STABILITY FOR PRODUCT GROUPS AND PROPERTY (7)

ADRIAN IOANA

ABSTRACT. We study the notion of permutation stability (or P-stability) for countable groups.
Our main result provides a wide class of non-amenable product groups which are not P-stable.
This class includes the product group ¥ x A, whenever ¥ admits a non-abelian free quotient and A
admits an infinite cyclic quotient. In particular, we obtain that the groups F,, x Z% and F,,, x F,
are not P-stable, for any integers m,n > 2 and d > 1. This implies that P-stability is not closed
under the direct product construction, which answers a question of Becker, Lubotzky and Thom.
The proof of our main result relies on a construction of asymptotic homomorphisms from ¥ x A
to finite symmetric groups starting from sequences of finite index subgroups in ¥ and A with and
without property (7). Our method is sufficiently robust to show that the groups covered are not
even flexibly P-stable, thus giving the first such non-amenable residually finite examples.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The notion of permutation stability has been developed in a series of works [GR09, AP14,BLT18].
A countable group I is stable in permutations (or P-stable) if any “almost homomorphism” from
I" to a finite symmetric group is “close” to a homomorphism. To make this precise, we endow the
symmetric group Sym(X) of any finite set X with the normalized Hamming metric:

1
dy(o, 7) = X {z € X [o(x) # 7(x)}].
Hereafter, we will use the same formula to define the normalized Hamming distance between any
maps o and 7 with domain (but not necessarily co-domain) equal to X. P

Definition 1.1. A sequence of maps o, : I' = Sym(X,), for some finite sets X, is called an
asymptotic homomorphism if lim dy(o,(gh),on(g)on(h)) = 0, for every g,h € I'. The group I is
n—oo

called P—stablcﬂ if for any asymptotic homomorphism o, : I' = Sym(X,,), there exists a sequence
of homomorphisms 7, : I' = Sym(X,,) such that lim du(on(g9),7(g)) =0, for every g € I.
n—o0

More generally, one can define stability with respect to any class C of metric groups endowed with
bi-invariant metrics (see [AP14,AP17,CGLT17,/Th17]). While this notion has only been formalized
recently, in the case when I' = Z? and C consists of groups of matrices, the stability problem has been
studied extensively in the literature. Indeed, this problem is equivalent to the well-known question
(posed in [Ro69] for the normalized Hilbert-Schmidt norm and in [Ha76] for the operator norm)
of whether “almost commuting” matrices are “close” to commuting matrices. The answer depends
both on the groups of matrices considered and the norms chosen (see the introduction of [AP14]).
For instance, if C is the class of unitary groups {U(n) | n € N}, then the answer is positive if
one uses the normalized Hilbert-Schmidt norm [HLO08,|G110] and negative if one uses the operator
norm [Vo83|. Recently, the stability problem with respect to unitary groups has been investigated
for general countable groups I' in [HS17,[ESS18| and for other matrix norms in [CGLT17,LO18].

The author was supported in part by NSF Career Grant DMS #1253402 and NSF FRG Grant #1854074.
1Deﬁmitionag]rees with the definitions of P-stability given in |[AP14] when T' is finitely presented and in |[BLT18|
when I is finitely generated, see Lemma
1
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At the same time, there has been a surge of interest in the study of permutation stability. This
started with the works of Glebsky and Rivera [GR09] who observed that finite groups are P-
stableEI, and of Arzhantseva and Paunescu |AP14] who proved that abelian groups are P-stable
(see [BM1§| for a quantitative approach to these results). In [BLT1§|, Becker, Lubotzky and
Thom obtained a characterization of P-stability for amenable groups in terms of invariant random
subgroups. This has since been used to provide many new classes of P-stable amenable groups,
including polycyclic groups and the Baumslag-Solitar groups BS(1,n) [BLT18], the first Grigorchuk
group [Zh19], the lamplighter group Zo ! Z [LL19a] and an uncountable family of 2-generated
groups [LL19b]. On the other hand, Becker and Lubotzky |[BL18] proved that groups I' that have
property (7) are not P-stable by removing one point from a set on which I acts and deforming the
action to get an almost action. This motivated them to define two flexible variants of P-stability
(see Definition [1.2)). Subsequently, Lazarovich, Levit and Minsky proved that surface groups are
flexibly P-stable [LLM19).

The study of P-stability is motivated in part by the longstanding problem of whether any countable
group is sofic. By an observation in [GR09], in order to find a non-sofic group, it is enough to find
a group that is both P-stable and non-residually ﬁniteﬂ We note that this point of view was used
by De Chiffre, Glebsky, Lubotzky and Thom in their breakthrough work [CGLT17] to construct
non-Frobenius-approximable groups. Very recently, Burton and Bowen proved that the existence
of non-sofic groups would also follow from the flexible P-stability of PSL4(Z) for d > 5 [BB19).

The above results have led to a much better understanding of permutation stability, by providing
several classes of P-stable and non-P-stable groups, as well as potential applications of this notion.
However, in spite of the progress made, the following basic question posed in [BLT18] is open: is
P-stability closed under direct products? While P-stability is clearly closed under free products, but
not under the amalgamated free product or semi-direct product constructions by results in [BL18§],
the situation remained unclear for direct products.

We settle this question in the negative here, by giving the first examples of P-stable groups whose
direct product is not P-stable (see Corollary and the paragraph following it). This will be deduced
from our first main result (Theorem which provides a general criterion for non-P-stability of
direct products of groups. Moreover, our method of proof is sufficiently robust to address the
flexible versions of P-stability introduced in [BL18|, allowing to prove the following: A
Theorem A. Let X and A be finitely generated groups. Assume that ¥ admits a free non-abelian
quotient and A does not have property (1). Then ¥ X A is not very flexibly P-stable.

Before presenting several concrete examples of groups covered by Theorem [A] let us discuss the
notions used in its statement and an equivalent formulation of it.

A countable group A has Lubotzky’s property (1) if the representation of A on @[A:A]<oo 2(A/A),

where A runs through all finite index subgroups of A and (3(A/A) := (*(A/A) & C1, 5, does not
have almost invariant vectors [Lu94]. Property (7) is a weaker version of property (T) which is
satisfied by any irreducible lattice in a product of second countable, locally compact non-compact
groups, at least one of which has property (T) [LZ89]. In the opposite direction, any group admitting
an infinite, residually finite amenable quotient group does not have property (7) [LW93,LZ03|. -,

te
2M9e%esults referenced here are stated in [GRO9| using the notion of stability in permutations for presentations
of groups, see Remark In the form presented here, they follow from |[AP14], where it was shown that stability is
a group property, i.e., it is independent of the choice of the presentation.
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Definition 1.2. A countable group I is called flexibly P-stable if for any asymptotic homomorphism
on : I' = Sym(X,,), there exist a sequence of finite sets Y;, and homomorphisms 7, : I' — Sym(Y},)

such that X, C Y, for every n, lim du(on(g),7(9)x,) =0, for every g € I', and lim Ynl
n—o00 " n—oo 1Xnl

The group T is called very flexibly P-stable if for any asymptotic homomorphism oy, : I' — Sym(X),),
there exist a sequence of finite sets Y;, and homomorphisms 7, : I' — Sym(Y},) such that X,, C Y,
for every n, and lim du(on(9), 7n(9)|x,) = 0, for every g € I".

n—o0

Remark 1.3. A group I is very flexibly P-stable if any asymptotic homomorphism is essentially
obtained by restricting homomorphisms 7, : I' — Sym(Y},,) to “almost invariant” sets X,, C Y,
i.e., such that |7,(9) X, AX,|/|Xn| — 0, for every g € T'. If the sets X, are obtained by removing
o(|Yy|) points from Y,, (in which case they are trivially almost invariant), then I is flexibly P-stable.

It is unclear how much weaker these notions are than P-stability. On the one hand, P-stability
coincides with flexible P-stability for amenable groups and flexible P-stability coincides with very
flexible P-stability for groups with property (7) (see Lemma . On the other hand, it is open
whether groups with property (7) can be flexibly P-stable and whether surface groups are P-stable
(see [BL18,LLM19]). Moreover, while very flexible P-stability is inherited by subgroups of finite
index (see Lemma [3.3)), we do not know if this holds for P-stability or flexible P-stabillity.

Since very flexible P-stability passes to finite index subgroups, Theorem [A] implies the following
seemingly stronger statement: the product between a large group and a group without property (7)
(and any group containing such a product as a finite index subgroup) is not very flexibly P-stable.
Recall that a group is called large if one of its finite index subgroups admits a non-abelian free
quotient. By [BP78| any finitely presented group with at least two more generators than relators
is large; for more recent examples of large groups, see [La07| and the references therein.

Theorem [A] thus provides a wide class of groups, including the product of any large group and any
group having an infinite, residually finite amenable quotient, which are not very flexibly P-stable.
As an immediate consequence, we derive the following concrete examples of non-P-stable groups:g

Corollary B. The following groups are not very flexibly P-stable:

(1) F,, x Z2, for every integers m > 2 and d > 1.

(2) Fp, X Fy, for every integers m,n > 2.

(8) the Baumslag-Solitar group BS(m,n), for every integers m,n with |m| = |n| > 2.
(4) the braid group B,, and pure braid group PB,, for every integer n > 3.

Since free groups are obviously stable and abelian groups are stable by [AP14], (1) and (2) imply
that P-stability is not closed under direct products, thus answering Becker, Lubotzky and Thom’s
question [BLT18] in the negative. Moreover, we deduce that a direct product of P-stable groups need
not even be very flexibly P-stable. However, since the groups we treat are not amenable, this leaves
open the question of whether the product of two P-stable amenable groups is P-stable [BLT1§].

In [AP14, Example 7.3] it was shown that BS(m,n) is P-stable if m = n = £+1 but not P-stable if
|m| # |n| and |m|, |n| > 2, while [BLT18, Theorem 1.2 (ii)] established that BS(1,n) is stable for
every n € Z. Part (3) of Corollary |B| completes the classification of P-stability of the Baumslag-
Solitar groups BS(m,n) by addressing the remaining case when |m| = |n| > 2.

To put Corollary [B|into a better perspective, let us indicate several additional consequences of it.
First, as remarked in [BL18| Section 4.4] (extending observations made in [GR09,AP14]), any group
which is sofic and non-residually finite is not very flexibly P-stable. By [BLT18| Theorem 1.2 (iii)],
there are amenable residually finite groups which are not P-stable and thus not flexibly P-stable.
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Corollary [B] gives the first examples of non-amenable residually finite groups that are not flexibly
P-stable, and the first examples of residually finite groups that are not very flexibly P-stable. g

Remark 1.4. A countable group I is called Hilbert-Schmidt stable (or HS-stable) if it is stable with
respect to the class of unitary groups {(U(n),dns) | n € N} endowed with the normalized Hilbert-

Schmidt distance given by dus(T, S) = ||T — S||us for T, S € U(n), where ||V |us = /L - Tr(V*V).

Since the normalized Hamming distance can be expressed in terms of the normalized Hilbert-
Schmidt distance, the study of P-stability and HS-stability are similar in flavor [AP14].

In spite of the similarity between these notions, Corollary [B| highlights a surprising difference
between them, by providing, to our knowledge, the first examples of HS-stable groups which are
not P-stable. By [HS17, Theorem 1], the product of two HS-stable groups is HS-stable provided
that one of the groups is abelian (by [[S19, Corollary D] the same holds if one of the groups is
amenable). Consequently, F,,, x Z¢ is HS-stable but not P-stable, for any integers m > 2 and d > 1.

Note that is an open question whether HS-stability is closed under direct products. It seems likely
that this question has a negative answer, and moreover that IF,,, X F,, is not HS-stable, for m,n > 2.
Supporting evidence is provided by [IS19, Theorem E| which shows that F,, x F, is not stable
with respect to the class {(U(M), | - [|2) | (M, T) tracial von Neumann algebra} of unitary groups

of tracial von Neumann algebras endowed with their 2-norms, ||T||2 = /T(T*T). equations

Remark 1.5. Let R C Fy be a finite set, for k& € N. The system of equations (%) (71, ..., %) = €,
for every r € R, is called P-stable if for every € > 0, there is § > 0 such that the following holds: for
any finite set X and o1, ..., 0% € Sym(X) satisfying dg(r(o1, ...,0),Idx) < 9, for every r € R, (%)
has a solution 7y, ..., 7 € Sym(X) such that dy(o;, ) < ¢, for every 1 <i < k (see [GR09,AP14]).
A finitely presented group I' = (IF|R) is P-stable if and only if R is P-stable [AP14]. The P-stability
of Z? proved in |[AP14] is thus equivalent to the P-stability of the system [a,b] = aba=1b~! = e.

On the other hand, since the groups Fy x Z and Fa x Fy are not P-stable by Corollary [B] we conclude
that the systems [a1,b] = [ag,b] = e and [a1, b1] = [a1, ba] = [ag, b1] = [ag, b2] = e are not P-stable.

Corollary [Bf also implies the existence of universal sofic groups which fail a certain lifting property
for commuting subgroups. Let U be a free ultrafilter on N and (X)) finite sets with lini{ | X | = +o0.
n—r

Define the metric ultraproduct group [],, Sym(X,) := ([[,, Sym(Xy)) /N, where NV is the subgroup
of (o) € [, Sym(X,,) satisfying lini{ du(on,Idx, ) = 0. Since a countable group is sofic if and only
n—>

if it embeds into [[,, Sym(X,) [ES04], the latter is called a universal sofic group. comutant

Corollary C. There exist countable commuting subgroups 3, A of a universal sofic group [[;, Sym(X5,)
such that the following holds: there are no commuting subgroups X, Ay, of Sym(X,, ), for alln € N,
such that ¥ C [[;, Xn and A C [, An.

We end the introduction by discussing a weakening of the notion of P-stability found by considering
asymptotic homomorphisms that are sofic approximations [AP14]. Let I" be a countable group.

Definition 1.6. An asymptotic homomorphism o, : I' — Sym(X),) is called a sofic approzimation
of I if lim dg(on(g),Idx, ) =1, for every g € I' \ {e}. The group I is called weakly P-stable (re-
n—0o0

spectively, weakly flexibly P-stable or weakly very flexibly P-stable) if the condition from Definition
1.1] (respectively, the conditions from Definition holds for any sofic approximation (¢,,) of T

The notion of weak P-stability is in general strictly weaker than that of P-stability. More precisely,
[AP14] Theorem 7.2] shows that any finitely presented, residually finite amenable group is weakly
P-stable, whereas [BLT18, Theorem 1.2 (iii)] proves that there is such a group which is not P-stable.
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Our last main result provides a class of non-amenable groups which are not weakly P-stable: c

Theorem D. Any group which has a subgroup of finite index isomorphic to F,, x Z% or to Fp, x F,,
for some integers m,n > 2 and d > 1, is not weakly very flexibly P-stable. In particular, any group
from Corollary [B|, parts (1)-(3), is not weakly very flexibly P-stable.

Theorem @ implies that the Baumslag-Solitar BS(m,n) group is not weakly P-stable, whenever
|m| = |n| > 2. This settles a question posed by Arzhantseva and Paunescu in [AP14, Example 7.3].
As a special case of Theorem DL we deduce that Fo x Fo and o X Z are not weakly flexibly P-stable,
which answers a question of Bowen (see [Bol7, Problem 4]). The question of whether Fy X Z is
weakly flexibly P-stable was also emphasized by Bowen and Burton in [BB19] who pointed out that
this seems to be the most elementary group for which weak flexible P-stability was unknown (note
that the notion of flexible stability used in [BB19] is what we call here weak flexible stability).

Remark 1.7. The above results hold when (weak) very flexible P-stability is replaced by an
even weaker notion. Thus, we say that a countable group I' is extremely flexibly P-stable if for
any asymptotic homomorphism o, : I' — Sym(X,), there exist a sequence of not necessarily
finite sets Y, and homomorphisms 7, : I' — Sym(Y,) such that X,, C Y, for every n, and
nh_}ngo du(on(g); n(9)|x,) = 0, for every g € I'. The group I is weakly extremely flexibly P-stable if

this holds for any sofic approximation (o) of I'. Then the proofs of Theorem [A] Corollary [B| and
Theorem [D} which do not use that the involved sets Y;, are finite, show that the groups considered
therein are not extremely flexibly P-stable and not weakly extremely flexibly P-stable, respectively.

Comments on the proof of Theorem [A] We end the introduction with an outline of the proof
of Theoremunder the following additional assumption: there exist a group I', a sequence {I',,}5° ;
of finite index normal subgroups of I', and homomorphisms ¢, : A — I'/T";, such that ¥ =T * Z,

e I" has property (7) with respect to {I',}2°;, and
e A does not have property (7) with respect to {ker(g,)}5 .

This assumption holds for ¥ = F3 and A = Z, by taking {I';,}7° ; be a sequence of finite index normal
subgroups of I' = Fy with property (7) and ¢, : A — T'/T",, homomorphisms with |g,(A)| — +oo.
More generally, we use Kassabov’s theorem [Ka05| (that the symmetric groups {Sym(n)}>° ; admit
Cayley graphs which form a bounded degree expander family) to conclude that there is L > 2 such
that the assumption is satisfied when ¥ = Fy 1, I' = Fy and A is any group without property (7).

Next, let X,, =T'/Ty,, p, : I' = X, be the quotient homomorphism and view I" X A as a subgroup
of ¥ x A. We define the left-right multiplication action o, : I' x A — Sym(X,,) by letting

on(g, h)x = pn(g)xgn(h) 7, for every g €T, h € A,z € X,,.

There are two main ingredients in the proof of Theorem [A]

The first is a rigidity result for asymptotic homomorphisms &, : ¥ X A — Sym(X,,) extending
O 1-€., Onjrxa = On. Assume there are homomorphisms 7, : ¥ x A — Sym(Y,,), with ¥, O X,
finite, such that du(dn(g), 70(9)x,) — 0, for all g € ¥ x A. Using the property (7) assumption,
we prove that there must be homomorphisms @, : ¥ x A — Sym(X,) extending o,, such that
du(Gn(9),Tn(g)) — 0, for all g € ¥ x A (see Theorem [5.1). In other words, if &, is close to the
restriction to X,, of a homomorphism, then &, is close to a homomorphism which extends o,,.

The second ingredient in the proof of Theorem [A]is the construction of a “non-trivial” asymptotic
homomorphism &,, : ¥ x A — Sym(X,,) extending o,,. Using that A does not have property (7)
with respect to {ker(g,)}7>;, we construct in Lemma [6.1] a permutation p, € Sym(X,,) such that
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(1) du(pn o onle, h),on(e, h) o p,) — 0, for every h 6 A, and

(2) max{dy(pn o on(e,h),on(e,h)o Pn) | h € A} > 3, for infinitely many n.

Specifically, we first find A,, C X,, which is almost invariant under the right multiplication action

of A and satisfies K}:ﬂ € (7, 6) for n large (see Lemma . After replacing A,, with a subset, we

may assume that A, N g, A, =0, for g, € X,,. We then show that p,, defined by p,(z) = gpx if
T € Ap, pn(z) = g, 'z if € g Ay, and pp(x) = x if x ¢ A, Ug, Ay, satisfies conditions (1) and (2).

Finally, condition (1) allows us to define an asymptotic homomorphism o, : ¥ x A — Sym(X,,)
which extends o, by letting o,(t,e) = p,, where t € Z is a generator. On the other hand, (2)
guarantees that o, is not close to any homomorphism @, : ¥ x A — Sym(X,,) which extends o,.
But then the first ingredient above implies that 3 x A is not very flexibly P-stable, as desired.

In the general case, when ¥ is only assumed to have a non-abelian free quotient, after replacing it
with a finite index subgroup, we may assume that there is an onto homomorphism 7 : ¥ — Fr 1.
Let 0, : Fr41 xA — Sym(X,,) be the asymptotic homomorphism constructed above which witnesses
that Fr41 x A is not very flexibly P-stable. Then we analyze the asymptotic homomorphism
opo(mx1Idy): 2 x A — Sym(X,,) to show that ¥ x A is not very flexibly P-stable.

Acknowledgements. I would like to thank Goulnara Arzhantseva and Pieter Spaas for several
helpful comments and corrections, and Lewis Bowen and Andreas Thom for stimulating discussions.

2. PRELIMINARIES

In this section, we first recall some notation and then gather several results that will be needed later.
Let X be a finite set. We denote by B(¢?(X)) the algebra of all linear maps T : £2(X) — (?(X)
and by {0, }zex the usual orthonormal basis of £2(X )

The normalized Hilbert-Schmidt norm of T € B(£?(X)) is given by

|T[[ms = \/ Te(T*T | Z (T6z, 0y)|?
z,yeX

Let U : Sym(X) — U(£*(X)) be the group homomorphism given by Uy (6) = 6,(y), for all z € X.
Hereafter, we view Sym(X) as a subgroup of U(¢2(X)), via the embedding U. Note that

|Us — Ur|lus = /2 - du(o, 1), for every o, 7 € Sym(X).

2.1. On the distance to invariant sets. Next, we record the following well-known fa%%mponent

Lemma 2.1. Let Y be a set, X CY be a finite subset and H < Sym(Y') be a finite subgroup. Then
there exists an H -invariant subset Xo CY such that | XoAX| < 2-maxpen | XARX].

Proof. Put € = maxpey | XAhX| and define the H-invariant function f = ﬁ Snen Lnx € £1(Y).

Since ||[1x — 1px|1 = |[XARX| < &, for every h € H, we get that ||1x — f|l1 < &. Then the set
Xo={yeY|f(y)>1}is H-invariant and since

Ix = fli= S0 @I+ S0 1) 12 5100\ X) 0 Xo] + 51X\ Xo| = 3| XpAX],
yeY\X yeX

the conclusion follows. [ |
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2.2. A commutator calculation. comutator

Lemma 2.2. Let G be a finite group, g,h € G and A C G be a set such that AN gA = 0. Define
gz, ifr €A

o,7 € Sym(G) by letting 7(x) = zh™Y, for all x € G, and o(x) = { g 'z, if x € gA
x, otherwise

2AA\ARLH(AUGANAUG A e 2 4
Then we have that dg(coT,700) = {2|(AUgA)\(AS;A)h

rel 7@fg =e
gxh™', if x € Ah gzh™ ifx e A
Proof. Note that (co7)(z) =< g 'aeh™!, ifx € gAh  and (too0)(z) = g lah™!, if x € gA
zh™1, otherwise xh™!, otherwise

From this we derive that

(AR '\ A)U (gAR\ gA) U ((AUgA) \ (AhU gAh)), if g # e

fr € G| (007)(@) £ (roo)(@)} = {(AhUgAh)A(AUgA), e

which clearly implies the conclusion. |

2.3. Kazhdan constants. We continue by recalling the notion of a Kazhdan constant and two
well-known facts which we prove for completeness.

Definition 2.3. Let G be a finite group and S be a set of generators. The Kazhdan constant
k(G, S) is the largest constant £ > 0 such that « - ||£|| < max,ecg ||7(9)§ — ||, for every £ € H and

unitary representation 7 : G — U(#H) on a Hilbert space H without non-zero invariant V%(}Z{tp%IhSSlon

Lemma 2.4. Let G be a finite group and S be a set of generators. Then for every subset A C G
we have that k(G, S)* - |A| |G\ A] < maxzes [gAAA| - |G|.

Proof. Let X : G — U(£%(G)) be the left regular representation. Put ¢ = 1A—%'1G € 1?(G)eClg.

Then the conclusion is equivalent to the inequality x(G,S) - [|£]l2 < maxgeg ||A(9)€ — |2, which

holds since the restriction of A to £2(G) © Clg has no non-zero invariant vectors. . ;
almostinv

Lemma 2.5. Let G be a finite group and S be a set of generators. Then for every unitary represen-
tation m: G — U(H) and § € H we have that k(G, S)-maxgeq [|7(g) —&|| < 2-maxgegs ||m(g)E =&

Proof. Let HE be the subspace of H consisting of 7(G)-invariant vectors. Let £ € H and write
€ = &1+ &, where & € HEHE and & € HE. Then [[r(g)¢ — ¢ = ()& — &1]] < 2- & |, for
every g € G. Since the restriction of 7 to H © HE has no non-zero invariant vectors, we get that
k(G,S) - [|&] < maxgeg ||71(9)é&1 — &1 and the conclusion follows. [ |

2.4. Property (7). We now recall an equivalent formulation of property (7) for a finitely generated
group I' with respect to a sequence of finite index normal subgroups {I',}2°; [Lu94]. Let S be a

finite set of generators of I" and denote by p,, : I' — I'/T",, the quotient homomorphism. tau

Definition 2.6. We say that I" has property (t) with respect to {I',,}°°; if inf,, (I'/T'y, pn(S)) > 0.
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Remark 2.7. If lim s(I'/T'y, pn(S)) = 0, then there are sets C,, C I'/T",, with 0 < |C,,| < ‘F/F"|
n—oo
which are almost invariant, in the sense that lim |p,(9)C,AC,|/|Cn| = 0, for every g € T (see
n—o0

[LZ03|, Proposition 2.5]). Moreover, if the sequence {I',,}°2 ; is a decreasing chain, Abért and Elek
proved that one can choose C,, such that the sequence {|C,,|/|I'/T'n|}22; converges to any prescribed
limit in [0, 3] (see [AE10, Theorem 4]).

The next lemma, which is of independent interest and will be used in the proof of Lemma
generalizes this result to arbitrary, not necessarily decreasing, sequences of normal subgroups. ,p

Lemma 2.8. In the above setting, assume that lim k(I'/Tp,pa(S)) = 0. Let 0 < a < B < 3.
n—oo
Then for large enough n there is C, C T'/Ty, such that

|Cn| . |pn(9)CnAOn|
< A
S oyr,) =7 e e

=0, for every g € T.

Proof. If {I'y,}>° , is a descending chain, the lemma is a direct consequence of [AE10, Theorem 4].
In general, denote G,, = I'/T",, for n > 1. The proof is based on the following:

|Pn(9) DnADy |
[Dn]

Claim. Let D, C G, be a sequence of sets such that lim =0, for every g € I', and

n—o0

0 < |Dy| < 3'%”‘, for every n > 1. Then for any large enough n we can find h,, € G,, such that
| Dy ? 3| Dn|
4|G,| 4

< |Dnhn N Dn| <

Proof of the claim. Assume that the claim is false. After passmg to a subsequence, we may assume

that for every n > 1 and h € G,, we have |D,h N D,| < |4|D£ or |Dph N Dyl > 3|D”| Let H, be

the set of & € Gy, such that [Dyh 0 Dy| > 4221 1t n, B € H,, then | Dyhh! 0 Dy| > 5l > 102L
and hence hh' € H,. This implies that H,, is a subgroup of G,,. Next, since
D 2
IDp? = Y [DohNDpl= > [Duh N Dyl + > [DohN Dyl < |Dy| - [H, y+"G|‘ Gl
heEGH heH, heGu\Hp "
we get that |H,| > %. On the other hand, since
3 D
> |HnNa 'Dy| = > |DphN Dyl > 3[Dn| | Hy),
x€Dp heHy,
we can find z,, € D,, such that |z, H, N Dy,| = |H, N2, D,| > Sl 1y particular, | ] > ‘4 5
Since |D,| < 4‘21"‘, we get |x, H,ADy| = |Dy| + |Hy| — 2|20 ‘h;”‘ <5 6 Aol Thus
for every g € I' we have
5|H
pn(9)xn Hn Az Hy | < 2|20 HyADn| 4 |pn(g) DnAD,| < ‘371‘ + |Pn(9) DnADy|.
Since lim M — 0 and [Pnl < 4 5, it follows that limsup lpo(9)zn HubznHnl 5 o
n—s00 D] [ Hn| n—00 [ Hpl 3

Thus, for every g € I' we have p,(g) € x,H,x, !, for n large enough. Since I is finitely generated,
we get that H,, = Gy, for n large enough. This contradicts that |H,| < 4‘D" < |Gyl, for any n. O

Now, let L be the set of £ € [0, %] for which there is a sequence of nonempty sets D,, C G,, with

lim sup D =/¢ and lim [n(9) Dn & Dn|

=0, for every g € I'.
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Since lim k(Gp,pn(S)) =0 we have that L # () (see, e.g., [LZ03, Proposition 2.5]).

n—00

We claim that inf L = 0. If 0 € L, there is nothing to prove. Otherwise, let £ € L\{0} and D,, C G,,
be sets witnessing that £ € L. By the above claim, for every n large enough we can find h, € G,

) Dphy O Dy, if 12l 5 £
such that LDC?‘ < |Dphy N Dy| < %. For every n > 1, define D], = e D |n €|G”| 2
|Gl Dy, if g2 < §.

If 13:! > £, then p,(g9)DL,AD., C (pn(9)DnADy) U (pn(9)DnADy)hy and hence we get that

lpn(9) D3 ADy| < 2|pn(g) DnADy| < E [Pn(9) DA Dy

/ = [Dal? =
D] 0. ¢ 1Dl

From this it follows that lim %

n—oo
| Dr| 3| Dn|
IGnl 4|Gn|

=0, for every g € I'. Thus, ¢ = limsup,,_, |\1G)i|| e L.

, g}, for every n, we conclude that ¢ < 3%. This implies that inf L = 0.

< max{

Since

Let now 0 < a < 8 < % Since inf L = 0, we can find a sequence of sets D, C G, such that

1Dnl min{f — «, a}, for n large enough, and lim [n(9)Dn &Dn| 0, for every g € I
Forn > 1, let &k, = {%1 be the smallest integer such that 1 — (1 - ||g"‘|)k" > «. Let
o8 T TEnl "

my, > 1 be the smallest integer for which there exists a set F;,, C G, of cardinality m,, such that

C, := D, F, satisfies fgﬂ > «. By |AE10, Lemma 2.3] we have that m,, < k,. Then ;gzl‘ < 3, for
all n. Indeed, if g € F},, then the minimality of m,, implies that W < « and thus
Cul _ 1DulF \aD|  1Dosl _ 5 ) _ 5

Gnl ~ |Gl |Gl

Finally, if g € T, then p,(9)Cr,AC), C Uper, (pn(9)DnhAD,h) and thus
[P (9)Cr AC| < Mn |pn(9) DnADy| < kn|Dn| [pn(g9)DnADy|

|Gl B |Gl ~ |Gyl | Dy
Since the sequence {kTéDrl 1 is bounded, this implies that lim % =0, for every g € T,
n n—00 n

which finishes the proof of the lemma. [

3. BASIC RESULTS ON P-STABILITY

In this section, we record three results on the general theory of P-stability. Note that with one
exception, Lemma, these results will not be needed in the rest of the paper.

3.1. Equivalence of definitions of P-stability. The notion of P-stability was introduced in
[AP14, Definition 3.2] (see also [GR09]) for finitely presented groups, and generalized to finitely
generated groups in [BLT18, Definition 3.11]. Our next result provides an equivalent formulation of
P-stability, in the sense of Definition for general groups. This implies that for finitely generated
groups the notions of P-stability given by |[BLT18, Definition 3.11] and Definition coincide.

Let I be a countable group and S a set of generators. Denote by {5}scs the free generators of Fg
and by 7 : Fg — I' the onto homomorphism given by 7(s) = s, for every s € S.
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equivalence

Lemma 3.1. The group I" is P-stable if and only if the following condition is satisfied:

(%) for every T C S finite and € > 0, there are E C kerw finite and 6 > 0 such that for any finite
set X and homomorphism p : Fg — Sym(X) satisfying du(p(g),1dx) <6, for all g € E, there is a
homomorphism 7 : T' — Sym(X) satisfying du(p(s),7(s)) <e, for all s € T.

Moreover, if S is finite, then T' is P-stable if and only if (x) is satisfied for T = S.

Proof. In the above notation, let E,, C ker w be an increasing sequence of sets with U, E,, = ker(m).
Let p: I' — Fg be a map such that p(s) = 3, for any s € S, and 7(p(g)) = g, for any g € T.

If () fails, then there exist 7' C S finite, ¢ > 0 and homomorphisms p,, : Fg — Sym(X,,), with X,
finite, such that max{du(pn(9),1dx,) | g € En} < 2 and max{du(pn(5), 7(s)) | s € T} > e, for any
n € N and homomorphism 7, : I' — Sym(X,,). Define o,, : I' — Sym(X,,) by o,(9) = pn(p(g)). If
g,h € T, then p(gh)~*p(g9)p(h) € ker 7, hence p(gh)~'p(g)p(h) € E,,, for some ng € N. Therefore,

du(on(gh), on(9)n(h)) = du(pn(p(gh) 'plg)p(h)),1dx,) < % for every n > ng.

Then (04, )nen is an asymptotic homomorphism of I'. On the other hand, as o,,(s) = pn(5), for every
s € S, we get that max{du(on(s), T (s))|s € T} > ¢, for any homomorphism 7, : I' — Sym(X,,)
and n € N. This implies that I" is not P-stable.

Conversely, if I" is not P-stable, then there are an asymptotic homomorphism o, : I' — Sym(X,,),
T C S finite and € > 0 such that max{dy(o,(s),7.(s)) | s € T} > ¢, for any n € N and homomor-
phism 7, : I' = Sym(X,,). Let p,, : Fg — Sym(X,,) be the homomorphism given by p,(5) = o,(s),
for all s € S. Let g € kerm and write g = 57'...5;", for s1,...,s; € S and e1,...,e € {£1}. Then
pn(g) = on(s1)...on(sg)%. Since s7'...s;" = e and (0,,) is an asymptotic homomorphism, we get
that du(pn(g),Idx,) — 0. Since maxser di(pn(S), Tn(s)) > €, for any n € N and homomorphism
Tp : I' = Sym(X,,), we get that (x) is not satisfied. This finishes the proof of the lemma. [ |

3.2. Comparisons between various versions of P-stability. vs

Lemma 3.2. Let T be a countable group.

(1) If T is amenable, then it is P-stable if and only if it is flexibly P-stable.
(2) If T has property (1), then it is flexibly P-stable if and only if it is very flexibly P-stable.

Proof. (1) Assume that T' is a flexibly P-stable amenable group. In order to conclude that T is
P-stable, it is sufficient to prove the following claim:

Claim. Let o, : I' = Sym(X,,) be an asymptotic homomorphism and 0 < ¢ < 1. Then we can
find a subsequence (oy, ) of (¢5,) and homomorphisms 73, : I' = Sym(X,, ), for any k € N, such that

lim supy,_, o di(on, (9), 7:(9)) < €, for every g € T

To prove this claim we treat separately two cases. Firstly, assume that N := sup, |X,| < +oo.
Since T is flexibly P-stable, there are homomorphisms 7, : I' — Sym(Y},), with Y, D X, finite, such
that |Y,|/|Xn| — 1 and du(ow(g), 7 (9)|x,,) — 0, for every g € I'. Thus, |Yy|/|X,| < 1+ + and
therefore Y,, = X,,, for n large. This clearly implies the claim.

Secondly, assume that sup,, | X,,| = +o00. After replacing (o,,) with a subsequence, we may suppose
that |X,| — +o00. Since I' is amenable, by using Ornstein and Weiss’ theorem |[OWS80| (similarly
to the proof of [BLT18, Proposition 6.5]), we can find a subsequence (o, ) of (o,,) and Ay C X, ,
for any k € N, such that |0y, (9)ArAAg|/| Xn,| = 0, for every g € T', and |Ag|/| Xp, | = A:=1—c¢.
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For k € N, let py : ' = Sym(Ag) be a map such that py(g) agrees with oy, (g) on Ag Ny, (g) " Ag,
for every g € I'. Then (p) is an asymptotic homomorphism. Since I' is flexibly P-stable, there are
Yi D Ay finite and homomorphisms ;. : I' = Sym(Y},) such that du(pk(9), Ck(9)a,) — 0, for every
g € I', and |Yy|/|Ax| — 1. Since |Ag|/|Xn,| = A < 1, we have |Y}| < | X,,,| and so we may assume
that Y, C X,,,, for k large. If 7, : I' = Sym(X,, ) is the homomorphism given by Tk(g)m = Ck(9)
and 7k(9)|x, \v, = 1dx,, \v;, then limsupy_,o du(on,(9), 7k(9)) < limpoo [ Xny, \ Akl/[Xn, | = ¢,
for every g € I'. This finishes the proof of the claim and of part (1).

(2) Assume that I' is a very flexibly P-stable group with property (7). Let o5, : I' — Sym(X,,) be an
asymptotic homomorphism. Then we can find homomorphisms 7, : I' = Sym(Y,,), with Y,, D X,,,
for every n € N, such that du(0w(9), 7n(9)|x,,) — 0, for any g € I'. Since

{z € Xo | m(9)r & Xn} C{z € Xy | onlg)z # Talg)z},
we get that |7,(9) X, AXy|/|Xn| — 0, for any g € I'. Since I has property (7), Lemma [2.5] implies
that sup{|7,(9) Xn AXn|/|Xn| | g € T} = 0. By Lemma [2.1] there is a 7,(I')-invariant set Z, C Y,
such that |Z,AX,|/|X,| — 0. Let T,, = X,, U Z, and p,, : I' — Sym(7},) be the homomorphism
given by pn(g)|Zn = Tn(g)|Zn and pn(g)|Xn\Zn = Ian\Zn‘ Then we have X,, C Ty, |Tn|/|Xn| — 1,
and du(on(9), pn(9)|x,) — 0, for every g € T'. This shows that I' is flexibly P-stable. [ |

3.3. Subgroups of finite index and very flexible P-stability. We end this section by proving

that very flexible P-stability passes to subgroups of finite index: finindex

Lemma 3.3. Let T'g < I' be a finite index inclusion of countable groups. If T' is very flexibly
P-stable, then so is I'g. Moreover, if I is weakly very flexibly P-stable, then so is I'g.

The proof is based on a simple induction argument (compare with [ESS18| Proposition 4.12]). Let
s:T'/Ty — I be amap such that s(el's) = e and s(gTg) € gT'y, forallg € I'. Thenc: I'xI'/Ty — Ty
given by c(g, hlo) = s(ghlg) g s(hlg) is a cocycle for the left multiplication action I' ~ T'/T,
that is, ¢(gh, ko) = c(g, hkL'o)c(h, kI'o), for all g,h € T" and kI'g € T'/T.

Definition 3.4. Let o, : 'y — Sym(X,,) be an asymptotic homomorphism. For every n, we define
the induced asymptotic homomorphism Indll:o (0p) : T'— Sym(T'/Ty x X,,) by letting

Indll:o (on)(g9)(hTo, ) = (ghlg, opn(c(g, hlg))x), for every g € ', hil'g € T'/Ty and x € X,.
The fact that o, := IndII:O (0,) is an asymptotic homomorphism follows by calculating that

dH<5n<gh>,5n<g>5n<h>>=F/1m S du(on(c(gh, Ko)). onlc(g, hT0))on(c(h, kTo))
kTo€l'/To

and using the cocycle formula.

Proof of Lemma[3.3. Assume that I'g is not very flexibly P-stable. Then there are an asymptotic
homomorphism o, : Ty — Sym(X,,), a finite set F' C Iy and § > 0 such that for any sets Y, O X,
and homomorphisms 7, : ['o — Sym(Y;,) we have max{dn (0 (9), 7(9)|x,) | g € F'} > 4, for all n.
Let X, := I'/Ty x X, and denote by &, = Indll:o (on) : I = Sym(X,) the induced asymptotic
homomorphism. Consider a sequence of sets Y,, D )an and homomorphisms 7, : I' = Sym(Y,,). If
g € Iy, then 7,(g) leaves eI’y x X, invariant and 7, (g)(ely,z) = (el'g, on(g)x), for every z € X,,.
Thus, the restriction of (/7\»;;““0 to el'g x X, can be identified to o;,. Since 7, is a homomorphism,
it follows that max{du(n(9)|eroxx,> T (9)|eroxx,) | 9 € F'} > 0. Thus,

maX{dH(gn(g)yTn(g)\f(n) lge F} > > 0, for all n,

Y
[F . Fo]
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which implies that ' is not very flexibly P-stable. This proves the main assertion.

For the moreover assertion, assume the setting above and let g € I'\ {e}. Then we have that

SN @ e K| Gulg)i = )] = 3 [{z € Xy | ou(c(g, hl0))z = x}.

hI'o€l'/To,ghlo=hT0

If hTy € T'/Ty is such that ghI'g = hI'g, then we have c(g, hI'g) = s(hI'g)"'gs(hlg) # e. Thus, if
on : Lo — Sym(X,) is a sofic approximation of Iy, then using (3.1)) it follows that 7,, : I' — Sym(X},)
is a sofic approximation of I', and repeating the above argument implies the moreover assertion. H

4. PERMUTATION GROUPS ALMOST COMMUTING WITH THE REGULAR REPRESENTATION

The main goal of this section is to prove the following result. This implies that any group of
permutations of a finite group G that “almost commutes” with the left regular representation of
G must arise from the right regular representation of G. More generally, we get precise structural
information about any permutation group of a set containing G whose restriction to G almost
commutes with the left regular representation of GG. This generalization will be crucial later on in

allowing us to prove that certain product groups are not very flexibly P-stable. almost

Theorem 4.1. Let G be a finite group, S be a set of generators and put k := k(G,S). Denote by
a, B : G — Sym(X) the left and right multiplication actions of G on X := G given by a(g)r = gz
and B(g)x = xg~!, for every g € G and x € X. Let Y be a set containing X and K < Sym(Y) be

ol
» 200

{z € XNk™'X | a(g)kz # ka(g)z}| <e-|X|, forallge S and k € K.

a subgroup. Let € € (0 ) and assume that

Then Ko ={k € K | | XNkX| > %} is a subgroup of K. Moreover, we can find a homomorphism
d : Ko — G, a Kp-invariant set X1 C Y, a B(6(Kp))-invariant set Xo C X, and a bijection
p: X1 — Xo such that

(1) |X\ Xz < 40 - e |X],
(2) {z € X1 | p(z) #a}| < 28 e |X], and
(3) pokix, = B(6(k))) o, for all k € K.
The proof of Theorem [4.1] relies on the following two lemmas.

commutant

Lemma 4.2. [Thl0| Let G be a finite group, S be a set of generators and put k := k(G,S).
Denote by o, : G — Sym(QG) the left and right multiplication actions of G on itself. Then for
every ¢ € Sym(Q), there exists h € G such that £* - du(p, B(h)) < 4-maxgzes du(a(g) o p, poal(g)).

After proving Lemma we realized that it also follows from the proof of [Th10, Theorem 2.2].
Nevertheless, we include a self-contained proof for completeness.

Proof. Let ¢ € Sym(G) and put € = maxyes du(a(g) o ¢, ¢ o a(g)). Consider the unitary repre-
sentation of G on B(¢%(G)) given by g - T = a(g)Ta(g)*, where we view Sym(G) as a subgroup of
U(£?(@)) and endow B(£%(G)) with the normalized Hilbert-Schmidt norm. Lemma implies that

K- max|[a(g) o — @ oa(g)|lus < 2-max [|a(g) o — v o alg)|lus.
geG ges

Recalling that |0 — 7|lus = /2 -du(o, 7), for all 0,7 € Sym(G), the last inequality rewrites as
du(a(g)op, poa(g)) < %, for all ¢ € G. Equivalently, we have |{z € G | ¢(g9z) # gp(z)}| < %G|,

= K2
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for every g € G, and hence
4e
> o € Clelon) #go@)}l =Dz € G| plor) # gol@)}| < - |G
zeG geG

Thus, there exists © € G such that |[{g € G | p(gz) # ge(x)}| < i—g -|G|. Hence, h = p(z)"'z € G
satisfies dy(p, B(h)) < %.

. ||
conjugacy

Lemma 4.3. Let X be a finite set, K a group and oy, 2 : K — Sym(X) homomorphisms. Assume
that dig(aq (k), aa(k)) < e, for all k € K, for some € > 0.

Then there exist an oy (K)-invariant set X1 C X, an ao(K)-invariant set Xo C X, and a bijection
v X1 — Xo such that | X \ X1| =|X \ Xo| < 16e-|X]|, {z1 € X1 | ¢(x1) # 21}| < 16¢ - | X|, and

poai(k)x, = aa(k)owp, foralk e K.
Moreover, if € < % and oy 1is transitive, then oy and ag are conjugate.
Proof. We follow closely the proofs of [Hj03, Lemma 2.5] and [lo06, Theorem 1.3]. We start by
defining V' = ﬁ S per a2(k) "t oai(k) € B(f3(X)). Then as(k) 'Vay(k) =V, for every k € K.
Thus, the matrix coefficients Vg, z, = (Vdz,, 05,) satisfy
NER) Vires = Vauy ()on.cea (kg f0r all 21,9 € X and & € K.

Since |l (k) ™! o as(k) — Id|lus = /2 - du(ai(k), az(k)) < V2, for every k € K, we deduce that
|V —1d|lzs < v2e. Equivalently, we have

(4.2 ‘Xl‘( S Werw 1P+ Y WVaml?) <22

z1€X x1,22€X,21#x2

Let A be the set of 1 € X for which there exists a unique z2 = ¢(z1) € X such that |V, 4,| > 3.
Then equation (4.1)) implies that A is aq (K )-invariant and

eunI.B%I o(ag(k)ry) = ag(k)p(xy), for all 21 € A and k € K.
Moreover, A contains the set Xg of 1 € X such that |V, », — 1| + D r2eX wadter [Varas|? < 1. On
the other hand, (4.2)) implies that ‘)i‘\))(ﬂd < 2e. Thus, | X \ A] < |X \ Xo| < 8 |X]|. Similarly, the
set B of x5 € X for which there is a unique 21 € X with |V}, 4,| >  satisfies | X \ B| < & |X]|.
Define X; = {zx1 € A | ¢(x1) € B} and X2 = ¢(X1). Then the restriction of ¢ to X; is one-to-one.
Since B is ag(K)-invariant, (4.3)) gives that X is ay (K)-invariant and Xs is ag(K)-invariant. Since
o(z1) = x; for all 1 € Xo, we get that XoNB C X;. Thus, | X\ X1| < |X\ Xo|+|X\ B| < 16¢ | X|
and [{z1 € Xy [ p(z1) # 21} < |X1\ (Xo N B)| < [X\ (Xo N B)| < 16¢ | X].
If e < =, then | X \ X1| < 16 € |X| < |X|, and thus X is non-empty. Since X is oy (K)-invariant,
if o is transitive, we get that X; = X and the moreover assertion follows. [ |

Proof of Theorem [4.1} We will first show that K is a subgroup of K. The proof of this assertion
is inspired by the proof of [GTD15, Theorem 2.4]. Note that K is clearly closed under inverses. If
g€ Sandk € K, then

a(g)(XNEX)\ (X NkX)=a(g){zre X NkX | a(g)r ¢ X NEkX})
=a(Qk({z e XNk 'X | a(g)kz ¢ X NEkX})
C a(gk({z € X Nk™'X | alg)kz # ka(g)z}),
and thus |a(¢)(X NkX)\ (X NkX)| <e-|X].
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Therefore, if k € Ky, then for every g € S we have |a(g)(XNEX)A(XNEX)| < 26| X| < 4e-| XNkX|.
By applying Lemma 2.4 to X N kX C X we deduce that

K2 X NEX]- | X\ EX| gmagqa(g)(XﬂkX)A(kaX)y]X\ <de- | X NkX|-|X]|.
ge

Hence, |X \ kX| < 25 - |X| and thus
VRS XARX| < ° L1X], for every k € K.

If k, k' € Ky, then | XAKEX]| < |XAI<:’X| + |k’XAk:’I<:X| = | XAKX|+ | XAEX| < 1}% - | X, thus
IXNEEX] > (1— %) | X| > 1X|/2 since k < 2 and hence € < % < 'f—g. This shows that k&' € Ky
and therefore K is a subgroup of K.

Secondly, we will prove the existence of a map ¢ : Ky — G such that
i 64
) o € X | ka # B6(k)z}| < ~—= - |X], for every k € K.
To see this, let k € Ko. Let ke Sym(X) such that kx = kz, for every x € X Nk~ 1X. If g € S,
then since ka(g)r = ka(g)z, for all z € X Na(g) 'k~ ' X, by using the hypothesis, we get that
{z € X | a(g)kx # ka(g)z}| <e-|X|+ X\ (k7' X Na(g) k' X)| <e- [X|+2- X\ k' X].
In combination with (4.4)), this gives that

8
{z e X | alg)kz # ka(g)z}] < (1 + p)a -1 X|, for every g € S.

Now, Lemmagives 6(k) € G such that |{z € X | kz # B(6(k))z}| < KQ( 5)e | X|. Together
with we get that
{z € X | ke # B(6(k)2}| < [{z € X | ke # BS(k)z} + X \ k' X]|
4 8 4
< —(1+—)5-|X|+?5-|X|.

Since £ < 2, we have that 5 < 32 and ( . ) follows.

Thirdly, we claim that ¢ : Ko — G isa homomorphlsm Denote Xy, = {x € X | kx = B(d(k))z}
for k € K. Given k', k € Ky, we have that 3(§(k'k))x = K'kx = K'8(6(k))x = B(6(K"))B(6(k))x, for
every T € Xpp N Xk N B(8(k)) "' X;s. Thus, by using (4.5) we get that
192¢
[{z € X | BOWKF))x # BOK))BER)2}H < — - |X].

Since € < %, we get that there exists € X such that S(§(k'k))z = B(6(K"))B(d(k))z. Equivalently,
26(K'k)~ = 28(k)~16(K') !, and thus §(k'k) = 6(k")S(k), which proves that ¢ is a homomorphism.
Finally, we will derive the rest of the conclusion by applying Lemma First, note that equation
(4.4) together with Lemma [2.1| provides a Kp-invariant set Xo C Y such that [ XoAX| < % -1 X
We put Z = XyU X and define homomorphisms aq, ag : Ko — Sym(Z) by letting for every k € K

a1 (k)1 x, = K1xo 1 (k)20 x, = Id2\ x, and

az(k)x = B(6(k))|x, az(k)|z\x = Idz\x
Since {x € Z | a1(k)x # as(k)z} C (XoAX)U{z € XoNX | kx # B(d(k))z}, (4.5) implies that

16 4 128
{z € Z | a1(k)z # as(k)z}| < i X+ — - |X| < J X, for every k € K.
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By applying Lemma we find an aq (Ky)-invariant set Z; C Z, an ag(Ky)-invariant set Zo C Z,
and a bijection ¢ : Z; — Z» such that

o !Z\Zl\:\Z\Zﬂg%-\X\,

o {z€Z]¢(z) #2}| < 15#% - |X| and

o poai(k)z = as(k) oy, for all k € K.
Then Z1N Xy is oy (Kp)-invariant and ZeNX is g (Kp)-invariant. Thus, X1 = (Z1NX0)Ne 1(ZoNX)
is a1 (Kp)-invariant and X9 = ¢(X1) is ag(Kp)-invariant. Since X; C Xy and X C X, we get that
Xy is Ko-invariant, Xy is 3(6(Ko))-invariant, and ¢ o kx, = B(6(k)) o ¢|x,, for all k € K. This
proves condition (3) for ¢x,.

In order to complete the proof, it remains to establish conditions (1) and (2). First, we note that

2048¢
{z € Xi|pl) Za} < {2 € Z]p(2) # 2} = —
Second, since X9 = ¢(Z1NX0)N(Z2NX), we have | X\ Xs| < |Z\ X2| < |Z\p(Z1NX0)|+|Z\(Z2nX)].
Since |Z \ p(Z1 N Xo)| = |Z \ (Z1 N Xp)|, we altogether derive that
X\ Xo| <|Z\ Z1] + ]2\ Xo| + ]2\ 22| + 2\ X]
97\ 2| + | XoAX]
< 32 -128¢ 16¢
<= W+

X

X+ | X.

Since % < %, we have that 32,;# + % < %, which finishes the proof. |

5. A RIGIDITY RESULT FOR ASYMPTOTIC HOMOMORPHISMS

In this section we prove the following consequence of Theorem For an informal description of
this result, see the comments on the proof of Theorem [A]in the end of the intrOduCtiogcnjugati on

Theorem 5.1. Let T' and A be finitely generated groups. Assume that T' has property (7) with
respect to a sequence of finite index normal subgroups {I'n}22,. For every n, denote X, =T'/T',
let p, : I' = X, be the quotient homomorphism and q, : A — X, be a homomorphism.

Assume that oy, 2 (I'xZ) x A — Sym(X,,), n € N, is an asymptotic homomorphism such that

(1) For every n € N, we have o,(g, h)x = pn(g9)xqn(h)~!, forallg € T,h € A,z € X,,.
(2) For every n € N, there exist a set Yy, which contains X, and a homomorphism
Tn : (I'xZ) x A — Sym(Y,,) such that li_)m du(on(g); Tn(9)|x,) =0, for all g € (I'* Z) x A.

Then le <max{dH(an(t, e)ooyn(e,h),on(e,h)oay(t,e)) | he A}) =0, for every t € Z.
Moreover, there exists a homomorphism o), : (I' x Z) x A — Sym(X,,) such that
(a) U§l|rxA = On|rxa, for everyn € N, and

(b) li_}In du(on(9),0,,(g9)) =0, for every g € (I'xZ) x A.

Proof. Let S and T be finite sets of generators for I" and A, respectively. For n € N, we denote
by B, : I'/T,, — Sym(X,) the homomorphism given by 3,(g9)z = zg~!, for every g € I'/T,, and
x € X,,. For ease of notation, we will write g and h instead of (g,e) and (e, h), for g € I' * Z and
heA.

In the first part of the proof we will use Theorem to prove the following:
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Claim. For every n large enough, there exist a 7,,(A)-invariant set X C Y, a subgroup L, < X,,
a Bn(Ly)-invariant set X! C X,, and a bijection ¢, : X, — X such that

| Xn| _ 1Xal _
(1) i, Tr = g, faf =1
() lim i o € X, | pula) # o} = 0, and
(3) ¥n © Tn(A)|X;l o 90771 = /Bn(Ln)|X;L’
Proof of the claim. For n > 1, we put &, = 2 - max{du(0on(9), Tn(9)|x,) | g € SUT} and

| Xl
RE

K,={ken,(A)||X,NkX,| >

If k € 7,(A) and g € S, then k, 7,(g) € Sym(Y},) commute and thus

{z € X,Nk™1 X, | onl(g)kx # kon(g)x} C {z € XoNk X, | on(9)kx # Tn(g)kz or o,(g9)x # Tn(g)z}.
Therefore, for all k € 7,,(A) and g € S we have

(5‘5' {z € Xn N kian | on(g)kz # kon(g)z}| < 2-du(on(g), Tn(9)|Xn) | Xn| <éen - | Xnl
Moreover, if g € T, then X,,\ 7n(9) ' X, = {2 € X, | Tn(9)z € X} C {x € X, | Tn(9)z # 0n(9)7},
and therefore

(5.2-5I 1 X0 N 70 (9) Xn] = | Xn] — | X0 \ 70(9) ' X0n| > (1 —&,) - | Xy, for every g € T.

Since I" has property (7) with respect to {I';,} we have k := inf,, K(X,,, p,(S)) > 0. Since ILm en =0,

we have g, < min{%, %} for every n large enough. By (b.1), we can apply Theorem to deduce
that K, is a subgroup of 7,,(A) and there exist a K,-invariant set X/, C Y,,, a subgroup L,, < X,
a Bn(Ly)-invariant subset X!/ C X,, and a bijection ¢, : X, — X,/ such that
o [X] = IX7] > (1— ) - [ X,
o {z € X, | pulz) # )| < 255Xy,
® pno Kyx; 0 pnt = ﬁn(Ln)|X;{'
Since ¢, < 3, (5.2) guarantees that 7,(T") C K,,. Since K,, is a subgroup of 7,,(A) and T' generates
A, we derive that K,, = 7,,(A). Since lim &, = 0, the claim follows. O
n—oo
Secondly, we claim that
la
¢ al?&%ﬂ] on(A) C Bn(Ly,), for every n large enough.
To see this, let h € T. Then o,(h) = Bn(gn(h)) and thus li_>m du(Bn(gn(h)), 7n(h)|x,) = 0. On
n o0

the other hand, conditions (1)-(3) from above imply that we can find a sequence h,, € L, such
that lim du(7.(h)|x,,Bn(hn)) = 0. Thus, we derive that lim du(B8n(gn(h)), Bn(hs)) = 0. Since
n—o0 n—0o0

du(B(k), B(K')) = Ok ks, for all k, k" € X,,, we get that ¢,(h) = hy, € Ly, for large enough n. Since
this holds for every h € T', and T is finite and generates A, the claim made in (5.3]) follows.

Thirdly, we claim that if g € I" % Z, then 0, (g) asymptotically commutes with 3,,(L,):
laimdod
iy i (max{du(on(9) © Bu(h), Ba(h) © 7(9)) | h € Ln}) =0

To see this, let I, € Ly, for every n. Condition (3) implies that 8,(ln)x» = ¥n o Tn(kn)x: © ol
for some k,, € A. By combining (1) and (2) it follows that hm du(Bn(ln), Tn(kn)|x,) = 0. On the
other hand, we have li_)m du(on(g), Tn(9)|x,) = 0. Since Tn(g) and 7, (k,) commute, we get that

li_)m du(on(g) o Bulln), Bn(ln) o on(g)) = 0. As this holds for any sequence l,, € Ly, (5.4]) follows.
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It is now clear that the combination of ((5.3) and (/5.4]) gives that
Clalmzbg.%ljl li_}rn (max{dH(Jn(g) oon(h),on(h)oon(g)) | h e A}) =0, for every g € " x Z.

Taking g € Z, this proves the main assertion. If g € Z is a generator, then (5.5)) together with

Lemma below implies the existence of o],(g) € Sym(X,) which commutes with o,(A) and

satisfies that lim dg(o),(g),0n(g)) = 0. This implies the moreover assertion. [
n—oo

In order to complete the proof of Theorem it remains to prove the following lemma, .. .,

Lemma 5.2. Let G be a finite group, X a finite set, o : G — Sym(X) a homomorphism and
¢ € Sym(X). Then there exists 1 € Sym(X) which commutes with «(G) such that

di(p,¥) < 32 - maxdg(a(g) o ¢, ¢ o a(g)).
geG

Proof. Put ¢ = max,ec du(a(g) o ¢, 0 a(g)). Then du(p~! o a(g) o ¢, a(g)) < e, for any g € G.
By applying Lemma to the homomorphisms ¢! o a0 ¢, : G — Sym(X) we obtain an o(G)-
invariant set X; C X, an go_la(G)cp—invariant set Xo C X and a bijection o : X; — Xs such that
| X\ X1| < 16e- | X[, {z € X1 | o(x) # x}| < 16e-|X| and

o loalg)opoo = ogoa(g)x,, forall g € G.
Thus, X3 = ¢(X2) is a(G)-invariant and the bijection 7 = 9 0o 0 : X; — X3 satisfies
Cong'lg;.%Sl a(g) ot =Toalg)x,, for every g € G.

Next, we say that two actions 5 : G — Sym(Y) and v : G — Sym(Z) are conjugate if there
exists a bijection p : Y — Z such that po 3(g) = v(g) o p, for every g € G. Let Sub.(G) be
the set of equivalence classes [H| of subgroups H of G modulo inner conjugacy. For a subgroup
H < G, denote by ((8)([H]) the number of disjoint 3(G)-orbits 5(G)y, with y € Y, such that the
restriction of 8 to 5(G)y is conjugate to the action G ~ G/H. Then the conjugacy class of an
action f: G — Sym(Y) is completely determined by the map {(3) : Sub.(G) — N.

Finally, implies that the restrictions of o to X1 and X3 are conjugate, hence ((a|x,) = ((|x,)-
This implies that ((a|x\ x,) = ((a|x\ x,) and so restrictions of o to X'\ X7 and X'\ X3 are conjugate.
In combination with we derive that there exists ¢ € Sym(X) which commutes with o(G) (i.e.,
a self-conjugacy of a) such that v x, = 7. Hence,

{z e X [(x) # o)} < [X\ Xa[+ [{z € Xy [o(z) # 2}| < 32¢ - [X]

and the conclusion follows. [ ]

6. CONSTRUCTION OF ASYMPTOTIC HOMOMORPHISMS

This section is devoted to the construction of asymptotic homomorphisms. In the next two sections,
we will combine this construction with Theorem [(.1] to deduce our main results. tech?

Lemma 6.1. Let I' and A be finitely generated groups. Let {I',}°°; be a sequence of finite index
normal subgroups of T', put X,, = I'/T’), and denote by p, : I' — X,, the quotient homomorphism.
Assume that there exists a sequence of homomorphisms q, : A — X,, such that A does not have
property (1) with respect to the sequence {ker(q,)}22 . Let t = 1 be a generator of Z.

n=1
Then there exists an asymptotic homomorphism o, : (I' * Z) x A — Sym(X,,) such that

(1) Un(gvh>m = pn(g)xQnUL)il; forallge T he Nz e X, and
(2) max{du(on(t,e) oon(e, h),on(e,h)oon(t,e)) | he A} > ﬁ, for infinitely many n > 1.
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Proof. The first part of the proof is devoted to the construction of o,,. Let oy, : I' x A — Sym(X,,)

be given by (1). In order to extend o,, to an asymptotic homomorphism of (I'«xZ) x A we will define

on(t,e) € Sym(X,,) such that lim dy(o,(t,e) o o,(e, h),on(e, h) o oy(t,e)) =0, for any h € A.
n—oo

To this end, let T C A be a finite generating set. Since A does not have property (7) with respect
to {ker(gn)}5>; we have that inf, k(¢n(A), g (T)) = 0. Thus, after passing to a subsequence, we
may assume that li_)m K(qn(A), g (T)) = 0.

n oo

Lemma then implies that for every n large enough there exists a set C,, C ¢,,(A) such that

61 L0 1 Cam()AG

7= aa(A)] =6 T ()]

= 0, for every h € A.

Let Z, C X,, be a set of representatives for the left cosets of ¢,(A). We define B,, = Z,, - C}, C X,
and claim that B,, satisfies the following:

1 B 1
(a) + <25 <5 b
lim

(b) [Bran(MEBul — ) for every h € A, and

n—oo ‘X”‘ [ed
Byl |Y

(c) 7|qn%A)| Zthn(A) |B,hNY| = 1Bal Y] |X|n‘| |, for every Y C X,,.

Indeed, (a) and (b) follow from (6.1). To verify (c), note that if z € X,,, then there is a unique
2z € Zy such that 27!z € g,(A) and thus we have that

|27 By N gn(A)| = [{h € gn(A) | h € 271 Z, - Cu}| = [{h € gu(A) | h € (2712)Cr}| = |Chnl.

Therefore, for every subset Y C X,,, we deduce that

Z [BohNY| = Z 1,n(z)1ly(z) = Z |xian Ngn(A)| = |Cnl - Y]
hegn(A) hegn(A),zeXy z€eY
Since |B,,| = |X7x)| |Cy|, condition (c) is also satisfied.
Let n large enough. Since > v [Bn \ g7 1By| = |By| - (I Xn| — |Bn]) we can find g, € X, such
that A, = B, \ g, !B, satisfies |‘§2|| > % . ||§Z|| > 2 % = 2. Moreover, A, N g, A, = 0 and
since ApAAngn(h) C (BaABngn(h)) U g, (BnABrgn(h)), by @ we get that
Angn(h) DA,
(é‘*z‘}] 11151010 |q|§2|| =0, for every h € A.

We are now ready to define o, (t, e) € Sym(X,,) by letting

gnx, if x € Ay,
on(t,e)xr = < g ta, if v € g, Ay,
x, otherwise.

Then Lemma [2.2] implies that for every h € A, du(oy(t, €) o on(e, h), on(e, h) 0 oy (1, €)) is equal to
2|An\AnQn(h)|+|(AnUgnAn)\(AnUgnAn)Qn(h)| lf e
Com?lél.%il { gn #

[Xon]
2|(AnU9nAn)\(AnU9nAn)qn(h)|

Since (An U gndAn) \ (An U gnAn)gn(h) C (An \ Angn(h)) U gn(An \ Angn(h)), (6.2) implies that for

all h € A, hm du(on(t,e) o on(e, h),on(e, h) o on(t,e)) = 0. This ends the first part of the proof.

,if g2 =e.

n
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In the second part of the proof we will prove condition (2) from the conclusion. Let n large enough.
By using (6.2)), (6.3]), that ;;ﬂ > % and that A, C B,, for all h € A, we get that

di(on(t,e) o on(e, h),on(e, h) o opn(t,e))

- X
(64) 2 1Al (A0 U gaAn) 0 (Anga(h) U g Anga(h))]

=X X

= i . |(Bn U gnBn) N (Brgn(h) U gnBrgn(h))|

=12 X,0]

Since |(Bn, U g, By) N (Bph U gnBph)| < 2|Byh N By| + |Bph N gnBy| + |Buh 0 g, 1 By|, by using
condition we derive that

1 B,|?
> 1(BaUgnBn) N (BuhUgnBuh)| < 4- 1Bul”
|gn(A))] h | Xl
EQ’VL(A)
2
Thus, there exists h, € A such that [(B, U g,Bpn) N (Bngn(hn) U gnBrgn(hn))| < 4 - |€gj‘ . By
combining this with (6.4) and the inequality #g:“ < % from |(a)], it follows that h,, satisfies
5 Bu? 5 4 1

(6.5) du(on(t, e) o onle, hn), on(e, hn) o on(t, €)) > 19 |X:"2 = 42 36 126
This proves condition (2) and finishes the proof. [

7. PROOFs OF THEOREM [A] COROLLARY [B] AND COROLLARY [4.2]

The proof of Theorem [A] relies on the following result that combines Theorem [5.1] and LemmalG. 3}

Theorem 7.1. LetT' and A be finitely generated groups. Assume that ' has property (1) with respect
to a sequence {I'y,}°2 of finite index normal subgroups. Suppose that there exist homomorphisms
qn : A = T'/Ty, such that A does not have property (1) with respect to the sequence {ker(gn)}>> .

Then X x A is not very flexibly P-stable, for any finitely generated group 3 which factors onto I'xZ.

Proof. Assume by contradiction that X x A is very flexibly P-stable. Let 7 : ¥ — I' * Z be an onto
homomorphism, and denote still by 7 the product homomorphism 7 xIdp : ¥ x A — (I'«Z) x A. Let
t = £1 be a generator of Z. Denote X,, = I'/T",, and let p,, : I' = X, be the quotient homomorphism.
By Lemma there exists an asymptotic homomorphism o, : (I' ¥ Z) x A — Sym(X,,) such that

(1) on(g,h)z = pp(g)zgn(h)~1, forallg € B, h € A,z € X,,.

(2) max{du(on(t,e) o an(e,h),on(e,h)ooy(t,e)) | h € A} > k=, for infinitely many n > 1.

Then o, o7 : ¥ x A — Sym(X,,) is an asymptotic homomorphism. Thus, since ¥ x A is assumed

very flexibly P-stable, for every n € N, we can find a set Y,, D X,, together with a homomorphism
Ty 0 2 X A — Sym(Y,) such that lim dy(o,(7(g)), 7(9)x,) = 0, for every g € X x A.
n—oo

Since I' is finitely generated and  is onto, we can find a finitely generated subgroup A < ¥ and
t € ¥ such that 7(A) =T and 7(t) = t. Let p: A*Z — ¥ the homomorphism given by pja = Ida
and p(t) = t. Denote still by p the product homomorphism p x Ids : (A *Z) x A — ¥ x A. Then
ap :=opomop: (AxZ)x A — Sym(X,,) is an asymptotic homomorphism which satisfies that
Tim_ dis(an(9). 7 (m(p(g))) x,) = 0. for every g € (A+2Z) x A.
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Now, note that (1) gives that a, (g, h)z = (prom)(g9)xgn(h) ™!, forallg € A,h € Aand 2 € X,,. Since

I' has property (7) with respect to {I',}22;, A has property (7) with respect to {ker(py, o m)}° ;.

Since p, o : A — X, is an onto homomorphism and 7, omop: (A*Z) x A — Sym(Y,) is a

homomorphism, for all n € N, applying Theorem to ap : (AxZ) x A — Sym(X,,) gives that
lim (max{du(an(t,e) o anle, h),an(e, h) o ay(t,e)) | h € A}) = 0.

n—o0

However, since a,(t,e) = on(t,e) and oy (e, h) = o, (e, h), for every h € A, this contradicts (2). B

Proof of Theorem[A] Let ¥ and A be finitely generated groups such that ¥ admits a non-abelian
free quotient and A does not have property (7). Our goal is to prove that ¥ x A is not very flexibly
P-stable. By Lemma [3.3] it suffices to find a finite index subgroup ¥y < ¥ such that Xy x A is not
very flexibly P-stable.

Let us first prove the conclusion in the case when A admits an infinite cyclic quotient, since this
requires less technology than the general case. Let p : A — Z be an onto homomorphism. Since
>} factors onto Fo, it has a finite index subgroup Yy which factors onto F3. Towards showing
that 3¢ x A is not very flexibly P-stable, recall that I' = F3 can be realized as a finite index

subgroup of SLy(Z), by letting for instance I' = { <(1) ?) , (; [1)> ). Since SLy(Z) has the Selberg

property [LW93] (i.e., property (7) with respect to its congruence subgroups), I" has property (7)
with respect to {I',}2°,, where I';, = I' N (ker(SLa(Z) — SLa(%)). Let p, : I — I'/T), be the

quotient homomorphism. Let 1 : Z — T' the homomorphism given by n(1) = <1 ?) and denote

Gn = pnonop: A — T'/T,. Since g, factors through p : A — Z, for every n, and li_)m lgn(A)| = +o0,
n—,oo

it follows that A does not have property (7) with respect to {ker(g,)}>,. Since Xy factors onto
F3 =T % Z, Theorem [7.1] implies that 3y x A is not very flexibly P-stable.

In order to establish the general case we will use a theorem of Kassabov [Ka05, Theorem 2| which
provides an integer L > 2 and onto homomorphisms 7, : F;, — Sym(n), for every n € N, such
that inf,, K(Sym(n), 7,(S)) > 0, where S C [y, is a free generating set. In other words, I' = F, has
property (7) with respect to {ker(m,)}% . Since ¥ factors onto Fo, it has a finite index subgroup
3o which factors onto Fr1. We will show that Y9 x A is not very flexibly P-stable.

To this end, note that since A does not have property (7), there exists a sequence {A,,}>°; of finite

index normal subgroups such that lim x(A/A,,0,(T)) =0, where T C A is a finite generating set
n—oo

and 0, : A — A/A,, denotes the quotient homomorphism. For every n € N, put G,, = Sym(A/A,,)
and let i, : A/A, — G, be the embedding given by left multiplication action of A/A, on itself.
We denote ¢, = i, 06, : A = G,,. Finally, we put k, = |A/A,| and let p, : I' — G, be the onto
homomorphism obtained by composing 7, : I' = Sym(ny) with an isomorphism Sym(k,) = Gy,
By construction, I' has property (7) with respect to {ker(p,)}n=1, while A does not have property
(1) with respect to {ker(g,)}5>; (as ker(py) = ker(my,) and ker(g,) = A, for every n € N). Since
Yo factors onto Fr1q = I' % Z, Theorem implies that 3y x A is not very flexibly stable. |

Proof of Corollary Since Z? and F,, do not have property (7) for any integers d,n > 1,
parts (1) and (2) follow from Theorem [A|l Let m,n be integers such that |m| = |n| > 2. Then the
Baumslag-Solitar group BS(m,n) = (a,t[ta™t~! = a™) has a finite index subgroup isomorphic to
Fi x Z for some k > 2 (see., e.g., [Le05, Proposition 2.6]). Since Fy, x Z is not very flexbily P-stable
by part (1), the same is true for BS(m,n) by Lemma This proves part (3). To prove part (4),
let n > 3 be an integer. Recall that the pure braid group PB,, has infinite center, Z(PB,,) & Z, and
admits a non-trivial splitting PB,, = PB,,/Z(PB,)) x Z(PB,,) (see [FM11, Chapter 9]). Since PB,,
factors onto PB,,_1, for any m > 3, and PB3 = Fy x Z, we get that PB,, factors onto Fs. Thus,
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PB,,/Z(PB,) factors onto Fa. Applying Theorem [A|implies that PB,, is not very flexibly P-stable.
Since PB,, is a finite index subgroup of B,,, the same holds for B,, by Lemma |

Proof of Corollary By part (1) of Corollary Fo X Z is not P-stable. Let a1, as be generators
of Fs and b be a generator of Z. As [Fy X Z is not P-stable, we can find an asymptotic homomorphism
opn : Fo x Z — Sym(X,,) and ¢ > 0 such that for any homomorphism 7, : Fo X Z — Sym(X,,)

nﬁlﬂ max{du(on(9), 7(9)) | g € {a1,a2,b}} > 6, for every n.

Then o = (0y,) : Fo x Z — [],,Sym(X,,) is a homomorphism, hence ¥ = o(F2) and A = o(Z)
are commuting subgroups of [],, Sym(X,,). Assume by contradiction that there exist commuting
subgroups ¥, A, of Sym(X,,) such that ¥ C [[,, £, and A C [];, As,. Then for every n we can find
pn(ar), pn(az) € 3, and p,(b) € A, such that Ai_r)rlljdH(an(g),pn(g)) = 0, for every g € {ay,as,b}.

Since ¥, and A, commute, there exists a homomorphism 7, : Fy x Z — Sym(X,) such that
Tn(9) = pn(g), for every g € {ai1,as,b}. This contradicts (7.1]) and finishes the proof. [ |

8. PROOF OF THEOREM

By the moreover assertion of Lemma [3.3] it suffices to prove that ¥ x A is not weakly very flexibly
P-stable, where ¥ = F,,, and A = Z% or A = F},, for m, k > 2 and d > 1. Since any subgroup of index
2 of IF,, is isomorphic to Fs,,_1, by Lemma we may assume that m > 3. Let I' = F,,,_1, so that
Y. =TI'«Z. We view ¥ as a finite index subgroup of SLy(Z), and denote by 7, : SLa(Z) — SLa2(Z/rZ)
the quotient homomorphism, for prime 7.

By Corollary Bl ¥ x A is not very flexibly P-stable. However, the asymptotic homomorphism
constructed in the proof of Corollary [Blwhich witnesses that Y. x A is not very flexibly P-stable is not
a sofic approximation of Y2 x A. Therefore, we cannot conclude that 3 x A is not weakly very flexibly
P-stable. Instead, we first use a variation of our construction to build an asymptotic homomorphism
on : X X A — Sym(X,,) whose restriction to A is a sofic approximation of A. We then exploit the
fact that if 7, : ¥ — Sym(Y},,) is a sofic approximation of ¥, then 7, : ¥ x A — Sym(Y,, x X,,)
given by o,(g,h)(z,y) = (mn(9)x,0n(g,h)y), for every g € X, h € Az € Y,y € X,, is a sofic
approximation of ¥ x A. In the rest of the proof, we implement this idea by treating two cases:

Case 1. A = Z¢, for some d > 1.

Fixn € Nand let 7,0, 75,1, -., 7,4 be d+1 distinct primes greater than n. Define X,, = Hle SLo(Z/rn i Z)
and homomorphisms p, : I' = X, ¢, : A — X, by letting for g € I" and (hy, ..., hq) € A

o(9) = (a9 ) gl est) = (5 13 ) o (5 14)):

Since I is a non-amenable subgroup of SLa(Z), we get that p, : I' — X, is onto for n large enough.
Since A is abelian it does not have property (7) with respect to {ker(g,)}5> ;. Thus, Lemma
provides an asymptotic homomorphism o, : ¥ x A = (I'* Z) x A — Sym(X,,) such that

unos

(1) on(g,h)z = pp(g)zgn(h)~1, forallg € T,h € A,z € X,,. doss
(2) max{dp(on(t,e) con(e,h),on(e,h)ooy(t,e)) | he A} > %, for infinitely many n > 1,
where t = +1 is a generator of Z.
Let X, = SLa(Z/rnoZ) x X,, and define homomorphisms p,, : I' — X,, and Gn : A — X, by letting

8] Bu(9) = (T, 0(9), Pu(9)) and Gu(h) = (e, gn(h)), for every g € T,h € A.
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Further, define o, : ¥ x A — Sym( n) by letting
EY 5ulg. 1)@, y) = (T, (9)2, on(g, h)y), for every g € S, h € A,z € SLy(Z/rnoZ),y € Xp.

Then (0,,)nen is an asymptotic homomorphism of ¥ x A and conditions and above rewrite
as: ) X
(i) a'Jn(ga h)l' = ﬁn(g)x%(h)_l, for all ge th € A r € Xp. ii

(ii) max{du(cn(t,e) oap(e, h),on(e, h)oay(t,e)) | h e A} > for infinitely many n > 1.

126’

Since I is a non-amenable subgroup of SLy(Z), we get that p,, : I' — Xn is onto for n large enough.
Moreover, a theorem of Bourgain and Varju [BV10, Theorem 1] implies that I" has property (1)
with respect to {ker(p,)}°2;. By combining this fact with conditions and |(i1) - )| above, we can
apply Theorem |5.1} .vto conclude that there is no sequence of homomorphisms 7,, : X X A — Sym( n)s
for any sets Y,, D X,,, such that nh%rglo du(on(g), (g )|Xn> =0, for every g € ¥ x A.

Thus, in order to deduce that ¥ x A is not weakly very flexibly P-stable, it suffices to argue that
(0n)nen is a sofic approximation of ¥ x A. To see this, let (g,h) € (X x A) \ {(e,e)}. If g # e,
then as hm Tno = +00, we get that m.  (g9) # e, for n large enough. By using the definition
of o an, we get that du(cn(g,h),Idg ) =1, for n large enough. If g = e, then h # e and since
hm Tni = +o0, forall 1 <i < d, we get that g, (h) # e, for n large enough. By using the definition
n—oo

(8.2) of 7y, we get that du(on(e,h),Idg ) = 1, for n large enough. Since 7, (e,e) = Idg , for all
n € N, this proves that (d,)n,ecn is a sofic approximation of ¥ x A, finishing the proof of Case 1.
Case 2. A = Fy, for some k > 2.

View A as a subgroup of SLy(Z) and let p : A — SL2(Z) be a homomorphism such that p(A) = Z.
For instance, if ay, ..., a, € A are generators, we can let p(a;) = <(1) 1) and p(az) = ... = p(ag) = e.

Fix n € N and let ry, 0, 7,1, 7n,2 be 3 distinct primes greater than n. Define X,, = H?Zl SLo(Z /7y iZ)
and homomorphisms p, : I' = X,,qn : A — X, by letting for g € " and h € A

pnlg) = (77,1 (9), T, 5 (9)) and gn(h) = (7, , (p(h)), 77, , (R)).

Since I is a non-amenable subgroup of SLy(Z), we get that p, : I' — X, is onto for n large enough.
Since the image of p is infinite abelian and lim rn1 = 400, A does not have property (7) with
respect to {ker(m,, , 0p)}o2 . Since ker(gy) C ker(mn Lop), for every n € N, it follows that A does
not have property (7) Wlth respect {ker(gn)}> ;. Applylng Lemma provides an asymptotic
homomorphism o, : ¥ x A = (I'* Z) x A — Sym(X,,) which satisfies conditions and from
above.

Next, let X, = SLo(Z/rnoZ) x Xy, and define the homomorphisms Dn: T — )~(n, Gn : A — X,, and

the asymptotic homomorphism o, : ¥ x A — Sym( n) by the same formulae as in the proof of

Case 1. Then (0, )nen satisfies conditions |(1)| and |(i1)| from above.

Moreover, if h € A\ {e}, then since lim r, 2 = +00, we get that =, ,(h) # e, for n large enough.
n—oo ’

This implies that dg (o, (e, h),Id )?n) =1, for n large enough. By repeating verbatim the rest of the

argument from the proof of Case 1, it follows that () is a sofic approximation of ¥ x A and that
3 x A is not weakly very flexibly P-stable. This finishes the proof of Case 2.

Finally, the proof of Corollary B| shows that any group from parts (1)-(3) in its statement has a
finite index subgroups which is isomorphic to either F,, x 7% or to F,, x F}., for some m, k > 2 and
d > 1. Thus, any group from Corollary B} parts (1)-(3), is not weakly very flexibly P-stable. W
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