTX
∣∣ and thresholding each

row and column so that all but the top q entries are set to zero. Methods of
selecting this threshold are provided in [16, 17], but these rely heavily on strict
assumptions on the data (e.g., that the data are generated uniformly at random
from the intersection of the unit sphere and the subspace). Real-world datasets
often violate these assumptions, and in practice, the clustering of lowest error
may not result from selecting the threshold within the proposed ranges.

One further approach to subspace clustering is based on the K-subspaces
(KSS) algorithm [18–20], a generalization of K-means that seeks to minimize
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the sum of squared distances from points to subspaces through alternating min-
imization. While KSS is computationally efficient and only requires the selec-
tion of a single tuning parameter (the subspace dimension), its performance
on benchmark datasets is known to lag behind that of self-expressive methods.
Recently, in [21], the authors show that incorporating robust subspace esti-
mation via the Coherence Pursuit algorithm [22] can significantly improve the
performance of KSS, though this requires the selection of an additional tuning
parameter. Another recent approach to improving KSS is that of the Ensemble
K-subspaces (EKSS) algorithm [23], which combines the results of numerous
KSS instances via the evidence accumulation framework [24] to achieve supe-
rior empirical performance and strong theoretical guarantees. Like TSC, EKSS
builds an affinity matrix and then thresholds this matrix before applying spec-
tral clustering. In this case, both the subspace dimension and the threshold
parameter have significant impact on performance.

2.2. Internal Clustering Validation

The trend illustrated above exists for all subspace clustering algorithms;
hyperparameters, thresholds, and other variables must be tuned in order to
achieve strong performance. Hence, in order to provide a principled, inter-
pretable method for practitioners to utilize these methods, we must define some
measure of “goodness of fit” for subspace clustering. The problem of evaluating
clustering results in the absence of ground truth has been studied for decades in
the general clustering community and is known as internal clustering validation
[25]. It has applications ranging from image segmentation [26] to community
analysis in graphs [2] to clustering acoustic signals [27, 28], among many others.

In contrast to external clustering validation methods [29, 30], internal meth-
ods, known as clustering quality metrics (CQMs) seek to measure clustering
quality without access to ground-truth labels. Such measures are designed to
capture the “natural” goals of clustering, the chief being that points within clus-
ters should have high similarity or cohesion, while points in different clusters
should have low similarity or high dispersion.

Early examples of internal CQMs include the Dunn index [31], Davies-
Bouldin index [32], and the Silhouette index [33]. The Dunn index is the ratio
of dispersion to cohesion, where cohesion is measured using the cluster diameter
and dispersion using the minimum distance between points in different clusters.
A number of variations on this index are proposed throughout the literature
and defined in [1], one of which we consider in this work (see Section 4). The
Davies-Bouldin index measures cohesion using the mean distance from points
to centroids and dispersion as the distance between centroids. The Silhouette
index is based on the (normalized) difference between average intra-cluster pair-
wise distance and average inter-cluster pairwise distance. These and other more
recent CQMs are studied extensively in the surveys [1, 25], with the Dunn,
Davies-Bouldin, Silhouette, and Calinsky-Harabasz [34] indices being among
the top performers. A comprehensive list of CQMs can be found in [3]. One
major drawback to these methods for application to subspace clustering is that
they often rely on the pairwise distance between points. For points lying on a
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low-rank subspace, pairwise Euclidean distance is not indicative. For example,
the points x and −x clearly lie on the same one-dimensional subspace but may
be arbitrarily far apart. Further, the notion of centroids must be revised before
these methods can be applied.

The above CQMs are designed for traditional distance-based clustering algo-
rithms such as K-means. However, many modern clustering algorithms rely only
on the entries of an adjacency matrix, whose (i, j)th entry Aij ∈ {0, 1} denotes
whether two items in the set are “connected,” or an affinity matrix, whose entries
Aij ≥ 0 denote the strength of that connection. Such algorithms are referred to
as graph-based methods and include single linkage, other hierarchical methods,
and spectral clustering (see [35, Ch. 14] for a description of these methods).
Empirical graph clustering quality measures have existed for a number of years,
and several comparisons of such metrics exist [2, 36, 37], with no CQM con-
sistently outperforming others when a large number of datasets are considered.
Two of the most widely used CQMs are coverage [38] and modularity [39]. The
former is defined as the ratio of intra-cluster connectivity and total connectivity
in the graph, and the latter measures the strength of intra-cluster connectivity
compared to the average connectivity of each cluster. Since nearly all subspace
clustering algorithms produce an affinity matrix, graph-based CQMs present a
reasonable off-the-shelf approach to parameter selection. However, these suffer
from known drawbacks such as favoring sparse affinity matrices [36]. Further,
they ignore knowledge of the underlying UoS structure in the data, which has
been shown to provide significant benefits in other clustering contexts [40].

In [41], the authors argue that lack of interpretability plagues modern clus-
tering algorithms and accounts for the widespread use of K-means in spite of its
known shortcomings. Subspace clustering falls victim to a similar problem, as
relatively few people understand the concept of a union of subspaces, perhaps
accounting for its relative anonymity among practitioners.1 For this paradigm
to gain popularity, the ability to select parameters is paramount, and hence
the need to compare clusterings resulting from different subspace clustering al-
gorithms is an important contribution that has received no attention to this
point.

3. Metrics for Unions of Subspaces

As stated above, we wish to design internal CQMs that take into account
the low-dimensional intrinsic structure of the data, rather than relying solely
on the elements of the affinity matrix formed by an algorithm. One approach
to leveraging this geometry is to develop analogs to existing measures such as
the Davies-Bouldin or Dunn index. These and other CQMs rely on three key
distances: (1) point-to-centroid, (2) centroid-to-centroid, and (3) point-to-point.
The first two have natural interpretations under the UoS model, which we state

1For example, there is not a single subspace clustering algorithm implemented in the widely-
used scikit-learn Python package.
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in Sections 3.1 and 3.2. In Section 3.3, we propose a novel notion of pairwise
distance for points lying on a union of K subspaces and examine its properties.
We overload the term dist(·, ·) in this and following sections to represent all
three distances, with the definition being clear based on type.

3.1. Point-to-Subspace Distance

A widely-used notion of point-to-centroid distance under the UoS model is
that from a point to a subspace, i.e.,

dist(x,S) =
∥∥x− UUTx∥∥

2
, (1)

where U ∈ RD×d is an orthonormal basis for the subspace S. This notion of
distance is used in the KSS algorithm.

3.2. Subspace-to-Subspace Distance

Recall that under the UoS model, the subspaces take the place of centroids.
Hence, it is reasonable to assume that the centroid-to-centroid distance should
be replaced by the distance between points on the Grassmannian. Two key
problems arise with this approach. First, there are multiple proper metrics on
the Grassmannian, including the sine of the maximum principal angle between
subspaces (see [42, Section 6.4.3] for a definition of principal angles) and the `2-
norm of principal angles between subspaces, which corresponds to the geodesic
distance [43]. While these two distances result in the same topological structure,
they capture different properties of the subspaces being considered. More im-
portantly, these distances are only defined for subspaces of the same dimension.
Since this assumption is not a requirement of our data model or any recent sub-
space clustering algorithm, we seek a notion of subspace-to-subspace distance
that can handle subspaces of varying dimension. A notion of nearness between
subspaces, known as the subspace affinity, appears frequently in the analysis of
various algorithms [8, 16, 44]. The subspace affinity is formally defined as

aff(Si,Sj) =
1√

di ∧ dj

∥∥UTi Uj∥∥F (2)

=

√√√√ 1

di ∧ dj

di∧dj∑
l=1

cos2 θl, (3)

where a ∧ b denotes the minimum between a and b, Ui (Uj) is an orthonormal
basis for Si (Sj), ‖·‖F denotes the Frobenius norm, and θl denotes the lth
principal angle between the subspaces. The subspace affinity is between 0 and 1,
with aff(Si,Sj) = 0 indicating the subspaces are orthogonal and aff(Si,Sj) = 1
if and only if Si = Sj . From (3), we see that the subspace affinity captures a
notion of nearness between subspaces that considers all principal angles, rather
than only the maximum. Further, it has been shown through the analysis of
various algorithms to be a key parameter in measuring the difficulty of the
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subspace clustering problem. For these reasons, we propose the use of the
following pairwise distance between subspaces

dist(Si,Sj) =

√
1− aff2(Si,Sj)

=

√√√√ 1

di ∧ dj

di∧dj∑
l=1

sin2 θl. (4)

The above is closely related to the chordal distance considered in the subspace
packing problem [45]. In the case where di = dj = d, it is easy to see that (4)
is a proper metric by noting that

dist2(Si,Sj) = 1− 1

d

∥∥UTi Uj∥∥2F
=

1

2d

(
‖Ui‖2F + ‖Uj‖2F − 2

∥∥UTi Uj∥∥2F)
=

1

2
tr
(
UiU

T
i + UjU

T
j − 2UiU

T
i UjU

T
j

)
=

1

2

∥∥UiUTi − UjUTj ∥∥2F .
3.3. Point-to-Point Distance

While the point-to-subspace and subspace-to-subspace distances are straight-
forward to define in terms of familiar quantities, to the best of our knowledge,
there does not exist a useful notion of pairwise distances between points lying
on a union of subspaces. We now introduce a novel notion of distance between
points for this setting that satisfies a number of “common sense” properties.
Assume we are given a clustering C = {c1, . . . , cK} with bases U1, . . . , UK cor-
responding to each cluster. Let Px denote the orthogonal projection matrix
onto the subspace corresponding to the cluster containing the point x, and let
P⊥x = I − Px. Our proposed point-to-point distance is

dist(x, y) =
1

2

(
xTP⊥x x+ xTP⊥y x+ yTP⊥x y + yTP⊥y y

−2
∣∣xTP⊥x y∣∣− 2

∣∣xTP⊥y y∣∣)1/2 . (5)

It is easily verified that (5) is a pseudometric taking values between 0 and 1.
Further, the distance can be efficiently computed in O(N2 +D2) time (O(N2) if
the subspace bases are provided, as with KSS and its variants). We now provide
intuition for this distance with a number of observations.

First note that without the projection matrices P⊥x and P⊥y , the proposed

distance becomes
√

1− |xT y|, indicating that the distance between points is a
function of their absolute inner product. The absolute inner product has been
utilized widely in subspace clustering methods [16, 23, 46] and is therefore a
useful feature; however, we argue that even orthogonal points should have small
distance if they are believed to lie in the same subspace. On the other hand,
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note that if we drop the absolute value on the last two terms of (5), the distance
becomes a Mahalanobis distance with covariance matrix P⊥x +P⊥y . However, in
this case, antipodal points do not necessarily have distance zero as desired.

The proposed distance overcomes both of these issues. First, antipodal
points always have distance zero due to the final two terms of (5). Second,
if Px = Py and x = Pxx and y = Pyy, then d(x, y) = 0. In other words, if x and
y are assigned to the same cluster and the subspaces are estimated perfectly,
then d(x, y) = 0 even when x and y are orthogonal. The maximum value of
(5) is 1, which occurs when x and y are orthogonal to each other and each is
orthogonal to both the subspaces spanned by Px and Py. This instance may
occur if the orthogonal points x and y are assigned to the same cluster but
neither lies in the subspace corresponding to that cluster, i.e., Px = Py =: P̄
and P̄⊥x = x and P̄⊥y = y.

To further motivate the proposed distance, consider the case where the sub-
spaces are perfectly modeled, which yields

d(x, y) =
1

2

(∥∥P⊥y x∥∥22 +
∥∥P⊥x y∥∥22)1/2 .

The above is small when each point lies near to the opposing point’s subspace,
indicating that points near the intersection of subspaces will have small distance
from each other. Further, consider the case where the points are drawn randomly
from their respective subspaces, taking x ∼ Ua and y ∼ V b, where Px = UUT

and Py = V V T and a, b ∼ Unif(Sd−1). In this case, we have

E
[
dist2(x, y)

]
=

1

2

(
1− 1

d

∥∥UTV ∥∥2
F

)
=

1

2
dist2(Sx,Sy) (6)

indicating that randomly drawn points will have small distance when their cor-
responding subspaces have small distance from each other. While we do not
analyze the case of imperfect subspace modeling here, our empirical results
(Section 5.2) indicate that the average pairwise intra-cluster distance remains
smaller than the average inter-cluster distance even under significant errors in
the subspace modeling.

Finally, consider the case where many points are drawn from a subspace
but corrupted by noise. Under this setting, the proposed distance indicates the
level of noise on a given point, as points that are heavily corrupted will have
large distance from those that are nearer to the true subspace. We illustrate
this final scenario in Fig. 2, which shows the arrangement of points from the
Extended Yale Face Database B. These points are known to lie near a union of 9-
dimensional subspaces, each corresponding to images of a different subject. We
take c1, . . . , cK to correspond to the true clusters and find the best 9-dimensional
basis for each cluster in order to compute the distance between points in clusters
13, 26, and 38. Fig. 2 illustrates the arrangement of after embedding the points
into R2 using multidimensional scaling (MDS) [47] on the proposed pairwise
distance. Analyzing the original images shows that the tightly-grouped points
correspond to images with low amounts of shadow, while those farther from the
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Figure 2: Two-dimensional embedding of points in Extended Yale Face Database B, subjects
13, 26, and 38 using multidimensional scaling on the proposed point-to-point distance. The
proposed distance provides an indication of which points lie near the estimated subspace and
groups outliers with similar forms of shadow.

cluster centroids correspond to heavily-shadowed images. In fact, we see that
images with shadow on the left half of the face form one group of outliers, and
likewise for images with shadow on the right half.

4. Internal Validation Measures for Subspace Clustering

Armed with the notions of point-to-subspace, subspace-to-subspace, and
point-to-point distances defined in the previous section, we are now ready to
define a variety of CQMs for the problem of subspace clustering. We define two
quality measures based on the KSS cost function as well as three analogs of
existing CQMs adapted to the UoS model. All CQMs require three inputs: the
data X = {x1, . . . , xN}, the estimated clusters C = {c1, . . . , cK}, and a set of
subspace dimensions D = {d1, . . . , dK}. We define Sk to be the dk-dimensional
subspace obtained by performing PCA on the points in cluster ck.

The first CQM we consider is that of the KSS cost, which is defined as

mKSS(X , C,D) =
1

N

K∑
k=1

∑
xi∈ck

dist2(xi,Sk).

The KSS cost is suggested as a method for selecting among the best of several
runs of KSS in [9]. However, it is not appropriate for attempting to determine
the number of subspaces or the underlying subspace dimensions, since it is a
monotonically decreasing function of both of these parameters. In the language
of existing CQMs, the KSS cost is a measure of cohesion only, rather than a
balance between cohesion and dispersion. Existing approaches such as the gap
statistic [48] attempt to quantify an “elbow” in the within-cluster cohesion (e.g.,
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as computed by mKSS) in order to select the number of clusters. However, the
gap statistic requires the additional computation of the cohesion for a reference
dataset, increasing computational complexity. An alternative method based
on examining the singular values of the graph Laplacian was proposed in [13].
However, this method requires selecting yet another tuning parameter and is
only applicable to algorithms that rely on an affinity matrix. Further, our
empirical results on selecting the number of clusters indicated that both the
gap statistic and the Laplacian-based method failed to reliably determine the
correct number of clusters across multiple algorithms, even on synthetic data.
We therefore propose the following CQM, which we refer to as Normalized KSS
Cost (NKSS)

mNKSS(X , C,D) =
1

N

K∑
k=1

∑
xi∈ck

dist2(xi,Sk)

minj 6=k dist(Sj ,Sk)2
.

For both mKSS and mNKSS , smaller values correspond to better clusterings.
In the case where all subspaces are orthogonal, we have dist(Sj ,Sk) = 1 for
all j, k, and mNKSS = mKSS . However, as the subspace dimension increases,
the subspaces “fill up the space,” incurring a penalty. This is made clear by
noting that for two d-dimensional subspaces drawn uniformly at random from
the Grassmannian, dist2(Si,Sj) ≈ D−d

D [21, Lemma 3]. Similarly, increasing
the number of subspaces decreases the expected minimum pairwise distance
between subspaces, increasing the normalization penalty.

We also consider three existing CQMs that rely on the distances defined in
the previous section. Since there are numerous existing CQMs based on pairwise
distances between points and centroids, we choose three of the best performers
in the extensive survey [1].2 The first is a variant of the Dunn Index (DI) [31],
referred to as Generalized Dunn Index 41 (gD41) in [1], which measures cohesion
using the maximum cluster diameter and dispersion using the minimum distance
between any pair of subspaces.

mDI(X , C,D) =
minj 6=k dist(Sj ,Sk)

maxk∈[K] maxxi,xj∈ck dist(xi, xj)
.

Higher values correspond to better clusterings for the Dunn Index.
Another popular CQM that is shown to perform well in the survey [1] is

the Silhouette Index (SI) [33], which measures cohesion using the mean pair-
wise distance between points in the same cluster and dispersion as the smallest
average distance from a point to all points in another cluster.

mSI(X , C,D) =
1

K

K∑
k=1

1

Nk

∑
xi∈ck

b(i)− a(i)

max(a(i), b(i))
,

2We experimented with thirteen total existing CQMs studied in [1] and chose the top three
performers to report here.
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Algorithm Parameter 1 Description Parameter 2 Description
SSC-ADMM ρ ∈ [0.1, 10] thresholding parameter α ∈ [5, 2000] hyperparameter
SSC-OMP kmax ∈ {1, 50} maximum coefficients - -

EnSC λ ∈ [0.01, 0.99] hyperparameter α ∈ [3, 100] hyperparameter
GSC kmax ∈ {1, 20} # neighbors d ∈ {1, 20} subspace dimension
TSC q ∈ {2, 100} ∪ {N} thresholding parameter - -

EKSS q ∈ {2, 100} ∪ {N} thresholding parameter d ∈ {1, 20} subspace dimension

Table 1: Subspace clustering algorithms considered and their corresponding parameters with
ranges considered.

where

a(i) =
1

Nk − 1

∑
xj∈ck
xj 6=xi

dist(xi, xj),

and

b(i) = min
l 6=k

1

Nl

∑
xj∈cl

dist(xi, xj).

Higher values correspond to better clusterings for the Silhouette Index.
Finally, we consider the Calinski-Harabasz (CH) index [34], which measures

cohesion using the average distance from points to their respective subspaces and
dispersion using the average distance from each subspace to the best subspace
of the same dimension for the entire dataset,

mCH(X , C,D) =
N −K
K − 1

∑K
k=1Nk dist(Sk,SX )∑K

k=1

∑
xi∈ck dist(xi,Sk)

,

where SX denotes the subspace spanned by the entire dataset. Higher values
correspond to better clusterings for the Calinski-Harabasz Index.

5. Empirical Results

In this section, we compare the proposed CQMs to existing CQMs on a
variety of synthetic and real datasets. We first evaluate the proposed point-
to-point distance to show its empirical benefits over other existing notions of
distance. We then evaluate the ability of each CQM to determine the true
number of clusters on synthetic data drawn from a UoS. Finally, we evaluate
the performance of the CQMs on three common benchmark datasets in the
subspace clustering literature.

Along with the CQMs described in Section 4, we also consider four graph-
based CQMs that are shown to perform well in the surveys [36, 37, 49]: coverage
[38], modularity [39], permeance [50], and communitude [51].

When evaluating the various CQMs, we consider six subspace clustering al-
gorithms: SSC [8], SSC-OMP [52], EnSC [53], GSC [44], TSC [16], and EKSS
[23]. These algorithms are shown to be scalable, theoretically justified, and per-
form well on benchmark datasets. Further, they represent a wide range of tuning
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parameters, including optimization hyperparameters, thresholding parameters,
subspace dimension, and number of nearest neighbors. Each algorithm is run for
between 50-200 hyperparameter configurations (depending on number of tuning
parameters and computation time) with parameters chosen linearly from these
ranges. See Table 1 for a summary of these parameters and their considered
ranges. We evaluate the proposed CQMs on synthetic data as well as three of
the most common benchmark datasets in the subspace clustering literature: the
Hopkins-155 dataset [54], the cropped Extended Yale Face Database B [6, 55],
and the COIL-20 [56] object database, with preprocessing steps performed as
in [23].

Recall that our proposed CQMs and subspace-based metrics require the un-
derlying subspace dimensions as input. First, we note that allowing each cluster
to have a different subspace dimension results in an explosion of the parame-
ter space. Instead, it is common to set all clusters to have dimension equal
to some maximum estimated subspace dimension during clustering and then
estimate individual subspace dimensions once the clusters have been identified.
For GSC and EKSS, which take subspace dimension as an input parameter,
we use the same (maximum) subspace dimension during both clustering and
evaluation with the CQMs, allowing us to perform model selection on subspace
dimension. For algorithms such as SSC and its variants, which do not require
subspace dimension as an input, we select the CQM subspace dimension based
on accepted values from the literature, taking d = 9 for Yale and COIL and
d = 3 for Hopkins, as in [40]. Although omitted due to lack of space, our initial
empirical investigation suggests that our proposed subspace-based CQMs have
roughly equal performance over a wide range of subspace dimensions, and the
automatic selection of this parameter (e.g., via explained variance or Bayesian
methods [57]) is an interesting topic for future work.

5.1. Evaluation Metric

A variety of metrics for evaluating and comparing CQMs are proposed
throughout the literature. Often, CQMs are used to select a parameter with a
true value, such as the number of clusters, in which case it is common to evaluate
the ability to select this value correctly. Alternatively, Spearman’s rank correla-
tion coefficient [58] may be used to measure how well the ranking of clusterings
according to a given CQM compares to an external validation measure, such as
the Jaccard coefficient [29] or Adjusted Rand index [30]. We use a variation on
this approach.

First, the most widely used external validation measure for subspace clus-
tering is the clustering error, which is computed by matching the true labels
and the labels output by a given clustering algorithm,

ε = 100

1−max
π

1

N

∑
i,j

Qout
π(i)jQ

true
ij

 ,

where π is any permutation of the cluster labels, and Qout and Qtrue are the
output and ground-truth labelings of the data, respectively, where the (i, j)th
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entry is one if point j belongs to cluster i and is zero otherwise. We define the
oracle error as the lowest clustering error among all parameter configurations
considered (see Table 1) and emphasize that this error can only be determined
in light of the ground-truth labels. Hence, the goal of any CQM is to discover
the parameter configuration(s) that result in the oracle error without knowledge
of the true labels.

As a validation metric for the various CQMs, one could compute the Spear-
man correlation between the clusterings sorted according to true error (smallest
to largest) and best clustering according to each CQM, as is done in [49]. How-
ever, it is less important that the order of clusterings returned by a CQM match
the oracle order exactly than that the top few clusterings (according to each
CQM) be ones of low error. For this reason, we propose the following ratio of
area under the curves (R-AUC) metric. Consider a set of p clusterings—i.e., out-
puts of a clustering algorithm on p different configurations of hyperparameters—
to be evaluated by a CQM m, and let εm ∈ Rp be the vector of clustering errors
resulting from the p clusterings sorted from best to worst according to m. Fur-
ther, let ε∗ be the vector of errors sorted according to the true (oracle) clustering
error. Let Am denote the area under the normalized cumulative sum of εm, i.e.,

Am =
1∑p

i=1 εm(i)

p∑
j=1

j∑
i=1

εm(i),

where εm(j) denotes the jth element of the vector εm. Let A∗ be similarly
defined, and note that smaller values of Am correspond to better orderings of
the clusterings. The R-AUC is then

R-AUC =
Am
A∗

. (7)

The R-AUC ≥ 1, with a lower ratio implying better performance.

5.2. Empirical Evaluation of Proposed Point-to-Point Distance

We begin by demonstrating that the proposed point-to-point distance (5)
outperforms existing distances in terms of providing an embedding by which
points lying on a UoS are well separated. Fig. 3 compares the resulting two-
dimensional embedding of points from a union of five 7-dimensional subspaces
of R100 using t-SNE [59] on the pairwise distance matrix formed using the Eu-

clidean distance, the inner product-based distance dist(x, y) =
(
1−

∣∣xT y∣∣)1/2,
and the proposed distance (5), where we assume the subspaces are modeled per-
fectly. The figure demonstrates that the proposed metric is the only one that
results in points that are clearly separated according to subspace membership.

As stated above, the separation shown in Fig. 3 is obtained assuming the
subspaces are modeled perfectly, which is unlikely to be the case in practice. We
now study the impact of mismodeling the subspaces by considering the distance
gap between inter-cluster and intra-cluster distances. In general, a CQM will
want the inter-cluster distances to be large and intra-cluster relatively smaller.
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(a) Euclidean (b) Inner Product

(c) Proposed

Figure 3: t-SNE embedding of points drawn from a union of five 7-dimensional subspaces of
R100 using (a) Euclidean, (b) inner product, (c) proposed pairwise distance.

Let the average difference between these inter-cluster and intra-cluster distances
be called the “distance gap.” In Fig. 4, we display the distance gap as a function
of both the estimation error in the subspaces (i.e., in Px and Py) and the distance
between the true subspaces the points are drawn from. We consider the case
of two ten-dimensional subspaces of R100, drawing 1000 points uniformly at
random from the unit sphere intersected with each subspace. The subspace
estimates Ŝ1 and Ŝ2 are each generated to have the same distance from their
respective true subspaces, displayed on the vertical axis. The horizontal axis
indicates the distance between the true subspaces S1 and S2. For a fixed distance
between the true subspaces S1 and S2, the figure demonstrates a significant
distance gap even when there is nontrivial estimation error in the subspaces.
For example, in the case where dist(S1,S2) = 0.5, the distance gap is still
greater than 0.13, even when dist(Si, Ŝi) = 0.5. By comparison, if we were to
use the inner product-based distance (as in Fig. 3(b)), the resulting distance
gap would be 0.05. Hence, the integration of both the arrangement of points
and the subspace estimates results in a metric that robustly differentiates points
lying on a UoS.

5.3. CQM Comparison: Proposed vs. Euclidean Distance

Next, we evaluate the impact of utilizing the proposed metrics from Section 3
on the DI, SI, and CH CQMs. For each dataset, we run each of the six algorithms
in Table 1 for a grid of parameters in the range specified. Aside from the
benchmark datasets described above, we also consider synthetic data drawn
from a union of K = 5 subspaces, each having dimension d = 5, drawn uniformly
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Figure 4: Distance gap as a function of subspace estimation error (vertical axis) and distance
between the true subspaces (horizontal axis) computed using the proposed metric (5). The
larger the distance gap, the better clustered is the dataset. Points are drawn from two ten-
dimensional subspaces of R100. Using the proposed metric, points in different subspaces are
well separated even under significant subspace estimation error.

Euclidean Proposed
Dataset DI SI CH DI SI CH

Synthetic 1.09 1.95 1.49 1.12 1.08 1.08
Hopkins-155 1.45 4.88 3.13 1.48 1.13 1.23

Yale B 1.08 1.19 1.06 1.10 1.12 1.05
COIL-20 1.08 1.13 1.16 1.06 1.14 1.04

Iris 1.13 1.15 1.13 1.25 1.17 1.27
Balance 1.07 1.08 1.09 1.09 1.05 1.07
Sonar 1.03 1.04 1.03 1.04 1.05 1.04

Table 2: Comparison of CQMs using Euclidean distance and proposed subspace-based distance
from Section 3. Values indicate the average R-AUC across all six algorithms (lower better).

at random in ambient space D = 100. We draw Nk = 100 points from each
subspace and corrupt them with Gaussian noise with variance σ2 = 0.05. We
generate ten instances of data according to this arrangement and report the
average value. Table 2 shows the average R-AUC (taken over all algorithms)
for each of these three CQMs using both Euclidean distance (left columns)
and our proposed subspace-based distances (right columns). For the Hopkins
dataset, where the UoS structure is known to be strong, the use of subspace-
based metrics has an especially large impact on the performance of both the
SI and CH, yielding a R-AUC of roughly 1/4 and 1/3, respectively, of the
Euclidean-based variants. On other datasets, the improvement in R-AUC is
more mild, though the resulting error selected by the subspace-based CQMs
is typically significantly lower than that of the Euclidean-based CQMs. We
confirm this finding in Table 3, where we display the average difference between
the error selected by the various CQMs and the oracle error. In this case, a value
of zero would indicate that the CQM selected the best possible clustering among
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Euclidean Proposed
Dataset DI SI CH DI SI CH

Synthetic 0.85 27.24 19.95 0.56 7.57 0.37
Hopkins-155 9.81 24.56 19.56 6.73 3.94 3.93

Yale B 12.37 54.69 26.11 24.66 35.47 8.90
COIL-20 9.46 27.97 42.15 12.26 24.20 6.55

Iris 9.89 17.22 4.44 18.11 17.11 12.00
Balance 16.32 15.09 11.68 9.97 10.24 9.31
Sonar 11.06 8.01 8.09 10.58 12.58 12.58

Table 3: Average difference between best and oracle clustering error (%) according to CQMs
using Euclidean distance and proposed subspace-based distance from Section 3. Average is
taken across the six algorithms listed in Table 1.

Dataset KSS Cost NKSS DI SI CH Cov Mod Per Comm
Synthetic 1.00 0.00 0.57 0.00 4.75 4.22 0.13 2.02 0.10

Hopkins-155 0.02 0.53 0.63 0.64 0.38 0.70 0.08 0.33 0.15
Yale B 1.00 1.00 1.83 1.00 1.00 1.67 1.00 3.00 1.00

COIL-20 1.00 1.00 1.50 1.83 1.00 3.67 0.67 0.67 1.67

Table 4: Ability of various CQMs to select the correct number of clusters. Values indicate the
average absolute deviation between the true and estimated number of clusters. Lowest values
in each row are bolded.

all configurations for each algorithm. The table displays the dramatic benefit of
utilizing the proposed metric for datasets known to have strong UoS structure.
For example, on Hopkins-155, the Euclidean-based SI selects errors that are an
average of 24.56% greater than the minimum error, while the proposed subspace-
based SI results in errors that are only 3.94% above the oracle. For the DI,
the choice of metric appears to have less impact; however, we will show in
Section 5.5 that the DI performs poorly overall when compared to the proposed
KSS and NKSS CQMs. For completeness, we also consider the Balance, Iris,
and Sonar datasets from the UCI Machine Learning Repository [60], none of
which is expected to exhibit UoS structure. Our results show that the subspace-
based CQMs perform on par with their Euclidean counterparts, even showing
a mild improvement in some cases (e.g., for the Balance dataset). Hence, our
proposed subspace-based metrics result in significant benefits in the case where
the underlying UoS structure is strong and do not appear to be harmful even
in the case where there is no such structure.

5.4. Selecting the Number of Clusters

We next consider the problem of selecting the number of clusters K on syn-
thetic data as well as the Hopkins, Yale, and COIL datasets. For the synthetic
data, we generate data from K = 7 subspaces of dimension d = 5 drawn uni-
formly at random from the Grassmannian in ambient dimension D = 100. For
k = 1, . . . ,K, we draw Nk = 100 points from the subspace spanned by Uk as
xi ∼ N (0, UkU

T
k ), corrupt them with independent and identically distributed
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Dataset KSS Cost NKSS DI SI CH Cov Mod Per Comm
Synthetic 1.03 1.13 1.91 1.21 1.54 1.90 1.17 1.52 1.25

Hopkins-155 1.23 1.17 1.17 1.12 1.11 1.14 1.27 1.17 1.20
Yale B 1.10 1.14 1.49 1.08 1.04 1.36 1.25 1.61 1.15

COIL-20 1.03 1.03 1.52 1.49 1.03 1.97 1.16 1.13 1.31

Table 5: Ability of various CQMs to select the correct number of clusters. Values indicate the
average R-AUC across all six algorithms (lower better).

Gaussian noise with variance σ2 = 0.05, and then normalize the points to have
unit norm. We generate ten instances of data according to this arrangement
and report the average values below.

For each dataset, we run each algorithm listed in Table 1 over a range of 10
values of K and select the best clustering according to each CQM. The resulting
average absolute deviation from the true value of K is given in Table 4, and
the average R-AUC (across algorithms) is given in Table 5. For the synthetic
data, the KSS cost uniformly chooses the wrong K, choosing K = 8 for all
algorithms and trials, while the normalization in NKSS selects the correct value
in all instances. However, examination of the R-AUC shows that the KSS cost
does a better job of selecting low-error clusterings, even though the number of
clusters may be wrong. The SI also selects the correct value for all algorithms
and trials, while modularity and communitude selected K correctly for all but
SSC-OMP and EKSS. In the case of EKSS, inspection of the affinity matrices
reveals that both CQMs favored sparse affinity matrices, a phenomenon noted in
[36]. For the benchmark data, both the KSS cost and NKSS are among the top
performers in terms of absolute deviation and R-AUC, while the CH achieves
the best R-AUC scores for several datasets despite having larger deviations from
the true number of clusters. This highlights the fact that selecting the “correct”
number of clusters does not always result in the lowest clustering error.

5.5. General Parameter Selection

Finally, we consider the problem of selecting arbitrary algorithm param-
eters, including optimization hyperparameters, thresholding parameters, and
number of neighbors, on the three benchmark datasets described above. For
each dataset, we run each of the six algorithms listed in Table 1 for a grid of
parameters in the range specified. We provide the oracle parameters, i.e., those
resulting in the lowest clustering error, in Table 10 at the end of this section.

Tables 6, 7, 8, and 9 show the resulting errors obtained and R-AUC for each
CQM on the Synthetic, Hopkins, Yale, and COIL datasets, respectively, where
Synthetic refers to the dataset described in Section 5.3. While no single CQM
stands out as the best performer across all datasets, several useful observations
can be made. First, the proposed CQMs that explicitly account for existing
UoS structure consistently outperform those that are based solely on the affinity
matrix, reinforcing the notion that geometric structure in the data should be
leveraged when it is known to exist. Second, the KSS Cost is a strong performer
across all three datasets, though it should be noted that this is in light of a fixed
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Algorithm Oracle KSS Cost NKSS DI SI CH Cov Mod Per Comm
SSC-ADMM 1.90 1.90 1.98 2.20 20.16 1.96 54.66 40.64 46.98 49.50
SSC-OMP 4.54 4.54 4.86 4.82 4.54 4.54 56.12 56.12 6.04 56.12

EnSC 2.28 2.28 2.44 2.70 2.40 2.34 2.70 2.70 6.30 2.70
GSC 0.50 2.02 2.02 2.08 3.82 2.02 26.70 2.14 2.12 27.52
TSC 0.56 0.66 0.78 0.94 0.76 0.76 1.68 1.68 0.80 1.68

EKSS 0.38 0.82 0.94 0.76 23.90 0.74 0.72 0.70 0.62 41.22
Average R-AUC 1 1.08 1.07 1.12 1.08 1.08 1.25 1.19 1.30 1.25

Table 6: Ability of various CQMs to select tuning parameters on synthetic UoS data. Algo-
rithm values (rows 2-7) indicate the average best clustering error (%) according to various
CQMs. Oracle denotes the best overall clustering error. Final row shows the average R-AUC
(lower better).

Algorithm Oracle KSS Cost NKSS DI SI CH Cov Mod Per Comm
SSC-ADMM 1.07 3.31 4.25 4.89 2.81 2.59 18.15 16.01 13.52 18.61
SSC-OMP 25.25 33.10 33.55 33.43 31.91 31.77 40.87 43.06 36.30 42.24

EnSC 9.75 13.88 15.25 16.46 12.97 12.52 21.85 25.80 22.91 23.66
GSC 2.07 4.83 5.95 6.77 6.24 4.74 19.98 26.53 10.23 22.67
TSC 11.82 16.25 17.79 19.94 16.21 16.50 22.15 27.45 25.04 25.36

EKSS 0.26 6.15 8.21 9.13 3.70 5.67 17.96 30.08 18.24 28.65
Average R-AUC 1 1.38 1.41 1.48 1.13 1.23 3.18 3.33 2.68 3.10

Table 7: Ability of various CQMs to select tuning parameters on Hopkins-155 dataset. Al-
gorithm values (rows 2-7) indicate the average best clustering error (%) according to various
CQMs. Oracle denotes the best overall clustering error. Final row shows the average R-AUC
(lower better).

number of clusters K, and in the case of algorithms that do not have subspace
dimension as input, a fixed subspace dimension d. In the case of GSC and EKSS,
where the subspace dimension is selected, KSS Cost selects d = 20 for both the
Yale and COIL datasets. However, these still correspond to clusterings of low
error, as indicated in the table. Third, the CH obtains strong performance
across all datasets, while the SI is the best CQM on the Hopkins dataset but
performs poorly on Yale and COIL. Upon closer inspection, we found that the
SI favored clusterings in which one or two clusters contain the overwhelming
majority of the points.

Based on the above observations, the results indicate that when the number
of clusters is unknown, the NKSS and SI provide the most reliable performance,
though practitioners should take care to verify that the SI does not select clus-
terings with unwarranted class imbalance. In the case where the number of
clusters is known in advance, the KSS Cost and CH provide the most reliable
indications of clustering quality.

6. Conclusions & Future Work

In this work, we present the first comprehensive study of internal clustering
validation for the problem of subspace clustering. We propose a novel point-
to-point distance designed to capture the salient features of points lying on
a union of subspaces, and we demonstrate empirically that this pseudometric
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Algorithm Oracle KSS Cost NKSS DI SI CH Cov Mod Per Comm
SSC-ADMM 9.83 9.83 23.68 31.37 84.09 32.69 80.84 76.27 76.27 84.09
SSC-OMP 13.28 13.28 27.59 30.35 38.16 27.59 79.15 79.15 79.15 79.15

EnSC 18.87 31.58 28.99 58.92 42.85 31.58 21.30 21.30 63.36 21.30
GSC 20.27 31.87 31.87 31.87 21.71 22.78 69.98 69.98 69.98 69.98
TSC 22.20 22.20 22.20 41.24 39.27 22.20 49.34 49.34 49.34 49.34

EKSS 16.00 17.02 22.94 54.65 87.21 17.02 81.62 50.37 35.49 84.95
R-AUC 1 1.04 1.03 1.10 1.12 1.05 1.10 1.08 1.11 1.10

Table 8: Ability of various CQMs to select tuning parameters on Yale B dataset. Algorithm
values (rows 2-7) indicate the best clustering error (%) according to various CQMs. Oracle
denotes the best overall clustering error. Final row shows the R-AUC (lower better).

Algorithm Oracle KSS Cost NKSS DI SI CH Cov Mod Per Comm
SSC-ADMM 13.19 15.28 17.50 33.68 47.22 16.32 63.68 13.19 57.15 63.68
SSC-OMP 27.29 27.29 27.29 36.67 87.92 27.29 64.72 27.29 36.67 64.72

EnSC 8.26 8.47 17.36 21.60 46.67 17.36 8.26 8.26 21.67 8.26
GSC 2.99 12.50 12.50 12.50 10.28 12.50 61.32 3.40 10.62 68.96
TSC 15.62 17.22 20.62 16.60 16.88 15.83 21.46 16.25 23.33 21.46

EKSS 14.03 31.39 31.39 33.89 17.64 31.39 47.71 40.35 27.99 48.96
R-AUC 1 1.06 1.05 1.06 1.14 1.04 1.08 1.05 1.11 1.08

Table 9: Ability of various CQMs to select tuning parameters on COIL-20 dataset. Algorithm
values (rows 2-7) indicate the best clustering error (%) according to various CQMs. Oracle
denotes the best overall clustering error. Final row shows the R-AUC (lower better).

has favorable properties. We then propose a variety of measures of clustering
quality that can be used to select the “best” configuration of parameters for
any subspace clustering algorithm. Our results show that while no single CQM
is clearly dominant, measures such as the proposed normalized KSS cost and
Silhouette Index can be used to select the number of clusters, while the KSS cost
and Calinski-Harabasz index provide strong results on selecting the algorithm
parameters.

As this is a first approach to the clustering validation problem for subspace
clustering, we believe that it will enable researchers and practitioners to develop
new CQMs based on the proposed distances. Finally, the proposed point-to-
point metric resembles a Mahalanobis distance, as noted in Section 3.3. In light
of this fact, it would be interesting to incorporate our distance into the problem
of metric learning with pairwise constraints, as in [61], which may open a new
avenue for the development of subspace clustering algorithms.

Acknowledgments

We thank the anonymous reviewers for their comments on this manuscript.
L. Balzano was supported by DARPA grant 16-43-D3M-FP-037, NSF CAREER
award CCF-1845076, AFOSR YIP award FA9550-19-1-0026, and ARO YIP
award W911NF1910027. J. Lipor was supported by National Science Foun-
dation DMS 1624776 and by the U.S. Army Basic Research Program under
PE 61102, Project T25, Task 02 “Network Science Initiative,” managed at the

19



Algorithm Synthetic Hopkins-155 Yale B COIL-20
SSC-ADMM (1.0, 5.0) (0.1, 226.67) (0.10, 670) (0.8, 5)
SSC-OMP 2 2 2 2

EnSC (3, 0.01) (98, 0.01) (3, 0.88) (3,0.99)
GSC (14, 1) (2, 1) (12, 5) (11, 9)
TSC 6 3 3 8

EKSS (87, 5) (2, 3) (18, 7) (7, 12)

Table 10: Parameter configuration resulting in the lowest clustering error for each algorithm
on each dataset. Description of parameters for each algorithm is given in Table 1. For
Hopkins-155 dataset, the mode of each parameter is displayed.

U.S. Army ERDC with Portland State University under Cooperative Agreement
Number W912HZ-17-2-0005.

References

[1] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, I. Perona, An ex-
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