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Abstract. We study the notion of permutation stability (or P-stability) for countable groups.
Our main result provides a wide class of non-amenable product groups which are not P-stable.
This class includes the product group Σ×Λ, whenever Σ admits a non-abelian free quotient and Λ
admits an infinite cyclic quotient. In particular, we obtain that the groups Fm × Zd and Fm × Fn

are not P-stable, for any integers m,n ≥ 2 and d ≥ 1. This implies that P-stability is not closed
under the direct product construction, which answers a question of Becker, Lubotzky and Thom.
The proof of our main result relies on a construction of asymptotic homomorphisms from Σ × Λ
to finite symmetric groups starting from sequences of finite index subgroups in Σ and Λ with and
without property (τ). Our method is sufficiently robust to show that the groups covered are not
even flexibly P-stable, thus giving the first such non-amenable residually finite examples.

1. Introduction and statement of main results

The notion of permutation stability has been developed in a series of works [GR09,AP14,BLT18].
A countable group Γ is stable in permutations (or P-stable) if any “almost homomorphism” from
Γ to a finite symmetric group is “close” to a homomorphism. To make this precise, we endow the
symmetric group Sym(X) of any finite set X with the normalized Hamming metric:

dH(σ, τ) =
1

|X|
· |{x ∈ X | σ(x) 6= τ(x)}|.

Hereafter, we will use the same formula to define the normalized Hamming distance between any
maps σ and τ with domain (but not necessarily co-domain) equal to X. P

Definition 1.1. A sequence of maps σn : Γ → Sym(Xn), for some finite sets Xn, is called an
asymptotic homomorphism if lim

n→∞
dH(σn(gh), σn(g)σn(h)) = 0, for every g, h ∈ Γ. The group Γ is

called P-stable1 if for any asymptotic homomorphism σn : Γ → Sym(Xn), there exists a sequence
of homomorphisms τn : Γ→ Sym(Xn) such that lim

n→∞
dH(σn(g), τn(g)) = 0, for every g ∈ Γ.

More generally, one can define stability with respect to any class C of metric groups endowed with
bi-invariant metrics (see [AP14,AP17,CGLT17,Th17]). While this notion has only been formalized
recently, in the case when Γ = Z2 and C consists of groups of matrices, the stability problem has been
studied extensively in the literature. Indeed, this problem is equivalent to the well-known question
(posed in [Ro69] for the normalized Hilbert-Schmidt norm and in [Ha76] for the operator norm)
of whether “almost commuting” matrices are “close” to commuting matrices. The answer depends
both on the groups of matrices considered and the norms chosen (see the introduction of [AP14]).
For instance, if C is the class of unitary groups {U(n) | n ∈ N}, then the answer is positive if
one uses the normalized Hilbert-Schmidt norm [HL08, Gl10] and negative if one uses the operator
norm [Vo83]. Recently, the stability problem with respect to unitary groups has been investigated
for general countable groups Γ in [HS17,ESS18] and for other matrix norms in [CGLT17,LO18].

The author was supported in part by NSF Career Grant DMS #1253402 and NSF FRG Grant #1854074.
1Definition 1.1 agrees with the definitions of P-stability given in [AP14] when Γ is finitely presented and in [BLT18]

when Γ is finitely generated, see Lemma 3.1.
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At the same time, there has been a surge of interest in the study of permutation stability. This
started with the works of Glebsky and Rivera [GR09] who observed that finite groups are P-
stable2, and of Arzhantseva and Păunescu [AP14] who proved that abelian groups are P-stable
(see [BM18] for a quantitative approach to these results). In [BLT18], Becker, Lubotzky and
Thom obtained a characterization of P-stability for amenable groups in terms of invariant random
subgroups. This has since been used to provide many new classes of P-stable amenable groups,
including polycyclic groups and the Baumslag-Solitar groups BS(1, n) [BLT18], the first Grigorchuk
group [Zh19], the lamplighter group Z2 o Z [LL19a] and an uncountable family of 2-generated
groups [LL19b]. On the other hand, Becker and Lubotzky [BL18] proved that groups Γ that have
property (τ) are not P-stable by removing one point from a set on which Γ acts and deforming the
action to get an almost action. This motivated them to define two flexible variants of P-stability
(see Definition 1.2). Subsequently, Lazarovich, Levit and Minsky proved that surface groups are
flexibly P-stable [LLM19].

The study of P-stability is motivated in part by the longstanding problem of whether any countable
group is sofic. By an observation in [GR09], in order to find a non-sofic group, it is enough to find
a group that is both P-stable and non-residually finite2. We note that this point of view was used
by De Chiffre, Glebsky, Lubotzky and Thom in their breakthrough work [CGLT17] to construct
non-Frobenius-approximable groups. Very recently, Burton and Bowen proved that the existence
of non-sofic groups would also follow from the flexible P-stability of PSLd(Z) for d ≥ 5 [BB19].

The above results have led to a much better understanding of permutation stability, by providing
several classes of P-stable and non-P-stable groups, as well as potential applications of this notion.
However, in spite of the progress made, the following basic question posed in [BLT18] is open: is
P-stability closed under direct products? While P-stability is clearly closed under free products, but
not under the amalgamated free product or semi-direct product constructions by results in [BL18],
the situation remained unclear for direct products.

We settle this question in the negative here, by giving the first examples of P-stable groups whose
direct product is not P-stable (see Corollary B and the paragraph following it). This will be deduced
from our first main result (Theorem A) which provides a general criterion for non-P-stability of
direct products of groups. Moreover, our method of proof is sufficiently robust to address the
flexible versions of P-stability introduced in [BL18], allowing to prove the following:

A

Theorem A. Let Σ and Λ be finitely generated groups. Assume that Σ admits a free non-abelian
quotient and Λ does not have property (τ). Then Σ× Λ is not very flexibly P-stable.

Before presenting several concrete examples of groups covered by Theorem A, let us discuss the
notions used in its statement and an equivalent formulation of it.

A countable group Λ has Lubotzky’s property (τ) if the representation of Λ on
⊕

[Λ:∆]<∞ `
2
0(Λ/∆),

where ∆ runs through all finite index subgroups of Λ and `20(Λ/∆) := `2(Λ/∆)	 C1Λ/∆, does not
have almost invariant vectors [Lu94]. Property (τ) is a weaker version of property (T) which is
satisfied by any irreducible lattice in a product of second countable, locally compact non-compact
groups, at least one of which has property (T) [LZ89]. In the opposite direction, any group admitting
an infinite, residually finite amenable quotient group does not have property (τ) [LW93,LZ03].

FP

2note1The results referenced here are stated in [GR09] using the notion of stability in permutations for presentations
of groups, see Remark 1.5. In the form presented here, they follow from [AP14], where it was shown that stability is
a group property, i.e., it is independent of the choice of the presentation.
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Definition 1.2. A countable group Γ is called flexibly P-stable if for any asymptotic homomorphism
σn : Γ→ Sym(Xn), there exist a sequence of finite sets Yn and homomorphisms τn : Γ→ Sym(Yn)

such that Xn ⊂ Yn, for every n, lim
n→∞

dH(σn(g), τn(g)|Xn
) = 0, for every g ∈ Γ, and lim

n→∞
|Yn|
|Xn| = 1.

The group Γ is called very flexibly P-stable if for any asymptotic homomorphism σn : Γ→ Sym(Xn),
there exist a sequence of finite sets Yn and homomorphisms τn : Γ→ Sym(Yn) such that Xn ⊂ Yn,
for every n, and lim

n→∞
dH(σn(g), τn(g)|Xn

) = 0, for every g ∈ Γ.

Remark 1.3. A group Γ is very flexibly P-stable if any asymptotic homomorphism is essentially
obtained by restricting homomorphisms τn : Γ → Sym(Yn) to “almost invariant” sets Xn ⊂ Yn,
i.e., such that |τn(g)Xn4Xn|/|Xn| → 0, for every g ∈ Γ. If the sets Xn are obtained by removing
o(|Yn|) points from Yn (in which case they are trivially almost invariant), then Γ is flexibly P-stable.

It is unclear how much weaker these notions are than P-stability. On the one hand, P-stability
coincides with flexible P-stability for amenable groups and flexible P-stability coincides with very
flexible P-stability for groups with property (τ) (see Lemma 3.2). On the other hand, it is open
whether groups with property (τ) can be flexibly P-stable and whether surface groups are P-stable
(see [BL18, LLM19]). Moreover, while very flexible P-stability is inherited by subgroups of finite
index (see Lemma 3.3), we do not know if this holds for P-stability or flexible P-stabillity.

Since very flexible P-stability passes to finite index subgroups, Theorem A implies the following
seemingly stronger statement: the product between a large group and a group without property (τ)
(and any group containing such a product as a finite index subgroup) is not very flexibly P-stable.
Recall that a group is called large if one of its finite index subgroups admits a non-abelian free
quotient. By [BP78] any finitely presented group with at least two more generators than relators
is large; for more recent examples of large groups, see [La07] and the references therein.

Theorem A thus provides a wide class of groups, including the product of any large group and any
group having an infinite, residually finite amenable quotient, which are not very flexibly P-stable.
As an immediate consequence, we derive the following concrete examples of non-P-stable groups:B

Corollary B. The following groups are not very flexibly P-stable:

(1) Fm × Zd, for every integers m ≥ 2 and d ≥ 1.
(2) Fm × Fn, for every integers m,n ≥ 2.
(3) the Baumslag-Solitar group BS(m,n), for every integers m,n with |m| = |n| ≥ 2.
(4) the braid group Bn and pure braid group PBn, for every integer n ≥ 3.

Since free groups are obviously stable and abelian groups are stable by [AP14], (1) and (2) imply
that P-stability is not closed under direct products, thus answering Becker, Lubotzky and Thom’s
question [BLT18] in the negative. Moreover, we deduce that a direct product of P-stable groups need
not even be very flexibly P-stable. However, since the groups we treat are not amenable, this leaves
open the question of whether the product of two P-stable amenable groups is P-stable [BLT18].

In [AP14, Example 7.3] it was shown that BS(m,n) is P-stable if m = n = ±1 but not P-stable if
|m| 6= |n| and |m|, |n| ≥ 2, while [BLT18, Theorem 1.2 (ii)] established that BS(1, n) is stable for
every n ∈ Z. Part (3) of Corollary B completes the classification of P-stability of the Baumslag-
Solitar groups BS(m,n) by addressing the remaining case when |m| = |n| ≥ 2.

To put Corollary B into a better perspective, let us indicate several additional consequences of it.
First, as remarked in [BL18, Section 4.4] (extending observations made in [GR09,AP14]), any group
which is sofic and non-residually finite is not very flexibly P-stable. By [BLT18, Theorem 1.2 (iii)],
there are amenable residually finite groups which are not P-stable and thus not flexibly P-stable.
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Corollary B gives the first examples of non-amenable residually finite groups that are not flexibly
P-stable, and the first examples of residually finite groups that are not very flexibly P-stable. BB

Remark 1.4. A countable group Γ is called Hilbert-Schmidt stable (or HS-stable) if it is stable with
respect to the class of unitary groups {(U(n),dHS) | n ∈ N} endowed with the normalized Hilbert-

Schmidt distance given by dHS(T, S) = ‖T −S‖HS for T, S ∈ U(n), where ‖V ‖HS =
√

1
n · Tr(V ∗V ).

Since the normalized Hamming distance can be expressed in terms of the normalized Hilbert-
Schmidt distance, the study of P-stability and HS-stability are similar in flavor [AP14].

In spite of the similarity between these notions, Corollary B highlights a surprising difference
between them, by providing, to our knowledge, the first examples of HS-stable groups which are
not P-stable. By [HS17, Theorem 1], the product of two HS-stable groups is HS-stable provided
that one of the groups is abelian (by [IS19, Corollary D] the same holds if one of the groups is
amenable). Consequently, Fm×Zd is HS-stable but not P-stable, for any integers m ≥ 2 and d ≥ 1.

Note that is an open question whether HS-stability is closed under direct products. It seems likely
that this question has a negative answer, and moreover that Fm×Fn is not HS-stable, for m,n ≥ 2.
Supporting evidence is provided by [IS19, Theorem E] which shows that Fm × Fn is not stable
with respect to the class {(U(M), ‖ · ‖2) | (M, τ) tracial von Neumann algebra} of unitary groups

of tracial von Neumann algebras endowed with their 2-norms, ‖T‖2 =
√

τ(T ∗T ). equations

Remark 1.5. Let R ⊂ Fk be a finite set, for k ∈ N. The system of equations (?) r(τ1, ..., τk) = e,
for every r ∈ R, is called P-stable if for every ε > 0, there is δ > 0 such that the following holds: for
any finite set X and σ1, ..., σk ∈ Sym(X) satisfying dH(r(σ1, ..., σk), IdX) < δ, for every r ∈ R, (?)
has a solution τ1, ..., τk ∈ Sym(X) such that dH(σi, τi) ≤ ε, for every 1 ≤ i ≤ k (see [GR09,AP14]).
A finitely presented group Γ = 〈Fk|R〉 is P-stable if and only if R is P-stable [AP14]. The P-stability
of Z2 proved in [AP14] is thus equivalent to the P-stability of the system [a, b] = aba−1b−1 = e.

On the other hand, since the groups F2×Z and F2×F2 are not P-stable by Corollary B, we conclude
that the systems [a1, b] = [a2, b] = e and [a1, b1] = [a1, b2] = [a2, b1] = [a2, b2] = e are not P-stable.

Corollary B also implies the existence of universal sofic groups which fail a certain lifting property
for commuting subgroups. Let U be a free ultrafilter on N and (Xn) finite sets with lim

n→U
|Xn| = +∞.

Define the metric ultraproduct group
∏
U Sym(Xn) :=

(∏
n Sym(Xn)

)
/N , where N is the subgroup

of (σn) ∈
∏
n Sym(Xn) satisfying lim

n→U
dH(σn, IdXn) = 0. Since a countable group is sofic if and only

if it embeds into
∏
U Sym(Xn) [ES04], the latter is called a universal sofic group. comutant

Corollary C. There exist countable commuting subgroups Σ,Λ of a universal sofic group
∏
U Sym(Xn)

such that the following holds: there are no commuting subgroups Σn,Λn of Sym(Xn), for all n ∈ N,
such that Σ ⊂

∏
U Σn and Λ ⊂

∏
U Λn.

We end the introduction by discussing a weakening of the notion of P-stability found by considering
asymptotic homomorphisms that are sofic approximations [AP14]. Let Γ be a countable group.

Definition 1.6. An asymptotic homomorphism σn : Γ→ Sym(Xn) is called a sofic approximation
of Γ if lim

n→∞
dH(σn(g), IdXn) = 1, for every g ∈ Γ \ {e}. The group Γ is called weakly P-stable (re-

spectively, weakly flexibly P-stable or weakly very flexibly P-stable) if the condition from Definition
1.1 (respectively, the conditions from Definition 1.2) holds for any sofic approximation (σn) of Γ.

The notion of weak P-stability is in general strictly weaker than that of P-stability. More precisely,
[AP14, Theorem 7.2] shows that any finitely presented, residually finite amenable group is weakly
P-stable, whereas [BLT18, Theorem 1.2 (iii)] proves that there is such a group which is not P-stable.
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Our last main result provides a class of non-amenable groups which are not weakly P-stable: C

Theorem D. Any group which has a subgroup of finite index isomorphic to Fm×Zd or to Fm×Fn,
for some integers m,n ≥ 2 and d ≥ 1, is not weakly very flexibly P-stable. In particular, any group
from Corollary B, parts (1)-(3), is not weakly very flexibly P-stable.

Theorem D implies that the Baumslag-Solitar BS(m,n) group is not weakly P-stable, whenever
|m| = |n| ≥ 2. This settles a question posed by Arzhantseva and Păunescu in [AP14, Example 7.3].
As a special case of Theorem D, we deduce that F2×F2 and F2×Z are not weakly flexibly P-stable,
which answers a question of Bowen (see [Bo17, Problem 4]). The question of whether F2 × Z is
weakly flexibly P-stable was also emphasized by Bowen and Burton in [BB19] who pointed out that
this seems to be the most elementary group for which weak flexible P-stability was unknown (note
that the notion of flexible stability used in [BB19] is what we call here weak flexible stability).

Remark 1.7. The above results hold when (weak) very flexible P-stability is replaced by an
even weaker notion. Thus, we say that a countable group Γ is extremely flexibly P-stable if for
any asymptotic homomorphism σn : Γ → Sym(Xn), there exist a sequence of not necessarily
finite sets Yn and homomorphisms τn : Γ → Sym(Yn) such that Xn ⊂ Yn, for every n, and
lim
n→∞

dH(σn(g), τn(g)|Xn
) = 0, for every g ∈ Γ. The group Γ is weakly extremely flexibly P-stable if

this holds for any sofic approximation (σn) of Γ. Then the proofs of Theorem A, Corollary B and
Theorem D, which do not use that the involved sets Yn are finite, show that the groups considered
therein are not extremely flexibly P-stable and not weakly extremely flexibly P-stable, respectively.

Comments on the proof of Theorem A. We end the introduction with an outline of the proof
of Theorem A under the following additional assumption: there exist a group Γ, a sequence {Γn}∞n=1

of finite index normal subgroups of Γ, and homomorphisms qn : Λ→ Γ/Γn such that Σ = Γ ∗ Z,

• Γ has property (τ) with respect to {Γn}∞n=1, and
• Λ does not have property (τ) with respect to {ker(qn)}∞n=1.

This assumption holds for Σ = F3 and Λ = Z, by taking {Γn}∞n=1 be a sequence of finite index normal
subgroups of Γ = F2 with property (τ) and qn : Λ → Γ/Γn homomorphisms with |qn(Λ)| → +∞.
More generally, we use Kassabov’s theorem [Ka05] (that the symmetric groups {Sym(n)}∞n=1 admit
Cayley graphs which form a bounded degree expander family) to conclude that there is L ≥ 2 such
that the assumption is satisfied when Σ = FL+1, Γ = FL and Λ is any group without property (τ).

Next, let Xn = Γ/Γn, pn : Γ � Xn be the quotient homomorphism and view Γ× Λ as a subgroup
of Σ× Λ. We define the left-right multiplication action σn : Γ× Λ→ Sym(Xn) by letting

σn(g, h)x = pn(g)xqn(h)−1, for every g ∈ Γ, h ∈ Λ, x ∈ Xn.

There are two main ingredients in the proof of Theorem A.

The first is a rigidity result for asymptotic homomorphisms σ̃n : Σ × Λ → Sym(Xn) extending
σn, i.e., σ̃n|Γ×Λ = σn. Assume there are homomorphisms τn : Σ × Λ → Sym(Yn), with Yn ⊃ Xn

finite, such that dH(σ̃n(g), τn(g)|Xn
) → 0, for all g ∈ Σ × Λ. Using the property (τ) assumption,

we prove that there must be homomorphisms σn : Σ × Λ → Sym(Xn) extending σn such that
dH(σ̃n(g), σn(g)) → 0, for all g ∈ Σ × Λ (see Theorem 5.1). In other words, if σ̃n is close to the
restriction to Xn of a homomorphism, then σ̃n is close to a homomorphism which extends σn.

The second ingredient in the proof of Theorem A is the construction of a “non-trivial” asymptotic
homomorphism σ̃n : Σ × Λ → Sym(Xn) extending σn. Using that Λ does not have property (τ)
with respect to {ker(qn)}∞n=1, we construct in Lemma 6.1 a permutation ρn ∈ Sym(Xn) such that
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(1) dH(ρn ◦ σn(e, h), σn(e, h) ◦ ρn)→ 0, for every h ∈ Λ, and
(2) max{dH(ρn ◦ σn(e, h), σn(e, h) ◦ ρn) | h ∈ Λ} ≥ 1

126 , for infinitely many n.

Specifically, we first find An ⊂ Xn which is almost invariant under the right multiplication action

of Λ and satisfies |An|
|Xn| ∈ (1

7 ,
1
6) for n large (see Lemma 2.8). After replacing An with a subset, we

may assume that An ∩ gnAn = ∅, for gn ∈ Xn. We then show that ρn defined by ρn(x) = gnx if
x ∈ An, ρn(x) = g−1

n x if x ∈ gnAn, and ρn(x) = x if x /∈ An∪ gnAn, satisfies conditions (1) and (2).

Finally, condition (1) allows us to define an asymptotic homomorphism σ̃n : Σ × Λ → Sym(Xn)
which extends σn by letting σ̃n(t, e) = ρn, where t ∈ Z is a generator. On the other hand, (2)
guarantees that σ̃n is not close to any homomorphism σn : Σ × Λ → Sym(Xn) which extends σn.
But then the first ingredient above implies that Σ× Λ is not very flexibly P-stable, as desired.

In the general case, when Σ is only assumed to have a non-abelian free quotient, after replacing it
with a finite index subgroup, we may assume that there is an onto homomorphism π : Σ→ FL+1.
Let σ̃n : FL+1×Λ→ Sym(Xn) be the asymptotic homomorphism constructed above which witnesses
that FL+1 × Λ is not very flexibly P-stable. Then we analyze the asymptotic homomorphism
σ̃n ◦ (π × IdΛ) : Σ× Λ→ Sym(Xn) to show that Σ× Λ is not very flexibly P-stable.

Acknowledgements. I would like to thank Goulnara Arzhantseva and Pieter Spaas for several
helpful comments and corrections, and Lewis Bowen and Andreas Thom for stimulating discussions.

2. Preliminaries

In this section, we first recall some notation and then gather several results that will be needed later.
Let X be a finite set. We denote by B(`2(X)) the algebra of all linear maps T : `2(X) → `2(X)
and by {δx}x∈X the usual orthonormal basis of `2(X).

The normalized Hilbert-Schmidt norm of T ∈ B(`2(X)) is given by

‖T‖HS =

√
1

|X|
· Tr(T ∗T ) =

√
1

|X|
·
∑
x,y∈X

|〈Tδx, δy〉|2.

Let U : Sym(X)→ U(`2(X)) be the group homomorphism given by Uσ(δx) = δσ(x), for all x ∈ X.

Hereafter, we view Sym(X) as a subgroup of U(`2(X)), via the embedding U . Note that

‖Uσ − Uτ‖HS =
√

2 · dH(σ, τ), for every σ, τ ∈ Sym(X).

2.1. On the distance to invariant sets. Next, we record the following well-known fact.component

Lemma 2.1. Let Y be a set, X ⊂ Y be a finite subset and H < Sym(Y ) be a finite subgroup. Then
there exists an H-invariant subset X0 ⊂ Y such that |X04X| ≤ 2 ·maxh∈H |X4hX|.

Proof. Put ε = maxh∈H |X4hX| and define the H-invariant function f = 1
|H|
∑

h∈H 1hX ∈ `1(Y ).

Since ‖1X − 1hX‖1 = |X4hX| ≤ ε, for every h ∈ H, we get that ‖1X − f‖1 ≤ ε. Then the set
X0 = {y ∈ Y | f(y) ≥ 1

2} is H-invariant and since

‖1X − f‖1 =
∑

y∈Y \X

|f(y)|+
∑
y∈X
|f(y)− 1| ≥ 1

2
|(Y \X) ∩X0|+

1

2
|X \X0| =

1

2
|X04X|,

the conclusion follows. �
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2.2. A commutator calculation. comutator

Lemma 2.2. Let G be a finite group, g, h ∈ G and A ⊂ G be a set such that A ∩ gA = ∅. Define

σ, τ ∈ Sym(G) by letting τ(x) = xh−1, for all x ∈ G, and σ(x) =


gx, if x ∈ A
g−1x, if x ∈ gA
x, otherwise

.

Then we have that dH(σ ◦ τ, τ ◦ σ) =

{
2|A\Ah|+|(A∪gA)\(A∪gA)h|

|G| , if g2 6= e
2|(A∪gA)\(A∪gA)h|

|G| , if g2 = e.

Proof. Note that (σ ◦ τ)(x) =


gxh−1, if x ∈ Ah
g−1xh−1, if x ∈ gAh
xh−1, otherwise

and (τ ◦ σ)(x) =


gxh−1, if x ∈ A
g−1xh−1, if x ∈ gA
xh−1, otherwise

.

From this we derive that

{x ∈ G | (σ◦τ)(x) 6= (τ ◦σ)(x)} =

{
(Ah \A) ∪ (gAh \ gA) ∪

(
(A ∪ gA) \ (Ah ∪ gAh)

)
, if g2 6= e

(Ah ∪ gAh)4(A ∪ gA), if g2 = e

which clearly implies the conclusion. �

2.3. Kazhdan constants. We continue by recalling the notion of a Kazhdan constant and two
well-known facts which we prove for completeness.

Definition 2.3. Let G be a finite group and S be a set of generators. The Kazhdan constant
κ(G,S) is the largest constant κ > 0 such that κ · ‖ξ‖ ≤ maxg∈S ‖π(g)ξ − ξ‖, for every ξ ∈ H and
unitary representation π : G→ U(H) on a Hilbert space H without non-zero invariant vectors.

expansion

Lemma 2.4. Let G be a finite group and S be a set of generators. Then for every subset A ⊂ G
we have that κ(G,S)2 · |A| · |G \A| ≤ maxg∈S |gA4A| · |G|.

Proof. Let λ : G→ U(`2(G)) be the left regular representation. Put ξ = 1A− |A||G| ·1G ∈ `
2(G)	C1G.

Then the conclusion is equivalent to the inequality κ(G,S) · ‖ξ‖2 ≤ maxg∈S ‖λ(g)ξ − ξ‖2, which
holds since the restriction of λ to `2(G)	 C1G has no non-zero invariant vectors. �

almostinv

Lemma 2.5. Let G be a finite group and S be a set of generators. Then for every unitary represen-
tation π : G→ U(H) and ξ ∈ H we have that κ(G,S) ·maxg∈G ‖π(g)ξ−ξ‖ ≤ 2 ·maxg∈S ‖π(g)ξ−ξ‖.

Proof. Let HG be the subspace of H consisting of π(G)-invariant vectors. Let ξ ∈ H and write
ξ = ξ1 + ξ2, where ξ1 ∈ H 	 HG and ξ2 ∈ HG. Then ‖π(g)ξ − ξ‖ = ‖π(g)ξ1 − ξ1‖ ≤ 2 · ‖ξ1‖, for
every g ∈ G. Since the restriction of π to H 	HG has no non-zero invariant vectors, we get that
κ(G,S) · ‖ξ1‖ ≤ maxg∈S ‖π(g)ξ1 − ξ1‖ and the conclusion follows. �

2.4. Property (τ). We now recall an equivalent formulation of property (τ) for a finitely generated
group Γ with respect to a sequence of finite index normal subgroups {Γn}∞n=1 [Lu94]. Let S be a
finite set of generators of Γ and denote by pn : Γ→ Γ/Γn the quotient homomorphism.

tau

Definition 2.6. We say that Γ has property (τ) with respect to {Γn}∞n=1 if infn κ(Γ/Γn, pn(S)) > 0.
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Remark 2.7. If lim
n→∞

κ(Γ/Γn, pn(S)) = 0, then there are sets Cn ⊂ Γ/Γn with 0 < |Cn| < |Γ/Γn|
2

which are almost invariant, in the sense that lim
n→∞

|pn(g)Cn4Cn|/|Cn| = 0, for every g ∈ Γ (see

[LZ03, Proposition 2.5]). Moreover, if the sequence {Γn}∞n=1 is a decreasing chain, Abért and Elek
proved that one can choose Cn such that the sequence {|Cn|/|Γ/Γn|}∞n=1 converges to any prescribed
limit in [0, 1

2 ] (see [AE10, Theorem 4]).

The next lemma, which is of independent interest and will be used in the proof of Lemma 6.1,
generalizes this result to arbitrary, not necessarily decreasing, sequences of normal subgroups. AE

Lemma 2.8. In the above setting, assume that lim
n→∞

κ(Γ/Γn, pn(S)) = 0. Let 0 < α < β ≤ 1
2 .

Then for large enough n there is Cn ⊂ Γ/Γn such that

α ≤ |Cn|
|Γ/Γn|

≤ β and lim
n→∞

|pn(g)Cn4Cn|
|Γ/Γn|

= 0, for every g ∈ Γ.

Proof. If {Γn}∞n=1 is a descending chain, the lemma is a direct consequence of [AE10, Theorem 4].
In general, denote Gn = Γ/Γn for n ≥ 1. The proof is based on the following:

Claim. Let Dn ⊂ Gn be a sequence of sets such that lim
n→∞

|pn(g)Dn4Dn|
|Dn| = 0, for every g ∈ Γ, and

0 < |Dn| < 3|Gn|
4 , for every n ≥ 1. Then for any large enough n we can find hn ∈ Gn such that

|Dn|2

4|Gn|
≤ |Dnhn ∩Dn| ≤

3|Dn|
4

.

Proof of the claim. Assume that the claim is false. After passing to a subsequence, we may assume

that for every n ≥ 1 and h ∈ Gn we have |Dnh ∩Dn| < |Dn|2
4|Gn| or |Dnh ∩Dn| > 3|Dn|

4 . Let Hn be

the set of h ∈ Gn such that |Dnh ∩Dn| > 3|Dn|
4 . If h, h′ ∈ Hn, then |Dnhh

′ ∩Dn| > |Dn|
2 > |Dn|2

4|Gn|
and hence hh′ ∈ Hn. This implies that Hn is a subgroup of Gn. Next, since

|Dn|2 =
∑
h∈Gn

|Dnh ∩Dn| =
∑
h∈Hn

|Dnh ∩Dn|+
∑

h∈Gn\Hn

|Dnh ∩Dn| ≤ |Dn| · |Hn|+
|Dn|2

4|Gn|
· |Gn|,

we get that |Hn| ≥ 3|Dn|
4 . On the other hand, since∑
x∈Dn

|Hn ∩ x−1Dn| =
∑
h∈Hn

|Dnh ∩Dn| ≥
3|Dn|

4
· |Hn|,

we can find xn ∈ Dn such that |xnHn ∩Dn| = |Hn ∩ x−1
n Dn| ≥ 3|Hn|

4 . In particular, |Dn| ≥ 3|Hn|
4 .

Since |Dn| ≤ 4|Hn|
3 , we get |xnHn4Dn| = |Dn|+ |Hn| − 2|xnHn ∩Dn| ≤ |Dn| − |Hn|

2 ≤ 5|Hn|
6 . Thus,

for every g ∈ Γ we have

|pn(g)xnHn4xnHn| ≤ 2|xnHn4Dn|+ |pn(g)Dn4Dn| ≤
5|Hn|

3
+ |pn(g)Dn4Dn|.

Since lim
n→∞

|pn(g)Dn4Dn|
|Dn| = 0 and |Dn|

|Hn| ≤
4
3 , it follows that lim supn→∞

|pn(g)xnHn4xnHn|
|Hn| ≤ 5

3 < 2.

Thus, for every g ∈ Γ we have pn(g) ∈ xnHnx
−1
n , for n large enough. Since Γ is finitely generated,

we get that Hn = Gn, for n large enough. This contradicts that |Hn| ≤ 4|Dn|
3 < |Gn|, for any n. �

Now, let L be the set of ` ∈ [0, 1
2 ] for which there is a sequence of nonempty sets Dn ⊂ Gn with

lim sup
n→∞

|Dn|
|Gn|

= ` and lim
n→∞

|pn(g)Dn4Dn|
|Dn|

= 0, for every g ∈ Γ.



STABILITY FOR PRODUCT GROUPS AND PROPERTY (τ) 9

Since lim
n→∞

κ(Gn, pn(S)) = 0 we have that L 6= ∅ (see, e.g., [LZ03, Proposition 2.5]).

We claim that inf L = 0. If 0 ∈ L, there is nothing to prove. Otherwise, let ` ∈ L\{0} and Dn ⊂ Gn
be sets witnessing that ` ∈ L. By the above claim, for every n large enough we can find hn ∈ Gn

such that |Dn|2
4|Gn| ≤ |Dnhn ∩Dn| ≤ 3|Dn|

4 . For every n ≥ 1, define D′n =

{
Dnhn ∩Dn, if |Dn|

|Gn| >
`
2

Dn, if |Dn|
|Gn| ≤

`
2 .

If |Dn|
|Gn| >

`
2 , then pn(g)D′n4D′n ⊂ (pn(g)Dn4Dn) ∪ (pn(g)Dn4Dn)hn and hence we get that

|pn(g)D′n4D′n|
|D′n|

≤ 2|pn(g)Dn4Dn|
|Dn|2
4|Gn|

≤ 16

`

|pn(g)Dn4Dn|
|Dn|

.

From this it follows that lim
n→∞

|pn(g)D′
n4D′

n|
|D′

n|
= 0, for every g ∈ Γ. Thus, `′ = lim supn→∞

|D′
n|

|Gn| ∈ L.

Since |D
′
n|

|Gn| ≤ max{3|Dn|
4|Gn| ,

`
2}, for every n, we conclude that `′ ≤ 3`

4 . This implies that inf L = 0.

Let now 0 < α < β ≤ 1
2 . Since inf L = 0, we can find a sequence of sets Dn ⊂ Gn such that

|Dn|
|Gn| ≤ min{β − α, α}, for n large enough, and lim

n→∞
|pn(g)Dn4Dn|

|Dn| = 0, for every g ∈ Γ.

For n ≥ 1, let kn =
⌈

log(1−α)

log(1− |Dn|
|Gn| )

⌉
be the smallest integer such that 1 −

(
1 − |Dn|

|Gn|
)kn ≥ α. Let

mn ≥ 1 be the smallest integer for which there exists a set Fn ⊂ Gn of cardinality mn such that

Cn := DnFn satisfies |Cn|
|Gn| ≥ α. By [AE10, Lemma 2.3] we have that mn ≤ kn. Then |Cn|

|Gn| < β, for

all n. Indeed, if g ∈ Fn, then the minimality of mn implies that |Dn(Fn\{g})|
|Gn| < α and thus

|Cn|
|Gn|

≤ |Dn(Fn \ {g})|
|Gn|

+
|Dng|
|Gn|

< α+ (β − α) = β.

Finally, if g ∈ Γ, then pn(g)Cn4Cn ⊂ ∪h∈Fn(pn(g)Dnh4Dnh) and thus

|pn(g)Cn4Cn|
|Gn|

≤ mn |pn(g)Dn4Dn|
|Gn|

≤ kn|Dn|
|Gn|

|pn(g)Dn4Dn|
|Dn|

Since the sequence {kn|Dn|
|Gn| }

∞
n=1 is bounded, this implies that lim

n→∞
|pn(g)Cn4Cn|

|Cn| = 0, for every g ∈ Γ,

which finishes the proof of the lemma. �

3. Basic results on P-stability

In this section, we record three results on the general theory of P-stability. Note that with one
exception, Lemma 3.3, these results will not be needed in the rest of the paper.

3.1. Equivalence of definitions of P-stability. The notion of P-stability was introduced in
[AP14, Definition 3.2] (see also [GR09]) for finitely presented groups, and generalized to finitely
generated groups in [BLT18, Definition 3.11]. Our next result provides an equivalent formulation of
P-stability, in the sense of Definition 1.1, for general groups. This implies that for finitely generated
groups the notions of P-stability given by [BLT18, Definition 3.11] and Definition 1.1 coincide.

Let Γ be a countable group and S a set of generators. Denote by {s̄}s∈S the free generators of FS
and by π : FS → Γ the onto homomorphism given by π(s̄) = s, for every s ∈ S.
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equivalence

Lemma 3.1. The group Γ is P-stable if and only if the following condition is satisfied:
(?) for every T ⊂ S finite and ε > 0, there are E ⊂ kerπ finite and δ > 0 such that for any finite
set X and homomorphism ρ : FS → Sym(X) satisfying dH(ρ(g), IdX) ≤ δ, for all g ∈ E, there is a
homomorphism τ : Γ→ Sym(X) satisfying dH(ρ(s̄), τ(s)) ≤ ε, for all s ∈ T .

Moreover, if S is finite, then Γ is P-stable if and only if (?) is satisfied for T = S.

Proof. In the above notation, let En ⊂ kerπ be an increasing sequence of sets with ∪nEn = ker(π).
Let p : Γ→ FS be a map such that p(s) = s̄, for any s ∈ S, and π(p(g)) = g, for any g ∈ Γ.

If (?) fails, then there exist T ⊂ S finite, ε > 0 and homomorphisms ρn : FS → Sym(Xn), with Xn

finite, such that max{dH(ρn(g), IdXn) | g ∈ En} ≤ 1
n and max{dH(ρn(s̄), τn(s)) | s ∈ T} > ε, for any

n ∈ N and homomorphism τn : Γ → Sym(Xn). Define σn : Γ → Sym(Xn) by σn(g) = ρn(p(g)). If
g, h ∈ Γ, then p(gh)−1p(g)p(h) ∈ kerπ, hence p(gh)−1p(g)p(h) ∈ En0 , for some n0 ∈ N. Therefore,

dH(σn(gh), σn(g)σn(h)) = dH(ρn(p(gh)−1p(g)p(h)), IdXn) ≤ 1

n
, for every n ≥ n0.

Then (σn)n∈N is an asymptotic homomorphism of Γ. On the other hand, as σn(s) = ρn(s̄), for every
s ∈ S, we get that max{dH(σn(s), τn(s))|s ∈ T} > ε, for any homomorphism τn : Γ → Sym(Xn)
and n ∈ N. This implies that Γ is not P-stable.

Conversely, if Γ is not P-stable, then there are an asymptotic homomorphism σn : Γ → Sym(Xn),
T ⊂ S finite and ε > 0 such that max{dH(σn(s), τn(s)) | s ∈ T} > ε, for any n ∈ N and homomor-
phism τn : Γ→ Sym(Xn). Let ρn : FS → Sym(Xn) be the homomorphism given by ρn(s̄) = σn(s),
for all s ∈ S. Let g ∈ kerπ and write g = s̄ε11 ...s̄

εk
k , for s1, ..., sk ∈ S and ε1, ..., εk ∈ {±1}. Then

ρn(g) = σn(s1)ε1 ...σn(sk)
εk . Since sε11 ...s

εk
k = e and (σn) is an asymptotic homomorphism, we get

that dH(ρn(g), IdXn) → 0. Since maxs∈T dH(ρn(s̄), τn(s)) > ε, for any n ∈ N and homomorphism
τn : Γ→ Sym(Xn), we get that (?) is not satisfied. This finishes the proof of the lemma. �

3.2. Comparisons between various versions of P-stability. vs

Lemma 3.2. Let Γ be a countable group.

(1) If Γ is amenable, then it is P-stable if and only if it is flexibly P-stable.
(2) If Γ has property (τ), then it is flexibly P-stable if and only if it is very flexibly P-stable.

Proof. (1) Assume that Γ is a flexibly P-stable amenable group. In order to conclude that Γ is
P-stable, it is sufficient to prove the following claim:

Claim. Let σn : Γ → Sym(Xn) be an asymptotic homomorphism and 0 < ε < 1. Then we can
find a subsequence (σnk

) of (σn) and homomorphisms τk : Γ→ Sym(Xnk
), for any k ∈ N, such that

lim supk→∞ dH(σnk
(g), τk(g)) ≤ ε, for every g ∈ Γ.

To prove this claim we treat separately two cases. Firstly, assume that N := supn |Xn| < +∞.
Since Γ is flexibly P-stable, there are homomorphisms τn : Γ→ Sym(Yn), with Yn ⊃ Xn finite, such
that |Yn|/|Xn| → 1 and dH(σn(g), τn(g)|Xn

) → 0, for every g ∈ Γ. Thus, |Yn|/|Xn| < 1 + 1
N and

therefore Yn = Xn, for n large. This clearly implies the claim.

Secondly, assume that supn |Xn| = +∞. After replacing (σn) with a subsequence, we may suppose
that |Xn| → +∞. Since Γ is amenable, by using Ornstein and Weiss’ theorem [OW80] (similarly
to the proof of [BLT18, Proposition 6.5]), we can find a subsequence (σnk

) of (σn) and Ak ⊂ Xnk
,

for any k ∈ N, such that |σnk
(g)Ak4Ak|/|Xnk

| → 0, for every g ∈ Γ, and |Ak|/|Xnk
| → λ := 1− ε.
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For k ∈ N, let ρk : Γ→ Sym(Ak) be a map such that ρk(g) agrees with σnk
(g) on Ak ∩σnk

(g)−1Ak,
for every g ∈ Γ. Then (ρk) is an asymptotic homomorphism. Since Γ is flexibly P-stable, there are
Yk ⊃ Ak finite and homomorphisms ζk : Γ→ Sym(Yk) such that dH(ρk(g), ζk(g)|Ak

)→ 0, for every
g ∈ Γ, and |Yk|/|Ak| → 1. Since |Ak|/|Xnk

| → λ < 1, we have |Yk| < |Xnk
| and so we may assume

that Yk ⊂ Xnk
, for k large. If τk : Γ → Sym(Xnk

) is the homomorphism given by τk(g)|Yk = ζk(g)

and τk(g)|Xnk
\Yk = IdXnk

\Yk , then lim supk→∞ dH(σnk
(g), τk(g)) ≤ limk→∞ |Xnk

\ Ak|/|Xnk
| = ε,

for every g ∈ Γ. This finishes the proof of the claim and of part (1).

(2) Assume that Γ is a very flexibly P-stable group with property (τ). Let σn : Γ→ Sym(Xn) be an
asymptotic homomorphism. Then we can find homomorphisms τn : Γ→ Sym(Yn), with Yn ⊃ Xn,
for every n ∈ N, such that dH(σn(g), τn(g)|Xn

)→ 0, for any g ∈ Γ. Since

{x ∈ Xn | τn(g)x /∈ Xn} ⊂ {x ∈ Xn | σn(g)x 6= τn(g)x},
we get that |τn(g)Xn4Xn|/|Xn| → 0, for any g ∈ Γ. Since Γ has property (τ), Lemma 2.5 implies
that sup{|τn(g)Xn4Xn|/|Xn| | g ∈ Γ} → 0. By Lemma 2.1, there is a τn(Γ)-invariant set Zn ⊂ Yn
such that |Zn4Xn|/|Xn| → 0. Let Tn = Xn ∪ Zn and ρn : Γ → Sym(Tn) be the homomorphism
given by ρn(g)|Zn

= τn(g)|Zn
and ρn(g)|Xn\Zn

= IdXn\Zn
. Then we have Xn ⊂ Tn, |Tn|/|Xn| → 1,

and dH(σn(g), ρn(g)|Xn
)→ 0, for every g ∈ Γ. This shows that Γ is flexibly P-stable. �

3.3. Subgroups of finite index and very flexible P-stability. We end this section by proving
that very flexible P-stability passes to subgroups of finite index: finindex

Lemma 3.3. Let Γ0 < Γ be a finite index inclusion of countable groups. If Γ is very flexibly
P-stable, then so is Γ0. Moreover, if Γ is weakly very flexibly P-stable, then so is Γ0.

The proof is based on a simple induction argument (compare with [ESS18, Proposition 4.12]). Let
s : Γ/Γ0 → Γ be a map such that s(eΓ0) = e and s(gΓ0) ∈ gΓ0, for all g ∈ Γ. Then c : Γ×Γ/Γ0 → Γ0

given by c(g, hΓ0) = s(ghΓ0)−1g s(hΓ0) is a cocycle for the left multiplication action Γ y Γ/Γ0,
that is, c(gh, kΓ0) = c(g, hkΓ0)c(h, kΓ0), for all g, h ∈ Γ and kΓ0 ∈ Γ/Γ0.

Definition 3.4. Let σn : Γ0 → Sym(Xn) be an asymptotic homomorphism. For every n, we define
the induced asymptotic homomorphism IndΓ

Γ0
(σn) : Γ→ Sym(Γ/Γ0 ×Xn) by letting

IndΓ
Γ0

(σn)(g)(hΓ0, x) = (ghΓ0, σn(c(g, hΓ0))x), for every g ∈ Γ, hΓ0 ∈ Γ/Γ0 and x ∈ Xn.

The fact that σ̃n := IndΓ
Γ0

(σn) is an asymptotic homomorphism follows by calculating that

dH(σ̃n(gh), σ̃n(g)σ̃n(h)) =
1

|Γ/Γ0|
∑

kΓ0∈Γ/Γ0

dH(σn(c(gh, kΓ0)), σn(c(g, hkΓ0))σn(c(h, kΓ0))

and using the cocycle formula.

Proof of Lemma 3.3. Assume that Γ0 is not very flexibly P-stable. Then there are an asymptotic
homomorphism σn : Γ0 → Sym(Xn), a finite set F ⊂ Γ0 and δ > 0 such that for any sets Yn ⊃ Xn

and homomorphisms τn : Γ0 → Sym(Yn) we have max{dH(σn(g), τn(g)|Xn
) | g ∈ F} ≥ δ, for all n.

Let X̃n := Γ/Γ0 × Xn and denote by σ̃n := IndΓ
Γ0

(σn) : Γ → Sym(X̃n) the induced asymptotic

homomorphism. Consider a sequence of sets Yn ⊃ X̃n and homomorphisms τn : Γ → Sym(Yn). If
g ∈ Γ0, then σ̃n(g) leaves eΓ0 ×Xn invariant and σ̃n(g)(eΓ0, x) = (eΓ0, σn(g)x), for every x ∈ Xn.
Thus, the restriction of σ̃n|Γ0

to eΓ0 ×Xn can be identified to σn. Since τn|Γ0
is a homomorphism,

it follows that max{dH(σ̃n(g)|eΓ0×Xn
, τn(g)|eΓ0×Xn

) | g ∈ F} ≥ δ. Thus,

max{dH(σ̃n(g), τn(g)|X̃n
) | g ∈ F} ≥ δ

[Γ : Γ0]
> 0, for all n,
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which implies that Γ is not very flexibly P-stable. This proves the main assertion.

For the moreover assertion, assume the setting above and let g ∈ Γ \ {e}. Then we have that

(3.1)
sigma_nsigma_n |{x̃ ∈ X̃n | σ̃n(g)x̃ = x̃}| =

∑
hΓ0∈Γ/Γ0,ghΓ0=hΓ0

|{x ∈ Xn | σn(c(g, hΓ0))x = x}|.

If hΓ0 ∈ Γ/Γ0 is such that ghΓ0 = hΓ0, then we have c(g, hΓ0) = s(hΓ0)−1gs(hΓ0) 6= e. Thus, if

σn : Γ0 → Sym(Xn) is a sofic approximation of Γ0, then using (3.1) it follows that σ̃n : Γ→ Sym(X̃n)
is a sofic approximation of Γ, and repeating the above argument implies the moreover assertion. �

4. Permutation groups almost commuting with the regular representation

The main goal of this section is to prove the following result. This implies that any group of
permutations of a finite group G that “almost commutes” with the left regular representation of
G must arise from the right regular representation of G. More generally, we get precise structural
information about any permutation group of a set containing G whose restriction to G almost
commutes with the left regular representation of G. This generalization will be crucial later on in
allowing us to prove that certain product groups are not very flexibly P-stable. almost

Theorem 4.1. Let G be a finite group, S be a set of generators and put κ := κ(G,S). Denote by
α, β : G → Sym(X) the left and right multiplication actions of G on X := G given by α(g)x = gx
and β(g)x = xg−1, for every g ∈ G and x ∈ X. Let Y be a set containing X and K < Sym(Y ) be

a subgroup. Let ε ∈ (0, κ
4

200) and assume that

|{x ∈ X ∩ k−1X | α(g)kx 6= kα(g)x}| ≤ ε · |X|, for all g ∈ S and k ∈ K.

Then K0 = {k ∈ K | |X ∩ kX| ≥ |X|2 } is a subgroup of K. Moreover, we can find a homomorphism
δ : K0 → G, a K0-invariant set X1 ⊂ Y , a β(δ(K0))-invariant set X2 ⊂ X, and a bijection
ϕ : X1 → X2 such that

(1) |X \X2| < 4160
κ4
· ε · |X|,

(2) |{x ∈ X1 | ϕ(x) 6= x}| ≤ 2048
κ4
· ε · |X|, and

(3) ϕ ◦ k|X1
= β(δ(k))) ◦ ϕ, for all k ∈ K0.

The proof of Theorem 4.1 relies on the following two lemmas. commutant

Lemma 4.2. [Th10] Let G be a finite group, S be a set of generators and put κ := κ(G,S).
Denote by α, β : G → Sym(G) the left and right multiplication actions of G on itself. Then for
every ϕ ∈ Sym(G), there exists h ∈ G such that κ2 ·dH(ϕ, β(h)) ≤ 4 ·maxg∈S dH(α(g)◦ϕ,ϕ◦α(g)).

After proving Lemma 4.2, we realized that it also follows from the proof of [Th10, Theorem 2.2].
Nevertheless, we include a self-contained proof for completeness.

Proof. Let ϕ ∈ Sym(G) and put ε = maxg∈S dH(α(g) ◦ ϕ,ϕ ◦ α(g)). Consider the unitary repre-
sentation of G on B(`2(G)) given by g · T = α(g)Tα(g)∗, where we view Sym(G) as a subgroup of
U(`2(G)) and endow B(`2(G)) with the normalized Hilbert-Schmidt norm. Lemma 2.5 implies that

κ ·max
g∈G
‖α(g) ◦ ϕ− ϕ ◦ α(g)‖HS ≤ 2 ·max

g∈S
‖α(g) ◦ ϕ− ϕ ◦ α(g)‖HS.

Recalling that ‖σ − τ‖HS =
√

2 · dH(σ, τ), for all σ, τ ∈ Sym(G), the last inequality rewrites as

dH(α(g)◦ϕ,ϕ◦α(g)) ≤ 4ε
κ2

, for all g ∈ G. Equivalently, we have |{x ∈ G | ϕ(gx) 6= gϕ(x)}| ≤ 4ε
κ2
·|G|,
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for every g ∈ G, and hence∑
x∈G
|{g ∈ G | ϕ(gx) 6= gϕ(x)}| =

∑
g∈G
|{x ∈ G | ϕ(gx) 6= gϕ(x)}| ≤ 4ε

κ2
· |G|2.

Thus, there exists x ∈ G such that |{g ∈ G | ϕ(gx) 6= gϕ(x)}| ≤ 4ε
κ2
· |G|. Hence, h = ϕ(x)−1x ∈ G

satisfies dH(ϕ, β(h)) ≤ 4ε
κ2

. �
conjugacy

Lemma 4.3. Let X be a finite set, K a group and α1, α2 : K → Sym(X) homomorphisms. Assume
that dH(α1(k), α2(k)) ≤ ε, for all k ∈ K, for some ε > 0.

Then there exist an α1(K)-invariant set X1 ⊂ X, an α2(K)-invariant set X2 ⊂ X, and a bijection
ϕ : X1 → X2 such that |X \X1| = |X \X2| ≤ 16ε · |X|, |{x1 ∈ X1 | ϕ(x1) 6= x1}| ≤ 16ε · |X|, and

ϕ ◦ α1(k)|X1
= α2(k) ◦ ϕ, for all k ∈ K.

Moreover, if ε < 1
16 and α1 is transitive, then α1 and α2 are conjugate.

Proof. We follow closely the proofs of [Hj03, Lemma 2.5] and [Io06, Theorem 1.3]. We start by
defining V = 1

|K|
∑

k∈K α2(k)−1 ◦ α1(k) ∈ B(`2(X)). Then α2(k)−1V α1(k) = V , for every k ∈ K.

Thus, the matrix coefficients Vx1,x2 = 〈V δx1 , δx2〉 satisfy

(4.1)
equivequiv

Vx1,x2 = Vα1(k)x1,α2(k)x2 , for all x1, x2 ∈ X and k ∈ K.

Since ‖α1(k)−1 ◦ α2(k) − Id‖HS =
√

2 · dH(α1(k), α2(k)) ≤
√

2ε, for every k ∈ K, we deduce that

‖V − Id‖HS ≤
√

2ε. Equivalently, we have

(4.2)
VV 1

|X|

( ∑
x1∈X

|Vx1,x1 − 1|2 +
∑

x1,x2∈X,x1 6=x2

|Vx1,x2 |2
)
≤ 2ε.

Let A be the set of x1 ∈ X for which there exists a unique x2 = ϕ(x1) ∈ X such that |Vx1,x2 | > 1
2 .

Then equation (4.1) implies that A is α1(K)-invariant and

(4.3)
equiv_2equiv_2

ϕ(α1(k)x1) = α2(k)ϕ(x1), for all x1 ∈ A and k ∈ K.

Moreover, A contains the set X0 of x1 ∈ X such that |Vx1,x1 − 1|2 +
∑

x2∈X,x2 6=x1 |Vx1,x2 |
2 < 1

4 . On

the other hand, (4.2) implies that |X\X0|
4|X| ≤ 2ε. Thus, |X \ A| ≤ |X \X0| ≤ 8ε |X|. Similarly, the

set B of x2 ∈ X for which there is a unique x1 ∈ X with |Vx1,x2 | > 1
2 satisfies |X \B| ≤ 8ε |X|.

Define X1 = {x1 ∈ A | ϕ(x1) ∈ B} and X2 = ϕ(X1). Then the restriction of ϕ to X1 is one-to-one.
Since B is α2(K)-invariant, (4.3) gives that X1 is α1(K)-invariant and X2 is α2(K)-invariant. Since
ϕ(x1) = x1 for all x1 ∈ X0, we get that X0∩B ⊂ X1. Thus, |X \X1| ≤ |X \X0|+ |X \B| ≤ 16ε |X|
and |{x1 ∈ X1 | ϕ(x1) 6= x1}| ≤ |X1 \ (X0 ∩B)| ≤ |X \ (X0 ∩B)| ≤ 16ε |X|.
If ε < 1

16 , then |X \X1| ≤ 16 ε |X| < |X|, and thus X1 is non-empty. Since X1 is α1(K)-invariant,
if α1 is transitive, we get that X1 = X and the moreover assertion follows. �

Proof of Theorem 4.1. We will first show that K0 is a subgroup of K. The proof of this assertion
is inspired by the proof of [GTD15, Theorem 2.4]. Note that K0 is clearly closed under inverses. If
g ∈ S and k ∈ K, then

α(g)(X ∩ kX) \ (X ∩ kX) = α(g)({x ∈ X ∩ kX | α(g)x /∈ X ∩ kX})
= α(g)k({x ∈ X ∩ k−1X | α(g)kx /∈ X ∩ kX})
⊂ α(g)k({x ∈ X ∩ k−1X | α(g)kx 6= kα(g)x}),

and thus |α(g)(X ∩ kX) \ (X ∩ kX)| ≤ ε · |X|.



14 A. IOANA

Therefore, if k ∈ K0, then for every g ∈ S we have |α(g)(X∩kX)4(X∩kX)| ≤ 2ε·|X| ≤ 4ε·|X∩kX|.
By applying Lemma 2.4 to X ∩ kX ⊂ X we deduce that

κ2 · |X ∩ kX| · |X \ kX| ≤ max
g∈S
|α(g)(X ∩ kX)4(X ∩ kX)| · |X| ≤ 4ε · |X ∩ kX| · |X|.

Hence, |X \ kX| ≤ 4ε
κ2
· |X| and thus

(4.4)
invarianceinvariance |X4kX| ≤ 8ε

κ2
· |X|, for every k ∈ K0.

If k, k′ ∈ K0, then |X4k′kX| ≤ |X4k′X|+ |k′X4k′kX| = |X4k′X|+ |X4kX| ≤ 16ε
κ2
· |X|, thus

|X ∩ k′kX| ≥ (1− 8ε
κ2

) · |X| ≥ |X|/2 since κ ≤ 2 and hence ε < κ4

200 <
κ2

16 . This shows that kk′ ∈ K0

and therefore K0 is a subgroup of K.

Secondly, we will prove the existence of a map δ : K0 → G such that

(4.5)
unifunif |{x ∈ X | kx 6= β(δ(k))x}| ≤ 64ε

κ4
· |X|, for every k ∈ K0.

To see this, let k ∈ K0. Let k̃ ∈ Sym(X) such that k̃x = kx, for every x ∈ X ∩ k−1X. If g ∈ S,

then since k̃α(g)x = kα(g)x, for all x ∈ X ∩ α(g)−1k−1X, by using the hypothesis, we get that

|{x ∈ X | α(g)k̃x 6= k̃α(g)x}| ≤ ε · |X|+ |X \ (k−1X ∩ α(g)−1k−1X)| ≤ ε · |X|+ 2 · |X \ k−1X|.
In combination with (4.4), this gives that

|{x ∈ X | α(g)k̃x 6= k̃α(g)x}| ≤ (1 +
8

κ2
)ε · |X|, for every g ∈ S.

Now, Lemma 4.2 gives δ(k) ∈ G such that |{x ∈ X | k̃x 6= β(δ(k))x}| ≤ 4
κ2

(1 + 8
κ2

)ε · |X|. Together
with (4.4) we get that

|{x ∈ X | kx 6= β(δ(k))x}| ≤ |{x ∈ X | k̃x 6= β(δ(k))x}|+ |X \ k−1X|

≤ 4

κ2
(1 +

8

κ2
)ε · |X|+ 4

κ2
ε · |X|.

Since κ ≤ 2, we have that 8
κ2
≤ 32

κ4
and (4.5) follows.

Thirdly, we claim that δ : K0 → G is a homomorphism. Denote Xk = {x ∈ X | kx = β(δ(k))x}
for k ∈ K. Given k′, k ∈ K0, we have that β(δ(k′k))x = k′kx = k′β(δ(k))x = β(δ(k′))β(δ(k))x, for
every x ∈ Xk′k ∩Xk ∩ β(δ(k))−1Xk′ . Thus, by using (4.5) we get that

|{x ∈ X | β(δ(k′k))x 6= β(δ(k′))β(δ(k))x}| ≤ 192ε

κ4
· |X|.

Since ε < κ4

200 , we get that there exists x ∈ X such that β(δ(k′k))x = β(δ(k′))β(δ(k))x. Equivalently,

xδ(k′k)−1 = xδ(k)−1δ(k′)−1, and thus δ(k′k) = δ(k′)δ(k), which proves that δ is a homomorphism.

Finally, we will derive the rest of the conclusion by applying Lemma 4.3. First, note that equation
(4.4) together with Lemma 2.1 provides a K0-invariant set X0 ⊂ Y such that |X04X| ≤ 16ε

κ2
· |X|.

We put Z = X0 ∪X and define homomorphisms α1, α2 : K0 → Sym(Z) by letting for every k ∈ K0

α1(k)|X0
= k|X0

, α1(k)|Z\X0
= IdZ\X0

and

α2(k)|X = β(δ(k))|X , α2(k)|Z\X = IdZ\X .

Since {x ∈ Z | α1(k)x 6= α2(k)x} ⊂ (X04X) ∪ {x ∈ X0 ∩X | kx 6= β(δ(k))x}, (4.5) implies that

|{x ∈ Z | α1(k)x 6= α2(k)x}| ≤ 16ε

κ2
· |X|+ 64ε

κ4
· |X| ≤ 128ε

κ4
· |X|, for every k ∈ K0.
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By applying Lemma 4.3, we find an α1(K0)-invariant set Z1 ⊂ Z, an α2(K0)-invariant set Z2 ⊂ Z,
and a bijection ϕ : Z1 → Z2 such that

• |Z \ Z1| = |Z \ Z2| ≤ 16·128ε
κ4

· |X|,
• |{z ∈ Z | ϕ(z) 6= z}| ≤ 16·128ε

κ4
· |X| and

• ϕ ◦ α1(k)|Z1
= α2(k) ◦ ϕ, for all k ∈ K0.

Then Z1∩X0 is α1(K0)-invariant and Z2∩X is α2(K0)-invariant. Thus, X1 = (Z1∩X0)∩ϕ−1(Z2∩X)
is α1(K0)-invariant and X2 = ϕ(X1) is α2(K0)-invariant. Since X1 ⊂ X0 and X2 ⊂ X, we get that
X1 is K0-invariant, X2 is β(δ(K0))-invariant, and ϕ ◦ k|X1

= β(δ(k)) ◦ ϕ|X1
, for all k ∈ K0. This

proves condition (3) for ϕ|X1
.

In order to complete the proof, it remains to establish conditions (1) and (2). First, we note that

|{x ∈ X1 | ϕ(x) 6= x}| ≤ |{z ∈ Z | ϕ(z) 6= z}| ≤ 2048ε

κ4
· |X|.

Second, sinceX2 = ϕ(Z1∩X0)∩(Z2∩X), we have |X\X2| ≤ |Z\X2| ≤ |Z\ϕ(Z1∩X0)|+|Z\(Z2∩X)|.
Since |Z \ ϕ(Z1 ∩X0)| = |Z \ (Z1 ∩X0)|, we altogether derive that

|X \X2| ≤ |Z \ Z1|+ |Z \X0|+ |Z \ Z2|+ |Z \X|
= 2|Z \ Z1|+ |X04X|

≤ 32 · 128ε

κ4
· |X|+ 16ε

κ2
· |X|.

Since 16
κ2
≤ 64

κ4
, we have that 32·128

κ4
+ 16

κ2
≤ 4160

κ4
, which finishes the proof. �

5. A rigidity result for asymptotic homomorphisms

In this section we prove the following consequence of Theorem 4.1. For an informal description of
this result, see the comments on the proof of Theorem A in the end of the introduction.conjugation

Theorem 5.1. Let Γ and Λ be finitely generated groups. Assume that Γ has property (τ) with
respect to a sequence of finite index normal subgroups {Γn}∞n=1. For every n, denote Xn = Γ/Γn,
let pn : Γ→ Xn be the quotient homomorphism and qn : Λ→ Xn be a homomorphism.

Assume that σn : (Γ ∗ Z)× Λ→ Sym(Xn), n ∈ N, is an asymptotic homomorphism such that

(1) For every n ∈ N, we have σn(g, h)x = pn(g)xqn(h)−1, for all g ∈ Γ, h ∈ Λ, x ∈ Xn.
(2) For every n ∈ N, there exist a set Yn which contains Xn and a homomorphism

τn : (Γ ∗ Z)×Λ→ Sym(Yn) such that lim
n→∞

dH(σn(g), τn(g)|Xn
) = 0, for all g ∈ (Γ ∗ Z)×Λ.

Then lim
n→∞

(
max{dH(σn(t, e) ◦ σn(e, h), σn(e, h) ◦ σn(t, e)) | h ∈ Λ}

)
= 0, for every t ∈ Z.

Moreover, there exists a homomorphism σ′n : (Γ ∗ Z)× Λ→ Sym(Xn) such that

(a) σ′n|Γ×Λ = σn|Γ×Λ, for every n ∈ N, and

(b) lim
n→∞

dH(σn(g), σ′n(g)) = 0, for every g ∈ (Γ ∗ Z)× Λ.

Proof. Let S and T be finite sets of generators for Γ and Λ, respectively. For n ∈ N, we denote
by βn : Γ/Γn → Sym(Xn) the homomorphism given by βn(g)x = xg−1, for every g ∈ Γ/Γn and
x ∈ Xn. For ease of notation, we will write g and h instead of (g, e) and (e, h), for g ∈ Γ ∗ Z and
h ∈ Λ.

In the first part of the proof we will use Theorem 4.1 to prove the following:
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Claim. For every n large enough, there exist a τn(Λ)-invariant set X ′n ⊂ Yn, a subgroup Ln < Xn,
a βn(Ln)-invariant set X ′′n ⊂ Xn and a bijection ϕn : X ′n → X ′′n such that

(1) lim
n→∞

|X′
n|

|Xn| = lim
n→∞

|X′′
n |

|Xn| = 1,

(2) lim
n→∞

1
|Xn| |{x ∈ X

′
n | ϕn(x) 6= x}| = 0, and

(3) ϕn ◦ τn(Λ)|X′
n
◦ ϕ−1

n = βn(Ln)|X′′
n
.

Proof of the claim. For n ≥ 1, we put εn = 2 ·max{dH(σn(g), τn(g)|Xn
) | g ∈ S ∪ T} and

Kn = {k ∈ τn(Λ) | |Xn ∩ kXn| ≥
|Xn|

2
}.

If k ∈ τn(Λ) and g ∈ S, then k, τn(g) ∈ Sym(Yn) commute and thus

{x ∈ Xn∩k−1Xn | σn(g)kx 6= kσn(g)x} ⊂ {x ∈ Xn∩k−1Xn | σn(g)kx 6= τn(g)kx or σn(g)x 6= τn(g)x}.
Therefore, for all k ∈ τn(Λ) and g ∈ S we have

(5.1)
SS |{x ∈ Xn ∩ k−1Xn | σn(g)kx 6= kσn(g)x}| ≤ 2 · dH(σn(g), τn(g)|Xn

) |Xn| ≤ εn · |Xn|.

Moreover, if g ∈ T , then Xn \ τn(g)−1Xn = {x ∈ Xn | τn(g)x 6∈ Xn} ⊂ {x ∈ Xn | τn(g)x 6= σn(g)x},
and therefore

(5.2)
TT |Xn ∩ τn(g)Xn| = |Xn| − |Xn \ τn(g)−1Xn| ≥ (1− εn) · |Xn|, for every g ∈ T .

Since Γ has property (τ) with respect to {Γn} we have κ := infn κ(Xn, pn(S)) > 0. Since lim
n→∞

εn = 0,

we have εn < min{ κ4200 ,
1
2} for every n large enough. By (5.1), we can apply Theorem 4.1 to deduce

that Kn is a subgroup of τn(Λ) and there exist a Kn-invariant set X ′n ⊂ Yn, a subgroup Ln < Xn,
a βn(Ln)-invariant subset X ′′n ⊂ Xn and a bijection ϕn : X ′n → X ′′n such that

• |X ′n| = |X ′′n| > (1− 4160 εn
κ4

) · |Xn|,
• |{x ∈ X ′n | ϕn(x) 6= x}| ≤ 2048 εn

κ4
· |Xn|,

• ϕn ◦Kn|X′
n
◦ ϕ−1

n = βn(Ln)|X′′
n
.

Since εn <
1
2 , (5.2) guarantees that τn(T ) ⊂ Kn. Since Kn is a subgroup of τn(Λ) and T generates

Λ, we derive that Kn = τn(Λ). Since lim
n→∞

εn = 0, the claim follows. �

Secondly, we claim that

(5.3)
claimunuclaimunu

σn(Λ) ⊂ βn(Ln), for every n large enough.

To see this, let h ∈ T . Then σn(h) = βn(qn(h)) and thus lim
n→∞

dH(βn(qn(h)), τn(h)|Xn
) = 0. On

the other hand, conditions (1)-(3) from above imply that we can find a sequence hn ∈ Ln such
that lim

n→∞
dH(τn(h)|Xn

, βn(hn)) = 0. Thus, we derive that lim
n→∞

dH(βn(qn(h)), βn(hn)) = 0. Since

dH(β(k), β(k′)) = δk,k′ , for all k, k′ ∈ Xn, we get that qn(h) = hn ∈ Ln, for large enough n. Since
this holds for every h ∈ T , and T is finite and generates Λ, the claim made in (5.3) follows.

Thirdly, we claim that if g ∈ Γ ∗ Z, then σn(g) asymptotically commutes with βn(Ln):

(5.4)
claimdoiclaimdoi

lim
n→∞

(
max{dH(σn(g) ◦ βn(h), βn(h) ◦ σn(g)) | h ∈ Ln}

)
= 0

To see this, let ln ∈ Ln, for every n. Condition (3) implies that βn(ln)|X′′
n

= ϕn ◦ τn(kn)|X′
n
◦ ϕ−1

n ,
for some kn ∈ Λ. By combining (1) and (2) it follows that lim

n→∞
dH(βn(ln), τn(kn)|Xn

) = 0. On the

other hand, we have lim
n→∞

dH(σn(g), τn(g)|Xn
) = 0. Since τn(g) and τn(kn) commute, we get that

lim
n→∞

dH(σn(g) ◦ βn(ln), βn(ln) ◦ σn(g)) = 0. As this holds for any sequence ln ∈ Ln, (5.4) follows.
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It is now clear that the combination of (5.3) and (5.4) gives that

(5.5)
claimtreiclaimtrei

lim
n→∞

(
max{dH(σn(g) ◦ σn(h), σn(h) ◦ σn(g)) | h ∈ Λ}

)
= 0, for every g ∈ Γ ∗ Z.

Taking g ∈ Z, this proves the main assertion. If g ∈ Z is a generator, then (5.5) together with
Lemma 5.2 below implies the existence of σ′n(g) ∈ Sym(Xn) which commutes with σn(Λ) and
satisfies that lim

n→∞
dH(σ′n(g), σn(g)) = 0. This implies the moreover assertion. �

In order to complete the proof of Theorem 5.1, it remains to prove the following lemma.commutant2

Lemma 5.2. Let G be a finite group, X a finite set, α : G → Sym(X) a homomorphism and
ϕ ∈ Sym(X). Then there exists ψ ∈ Sym(X) which commutes with α(G) such that

dH(ϕ,ψ) ≤ 32 ·max
g∈G

dH(α(g) ◦ ϕ,ϕ ◦ α(g)).

Proof. Put ε = maxg∈G dH(α(g) ◦ ϕ,ϕ ◦ α(g)). Then dH(ϕ−1 ◦ α(g) ◦ ϕ, α(g)) ≤ ε, for any g ∈ G.
By applying Lemma 4.3 to the homomorphisms ϕ−1 ◦ α ◦ ϕ, α : G→ Sym(X) we obtain an α(G)-
invariant set X1 ⊂ X, an ϕ−1α(G)ϕ-invariant set X2 ⊂ X and a bijection σ : X1 → X2 such that
|X \X1| ≤ 16ε · |X|, |{x ∈ X1 | σ(x) 6= x}| ≤ 16ε · |X| and

ϕ−1 ◦ α(g) ◦ ϕ ◦ σ = σ ◦ α(g)|X1
, for all g ∈ G.

Thus, X3 = ϕ(X2) is α(G)-invariant and the bijection τ = ϕ ◦ σ : X1 → X3 satisfies

(5.6)
conjugatconjugat

α(g) ◦ τ = τ ◦ α(g)|X1
, for every g ∈ G.

Next, we say that two actions β : G → Sym(Y ) and γ : G → Sym(Z) are conjugate if there
exists a bijection ρ : Y → Z such that ρ ◦ β(g) = γ(g) ◦ ρ, for every g ∈ G. Let Sub∼(G) be
the set of equivalence classes [H] of subgroups H of G modulo inner conjugacy. For a subgroup
H < G, denote by ζ(β)([H]) the number of disjoint β(G)-orbits β(G)y, with y ∈ Y , such that the
restriction of β to β(G)y is conjugate to the action G y G/H. Then the conjugacy class of an
action β : G→ Sym(Y ) is completely determined by the map ζ(β) : Sub∼(G)→ N.

Finally, (5.6) implies that the restrictions of α to X1 and X3 are conjugate, hence ζ(α|X1
) = ζ(α|X3

).
This implies that ζ(α|X\X1

) = ζ(α|X\X3
) and so restrictions of α to X\X1 and X\X3 are conjugate.

In combination with 5.6, we derive that there exists ψ ∈ Sym(X) which commutes with α(G) (i.e.,
a self-conjugacy of α) such that ψ|X1

= τ . Hence,

|{x ∈ X | ψ(x) 6= ϕ(x)}| ≤ |X \X1|+ |{x ∈ X1 | σ(x) 6= x}| ≤ 32ε · |X|
and the conclusion follows. �

6. Construction of asymptotic homomorphisms

This section is devoted to the construction of asymptotic homomorphisms. In the next two sections,
we will combine this construction with Theorem 5.1 to deduce our main results. tech2

Lemma 6.1. Let Γ and Λ be finitely generated groups. Let {Γn}∞n=1 be a sequence of finite index
normal subgroups of Γ, put Xn = Γ/Γn and denote by pn : Γ → Xn the quotient homomorphism.
Assume that there exists a sequence of homomorphisms qn : Λ → Xn such that Λ does not have
property (τ) with respect to the sequence {ker(qn)}∞n=1. Let t = ±1 be a generator of Z.

Then there exists an asymptotic homomorphism σn : (Γ ∗ Z)× Λ→ Sym(Xn) such that

(1) σn(g, h)x = pn(g)xqn(h)−1, for all g ∈ Γ, h ∈ Λ, x ∈ Xn, and
(2) max{dH(σn(t, e) ◦ σn(e, h), σn(e, h) ◦ σn(t, e)) | h ∈ Λ} ≥ 1

126 , for infinitely many n ≥ 1.
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Proof. The first part of the proof is devoted to the construction of σn. Let σn : Γ× Λ→ Sym(Xn)
be given by (1). In order to extend σn to an asymptotic homomorphism of (Γ∗Z)×Λ we will define
σn(t, e) ∈ Sym(Xn) such that lim

n→∞
dH(σn(t, e) ◦ σn(e, h), σn(e, h) ◦ σn(t, e)) = 0, for any h ∈ Λ.

To this end, let T ⊂ Λ be a finite generating set. Since Λ does not have property (τ) with respect
to {ker(qn)}∞n=1 we have that infn κ(qn(Λ), qn(T )) = 0. Thus, after passing to a subsequence, we
may assume that lim

n→∞
κ(qn(Λ), qn(T )) = 0.

Lemma 2.8 then implies that for every n large enough there exists a set Cn ⊂ qn(Λ) such that

(6.1)
C_nC_n 1

7
≤ |Cn|
|qn(Λ)|

≤ 1

6
and lim

n→∞

|Cnqn(h)4Cn|
|qn(Λ)|

= 0, for every h ∈ Λ.

Let Zn ⊂ Xn be a set of representatives for the left cosets of qn(Λ). We define Bn = Zn ·Cn ⊂ Xn,
and claim that Bn satisfies the following:

a

(a) 1
7 ≤

|Bn|
|Xn| ≤

1
6 ,

b

(b) lim
n→∞

|Bnqn(h)4Bn|
|Xn| = 0, for every h ∈ Λ, and

c

(c) 1
|qn(Λ)|

∑
h∈qn(Λ) |Bnh ∩ Y | =

|Bn|·|Y |
|Xn| , for every Y ⊂ Xn.

Indeed, (a) and (b) follow from (6.1). To verify (c), note that if x ∈ Xn, then there is a unique
z ∈ Zn such that x−1z ∈ qn(Λ) and thus we have that

|x−1Bn ∩ qn(Λ)| = |{h ∈ qn(Λ) | h ∈ x−1Zn · Cn}| = |{h ∈ qn(Λ) | h ∈ (x−1z)Cn}| = |Cn|.

Therefore, for every subset Y ⊂ Xn, we deduce that∑
h∈qn(Λ)

|Bnh ∩ Y | =
∑

h∈qn(Λ),x∈Xn

1Bnh(x)1Y (x) =
∑
x∈Y
|x−1Bn ∩ qn(Λ)| = |Cn| · |Y |

Since |Bn| = |Xn|
|qn(Λ)| · |Cn|, condition (c) is also satisfied.

Let n large enough. Since
∑

g∈Xn
|Bn \ g−1Bn| = |Bn| · (|Xn| − |Bn|), we can find gn ∈ Xn such

that An = Bn \ g−1
n Bn satisfies |An|

|Xn| ≥
|Xn|−|Bn|
|Xn| · |Bn|

|Xn| ≥
5
6 ·

1
7 = 5

42 . Moreover, An ∩ gnAn = ∅ and

since An4Anqn(h) ⊂ (Bn4Bnqn(h)) ∪ g−1
n (Bn4Bnqn(h)), by (b) we get that

(6.2)
A_nA_n

lim
n→∞

|Anqn(h)4An|
|Xn|

= 0, for every h ∈ Λ.

We are now ready to define σn(t, e) ∈ Sym(Xn) by letting

σn(t, e)x =


gnx, if x ∈ An,

g−1
n x, if x ∈ gnAn,

x, otherwise.

Then Lemma 2.2 implies that for every h ∈ Λ, dH(σn(t, e) ◦ σn(e, h), σn(e, h) ◦ σn(t, e)) is equal to

(6.3)
commutecommute

{
2|An\Anqn(h)|+|(An∪gnAn)\(An∪gnAn)qn(h)|

|Xn| , if g2
n 6= e

2|(An∪gnAn)\(An∪gnAn)qn(h)|
|Xn| , if g2

n = e.

Since (An ∪ gnAn) \ (An ∪ gnAn)qn(h) ⊂ (An \Anqn(h)) ∪ gn(An \Anqn(h)), (6.2) implies that for
all h ∈ Λ, lim

n→∞
dH(σn(t, e) ◦ σn(e, h), σn(e, h) ◦ σn(t, e)) = 0. This ends the first part of the proof.
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In the second part of the proof we will prove condition (2) from the conclusion. Let n large enough.

By using (6.2), (6.3), that |An|
|Xn| ≥

5
42 and that An ⊂ Bn, for all h ∈ Λ, we get that

dH(σn(t, e) ◦ σn(e, h), σn(e, h) ◦ σn(t, e))

≥ |(An ∪ gnAn) \ (An ∪ gnAn)qn(h)|
|Xn|

≥ |An|
|Xn|

− |(An ∪ gnAn) ∩ (Anqn(h) ∪ gnAnqn(h))|
|Xn|

≥ 5

42
− |(Bn ∪ gnBn) ∩ (Bnqn(h) ∪ gnBnqn(h))|

|Xn|

(6.4)
d_Hd_H

Since |(Bn ∪ gnBn) ∩ (Bnh ∪ gnBnh)| ≤ 2|Bnh ∩ Bn| + |Bnh ∩ gnBn| + |Bnh ∩ g−1
n Bn|, by using

condition (c) we derive that

1

|qn(Λ)|
∑

h∈qn(Λ)

|(Bn ∪ gnBn) ∩ (Bnh ∪ gnBnh)| ≤ 4 · |Bn|
2

|Xn|
.

Thus, there exists hn ∈ Λ such that |(Bn ∪ gnBn) ∩ (Bnqn(hn) ∪ gnBnqn(hn))| ≤ 4 · |Bn|2
|Xn| . By

combining this with (6.4) and the inequality |Bn|
|Xn| ≤

1
6 from (a), it follows that hn satisfies

(6.5) dH(σn(t, e) ◦ σn(e, hn), σn(e, hn) ◦ σn(t, e)) ≥ 5

42
− 4 · |Bn|

2

|Xn|2
≥ 5

42
− 4

36
=

1

126

This proves condition (2) and finishes the proof. �

7. Proofs of Theorem A, Corollary B and Corollary 4.2

The proof of Theorem A relies on the following result that combines Theorem 5.1 and Lemma 6.1.tech

Theorem 7.1. Let Γ and Λ be finitely generated groups. Assume that Γ has property (τ) with respect
to a sequence {Γn}∞n=1 of finite index normal subgroups. Suppose that there exist homomorphisms
qn : Λ→ Γ/Γn such that Λ does not have property (τ) with respect to the sequence {ker(qn)}∞n=1.

Then Σ×Λ is not very flexibly P-stable, for any finitely generated group Σ which factors onto Γ∗Z.

Proof. Assume by contradiction that Σ×Λ is very flexibly P-stable. Let π : Σ→ Γ ∗ Z be an onto
homomorphism, and denote still by π the product homomorphism π×IdΛ : Σ×Λ→ (Γ∗Z)×Λ. Let
t = ±1 be a generator of Z. DenoteXn = Γ/Γn and let pn : Γ→ Xn be the quotient homomorphism.
By Lemma 6.1, there exists an asymptotic homomorphism σn : (Γ ∗ Z)× Λ→ Sym(Xn) such that

(1) σn(g, h)x = pn(g)xqn(h)−1, for all g ∈ Σ, h ∈ Λ, x ∈ Xn.
(2) max{dH(σn(t, e) ◦ σn(e, h), σn(e, h) ◦ σn(t, e)) | h ∈ Λ} ≥ 1

126 , for infinitely many n ≥ 1.

Then σn ◦ π : Σ× Λ → Sym(Xn) is an asymptotic homomorphism. Thus, since Σ× Λ is assumed
very flexibly P-stable, for every n ∈ N, we can find a set Yn ⊃ Xn together with a homomorphism
τn : Σ× Λ→ Sym(Yn) such that lim

n→∞
dH(σn(π(g)), τn(g)|Xn

) = 0, for every g ∈ Σ× Λ.

Since Γ is finitely generated and π is onto, we can find a finitely generated subgroup ∆ < Σ and
t̃ ∈ Σ such that π(∆) = Γ and π(t̃) = t. Let ρ : ∆ ∗ Z→ Σ the homomorphism given by ρ|∆ = Id∆

and ρ(t) = t̃. Denote still by ρ the product homomorphism ρ× IdΛ : (∆ ∗ Z)× Λ→ Σ× Λ. Then
αn := σn ◦ π ◦ ρ : (∆ ∗ Z) × Λ → Sym(Xn) is an asymptotic homomorphism which satisfies that
lim
n→∞

dH(αn(g), τn(π(ρ(g)))|Xn
) = 0, for every g ∈ (∆ ∗ Z)× Λ.
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Now, note that (1) gives that αn(g, h)x = (pn◦π)(g)xqn(h)−1, for all g ∈ ∆, h ∈ Λ and x ∈ Xn. Since
Γ has property (τ) with respect to {Γn}∞n=1, ∆ has property (τ) with respect to {ker(pn ◦ π)}∞n=1.
Since pn ◦ π : ∆ → Xn is an onto homomorphism and τn ◦ π ◦ ρ : (∆ ∗ Z) × Λ → Sym(Yn) is a
homomorphism, for all n ∈ N, applying Theorem 5.1 to αn : (∆ ∗ Z)× Λ→ Sym(Xn) gives that

lim
n→∞

(
max{dH(αn(t, e) ◦ αn(e, h), αn(e, h) ◦ αn(t, e)) | h ∈ Λ}

)
= 0.

However, since αn(t, e) = σn(t, e) and αn(e, h) = σn(e, h), for every h ∈ Λ, this contradicts (2). �

Proof of Theorem A. Let Σ and Λ be finitely generated groups such that Σ admits a non-abelian
free quotient and Λ does not have property (τ). Our goal is to prove that Σ×Λ is not very flexibly
P-stable. By Lemma 3.3 it suffices to find a finite index subgroup Σ0 < Σ such that Σ0 × Λ is not
very flexibly P-stable.

Let us first prove the conclusion in the case when Λ admits an infinite cyclic quotient, since this
requires less technology than the general case. Let ρ : Λ → Z be an onto homomorphism. Since
Σ factors onto F2, it has a finite index subgroup Σ0 which factors onto F3. Towards showing
that Σ0 × Λ is not very flexibly P-stable, recall that Γ = F2 can be realized as a finite index

subgroup of SL2(Z), by letting for instance Γ =
〈(1 2

0 1

)
,

(
1 0
2 1

)〉
. Since SL2(Z) has the Selberg

property [LW93] (i.e., property (τ) with respect to its congruence subgroups), Γ has property (τ)
with respect to {Γn}∞n=1, where Γn = Γ ∩

(
ker(SL2(Z) → SL2( Z

nZ)
)
. Let pn : Γ → Γ/Γn be the

quotient homomorphism. Let η : Z → Γ the homomorphism given by η(1) =

(
1 2
0 1

)
and denote

qn = pn◦η◦ρ : Λ→ Γ/Γn. Since qn factors through ρ : Λ→ Z, for every n, and lim
n→∞

|qn(Λ)| = +∞,

it follows that Λ does not have property (τ) with respect to {ker(qn)}∞n=1. Since Σ0 factors onto
F3 = Γ ∗ Z, Theorem 7.1 implies that Σ0 × Λ is not very flexibly P-stable.

In order to establish the general case we will use a theorem of Kassabov [Ka05, Theorem 2] which
provides an integer L ≥ 2 and onto homomorphisms πn : FL → Sym(n), for every n ∈ N, such
that infn κ(Sym(n), πn(S)) > 0, where S ⊂ FL is a free generating set. In other words, Γ = FL has
property (τ) with respect to {ker(πn)}∞n=1. Since Σ factors onto F2, it has a finite index subgroup
Σ0 which factors onto FL+1. We will show that Σ0 × Λ is not very flexibly P-stable.

To this end, note that since Λ does not have property (τ), there exists a sequence {Λn}∞n=1 of finite
index normal subgroups such that lim

n→∞
κ(Λ/Λn, δn(T )) = 0, where T ⊂ Λ is a finite generating set

and δn : Λ→ Λ/Λn denotes the quotient homomorphism. For every n ∈ N, put Gn = Sym(Λ/Λn)
and let in : Λ/Λn → Gn be the embedding given by left multiplication action of Λ/Λn on itself.
We denote qn = in ◦ δn : Λ → Gn. Finally, we put kn = |Λ/Λn| and let pn : Γ → Gn be the onto
homomorphism obtained by composing πkn : Γ → Sym(nk) with an isomorphism Sym(kn) ∼= Gn.
By construction, Γ has property (τ) with respect to {ker(pn)}n=1, while Λ does not have property
(τ) with respect to {ker(qn)}∞n=1 (as ker(pn) = ker(πkn) and ker(qn) = Λn, for every n ∈ N). Since
Σ0 factors onto FL+1 = Γ ∗ Z, Theorem 7.1 implies that Σ0 × Λ is not very flexibly stable. �

Proof of Corollary B. Since Zd and Fn do not have property (τ) for any integers d, n ≥ 1,
parts (1) and (2) follow from Theorem A. Let m,n be integers such that |m| = |n| ≥ 2. Then the
Baumslag-Solitar group BS(m,n) = 〈a, t|tamt−1 = an〉 has a finite index subgroup isomorphic to
Fk×Z for some k ≥ 2 (see., e.g., [Le05, Proposition 2.6]). Since Fk×Z is not very flexbily P-stable
by part (1), the same is true for BS(m,n) by Lemma 3.3. This proves part (3). To prove part (4),
let n ≥ 3 be an integer. Recall that the pure braid group PBn has infinite center, Z(PBn) ∼= Z, and
admits a non-trivial splitting PBn

∼= PBn/Z(PBn)× Z(PBn) (see [FM11, Chapter 9]). Since PBm

factors onto PBm−1, for any m ≥ 3, and PB3
∼= F2 × Z, we get that PBn factors onto F2. Thus,



STABILITY FOR PRODUCT GROUPS AND PROPERTY (τ) 21

PBn/Z(PBn) factors onto F2. Applying Theorem A implies that PBn is not very flexibly P-stable.
Since PBn is a finite index subgroup of Bn, the same holds for Bn by Lemma 3.3. �

Proof of Corollary C. By part (1) of Corollary B, F2×Z is not P-stable. Let a1, a2 be generators
of F2 and b be a generator of Z. As F2×Z is not P-stable, we can find an asymptotic homomorphism
σn : F2 × Z→ Sym(Xn) and δ > 0 such that for any homomorphism τn : F2 × Z→ Sym(Xn)

(7.1)
nothmnothm

max{dH(σn(g), τn(g)) | g ∈ {a1, a2, b}} ≥ δ, for every n.

Then σ = (σn) : F2 × Z →
∏
U Sym(Xn) is a homomorphism, hence Σ = σ(F2) and Λ = σ(Z)

are commuting subgroups of
∏
U Sym(Xn). Assume by contradiction that there exist commuting

subgroups Σn,Λn of Sym(Xn) such that Σ ⊂
∏
U Σn and Λ ⊂

∏
U Λn. Then for every n we can find

ρn(a1), ρn(a2) ∈ Σn and ρn(b) ∈ Λn such that lim
n→U

dH(σn(g), ρn(g)) = 0, for every g ∈ {a1, a2, b}.
Since Σn and Λn commute, there exists a homomorphism τn : F2 × Z → Sym(Xn) such that
τn(g) = ρn(g), for every g ∈ {a1, a2, b}. This contradicts (7.1) and finishes the proof. �

8. Proof of Theorem D

By the moreover assertion of Lemma 3.3, it suffices to prove that Σ×Λ is not weakly very flexibly
P-stable, where Σ = Fm and Λ = Zd or Λ = Fk, for m, k ≥ 2 and d ≥ 1. Since any subgroup of index
2 of Fm is isomorphic to F2m−1, by Lemma 3.3 we may assume that m ≥ 3. Let Γ = Fm−1, so that
Σ = Γ∗Z. We view Σ as a finite index subgroup of SL2(Z), and denote by πr : SL2(Z)→ SL2(Z/rZ)
the quotient homomorphism, for prime r.

By Corollary B, Σ × Λ is not very flexibly P-stable. However, the asymptotic homomorphism
constructed in the proof of Corollary B which witnesses that Σ×Λ is not very flexibly P-stable is not
a sofic approximation of Σ×Λ. Therefore, we cannot conclude that Σ×Λ is not weakly very flexibly
P-stable. Instead, we first use a variation of our construction to build an asymptotic homomorphism
σn : Σ × Λ → Sym(Xn) whose restriction to Λ is a sofic approximation of Λ. We then exploit the
fact that if πn : Σ → Sym(Yn) is a sofic approximation of Σ, then σ̃n : Σ × Λ → Sym(Yn × Xn)
given by σ̃n(g, h)(x, y) = (πn(g)x, σn(g, h)y), for every g ∈ Σ, h ∈ Λ, x ∈ Yn, y ∈ Xn is a sofic
approximation of Σ× Λ. In the rest of the proof, we implement this idea by treating two cases:

Case 1. Λ = Zd, for some d ≥ 1.

Fix n ∈ N and let rn,0, rn,1, .., rn,d be d+1 distinct primes greater than n. DefineXn =
∏d
i=1 SL2(Z/rn,iZ)

and homomorphisms pn : Γ→ Xn, qn : Λ→ Xn by letting for g ∈ Γ and (h1, ..., hd) ∈ Λ

pn(g) = (πrn,1(g), ..., πrn,d
(g)) and qn(h1, ..., hd) =

((
1 h1

0 1

)
, ...,

(
1 hd
0 1

))
.

Since Γ is a non-amenable subgroup of SL2(Z), we get that pn : Γ→ Xn is onto for n large enough.
Since Λ is abelian it does not have property (τ) with respect to {ker(qn)}∞n=1. Thus, Lemma 6.1
provides an asymptotic homomorphism σn : Σ× Λ = (Γ ∗ Z)× Λ→ Sym(Xn) such that

unos

(1) σn(g, h)x = pn(g)xqn(h)−1, for all g ∈ Γ, h ∈ Λ, x ∈ Xn. doss

(2) max{dH(σn(t, e) ◦ σn(e, h), σn(e, h) ◦ σn(t, e)) | h ∈ Λ} ≥ 1
126 , for infinitely many n ≥ 1,

where t = ±1 is a generator of Z.

Let X̃n = SL2(Z/rn,0Z)×Xn and define homomorphisms p̃n : Γ→ X̃n and q̃n : Λ→ X̃n by letting

(8.1)
pnqnpnqn

p̃n(g) = (πrn,0(g), pn(g)) and q̃n(h) = (e, qn(h)), for every g ∈ Γ, h ∈ Λ.
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Further, define σ̃n : Σ× Λ→ Sym(X̃n) by letting

(8.2)
defidefi

σ̃n(g, h)(x, y) = (πrn,0(g)x, σn(g, h)y), for every g ∈ Σ, h ∈ Λ, x ∈ SL2(Z/rn,0Z), y ∈ Xn.

Then (σ̃n)n∈N is an asymptotic homomorphism of Σ× Λ and conditions (1) and (2) above rewrite
as:

i

(i) σ̃n(g, h)x = p̃n(g)xq̃n(h)−1, for all g ∈ Γ, h ∈ Λ, x ∈ X̃n. ii

(ii) max{dH(σ̃n(t, e) ◦ σ̃n(e, h), σ̃n(e, h) ◦ σ̃n(t, e)) | h ∈ Λ} ≥ 1
126 , for infinitely many n ≥ 1.

Since Γ is a non-amenable subgroup of SL2(Z), we get that p̃n : Γ→ X̃n is onto for n large enough.
Moreover, a theorem of Bourgain and Varjú [BV10, Theorem 1] implies that Γ has property (τ)
with respect to {ker(p̃n)}∞n=1. By combining this fact with conditions (i) and (ii) above, we can
apply Theorem 5.1 to conclude that there is no sequence of homomorphisms τn : Σ×Λ→ Sym(Yn),

for any sets Yn ⊃ X̃n, such that lim
n→∞

dH(σ̃n(g), τn(g)|X̃n
) = 0, for every g ∈ Σ× Λ.

Thus, in order to deduce that Σ × Λ is not weakly very flexibly P-stable, it suffices to argue that
(σ̃n)n∈N is a sofic approximation of Σ × Λ. To see this, let (g, h) ∈ (Σ × Λ) \ {(e, e)}. If g 6= e,
then as lim

n→∞
rn,0 = +∞, we get that πrn,0(g) 6= e, for n large enough. By using the definition

(8.2) of σ̃n, we get that dH(σ̃n(g, h), Id
X̃n

) = 1, for n large enough. If g = e, then h 6= e and since

lim
n→∞

rn,i = +∞, for all 1 ≤ i ≤ d, we get that q̃n(h) 6= e, for n large enough. By using the definition

(8.2) of σ̃n, we get that dH(σ̃n(e, h), Id
X̃n

) = 1, for n large enough. Since σ̃n(e, e) = Id
X̃n

, for all

n ∈ N, this proves that (σ̃n)n∈N is a sofic approximation of Σ× Λ, finishing the proof of Case 1.

Case 2. Λ = Fk, for some k ≥ 2.

View Λ as a subgroup of SL2(Z) and let ρ : Λ→ SL2(Z) be a homomorphism such that ρ(Λ) ∼= Z.

For instance, if a1, ..., ak ∈ Λ are generators, we can let ρ(a1) =

(
1 1
0 1

)
and ρ(a2) = ... = ρ(ak) = e.

Fix n ∈ N and let rn,0, rn,1, rn,2 be 3 distinct primes greater than n. Define Xn =
∏2
i=1 SL2(Z/rn,iZ)

and homomorphisms pn : Γ→ Xn, qn : Λ→ Xn by letting for g ∈ Γ and h ∈ Λ

pn(g) = (πrn,1(g), πrn,2(g)) and qn(h) = (πrn,1(ρ(h)), πrn,2(h)).

Since Γ is a non-amenable subgroup of SL2(Z), we get that pn : Γ→ Xn is onto for n large enough.
Since the image of ρ is infinite abelian and lim

n→∞
rn,1 = +∞, Λ does not have property (τ) with

respect to {ker(πrn,1 ◦ ρ)}∞n=1. Since ker(qn) ⊂ ker(πrn,1 ◦ ρ), for every n ∈ N, it follows that Λ does
not have property (τ) with respect {ker(qn)}∞n=1. Applying Lemma 6.1 provides an asymptotic
homomorphism σn : Σ × Λ = (Γ ∗ Z) × Λ → Sym(Xn) which satisfies conditions (1) and (2) from
above.

Next, let X̃n = SL2(Z/rn,0Z)×Xn and define the homomorphisms p̃n : Γ→ X̃n, q̃n : Λ→ X̃n and

the asymptotic homomorphism σ̃n : Σ × Λ → Sym(X̃n) by the same formulae as in the proof of
Case 1. Then (σ̃n)n∈N satisfies conditions (i) and (ii) from above.

Moreover, if h ∈ Λ \ {e}, then since lim
n→∞

rn,2 = +∞, we get that πrn,2(h) 6= e, for n large enough.

This implies that dH(σ̃n(e, h), Id
X̃n

) = 1, for n large enough. By repeating verbatim the rest of the

argument from the proof of Case 1, it follows that (σ̃n) is a sofic approximation of Σ×Λ and that
Σ× Λ is not weakly very flexibly P-stable. This finishes the proof of Case 2.

Finally, the proof of Corollary B shows that any group from parts (1)-(3) in its statement has a
finite index subgroups which is isomorphic to either Fm×Zd or to Fm×Fk, for some m, k ≥ 2 and
d ≥ 1. Thus, any group from Corollary B, parts (1)-(3), is not weakly very flexibly P-stable. �
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