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ABSTRACT. We develop a new method, based on non-vanishing of second cohomology groups, for
proving the failure of lifting properties for full C*-algebras of countable groups with (relative)
property (T). We derive that the full C*-algebras of the groups Z* x SLa(Z) and SL,(Z), for n > 3,
do not have the local lifting property (LLP). We also prove that the full C*-algebras of a large
class of groups I' with property (T), including those such that H*(I',R) # 0 or H*(I', ZT') # 0, do
not have the lifting property (LP). More generally, we show that the same holds if I' admits a
probability measure preserving action with non-vanishing second R-valued cohomology. Finally, we
prove that the full C*-algebra of any non-finitely presented property (T) group fails the LP.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The local lifting property (LLP) was introduced by Kirchberg in his landmark paper [Ki93], as a
weaker, local version of the (global) lifting property (LP). For a unital C*-algebra A, the LP requires
that any unital completely positive (u.c.p.) map from A into a quotient C*-algebra admits a u.c.p.
lift. We refer the reader to Section for the precise definitions. Over the years, both the LP and
the LLP have proven to be very useful properties, for instance in connecting the Connes-Kirchberg
problem with Tsirelson’s problem (see, e.g., [Pi20, Chapter 16]).

The Choi-Effros lifting theorem [CE76] shows that nuclear C*-algebras, and hence C*-algebras of
amenable groups, have the LP. In [Ki94b] Kirchberg showed that full C*-algebras of countable free
groups have the LP. Furthermore, in [Ki93|, Kirchberg proved tensorial characterizations of the LLP
and of Lance’s weak expectation property (WEP), establishing a tensorial duality between the LLP
and the WEP. This allowed him to prove equivalence of several C*-algebraic statements, including
whether LLP = WEP, and Connes’ embedding problem. In the same paper, it is also proven that
the LLP is preserved under various operations, such as extensions and taking tensor products with
nuclear C*-algebras. The LLP was then shown to be preserved under full free products in [Pi96].

Besides C*-algebras obtained through the aforementioned constructions, only a few other examples
of C*-algebras with the LLP are known. Only recently, answering a question dating back to [Ki93],
Pisier constructed the first example of a non-nuclear C*-algebra with both LLP and WEP in [Pil9].
Most recently, two more concrete families of C*-algebras with the LLP were constructed in |Co20].

On the other hand, a fundamental result of Junge and Pisier in [JP95|] shows that B(¢?) does not have
the LLP. Aside from this, not many examples of C*-algebras that fail the LLP or the LP are known.
(Note that the difference between the two properties is in fact quite subtle: it is open whether there
exist separable C*-algebras with the LLP but not the LP, see [Oz04b|.) In particular, little is known
about which full group C*-algebras do not have these properties. In [Oz04a], Ozawa showed the
existence of full group C*-algebras without the LP. A few years later, Thom [Th10] constructed two
Connes-embeddable non-residually finite property (T) groups whose full C*-algebras fail the LLP.
The latter result gives the first, and so far only, examples of countable groups whose full C*-algebras
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do not have the LLP. Additionally, it provides the only concrete examples of full group C*-algebras
without the LP. In fact, the combination of the Connes embedding property, property (T) and
non-residual finiteness was up to date the only known obstruction to the (L)LP for full group C*-
algebras. This is a surprising situation because most full group C*-algebras are expected to not
have the LLP, as already mentioned by Ozawa in |Oz04b]. More recently, during the workshop
“Amenability, coarse embeddability and fixed point properties” at MSRI in December 2016, Pisier
explicitly stated the problem of finding more full group C*-algebras either with or without the LLP.

We make progress on this problem here by developing a new method to refute the (L)LP for full
group C*-algebras. This new approach is based on the establishment of certain cohomological
obstructions to the LP and the LLP for groups with (relative) property (T). In particular, it allows
us to provide many new, natural examples of groups whose full C*-algebras fail the LLP and large
additional classes of groups whose full C*-algebras fail the LP. The following is our first main result.

Theorem A. Let T' be a countable group and A be a subgroup such that the pair (I';A) has the
relative property (T). Assume that there is a sequence of 2-cocycles ¢, € Z*(T', T), n € N, such that

(1) the restriction of ¢, to A is not a 2-coboundary, for everyn € N,
(2) lim cp(g,h) =1, for every g,h € T, and
n—oo

(3) for everyn € N, there is a projective representation m, : I' — U(H,,) on a finite dimensional
Hilbert space H,, such that m,(g)m,(h) = cn(g, h)mn(gh), for every g,h € T.

Then C*(T") does not have the LLP.

Given countable groups A < I, the pair (I', A) has the relative property (T) of Kazhdan-Margulis
if any unitary representation of I' with almost invariant vectors has a non-zero A-invariant vector.
If the pair (I',T") has the relative property (T), then I' is said to have Kazhdan’s property (T).

The proof of Theorem [A] combines a consequence of the LLP concerning “almost homomorphisms”
and a beautiful characterization of relative property (T) in terms of projective representations due
to Nicoara, Popa and Sasyk [NPS07], see the comments at the end of the introduction.

The main example of a pair of groups to which Theorem [A| applies is A = Z? < T' = Z? x SLy(Z).
The pair (I, A) has the relative property (T) by [Ka67, Ma82|, while the existence of a sequence
of 2-cocycles satisfying the hypothesis of Theorem [A| was pointed out in [NPS07]. Theorem
therefore implies that C*(I") does not have the LLP. More generally, using that the pair (Z%x X, Z?)
has the relative property (T) for any non-amenable subgroup ¥ < SLo(Z) [Bu91], that the pair
(R? x SL2(R), R?) has the relative property (T) for any finitely generated commutative ring with
unit R [Sh99], and that the LLP passes to subgroups (see Remark [1.2)), we derive the following:

Corollary B. Let I' = Z? x X, where ¥ < SLa(Z) is a non-amenable subgroup. Then C*(T) does
not have the LLP. Thus, C*(Z? x SL2(Z)) and C*(SL,(Z)) do not have the LLP, for any n > 3.

More generally, if R is any finitely generated commutative ring with unit such that {2z | x € R} is
infinite, then C*(R? x SLa(R)) and C*(SL,(R)) do not have the LLP, for any n > 3.

Moreover, every countable group A that has a non-abelian free subgroup admits an action by auto-
morphisms on a countable abelian group A such that C*(A x A) does not have the LLP.

Corollary [B| provides the first examples of residually finite groups (e.g., Z? x SLy(Z) and SL,(Z),
n > 3) whose full C*-algebras fail the LLP. As observed in |[0z04b|, for Connes-embeddable groups,
the LLP implies Kirchberg’s factorization property [Ki94a|. Since residually finite groups are
Connes-embeddable and have the factorization property, Corollary [Blimplies that the LLP is strictly
stronger than the factorization property for Connes-embeddable groups. Corollary [B] also shows
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that C*(SL3(Z)) does not have the LLP and thus SL3(Z) does not characterize the WEP (in the
sense of [FKPT18|, Definition 3.4]). This settles in the negative a question raised in [FKPT18, page
114]. Finally, Corollary [B|also implies that the full C*-algebras of the groups F,[X]? x SLa(F,[X])
and SL, (F,[X]), for n > 3, do not have the LLP, for any prime p > 3. This allows to recover the
examples of groups without the LLP exhibited in [Th10, Section 2], except for the case p = 2, and
in [Th10, Section 3], as these groups contain SL3(IF,,[X]) and SL3(Z), respectively.

We now turn to results providing classes of full group C*-algebras without the LP. If the hypothesis
of Theorem [A| is relaxed by removing assumption (3), then by adapting the proof of Theorem
we can show that C*(T") fails the LP. Our next main result considerably generalizes this fact by
allowing cocycles that arise from measure preserving actions.

Before stating this result in detail, we review some terminology. Let I' be a countable group
and A be an abelian group endowed with an action o : I' — Aut(A). We denote by Z*(T, A)
the group of 2-cocycles, i.e., maps ¢ : I' x I' = A satisfying o4(c(h, k))c(g, hk) = c(g, h)c(gh, k),
for all g,h,k € T'. A 2-cocycle ¢ is a 2-coboundary if there is a map b : I' — A such that
c(g, h) = b(g)a,(b(h))b(gh)~L, for all g, h € T'. We denote by B*(T',.A) the group of 2-coboundaries
and by H*(T', A) = Z*(T", . A)/B?(T, A) the second cohomology group of T' with coefficients in A.

Let (X, 1) be a probability space, which will always be assumed standard, and A be a Polish abelian
group. Let LY(X, A) be the Polish group, with respect to the topology of convergence in measure,
of equivalence classes of measurable functions f : X — A, where two functions are equivalent if
they coincide p-almost everywhere. Let I' A7 (X, i) be a probability measure preserving (p.m.p.)
action. Then I' has a natural action on L°(X, A), which we still denote by o and is given by

ag(f)(@) = flg~ " 2).

Theorem C. Let I' be a countable group and A be a subgroup such that the pair (I';A) has the
relative property (T). Assume that there are a p.m.p. action I' ~7 (X, ju) such that o, is ergodic,
and 2-cocycles ¢, € Z2(I‘, LO(X, T)) such that the restriction of ¢, to A is not a 2-coboundary, for
every n € N, and nh_)rglo llen(g, h) — 1|2 = 0, for every g,h € T

Then C*(I") does not have the LP. Moreover, if the twisted crossed product von Neumann algebra
L*(X) X, I' embeds into R, for every n € N, then C*(I') does not have the LLP.

Before presenting two applications of Theorem [C] let us make a remark on its hypothesis.

Remark 1.1. Theorem |C| implies that if T' is a property (T) group such that C*(I") has the LP,
then B%(I", L°( X, T)) is an open subgroup of Z?(I', L°(X, T)) and thus H*(T', L°(X, T)) is countable,
for every ergodic p.m.p. action I' ~ (X, p).

It is a longstanding open problem, going back to Feldman and Moore’s work [FM77], to calculate
H*(T,L°(X,T)) and, more generally, the higher cohomology groups H*(T',LY(X,T)), for n > 2.
It is known that H*(T,L%(X,T)) = 0, for any free ergodic p.m.p. action T' ~ (X, p), if T is an
amenable group [CFW81], a free group or more generally a treeable group [Kil7]. On the other
hand, for free ergodic actions of property (T) groups, not a single calculation of H? is available
(see [Po07al, 6.6] and [AP18| 5.7.4]). In fact, no example is known of a free ergodic p.m.p. action
I' ~ (X, ) of a property (T) group I' such that H*(T', L°(X,T)) is trivial or even countable.

On the other hand, it is also a difficult task to produce examples of p.m.p. actions I' ~ (X, ) such
that H?(I', L°(X, T)) is uncountable or even non-trivial. Only a few years ago, Jiang [Jil6] proved,
by using Popa’s cocycle superrigidity theorem [Po07a], that if " is a property (T) group, A is the
Haar measure of T and T' ~ (TT, A') is the Bernoulli action, then H?(I', T) @ H?(T', ZI') embeds
into H2(T', LY(TT, T)). In particular, if H*(T', ZT') # 0, then H*(T', L°(TT, T)) # 0.
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By combining this result with Theorem [C] and Popa’s malleability property for Bernoulli actions,
we derive the following:

Corollary D. Let T be a countable group with property (T) such that H?(T', ZL") # 0.
Then C*(T") does not have the LP.

Corollary |§| implies that if d € (%, %), then for a random group I' in Gromov’s density model at

density d (see |Ol05| Definition 7]), we have that C*(I') does not have the LP, with overwhelming
probability. Indeed, as explained in the proof of |Ji16, Corollary 4.4], the combination of several
results from the literature implies that any such T' has property (T) and satisfies H?(I", ZI") # 0.

Combined with a 2-cohomology version of a theorem by Moore and Schmidt [MS80] which gives
sufficient conditions for untwisting certain cocycles (see Section , Theorem [C| also leads to the
following corollary.

Corollary E. Let I" be a countable group with property (T) that admits an ergodic p.m.p. action
' ~ (X, ) such that H*(T,LY(X,R)) # 0. In particular, assume that H*(T',R) # 0.

Then C*(T") does not have the LP.

Corollary [E]implies failure of the LP for several additional concrete classes of full group C*-algebras.
Before discussing these classes, we record two well-known permanence properties for the (L)LP.

Remark 1.2. Let ¥ < T be countable groups. Then there are a canonical inclusion C*(3) C C*(I")
and conditional expectation E : C*(I') — C*(X) (see, e.g., [P120, Proposition 3.5]). This fact implies
that if C*(I") has the LP (respectively, the LLP), then so does C*(X). Assume now that the inclusion
¥ < T has finite index. Then there are a *-isomorphism ¢>°(I'/%) x; ' = B(/2(T'/X)) @ C*(X), a
canonical inclusion C*(T") C ¢*°(I'/%) x¢I" and conditional expectation E’ : £*°(I'/3) x¢I' — C*(T').
From this it follows that if C*(X) has the LP (respectively, the LLP), then so does C*(I).

Example 1.3. (Full group C*-algebras without the LP).

(i) Let G be a simple Lie group with trivial center, infinite cyclic fundamental group and
property (T). This holds if G = Sp,,,(R), for n > 2, see [BAHV08, Remark 3.5.5] for more
examples. Let I' < G be any lattice. For instance, take I' = Sp,,(Z) < G = Sp,,(R), for
n > 2. Then [BAHV08, Corollary 3.5.6] implies that H?(T',Z) # 0. Using this, we observe
in Lemma that moreover H(T',R) # 0. Thus, C*(T') fails the LP by Corollary

(ii) For a prime p, let I', be the kernel of the usual homomorphism SL3(Z) — SL3(Z/pZ).
By [So78], although H?(SL3(Z),R) = 0, one has H*(T,,R) # 0, for large p. Corollary
implies that C*(I',) does not have the LP, for every large enough prime p. In combination
with Remark [1.2| this gives another proof of the failure of the LP for C*(SL3(Z)).

(iii) Let G be a simply connected, simple algebraic group over a number field K with K-rank
at least 2. Let O be the ring of integers of K and I' = G(O) be the group of integral points
in G. Bekka [Be99] proved that C*(I") is not residually finite dimensional. The structure
theory of algebraic groups (see [Be99]) implies that I" admits a subgroup that is isomorphic
to a congruence subgroup of either SL3(Z) or Spy(Z). Since C*(SL3(Z)) and C*(Sp4(Z))
do not have the LP by (i) and (ii), Remark implies that C*(I') does not have the LP.

(iv) Let I' be a finitely presented residually finite group with property (T) and positive second

£2-Betti number, 552) (T') > 0. By Liick’s approximation theorem [Lu94], I" admits a finite
index subgroup ¥ with positive second Betti number, 52(¥) > 0, and thus H*(X,R) # 0.
Since ¥ has property (T), Corollary |[E| implies that C*(X) and C*(I") do not have the LP.

Next, motivated by Corollary [E] we introduce the following:
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Definition 1.4. We denote by C the class of countable property (T) groups I" that admit an ergodic
p.m.p. action T' ~ (X, ) such that H*(I',L(X,R)) # 0.

Remark 1.5. Using ergodic decomposition of p.m.p. actions, one can show that a property (T)
group I belongs to C if and only if it admits a p.m.p. (but not necessarily ergodic) action ' ~ (X, )
such that H*(T, L%(X,R)) # 0 (see |[Kil7, Proposition 2.5]). Note that C obviously contains any
property (T) group I' with H*(T,R) # 0, see Example for several families of such groups.
Additionally, it follows from [Jil6] that any property (T) group T' with H?(T', ZT') # 0 belongs to C.
But besides these examples, not much is known about class C. In fact, it is unknown if C contains
all property (T) groups. Indeed, similar to the case of T-valued second cohomology discussed in
Remark no example of a free ergodic p.m.p. action I' ~ (X, i) of a property (T) group I such
that H?(I', L°(X,R)) = 0 is known.

In Lemma we prove that the natural homomorphism H?(I',L°(X,R)) — H*(T,L%(X x Y,R))
is injective, for any ergodic p.m.p. actions I' ~ (X,pu) and T' ~ (Y, v) of a property (T) group
I'. This implies that if I' € C, then in fact there is a free ergodic p.m.p. action I' ~ (Z, p) with
H%(T',L°(Z,R)) # 0. Moreover, it allows us to derive the following:

Proposition F. The class C is closed under measure equivalence.

For the definition of Gromov’s notion of measure equivalence, see [Fu99a), Definition 1.1]. Recall that
lattices in the same locally compact second countable group are measure equivalent (see [Fu99aj).
By combining Example (ii) with Proposition [F| and Corollary [E} it follows that C*(I") does not
have the LP, for any lattice I' in SL3(R).

Remark 1.6. Let I" be a countable group and I' ~ (X, 1) be a p.m.p. action. It would be inter-
esting to determine if the natural homomorphism H?(T,L%(X,R)) — H*(T,L%(X,R)) is injective
for property (T) groups. (As a positive indication that a result of this kind may hold, we show that
the natural homomorphism HY(T,L%(X,R)) — HY(T',LY(X,R)) is injective, provided I' ~ (X, )
has spectral gap (see Theorem [7.4]).) If true, this would imply that C contains any property (T)
group I' that admits an orthogonal representation 7 : I' — O(H) on a real Hilbert space such that
H%(T,H) # 0. Indeed, for any orthogonal representation 7 : I' — O(#), there is a p.m.p. action
I' ~ (Xx, ptr) (called the Gaussian action associated to 7) such that 7 is contained in the Koopman
representation of I' on L2(X,R), and thus we have an embedding H?(T, H) c H2(I',L2(X,R)).

The examples of property (T) groups without the LP provided above are typically finitely presented.
On the other hand, we show that the LP fails for any infinitely presented property (T) group.

Theorem G. IfT' is a non-finitely presented countable group with property (T), then C*(T") does
not have the LP.

Examples of non-finitely presented property (T) groups include SL3(F,[X]), Z[1/p]* x Sp4(Z[1/p)),
and infinite torsion quotients of uniform lattices in Sp(n, 1), where p is a prime and n > 2, see
[BAHVO08, Section 3.4] and the references therein. Moreover, there are uncountably many pairwise
non-isomorphic non-finitely presented property (T) groups, see [Oz04a] and the references therein.

In [Oz04al Corollary 5], Ozawa showed that within a certain uncountable family {I', }oe1 of pairwise
non-isomorphic property (T) groups, there is a group I'y, for some « € I, such that C*(T,) fails
the LP. Theorem |G| strengthens this result by showing that C*(I'y,) fails the LP, for every a € L.
Indeed, by construction, the groups {I'y }aer are all non-finitely presented (see Remark .

The proof of Theorem |G| relies on a result of Shalom [Sh00| asserting that every property (T) group
is a quotient of a finitely presented property (T) group. The use of this result was inspired by an
argument of Popa in [Po07b, Section 4].
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Next, we discuss a connection between our results and two recent notions of stability for groups.
Given a tracial von Neumann algebra (M,7), its L2-norm is given by |z|2, = +/7(z*z). If
M is a matrix algebra and 7 its normalized trace, then ||.||2,; is the normalized Hilbert-Schmidt
norm. Let I" be a countable group and (M,,7,), n € N, be tracial von Neumann algebras. A
sequence of maps ¢, : I' = U(M,), n € N, is called an asymptotic homomorphism if it satisfies
lon(9)en(h) — on(gh)ll2,r, — 0, for every g,h € T.

Following [HS18, Definition 3|, I is called W*-tracially stable if for any sequence (M, 1,), n € N, of
tracial von Neumann algebras and any asymptotic homomorphism ¢, : T' — U(M,,), n € N, there
exist homomorphisms ¢, : I' = U(M,,), n € N, such that ||¢,(g) — ¥n(9)|l2,7, — 0, for every g € I'.
If this holds whenever M,,,n € N, are matrix algebras, then I' is called Hilbert-Schmidt stable (or
HS-stable).

The proofs of our main results show that if I" is as in Theorem [A] then I' is not HS-stable and
if T is as in Theorems [C] or [G] or Corollaries [D] or [E] then I' is not W*-tracially stable. In fact,
as explained below, we prove a much stronger statement: there is an asymptotic homomorphism
on : ' = U(M,,) (where M,, are matrix algebras and tracial von Neumann algebras, respectively)
for which no u.c.p. maps v, : C*(I') = M,, can be found such that ||¢,(g) — ¥n(ug)|l2 — 0, for
every g € I', where {u, | g € I'} are the canonical unitaries generating C*(I"). Thus, there are in
fact no homomorphisms , : T' — U(M,@B(¢?)) such that |¢n(g) — (mn(g))1.1ll2.7 — 0, for every
g € T. In particular, any group I' satisfying the hypothesis of Theorem [A| (e.g., I' = Z? x SLy(Z)) is
not flexibly HS-stable in the sense suggested in [BL20, Section 4.4]. While it was shown in [BL20]
that infinite Connes-embeddable property (T) groups are not HS-stable, no examples of groups
that are not flexibly HS-stable were previously known.

Outline of the proofs of Theorems [A] and [Cl We conclude the introduction with an outline
of the proofs of our main technical results, Theorems [A] and [C] The starting point of our approach
is the observation that if C*(I") has the LLP or the LP, then the set of asymptotic homomorphisms
of I is very rigid, see Section (cf. |[Oz13, Lemma 5)):

Corollary 1.7. Let I" be a countable group, (M, T,), n € N, be tracial von Neumann algebras and
on ' = U(M,,), n €N, be an asymptotic homomorphism.

If C*(T") has the LLP and M, embeds into R*, for every n € N, or C*(I') has the LP, then there
are u.c.p. maps Py : C*(I') = M, such that ||¢n(g) — Yn(ug)|2,7, — 0, for every g € T.

Thus, to prove that C*(I') does not have the LP (respectively, the LLP), it suffices to produce an
asymptotic homomorphism of ' to (R“-embeddable) tracial von Neumann algebras which does not
arise as an asymptotic perturbation of a sequence of u.c.p. maps. However, in general, finding such
asymptotic homomorphisms appears to be a non-trivial task.

A main novelty of our approach is the use of asymptotic homomorphisms arising from 2-cocycles.
We continue by explaining how this idea is implemented in the proofs of Theorems [A] and [C|

First, in the context of Theorem [A] endow the matrix algebra M,, := B(H,,) with its normalized
trace 7,. Then 7, : T' — U(M,), n € N, is an asymptotic homomorphism. Assuming that C*(T")
has the LLP, Corollary gives u.c.p. maps vy, : C*(I') = M, so that ||7,(g) — ¥n(ug)l2,m, — 0,
for every g € T.

Next, we construct projective representations p, of I' whose 2-cocycle is equal to ¢, and which
have asymptotically invariant vectors. If the ,’s would be x-homomorphisms, we can define
pn : T — U(L?(M,)) by letting p,,(g)(T) = 7n(g)T%n(uy)* and note that the vectors 1 € L*(M,)
are asymptotically invariant. In general, we define p,, in a similar way via the Stinespring dilation
of ¥,,. On the other hand, [NPS07, Lemma 1.1] asserts that as the pair (I', A) has relative property
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(T), given a projective representation p of I' with almost invariant vectors, the restriction of its
2-cocycle to A must be a 2-coboundary. We thereby conclude that the restriction of ¢, to A is a
2-coboundary for large n. This gives a contradiction, implying that C*(I") does not have the LLP.

Second, we wish to adapt the proof of Theorem [A] to prove Theorem [C] In the setting of Theorem
let M, = L*(X) X4, I' be the twisted crossed product von Neumann algebra associated
to the action I' ~7 (X, ) and 2-cocycle ¢, € Z*(I',L%(X,T)). Let 7, be the trace of M, and
{ugn | g € T} C U(M,) be the canonical unitaries. Since ugnupn = cn(g, h)ughn, for every
g,h €T, the maps I 5 g — ugy,, € U(M,), n € N, form an asymptotic homomorphism. Assuming
that C*(I') has the LP or that C*(T') has the LLP and the M,’s are R*-embeddable, Corollary [1.7]
provides u.c.p. maps 1, : C*(I') = M, such that |jug,, — ¥n(ug)ll2,~, — 0, for every g € T".

Suppose for the moment that the 1),,’s are *-homomorphisms. Define p, : T' — U(L?3(M,)) by
letting pn(9)(T) = ugnT¥n(ug)*. Then p, satisfies p,(g)pn(h) = cn(g, h)pn(gh), for every g,h € T,
and the vectors 1 € L?(M,,) are asymptotically p,(T)-invariant. In general, we first use a version
of Stinespring’s dilation theorem (see Section to dilate ¥, to a unital x-homomorphism from
C*(T) to M,@B(¢?), and then build the “cocycle representations” p,, in a similar fashion.

Finally, we need to generalize the result from [NPS07] to cocycle representations of I" whose cocycles
can arise from a p.m.p. action of I'. This is done in Section Altogether, these results allow us
to once again deduce that the restriction of ¢, to A has to be a 2-coboundary for large n, leading
to the desired contradiction.

Organization of the paper. Besides the introduction, this paper has seven other sections. In
Section 2, we prove Corollary [I.7] and record various constructions and results concerning tracial
von Neumann algebras, relative property (T) and group cohomology. Sections 3-8 are devoted to
the proofs of our main results.

Acknowledgement. We would like to thank Sorin Popa for helpful comments.

2. PRELIMINARIES

2.1. Modules over tracial von Neumann algebras. In this paper, we will work with semifinite
von Neumann algebras M endowed with a distinguished faithful normal semifinite trace Tr. We
define the L?-norm on M by ||z||2 v = +/Tr(z*z), denote by L?(M) the Hilbert space obtained
by completing {x € M | ||z[av < oo} with respect to the L?-norm and consider the standard
representation M C B(L?(M)). In the particular case when M is a finite von Neumann algebra
with a faithful normal tracial state 7, we call the pair (M, 7) a tracial von Neumann algebra.

Let (M, T) be a tracial von Neumann algebra. A Hilbert space H is called a left M-module if it
has a normal representation m : M — B(H) and a right M-module if it has a normal representation
m: M — B(H). If M is abelian, then the notions of left and right M-modules coincide, and
we simply call them M-modules. If H is a right M-module, then the conjugate Hilbert space
H = {£]| € € H} has a left M-module structure given by z€ = £z*.

Let H be a right M-module. A vector £ € H is called right bounded if there is C > 0 such that
|éx|| < C'||x||y, for all x € M. In other words, the map M > z — &£z € H extends to a bounded
operator L¢ : L(M) — H. The set of right bounded vectors My, forms a dense subspace of H.
Moreover, for every &,7 € Hy, the operator Ly Le € B(L?(M)) commutes with M°P C B(L?(M)),
and so belongs to M. We define an M-valued inner product on Hj, by setting (£,m)a = L; L¢, and
note that 7(xz(&,n)nm) = (x,n), for every x € M.
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If K is a left M-module, then the Connes tensor product H Qs K is the Hilbert space obtained by
completing Hy, ®aig L/ ker((-, -)), where on the algebraic tensor product Hi, a1z K we consider the
positive sesquilinear form given by (¢ @y n,& @ 1') = (&, &), ).

For further reference, we note that if &, € Hy,, then in H ®3r H we have that
(2.1) 1€ @ 7lI> = (&, €)armsm) = T((& E)mr(nm)ar) = (0, m)mé, €).

Next, we describe a characterization of the Hilbert space H ®j; H in terms of certain operators
on H that are “Hilbert-Schmidt over M” (see [Sill, Section 2] and [AP17, Chapter 8]). Let
B(Har) = (M°P) NB(H) be the algebra of right M-linear bounded operators on H. For &,n € Hy
we define the “rank one operator” T¢, = L¢ Ly € B(Hur).

By |AP17, Proposition 8.4.2], B(#Hs) admits a normal faithful semifinite trace 7 such that

T(Tem) = 7((&mar) = (& mn

Then one can check that (Tg ), Ter )7 = (€ Qu 7, € @ 17'). Since the span of {T¢, | &,m € Hp} is
a weak operator topology dense ideal of B(Hs) (see [AP17, Lemma 8.4.1]), it follows that the map

Tf,n '_>€®M77

extends to a unitary isomorphism between L?(B(#H,;),7) and H®ys H. When M = C, this recovers
the usual identification of H ® H with the Hilbert space of Hilbert-Schmidt operators on H.

2.2. A consequence of the (L)LP for full group C*-algebras. In this section, we recall the
definition of the LP and the LLP, and then prove Corollary Let B be a C*-algebra, J C B a
closed two-sided ideal, and 7w : B — B/J the quotient map, and E an operator system. A u.c.p.
map ¢ : E — B/J is u.c.p. liftable if there is a u.c.p. map ¢ : E — B such that ¢ = m.

Definition 2.1. A C*-algebra A is said to have the lifting property (LP) if for every C*-algebra
B and every closed two-sided ideal J C B, any u.c.p. map ¢ : A — B/J is u.c.p. liftable. A
C*-algebra A has the local lifting property (LLP) if for every C*-algebra B, every closed two-sided
ideal J C B and any u.c.p. map ¢ : A — B/J, the restriction ¢ : £ — B/J of ¢ to any finite
dimensional operator system F C A admits is u.c.p. liftable.

A C*-algebra A has the weak expectation property (WEP) if there are a faithful representation
A CB(H) and a u.c.p. map ¢ : B(H) — A™ such that ¢4 =ida. A C*-algebra is called QWEP
if it is a quotient of a C*-algebra with the WEP. The proof of Corollary relies on the following
result due to Kirchberg [Ki93], see [0z04b, Corollary 3.12].

Proposition 2.2. Let A be a separable C*-algebra with the LLP, B a QWEP C*-algebra and
J C B a closed two-sided ideal. Then any u.c.p. map ¢ : A — B/J is u.c.p. liftable.

Proof of Corollary The proof is inspired by the proof of (2) = (1) in [Oz13, Lemma 5].
Consider the C*-algebra B = [],cn My, the closed ideal J = {(z,) € B | lign |znll2,n, = 0} and
n—w

the quotient map = : B — B/J. Then ¢ : I' — U(B/J) given by ¢(g9) = 7((¢n(g))nen) is a
homomorphism. Let ® : C*(I') = B/J be the *-homomorphism given by ®(u,) = ¢(g), for g € T
First, assume that C*(I") has the LP. Then there is a u.c.p. map ¥ : C*(I') — B such that & = 7¥.
Hence we can find u.c.p. maps ¢, : C*(I') = M, for every n € N, such that ¥ = (¢,,)nen. Since
T((Pn(9))nen) = P(ug) = m((Yn(ug))nen), we get that lim [[on(g) — ¢n(ug)ll2r, = 0, for every
g € I'. This finishes the proof in this case.

Secondly, assume that C*(I") has the LLP and M,, embeds into R¥, for every n € N. After replacing
M,, with the von Neumann subalgebra generated by {¢n(g9) | ¢ € I'}, we may assume that M, is
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separable, for every n € N. By a result of Kirchberg [Ki93] (see [0z04b, Corollary 6.2]), any
separable tracial von Neumann algebra that embeds into R is QWEP. Since the class of QWEP
C*-algebras is closed under direct product (see [0z04b|, Proposition 4.1]), we get that B is QWEP.
By Proposition there is a u.c.p. map ¥ : C*(I') — B such that ® = 7P, and repeating the
above argument finishes the proof. |

2.3. Relative property (T). Let I' be a countable group and A be a subgroup. The pair (', A)
has the relative property (T) of Kazhdan-Margulis if there are a finite set F' C I' and § > 0 such that
if m:T' — U(H) is a unitary representation and £ € H is a unit vector satisfying ||7(g)§ — &| < 9,
for every g € F, then there is a non-zero vector n € H that is w(A)-invariant, i.e., w(h)n = n, for
every h € A. The group I" has property (T) of Kazhdan if the pair (I', ") has the relative property
(T).

By a result of Jolissaint |[Jo05], relative property (T) for (I', A) is equivalent to the following formally
stronger statement: for any € > 0, there are a finite set F' = F(¢) C I" and § = §(¢) > 0 such that
if 7 : ' — U(H) is a unitary representation and { € H is a unit vector satisfying ||7(g)¢ — || < 9,
for every g € F, then there is a w(A)-invariant vector 7 € H such that ||n —¢|| < e.

We next record a characterization of relative property (T) in terms of projective representations
due to Nicoara, Popa and Sasyk [NPS07]. A map 7 : ' — U(H) is called a projective representation
if m(g)m(h) = ¢(g,h)n(gh), for some c(g,h) € T, for every gh € . Then ¢ : I'xI' —» T is a
2-cocycle, i.e., it satisfies ¢(g, h)c(gh, k) = c(g, hk)c(h, k), for every g,h,k € I'. A 2-cocycle ¢ is a
2-coboundary if there is a map b : I' — T such that c(g, h) = b(g)b(h)b(gh)~!, for every g,h € T.

Theorem 2.3 (NPS07, Lemma 1.1)). If the pair (I', A) has the relative property (T), then for any
€ > 0, there are a finite set F' C ' and § > 0 such that the following holds.

Let m: T' — U(H) be a projective representation with 2-cocycle ¢ : T'x I' = T and & € ‘H be a unit
vector with inf{||w(g) — af|| | « € T} < 6, for every g € F. Then there are a map b: A — T and
n € H such that c(h, k) = b(h)b(k)b(hk)™t and 7(h)n = b(h)n, for every h,k € A, and ||n— & < e.

2.4. Group cohomology. We next recall the notion of measurable group cohomology introduced
by Moore in [Mo76a]. Let G be a locally compact second countable group, m¢ a left invariant Haar
measure of G, A a Polish abelian group and ¢ : G — Aut(A) be a continuous action of G on A.

Forn > 1, LO(G”, A) denotes the set of equivalence classes of Borel maps ¢ : G — A, where two
maps are equivalent if they are equal mg-almost everywhere. Let GY = {e}, so that L(GO, A) = A.
Then LO(G”,A) is a Polish group with respect to pointwise multiplication and the topology of
convergence in measure (see [Mo76a, page 6]). The coboundary map 0 : L°(G™, A) — LY(G"1, A)
is defined by

n

(00) (91, -+ Gnt1) = 04y ((g2, s 1)) - [ [ (G150 GiGir1s oo gnt1) T - (g1, s g)
=1

(1t

Definition 2.4. Let n > 1. Then ¢ € L%(G", A) is called an n-cocycle if dc = e and an n-coboundary
if there exists b € LO(G™!, A) such that ¢ = 9b. Since 9(dc) = e, any n-coboundary is an n-cocycle.

We denote by Z"(G,A) and B"(G, A) the sets of n-cocycles and n-coboundaries, respectively.
Then B"(G, A) C Z"(G, A) are subgroups of L°(G™, A), and the n'"* measurable cohomology group

of G with coefficients in A is defined as H" (G, A) = 2(G, A)

M‘ Two n-cocycles ¢, ¢ are said to be

cohomologous if ¢! is an n-coboundary.
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Note that Z"(G, A) is a closed subgroup of L°(G™ A) and thus a Polish group. On the other
hand, B"(G, A) is not necessarily closed. Nevertheless, as a consequence of basic facts about Borel
functions and Polish groups (see, e.g., [Ke94, Theorem 1.4 and Theorem 2.6]), we have the following;:

Lemma 2.5. Letn > 1. Then B"(G, A) is a Borel subgroup of L°(G™, A) and there is a Borel map
n:BYG, A) = LY(G" 1, A) such that d(n(c)) = ¢, for every c € B"(G, A).

2.5. A vanishing result for symmetric 2-cocycles. We next record a result asserting that, for
certain groups A, any 2-cocycle ¢ : R x R — A that is symmetric (i.e., satisfies ¢(r, s) = ¢(s,r), for
every r, s € R) must be a 2-coboundary.

Lemma 2.6. Let A be either (1) a countable discrete abelian group, or equal to (2) LO(X,T) or
to (3) LY(X,T)/T, where (X,u) is a probability space and we view T < LY(X,T) as the closed
subgroup of constant functions. Then any symmetric 2-cocycle ¢ : R x R — A for the trivial action
of R on A is a 2-coboundary.

Proof. Let ¢ : RxR — A be a symmetric 2-cocycle. By [AM13] Theorem A], ¢ is cohomologous to a
continuous 2-cocycle, so we may assume that c is continuous. We discuss the three cases separately.

(1) Assume that A is a countable discrete abelian group. Then since R is connected, ¢ must be a
constant map, and thus it is a 2-coboundary.

(2) Assume that A = L9(X, T). Define the group extension E := A xR as the set A x R with the
group operation (a,r)- (b, s) = (¢(r, s)ab,r+s). Then E is a locally compact second countable group
and we have a short exact sequence 0 - A — E — R — 0. Since ¢ is a symmetric 2-cocycle, F is
abelian. By applying [Mo76bl, Theorem 4] in the case G = R, we conclude that ¢ is a 2-coboundary.

(3) Assume that A = L%(X,T)/T. For a € L%(X,T), denote by a := T - a its image in A. Let
i:A—LY%X x X, T) be given by i(a)(x,y) = a(x)a(y)~'. Since i is a continuous homomorphism,
ioc: R xR — LYX x X,T) is a symmetric 2-cocycle. By applying (2), we get that i oc is a
2-coboundary. Hence, there is a Borel function b : R — LY(X x X, T) such that i(c,s) = b.bsb, .,
for m2-almost every (r,s) € R?. Thus, we have

07'15('%.)67'15(y)_1 = bT(CU,y)b5($,y>br+s($,y)_1, fOl" almost every (r,s,m,y) € R2 X X2'

Hence, there is y € X such that ¢, s(z)cs(y) ™! = by(z,y)bs(z, y)bris(x,y) 7L, for almost every
(r,s,7) € R x X. Thus, if we define b: R — Lo%(X,T) by letting b.(x) := b,(x,y), then we have
that ¢, s = brbsb;js, for almost every (r,s) € R2. Hence, c is a 2-coboundary. [ |

2.6. Twisted group and crossed product von Neumann algebras. Let I' be a countable
group and ¢ € Z*(I',T) be a 2-cocycle. Then m. : I' — U(£*(T)) given by m.(g)(0) = c(g, h)dzn
is a projective unitary representation with 2-cocycle c¢. The twisted group von Neumann algebra
L.(T') € B(£2(T)) is defined as the weak operator closure of the linear span of 7.(T"). Then L(T') is
a tracial von Neumann algebra with its trace given by 7(7.(g)) = dg,e, for every g € I'.

More generally, let ' 7 (A, T) be a trace preserving action of I' on an abelian tracial von Neumann
algebra (A, 7) and ¢ € Z*(T',U(A)) be a 2-cocycle. Define a map 7. : I' — U(L?(A)&¢?(T)) by letting
7e(9)(z ® 0y) = og4(x)c(g, h) @ dgp, for every g,h € I and x € A. We view A as a subalgebra of
B(L2(A)®¢*(T)) by identifying it with A ® 1 and using the standard representation A C B(L?(A)).
Then 7.(g)mc(h) = c(g, h)m(gh) and 7.(g)zm.(9)* = 04(x), for all g,h € I" and « € A. The twisted
crossed product von Neumann algebra A x,.T C B(L*(A)@¢%(T")) is defined as the weak operator
closure of the linear span of {am.(g9) | a € A,g € T'}. Then A X, . I is a tracial von Neumann
algebra with its trace given by 7(am.(g)) = 7(a)dg,e, for every a € A and g € T".
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3. PrROOFS OF THEOREM [A]l AND COROLLARY [Bl

In the first part of the section, we prove Theorem [A]and Corollary [B] The proof of Theorem [A] uses
Corollary to conclude that C*(T") does not have the LLP. In the second part of the section, we
first give an alternative proof of this fact by showing that C*(I') ®max B(£?) # C*(T') @min B(£?),
and then make a remark on the main result of [JP95].

3.1. Proof of Theorem Assume by contradiction that C*(I") has the LLP. For every n € N,
let M,, = B(H,,). We denote by 7, : M,, — C the normalized trace. Then for every g,h € ', we
have |7, (g)mn(h) — Tn(gh)ll2,m, = len(g, h) — 1] = 0.

Since M, is finite dimensional, Corollary provides a u.c.p. map ¥, : C*(I') — M,, for every
n € N, such that ||7,(9) —¢¥n(ug)|l2,m — 0, for every g € I'. By Stinespring’s dilation theorem (see,
e.g., [BOO8, Theorem 1.5.3]), for every n € N we can find a Hilbert space Hn D Hy, and a unitary
representation ¢, : I' = U (ﬁn) such that if p,, : ﬁn — H,, denotes the orthogonal projection, then

~

Yn(tg) = Pnen(g)pn, for all g € I'. Denote by Tr : B(#,,) — C the usual semifinite trace.

Let IC,, be the Hilbert space of bounded linear operators T : ’ﬁn — H,, endowed with the L?-norm

|IT|l2m == /Tx(T*T). Define p, : I' — U(K,,) by letting p,(9)(T) = mn(9)T¢n(g)*, for every
T € K, and g € I'. Then p, is a projective representation with 2-cocycle equal to c¢,.

T
Since 7, (z) = Trr((;))’ for all z € M, for every g € I" we get that
lon(9)(Pr) = Pall3me _ 2Tr(pn) — 2R Tr(mn(9)Pnson(9)*Pn)
Dnll3 7 Tr(py)
r:[‘r n n *
o T ()Y (g)")
Tr(pn)

=2-2R Tn(ﬂ'n(g)wn(ug)*)
= 2R T (70 (9) (0 (9) — ¥n(uy))")
< 2[|mn(9) — Ynlug)ll2,m,-

Thus, the unit vectors &, = pn/||pnll2m € Kpn are almost invariant: ||pn(9)(&n) — &nll2, e — 0, for
every g € I'. By applying Theorem we conclude that for n large enough, the restriction of ¢,
to A must be a 2-coboundary. This contradicts the hypothesis, and finishes the proof. |

3.2. Proof of Corollary [Bl Let I' = Z? x SLy(Z) and Ty = Z? x X, where ¥ < SLy(Z) is a
non-amenable subgroup. Consider the 2-cocycle ¢ : Z2 x Z% — Z given by c((x,y), (2,1)) = xt — yz.
Then ¢ is SLy(Z)-invariant and thus it can be extended to a 2-cocycle ¢ : I' x I' — Z by letting

c((a,g), (b,h)) = c(a,g-b), for all a,b € Z* and g, h € SLy(Z).

For k € N, let ¢;, € Z*(T', T) be given by c(g, h) = exp(%(g’h)). First, we claim that the restriction

of ¢, to Z? is not a 2-coboundary, for any k > 3. Indeed, otherwise ¢ would be symmetric, i.e.,

cx(g,h) = cx(h,g), for every g,h € Z2. Letting g = (1,0) and h = (0,1) it would follow that

exp(%) = exp(—%) which would imply that k& € {1,2}. Second, note that lem ck(g,h) =1, for
oo

every g, h € T'. Third, let Ty = (Z/kZ)? x SLy(Z/kZ) and 6y : T' — T’y be the homomorphism given

by reduction modulo k. Then ¢ factors through 6 x 6, hence there is a 2-cocycle yy, € H*(Tg, T)

such that ¢, = py o (0 x 0;). Let 7 : Ty, — U(F%(T},)) be the projective representation associated
to k. Then 7 00y : T — U(L?(T'y)) is a projective representation with 2-cocycle cy.
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Since the pair (I", Z?) has the relative property (T), we can apply Theoremto conclude that C*(T")
does not have the LLP. Moreover, since the pair (I'g, Z?) has the relative property (T) by [Bu91],
Theorem |Af also implies that C*(I'g) does not have the LLP. Since SL,,(Z) contains I and C*(I")
does not have the LLP, Remark [1.2] implies that C*(SL,(Z)) does not have the LLP, for any n > 3.

To prove the more general assertion, let R be a finitely generated commutative ring with unit
such that {2z | € R} is infinite. Put Q = R? x SLy(R). We may assume that R has non-zero
characteristic, for if R has characteristic 0, then R contains Z as a subring and thus {2 contains
72 x SLy(Z) as a subgroup. Then any finitely generated subgroup of (R,+) is a torsion abelian
group and thus finite. Moreover, since R is a finitely generated commutative ring, a result of
Baumslag [Ba71, Theorem 5.3] shows that R is residually finite: for any finite set ' C R\ {0},
there is an ideal I of R such that the quotient ring R/I is finite and FF'N T = (.

We will show that Q satisfies the hypothesis of Theorem [A] by adapting the above proof in the case
R = Z. First, note that as above, the 2-cocycle ¢ : R? x R? — R given by c((x,y), (2,t)) = 2t — yz
is SLo(R)-invariant and thus it extends to a 2-cocycle ¢ :  x Q@ — R.

Let {a, | n € N} be an enumeration of R. Let £ € N and denote by Ay the finite subgroup of
(R, +) generated by {a,...,ar}. Since the set {2z | x € R} is infinite, we can find 3, € R such that
2xp ¢ Ap. Let By be the finite subgroup of (R, +) generated by Ay and zj. Since R is residually
finite, we can find an ideal I of R such that R/I} is finite and By NIy = {0}. Let pp : R — R/}
be the quotient homomorphism. Since By N I = {0}, we get that px(2xx) & pr(Ag). Thus, we
can find a character n, : R/I;, — T of the finite abelian group (R/Iy,+) such that ny = 1 on
pr(Ax) and ng(pr(2zr)) # 1. Then the character ¢y := np o pi : (R, +) — T satisfies pr = 1 on
Ay and @g(22) # 1. Define ¢, € Z2(Q,T) by letting ¢, = @ o c. Since ¢((zx,0),(0,1)) =
and ¢((0,1), (zx,0)) = —xg, we get that cx((zx,0),(0,1)) = pr(zk) # er(—zk) = cx((0,1), (zx,0)).
Thus, the restriction of ¢; to R? is not symmetric and hence not a 2-coboundary, for every k € N.
Since ¢i(a1) = ... = gi(ar) = 1, we get that klgglo vr(a) = 1, for every a € R. Therefore,

klim cx(g,h) = 1, for every g, h € 2. Moreover, if we define Q = (R/I};)? x SL2(R/I;) and denote
—00

by pi : © — Q the quotient homomorphism, then ¢ factors through pp x pg. Finally, by a result
of Shalom [Sh99, Corollary 3.5, the pair (£2, R?) has the relative property (T). Altogether, we can
apply Theorem [A|to conclude that C*(€2) does not have the LLP.

To prove the moreover assertion, let A be a countable group that contains 3 = Fy as a subgroup.
Fix an embedding of ¥ into SL2(Z) and let A = P, /5 Z2. Then the action of X on Z? can be used
to build, via a construction called co-induction, an action of A on A by automorphisms such that
A x A contains Z? x ¥ as a subgroup (see the proof of [lo11, Proposition 4.5]). Since C*(Z? x X)
does not have the LLP by the above, Remark gives that C*(A x A) does not have the LLP. B

3.3. A second proof of Theorem [A]l Next, we give an alternative proof of Theorem [A] following
closely |Pi06]. Since the pair (I', A) has the relative property (T), Theorem provides a finite
set FF C T and § > 0 such that if 7 : I' — U(H) is any projective representation whose 2-cocycle
c € ZX(T',T) satisfies ca & B%(A, T), then max,er ||7(g)€ — &|| > §|€]|, for any & € H. Thus, if we
enumerate F'U {e} = {g1, ..., gm}, then we have the following claim:

Claim 3.1. There is a constant D < m such that if m : T — U(H) is any projective representation
whose associated 2-cocycle ¢ € Z*(T,T) satisfies A & B2(A,T) then || S0, w(g:)|| < D.

Indeed, for every & € ‘H we have

SN < D Im(ga)é — mlg)éll® = 2mPlI€l — 2] Y w(ga)€lI*.

ij=1 i=1
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This implies that | Y%, 7(g;)|| < D, where D := y/m? — % < m, which proves the claim.

Let m, : I' = U(H,), n € N, be projective representations as in the hypothesis of Theorem |A]l Let
B = [[,enB(Hn) and v; = (7,(9:) )nen € U(B), for every i € {1,...,m}. Define

t=> uy @ € C*(T) @ B.

=1

Since the map I' 3 g — uy ® m,(g) is a projective representation whose 2-cocycle ¢, satisfies
Cnia ¢ B2(A,T), Claim H implies that || Y% ug, ® m,(g:)|| < D, for every n € N. Thus, we get

(3.1) [Ell o (r)@ B = SU P | Zugl ® mn(gi)| < D.
ne =1
On the other hand, we will show that [[t[|c. g,
tracial von Neumann algebras. To this end, let 7,, : B(H,) — C be the normalized trace and let
J ={(zn)neny € B | li_r>n |znll2,r, = 0}. Then J is a closed ideal of B and M = B/J is a tracial
n—w
von Neumann algebra, with its faithful normal tracial state 7 given by 7((xn)nen) = li_r>n Tn(Tn).
n—w

Consider the *-homomorphisms \ : M — B(L%(M)) and p: M — B(L?(M)) associated to left and
right multiplication. Denote by n : B — M the quotient map.

§ = m using the ultraproduct construction for

Since ||mp(g)mn(h) — mn(gh)l2,-, — 0, for every g,h € I, we can define a unital *-homomorphism
¢ : C*(I') = M by letting ®(uy) = n((wn(g))neN), for every g € . Since the *-homomorphisms
Ao ®: C*(T) — B(L*(M)) and po7 : B — B(L?(M)) have commuting ranges we have that

(3-2) 1t ()@ B = 1A 0 @ @ po M) (B)l|mL2(ary)-

Let & € L?(M) be the unit vector corresponding to 1 € M. Then ®(ug,) = n(v;), 7(77) = n(v;), thus
AP (ug,))p(M(1:))E = n(vi)én(v;)* =&, for all i € {0,1,...,m}. Therefore, (Ao ® ® po7)(t)§ =

and so [[(Ao @ ® pon)(t)|lpr2(ar) = m- Together with l) this gives that IIt] O (M) DB = T

In combination with , we derive that C*(I') ®max B # C*(I') ®min B. Since B is isomorphic
to B and B can be embedded into B(£?) such that it is the range of a conditional expectation, it
follows that C*(T') @max B(£?) # C*(T') @min B(£?). Therefore, by [Ki93] (see also [Oz04b, Corollary
3.17]) C*(T") does not have the LLP. [ ]

3.4. A remark on Junge and Pisier’s theorem. In |[JP95], Junge and Pisier established the
fundamental result that B(£2) @max B(£?) # B(£?) @min B(¢£?). The proof relies on the following
crucial fact: for every m > 3, there exists a constant C(m) < m and an m-tuple of Ny x N unitary
matrices (u1(k), ..., um(k)) € U(Ng)™, for every k € N, such that

sup || u; (k) @ u;( k’ )| < C(m).
13

There are by now several proofs of this fact, using property (T), expanders, quantum expanders or
random matrices, for which we refer the reader to [Pi20, Chapters 18 and 19]. Our goal here is to
show that this fact can also be deduced from Theorem as follows.

Let I' = Z* x SLy(Z) and A = Z>. Then I is 2-generated. Indeed, since S = <(1) _01> and

T = <(1) }) generate SLy(Z), it follows that g; = a5, where a = <(1)> € A, and go = T generate I'.
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Let m > 3 and put g3 = ... = g, = e. Since the pair (I, A) has relative property (T) and {g1, 92}
generates I', we get that there is a constant D(m) := D < m such that Claim holds.

Now, for k > 2, let ¢, € Z*(T,T) and 7, : T' — U(#*(T})) be as defined in the proof of Corollary
Then for every k, k' > 2 with k # k', my @7 : T — U(F?(Ty) ®€2(Ty)) is a projective representation
whose 2-cocycle cycpr satisfies (ckCpr)|a ¢ B2(A,T). Thus by applying Claim we get that

sup || Y mr(gi) ® e (i)l < D(m).
k#K

4. PROOF OF THEOREM

This section is devoted to the proof of Theorem [C]

4.1. A 2-cohomology characterization of relative property (T). The first main ingredient
in the proof of Theorem |C|is a characterization of relative property (T) in terms of 2-cohomology.

Theorem 4.1. Let T be a countable group and A be a subgroup such that the pair (I',A) has the
relative property (T). Then for every € > 0, there exist F C T' finite and § > 0 such that the
following holds:

LetT' ~7 (A, 7) be a trace preserving action of I' on an abelian tracial von Neumann algebra (A, T)

and ¢ € Z3(T,U(A)) be a 2-cocycle. Let H be an A-module and 7w : T — U(H) be a map such that
m(g)m(h) = c(g,h)n(gh) and w(g)aw(g)* = o4(a), for every g,h € T and a € A. Assume § € H is
a unit vector such that (§,€)a =1 and inf{||7(g9) — &al| | a e U(A)} < 0, for every g € F.

Then there ezist a o(A)-invariant projection p € A with 7(p) > 1 — ¢, a vector n € pH with
(n,m)a=p and a map b: A — U(Ap) such that

(1) c(h, k)p = brop(br)bj,., for every h,k € A,
(2) w(h)(n) = byn, for every h € A, and
(3) In—¢ll <e.

In particular, if e <1 and oy is ergodic, then the restriction of ¢ to A must be a 2-coboundary.

In the case A is equal to C1 endowed with the trivial I'-action, Theorem recovers Theorem

Proof. After replacing A with the smallest o(I")-invariant von Neumann subalgebra that contains
the image of ¢ and {ag4 | g € F'}, where a4 € U(A) is such that ||7(a){ — £ay|| < 6, we may assume
that A is separable.

Let € > 0. Let g9 > 0 such that (14e9)? < ¢ and 14v/2¢¢ < e. As (T, A) has relative property (T),
there are F' C T finite and ¢ > 0 such that if p : I' — U(K) is a unitary representation and ¢ € K is
a unit vector satisfying ||p(g)¢ — ¢|| < 26, for every g € F, then ||p(h)( — ¢|| < ep, for every h € A.

To prove that the conclusion holds for F' and 4, consider the setting of Theorem Define the
Connes tensor product H®4 H. Since (1(9)¢, 7(9)¢")a = 04((¢,¢’)a) and 7(g)7(h) = c(g, h)m(gh),
for every g,h € T and ¢, (" € H, it follows that the map 7 @7 : I’ — U(H ®4 H) given by

(m@7)(9) (¢ ®a () =7(9)¢ @am(g)¢

is a well-defined unitary representation of I'.
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Let g € F. Then there is a;, € U(A) such that ||7(g)(§) — £agl| < 6. Since (§,£)a = 1, we get that
(m(9)&,m(9)€)a = (ag,€ag)a =1 and implies that
l(m @) (9)(E®a8) —E@aE]l = [ @T)(9)(€ ®a ) — Eag @2 Eagy
< l(w(9)(§) = &ag) ®am(9)E]l + l[€ag ©a (7(g)(§) — Eay)]|

= 2[|m(g)(§) — &ayll
< 29.

Next, by Section there is a unitary U : H @4 H — L%(B(Ha), 7) such that U(é ®47) = LeLy,
for every £,n € Hp. Then we have that U(r @ 7)(g)U*(T) = w(g9)T'n(g)*, for every g € I and
T € B(Ha) NL2(B(Ha),7). Thus, if we let Q = LeLi € B(Ha) and use the above estimate, then
|7(9)Q7(g)* — Q|27 < 26, for all g € F. By using relative property (T), we get that

(4.1) |7(h)Qm(h)* — Q|27 < €, for all h € A.

Since LgL¢ = (£,€)a = 1, we get that @ is a projection. Let C C B(H4) be the weak operator
closure of the convex hull of the set {m(h)Qmn(h)* | h € A}. By the proof of [AP17, Lemma 14.3.3],

Cis || - |l2#-closed and the unique element 7" of minimal || - |3 7-norm 7 satisfies that
(4.2) ITlloo < 1Qlloc <1, [T = Qll27 <0 and
(4.3) w(h)Tw(h)* =T, for every h € A.

By using that @ is a projection and ([4.2)) it follows that | TT* — Q|27 < 2e¢, [[(TT*)* - Q|27 < 4eo
and || TT*—(TT*)?|a7 < 6eo. Note that L1 3 (t)—t] < 2[t—t2|, for every t > 0. Since TT* € B(H)
22
is a positive operator, if we define P =11 5/(TT*) € B(H4) using Borel functional calculus, then
22

(44) IP = Qlloz < IP =TT |5 + |TT* = Qlaz < 2TT* = (TT* o5 + [TT* = Q|la < 14co.
Moreover, (4.3) implies that

(4.5) w(h)Pm(h)* = P, for every h € A.

Since (A, 7) is a separable abelian tracial von Neumann algebra we can identify it with (L (X), [ - du),
where (X, p) is a standard probability space. Since H is a right A-module, [Ta01, Theorem IV.8.21]
implies that we can write H as a direct integral H = f)ﬂg H, du(x) of Hilbert spaces {H, | z € X}
such that a = f)? a(x) - Idy, du(x), for every a € A.

Let I' ~ (X, p) be the p.m.p. action such that o4(a)(z) = a(g'z), for every g € I',a € A and

z € X. Let g € I'. Since 7(g)an(g)* = o4(a) = aog™!, for every a € A, [Ta01, Theorem IV.8.23]
allows us to find a measurable field of unitary operators {m(g), : Hy — Hgs | © € X}, such that

@

(4.6) m(g) = /X 7(9)z du(z), for every g € I'.

By applying [Ta01}, Corollary 1V.8.16] it follows that for every S € B(H4) = A’ N B(H), we can
find an essentially bounded measurable field of operators {S, : H, — H, | * € X} such that
S = ff? Sy dp(zx). If we denote by Tr the usual trace on B(K), where K is a Hilbert space, then

(4.7) 7(S) = /X Tr(S,) du(z), for every S € B(H4), S > 0.

Let X 3 2 — & € H, be a measurable field of vectors representing £. Since (£,£)4 = 1 and
€117 = (€,€)a(x), we may assume that &, is a unit vector for every x € X. Moreover, Q =
ff{? Q. du(x), where Q, € B(H,) is the rank one orthogonal projection onto C¢,. Since P € B(H 4)
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is a projection, we can find a measurable field of projections {P, € B(H,) | * € X} such that
P = [{ P, du().
By combining (4.4]) and (4.7) we get that

(48) J 1P = QulBa dno) = P = QIB - < (1420)*
while the combination of (4.5)) and (4.6]) gives that
(4.9) w(h)zPym(h); = Ph,, for every h € A and almost every z € X.

Now, let Xo = {x € X | P, is a rank one orthogonal projection}. Since for every x € X we have
that ||Px—QI||%7Tr > |Tr(Py)—Tr(Qy)| = |Tr(Pr)—1|, by using we get that u(Xo) > 1—(14gg)2.
On the other hand, implies that Xy is o(A)-invariant. Let Xy > « — 7, € H, be a measurable
field of unit vectors such that P, is the orthogonal projection onto Cn,, for every x € Xy. Moreover,
we may assume that ({,,7n,) > 0, for every x € Xj.

Let h € A. Then (4.9) implies that the orthogonal projections onto Cw(h),(n,) and Cnp, are
equal for almost every x € Xy. Thus, we can find a measurable map by, : Xg — T such that
7(h)z(nz) = bp(hx)npe, for almost every z € Xy. Let n € ff?o H, du(z) be the vector given by the

measurable field {n, | x € Xo}. Identifying [ )6(90 H, dp(z) with the 7(A)-invariant subspace 1x,H
of H, we get that 7(h)(n) = byn. Since w(h)w(k) = c(h, k)n(hk), we derive that

c(h, k)bpin = c(h, k)w(hk)(n) = w(h)w(k)n = 7(h)(bkn) = on(bk)bpn, for every h, k € A.

Finally, let p = 1x, € A. Then p € A is a o(A)-invariant projection with 7(p) > 1—(14g9)? > 1 —e¢,
n € pH satisfies (n,m)4 = p and condition (2), and we can view b as a map b: A — U(Ap). Since
(n,m)a = p, the last displayed equation thus implies that c(h, k)bpx = op(bx)bp, for every h, k € A,
and condition (1) follows. To prove condition (3), note that if = € Xy, then since (§;,7,) > 0, we
have

| P — Q:c”%,Tr =2(1- <§x,77a:>2) > 2(1 = (€zy M) = 1€ — 7796”2'

Thus, using (L8), we get that [y [l& — nel2 du(z) = [y 1€ —nel® dps(z) + (X \ Xo) < 2(14e0)?,
which implies that ||& — || < 14v/2g0 < ¢, as desired. [ |

4.2. A dilation theorem. In the proof of Theorem [C| we will also need a variant of Stinespring’s
dilation theorem. This result essentially goes back to [Ka80, Theorem 3] and is a one-sided version
of a well-known dilation theorem for normal c.p. maps between tracial von Neumann algebras,
see |Po86|, Chapter 1]. For group C*-algebras B it appears as Theorem 2.3 in [COT19], where it is
shown to hold for arbitrary von Neumann algebras M. Nevertheless, we include the proof here for
the reader’s convenience.

Proposition 4.2. Let B be a unital C*-algebra, (M,T) be a tracial von Neumann algebra and
p:B— M be au.c.p. map.

Then there are a Hilbert space H, a projection q € B(H)QM, a rank one projection p € B(H) and
a x-homomorphism 7 : B — q(B(H)®M)q such that p®1 < q and p® ¢p(a) = (p® )7(a)(p®@ 1),
for every a € B. Moreover, we can take ¢ = 1.

Proof. Consider the algebraic tensor product B ®,1, M equipped with the sesquilinear form

(a®@x,b®y) =1y p*a)x).

Since ¢ is a u.c.p. map, this form is positive definite and thus it gives an inner product on
(B ®a1g M)/Ker((.,.)). We denote by K the completion of (B ®us M)/Ker((.,.)).
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We claim that there exist well-defined *-homomorphisms 6 : B — B(K) and p : M°? — B(K) such
that for every a,b € B and z,y € M:

Oa)b®y)=ab®y and px)(bRy)=>bx y.

The proof of this claim is standard (see, e.g., [AP17, Section 13.1.2]). Nevertheless, we recall the
argument for completeness. As ¢ is u.c.p. we have szzl Yip(b3bi)y; > 0, for all by, ..., b, € B and
Y1y Yn € M. Thus, if r =37 1 b @ y; € B Qag M, then for all a € B and x € M we have that

n n
W@y 0(@yr) = (3 wieWiaaby) < lla*all-+( 3 7lueibw:) = lal - (r.r)
i,j=1 6.j=1

Also, by using that 7 is a trace we derive that

(p(@)r, pla)r) = (x> yreibw) < lavell - 7( 3 yieiby:) = ol - r,r).
i,j=1 tj=1
These inequalities imply that # and p are indeed well-defined *-homomorphisms. Moreover, since
the linear functional M > z — (p(z)r,r) = 7(( doij=1 y*ap(b}‘bz)yz)x) is normal, it follows that p is

J
normal, or equivalently K is a right M-module.

Since ¢ is unital, the map V : L2(M) — K given by V(z) = 1®x, for x € M, is a right M-modular
isometry. By the classification of right M-modules (see, e.g., [AP17, Proposition 8.2.2]), we can
find a Hilbert space H, a unit vector ¢ € H and a right M-modular isometry W : K — H @ L2(M)
such that W(l ® ) = £ ® x, for all z € M. Let p € B(H) be the rank one projection onto
C¢ and g € B(H ® L?(M)) the orthogonal projection onto W (K). Then p ® 1 < q. Moreover,
since W(K) € H ® L?(M) is a right M-module, ¢ € B(H)®M. We denote still by W the unitary
W:K— W(K)=q(HeL*(M)).

Let 7 : B — ¢B(H ® L?(M))q be the *-homomorphism given by 7(a) = W6(a)W*. Since 0(B)
commutes with p(M) and W is right M-modular, 7(B) commutes with the right representation of
M on g(H ® L?*(M)). Thus, 7(M) C q(B(H)®M)q.

Finally, let a € B. Since W*({ ® x) = 1 ® z, for every x,y € M we have that

(m(a)(§ @), f @y) = (Bla)W (@), W (E©y)
= ({0la)(1®2),12y)
=7(y"p(a)z)
= ({®p(a)r,E@y)
which implies that (p® 1)7(a)(p ® 1) = p ® p(a). This proves the main assertion.

To justify the moreover assertion, note that after replacing H with a larger Hilbert space we
may assume that the projections 1 — ¢ and 1 are equivalent in B(H)®M and there is a unital
s-homomorphism B — B(H). Thus, (1 — q)(B(H)®@M)(1 — q) is *-isomorphic to B(H)®M and
hence there is a unital *-homomorphism 7' : B — (1 — q)(B(H)®M)(1 — ¢q). Then the unital
x-homomorphism 7 & 7’ : B — B(H)®M shows that we may take ¢ = 1. [ ]

4.3. Proof of Theorem [C} We prove the following stronger version of Theorem [C]

Theorem 4.3. Let I' be a countable group and A a subgroup such that (', A) has relative property
(T). Assume that there is a trace preserving action I' 7 (A, T) on an abelian tracial von Neumann
algebra (A, T) such that o5 is ergodic, and 2-cocycles c,, € Z2(T,U(A)) such that the restriction of
cn to A is not a 2-coboundary, for every n € N, and nh_)rgo llen(g, h) — 1|2, = 0, for every g,h € I.
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Then C*(I") does not have the LP. Moreover, if the twisted crossed product von Neumann algebra
A Xy, I' embeds into RY, for every n € N, then C*(I') does not have the LLP.

Proof. For n € N, denote M, = A X5, I'. Let {uyy | g € T} CU(M,) and 7, : M,, — C be the
canonical unitaries and trace. Then

lugntunhn — tghnll2,7 = llcn(g, ) — 1|2, — 0, for every g,h € T

Assuming by contradiction that the conclusion fails, Corollary implies the existence of u.c.p.
maps ¢y, : C*(I') = M, n € N, such that ||ug, — ¥n(ug)|2,7, — 0, for every g € I'. By Proposition
we can find a Hilbert space H,, a rank one projection p, € B(H,) and a *-homomorphism
pn 2 C*(T) = B(H,)RM, such that p, @, () = (pr®1)pn(x)(pp®1), for every z € C*(I"), n € N.

For n € N, consider the von Neumann algebra M,, = B(#,,)®M,, together with the semifinite trace
7o = Tr ® 7, where Tr denotes the usual trace on B(H,), and the associated L?-norm, || - ||2,
For z € M,, with ||z|]27, < oo, we denote still by x the corresponding vector in L2(M,,). We
consider the standard unital normal embeddings M.,,, My? C B(L*(M,)) given by the left and
right multiplication actions of M,,. Using that p, ® 1 € M, we define K, = (p, ® 1)L*(M,,).

Then we have unital normal embeddings p, ® M, = (p,®1) My (p,®1) C B(K,) and M7P C B(K,,).
obtained by noticing that the left multiplication action of (p, ® 1) M, (p, ® 1) on L?(M,,) and the
right multiplication action of M,, on L?(M,,) leave K,, invariant.

In particular, we can endow IC,, with a left A-module structure given by a - £ = (p, ® a)§. Further,
for n € N, we define a map m, : I' = U(K,,) by letting

Tn(9)€ = (Pn @ ugn)Epn(ug)”, for every g € I' and & € IC,,.
Using that p, is a homomorphism, wug,up, = cn(g, h)ughns and ugnauy,, = o4(a) we get that
mn(9)mn(h) = cn(g, h)mn(gh) and m,(g)am,(9)* = o4(a), for every g,h € I' and a € A.
Next, let &, = p, ®1 € KC;y. Then [|€, |27, = 1. Since (a-&,,&n) = (P ®a,pp ® 1) = 7(a), for every
a € A, we get that (&,,£,)a = 1. Moreover, if g € ', then we have
(Tn(9)6ns én) = (Pn ® Uugn) (Pr ® 1)pn(ug)™, pp ® 1)
= Tn((Pn @ Ugn)(Pn @ 1) pn(ug)*(pn @ 1))
= Tn((Pn @ ugn)(Pn @ Pn(ug)*))
= Tn(Ug,nPn(ug)™).
Thus, we get that
17 (9)8n = €nll3 2, = 2(1 = R(7n(9)6n: €n))
=2(1 — N7 (ugnthn(ug)™))
= 207 (ugn (ugm — ¥n(ug))”)
< 2||ugmn — Ynlug)l27,-

Hence, ||, (9)én —&nll27, — 0, for every g € T'. Altogether, we are in position to apply Theorem 4.1
and conclude that the restriction of ¢, to A is a 2-coboundary, for large enough n. This contradicts
the hypothesis and finishes the proof. |

5. PROOF OF COROLLARY

Let I" be a property (T) group with H*(T, ZI') # {0}. Assume by contradiction that C*(T') has the
LP. Let d € ZX(T', ZT')\B(T, ZT). Define d = (d, —d) : T xT' — ZI'®ZT. Then d € Z*(T, ZL ®ZT).
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For a countable abelian group G, consider the embedding i : G — L%(@, T) given by i(a)(¢) = ¢(a).
If I" acts on G by automorphisms and we endow G with the dual I'-action, then ¢ is I'-equivariant.

Next, let A be the Haar measure of T and consider the Bernoulli action I' ~? (T', AI'). Denote by

I A% (TF x TT, AT x \') the diagonal action o2. Note that the dual actions of T' on ZI' = TT and
ZI @ ZT = T' x T', are o and &, respectively. As i is T-equivariant, following [Jil6], we define

c:=iode Z*(I,L%T",T)) and ¢:=iode Z*(I,Lo%T" x T', T)).

Let A = L°°(T") and denote also by o and & the Bernoulli actions of I' on A and A®A. With this
notation, we can view ¢ € Z*(T',U(A)) and ¢ € Z*(T,U(ARA)). Since o is malleable in the sense
of Popa (see, e.g., [Po07a]), there is a 1-parameter group {ay}tcr of automorphisms of A®A such
that

(1) g =1d, a1(a® 1) = 1 ® a, for every a € A,
(2) oy commutes with o, for every ¢t € R, and
(3) %in% |lat(a) — all2 = 0, for every a € ARA.

—

In particular, using (2), we can define ¢; := c ay(c)* € Z*(I',U(ARA)), for every t € R, where
we identify A with A® 1 C A®A. Then 1%ir% llee(g, h) — 1|2 = PH(l] llaw(e(g, b)) — c(g,h)||2 = 0 by
— —

(3), for every g,h € I'. Since C*(I') is assumed to have the LP, Theorem |C| implies that there is
§ > 0 such that ¢; € B3(T,U(ARA)), for every t € R with |t| < §. Thus, there is n € N such that
c1 € BXT,U(A®A)). Therefore

(5.1) C=coc =ca(c)* =crai(ci)...an1(cr) € BXT,U(ARA)).

Since & is a Bernoulli action, so are the diagonal actions 2 and 6. Since I has property (T), Popa’s
cocycle superrigidity theorem [Po07a] implies that 52 and 64 are {T}-cocycle superrigid. Since I' has
property (T), [Jil6, Corollary 4.1] implies that the group H*(T', ZI' ©ZT") = H*(T", ZI") @ H*(T, ZT) is
torsion free. Finally, since ¢ = i od, [Jil6, Theorem 1.1] implies that d = (d, —d) € B*(T', ZT @ ZT).
This gives that d € B(T', ZI'), which is a contradiction. [ |

6. PROOF OF COROLLARY [E]

In this section we prove Corollary |[E| and then justify a claim made in Example (i).

6.1. A Moore-Schmidt theorem for 2-cohomology. Let I' ~ (X, ) be a p.m.p. action and
c € ZHT,L°%(X,R)) be a l-cocycle. For r € R, define ¢, € ZY(T',L%(X, T)) by ¢,(g9) = exp(irc(g)).
If ¢ is a 1-coboundary, then so is ¢, for every r € R.

Conversely, a theorem of Moore and Schmidt (see |[MS80, Theorem 4.3]) shows that if ¢, is a 1-
coboundary, for every r € R, then so is ¢. The proof of Corollary [E] relies on the following analogue
of this result for 2-cohomology.

Theorem 6.1. Let I be a countable group and I' ~ (X,pu) be an ergodic p.m.p. action. Let
c € 73T, L°(X,R)) and for r € R, define ¢, € Z*(I',L%(X,T)) by c-(g,h)(z) = exp(irc(g, h)(x)),
for g,h €T and x € X. Assume that ¢, € BT, LY(X,T)), for every r € R.

Suppose further that BY(T,L°(X,T)) is an open subgroup of Z*(T',L°(X,T)).
Then ¢ € BX(T',L°(X,R)).
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The condition that BY(I', L°(X, T)) is an open subgroup of Z*(T, L%(X, T)) is satisfied whenever T'
has property (T) by a result of Schmidt [Sc81, Theorem 3.4]. It also holds if the action T' ~ (X, )
is {T}-cocycle superrigid, see Popa’s cocycle superrigidity theorems [Po07alPo08| for such actions,
and Char(I") = {e}. Finally, the condition trivially holds if X consists of one point, or equivalently
when LO(X, T) = T, leading to the following consequence:

Corollary 6.2. Let T' be a countable group and ¢ € Z*(T',R). For r € R, define ¢, € Z*(T,T) by
letting c, = exp(irc). Assume that ¢, € B*(T,T), for every r € R. Then ¢ € B*(I',R).

Proof of Theorem . Put A = L% X, T). Since the map R 3 7+ ¢, € Z2(T', A) is continuous and
its image is contained in B?(T", A), Lemma [2.5{implies the existence of a Borel map R 3 7+ b, € AT
such that ¢, = 0b,, for every r € R, or, equivalently,

(6.1) cr(g,h) = by(g)og(br-(h))b(gh) !, for every g,h € T.

For r,s € R, define d, 5 € Al by letting dys = brbsb;js. Since the map R 3 r — ¢,.(g,h) € A is a
homomorphism, for every g,h € T, (6.1)) implies that d,. s € Z'(T, A), for every r, s € R. Thus, we
have a Borel map d : R x R — Z!(T, A) which is clearly a 2-cocycle.

Next, by the hypothesis HY(T', A) is a countable discrete abelian group. Let 6 : Z1(I", A) — HY(T, A)
be the quotient homomorphism. Since J is continuous and d is a symmetric 2-cocycle, dod : RxR —
HY(T', A) is a symmetric 2-cocycle. Since H!(T, A) is countable, Lemma [2.6| (1) implies that 6 o d is
a 2-coboundary. Thus, there is a Borel map e : R — HY(T', A) such that

(6.2) 5(dy,s) = erese, s, for mi-almost every (r,s) € R%,

Since § : ZY(I', A) — HY(T', A) is a continuous onto homomorphism, [Ke94, Theorem 2.6] gives a
Borel map ¢ : HY(T', A) — ZY(T, A) such that §(¢(e)) = e, for every e € HY(T, A). Thus, f := (oe:
R — Z}(T, A) is a Borel map such that es = 6(fs), for every s € R. Define k : R x R — Z(T', A)
by letting ky s = dys(fr fsfr] Jrls)*l. Then k is a 2-cocycle and implies that

(6.3) ks € BY(T, A), for m-almost every (r, s) € R%.
By using Lemma we can find a Borel map a : R x R — A such that
(6.4) krs(g) = a;iag(ar7s), for every g € T, for m-almost every (r,s) € R2.

Moreover, since k, s = ks, we may assume that a, s = as,, for every r,s € R.

View T < A = L%(X, T) as the closed subgroup of constant functions. Since k : R x R — Z(I', A)
is a 2-cocycle, by combining (6.4) with the ergodicity of ¢ it follows that

6.5 T apstriss =T - arsitsy, for ma-almost every (r,s,t) € R3.
b + b b + b R

Thus, the map R xR 3 (r,s) = T - a,, € A/T is a symmetric 2-cocycle. By Lemma (3), we
can find a Borel map [ : R — A such that

(6.6) T-ans =T 11,7}, for almost every (r,s) € R%.
Together with (6.4]) this gives that
(6.7)

krs(9) = (l;lag(lr))(l;lag(ls))(l;&sag(lr_ks))*l, for every g € T' and almost every (r,s) € R?.
1

Recall that k, s = dm(frfsf;ls)_ = (b f, D7 s ) (brts 7‘——1_15)—1’ for every r,s € R. Together
with , we get that if g € ', then the Borel map ¢, : R — A given by p4(r) = b, f, U, 04(1) 1
satisfies gy (r + 8) = ¢4 (1)p,(s), for almost every r,s € R. Hence there is ¢, € LO(X,R) such that
@q(r) = exp(iréy), for almost every r € R. Thus, we derive that

(6.8) be(9) = f-(9)l; tog(1,) exp(irg,), for every g € T and almost every r € R.
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Since f. € ZYT, A), for every r € R, from the combination of (6.1)) and it follows that
cr(g,h) = exp(ir(&y + o4(&n) — &gn)), for all g,h € T', and almost every r € R. This implies that
(g, h) = &g + 04(&) — Egn, for every g, h € I, and thus ¢ € B*(I', L°(X, R)). [

Remark 6.3. Let K be a locally compact abelian group. Then it is easy to see that the proof
of Lemma [2.6] can in fact be applied verbatim for K instead of R, with the added assumption
that K is connected for part (1). Similarly, in Theorem we can consider K-valued cocycles
c € 74", I°(X, K)), and replace c,.(g, h)(x) = exp(irc(g, h)(x)) by cy(g, h)(x) = x(c(g,h)(z)) for
elements x in the Pontryagin dual K of K. Assuming that K is connected and using the more
general statement of Lemma([2.6] the above proof of Theorem [6.1] applies verbatim to reach the same
conclusion for these K-valued 2-cocycles. In particular, Theorem [6.1] holds for K-valued 2-cocycles
whenever K is of the form R™ x A for some n € N and some countable discrete torsion-free abelian
group A. Indeed, these are exactly the locally compact abelian groups with connected Pontryagin
dual, see for instance [Mo77, Theorem 26 and Corollary 4].

6.2. Proof of Corollary As T has property (T), [Sc81, Theorem 3.4] implies that BY(T', LY(X, T))
is an open subgroup of Z! (T, L%(X, T)). Let ¢ € Z*(I', LY(X,R))\B*(I', L°(X, R)). For r € R, define
¢ = exp(irc) € Z*(I,LY(X,T)). Note that S = {r € R | ¢, € B}(T,L%(X,T))} is a subgroup of
R. By Theorem S is a proper subgroup of R and thus it does not contain a neighborhood of
0 € R. Hence, we can find a sequence t,, € R\ S such that ¢, — 0. Since ||¢;,(g,h) — 1|2 — 0, for
every g,h € ', we can apply Theorem |C|to conclude that C*(T") does not have the LP. |

6.3. Lattices with non-zero H?(-,R). The following lemma is needed to justify Example (1)

Lemma 6.4 ([BAHVO08|). Let G be a simple Lie group with an infinite cyclic fundamental group
and with property (T). If T is a lattice in G, then H?(I',R) # {0}.

Proof. The proof of [BAHV08, Corollary 3.5.6] shows that there is a central extension
0+Z—>T—=T—0

such that T' has property (T) and contains Z in its center. Choosing a section ¢ : I' — T of the

quotient homomorphism p : I' — T', i.e. a map such that p(q(g)) = g for every g € T, this is used to
deduce that the 2-cocycle ¢ € Z*(T', Z) given by c(g,h) = q(g)q(h)q(gh)~" does not lie in B*(T', Z).

To prove the conclusion, it suffices to argue that ¢ ¢ B?(I',R). Otherwise, we can find a map
b: T — R such that c¢(g,h) = b(g9)b(h)b(gh) !, for every g,h € T (here we use the multiplicative
notation for addition on R). Define 7 : I' — Z by letting 7(g) = q(p(g))g~*, for every g € I. Since
Z is central in T, we get that r(g)r(h) = c¢(p(g), p(h))r(gh), for every g,h € T. Thus, s : I — R
given by s(g) = b(p(g))~'r(g) is a homomorphism. Since I' has property (T), [BAHV08, Corollary
1.3.5] implies that s(I') = {0}. In particular, 0 = s(g) = b(p(g)) q(p(g))g~* = b(e)'q(e)g™, thus
g = b(e)"1q(e), for every g € Z. This is a contradiction and finishes the proof. [

7. PROOF OF PROPOSITION [F]

7.1. An embedding result for second cohomology. The proof of Proposition [F] relies on the
following result, which appears to be of independent interest.

Lemma 7.1. Let I be a countable group with property (T). Let ' ~ (X,p) and T' ~ (Y,v) be
ergodic p.m.p. actions. Let ¢ € Z*(I',L°(X,R)) and view ¢ € Z*(T',L°(X x Y,R)).

If c € B3(I,L°(X x Y,R)), then c € B*(I',L°(X,R)).
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Thus, the natural homomorphism H2(T,L°(X,R)) — H3(T, L°(X x Y, R)) is injective. In particular,
the natural homomorphism H?(I',R) — H?(I',LO(Y,R)) is injective.

To prove Lemma we will need the following technical result.

Lemma 7.2. Let T be a countable group. Let T' ~ (X, 1) and T' ~ (Y, v) be ergodic p.m.p actions.
Let £ : X x Y2 — R be measurable such that &(x,y1,y2) = —&(x,y2,y1), for all (x,y1,12) € X x Y2,
and suppose n : X X Y* — R given by n(x,y1,y2,y3) = &(@,y1,52) + £(2,y2,y3) + E(z,y3,91) is
T'-invariant.

Then there are a I'-invariant measurable function o : X x Y2 — R and a measurable function
B: X XY — R with &(z,y1,y2) = oz, y1,y2)+B(x, y1)—B(x, y2), for almost all (z,y1,y2) € X xY?2.

Let us prove Lemma [7.1] assuming for the moment Lemma [7-2]
Proof of Lemma . Assume that there exists a map b: T' — L%(X x Y,R) such that

(7.1) c(g. h)(x) = b(g)(x,y) + b(h)(g™"z, 97" y) — blgh)(z.y),

for all g,h € T and almost every (z,y) € X x Y. Define d : T' — L%(X x Y2 R) by letting
d(g)(l’vylayQ) = b(g)($7y1) - b(g)(mva) Then " 1mphes that d € Zl(rvLO(X X Y27R))

Since I' has property (T), a result of Schmidt (see [Sc81, Theorem 3.4]) and Zimmer (see [Zi84,
Theorem 9.1.1]) shows that H(T',LY(Z,R)) = 0, for any ergodic p.m.p. action ' ~ (Z, p). More-

over, |[Kil7, Proposition 2.5] implies that the same holds for any p.m.p. but not necessarily ergodic
action I' ~ (Z, p). Hence, there is ¢ € L%(X x Y2, R) such that

(7.2) b(g)(z,y1) = b(g)(x, y2) = &g~ 2, 97y, 97 2) — (@, 1, 2),

for all g € I' and almost every (x,y1,y2) € X x Y2, Since (7.2) still holds if we replace ¢ with the
) — §($»y17y2)§€(907y2,y1)

function X x Y2 3 (z,y1, 92 € R, we may additionally assume that

(7.3) &(z,y1,y2) = —&(z,y2,y1), for all (z,y1,72) € X x Y2

Next, by (7.2), n: X x Y — R given by n(z,y1, Y2, y3) = £(z,y1,y2) + (2, Y2, y3) +E (2, y3, 1) is T-
invariant. By applying Lemma we can find a I-invariant measurable function o : X x Y2 - R

and a measurable function 5: X x Y — R such that &(z,y1,y2) = a(x,y1,y2) + B(x, 11) — B(x, y2),
for almost all (2, y1,%2) € X x Y2, In combination with , it follows that for every g € I' the map
X xY 3 (z,y) = b(g9)(z,y) — (B(g'z,97 y) — B(x,y)) € R is independent of the y-variable. Hence,
there is a(g) € L°(X,R) such that b(g)(z,y) — (B(g~ 2, 97 y) — B(x,9)) = a(g)(z), for almost every
(z,y) € X x Y. Together with (7.1, we get that c(g, h)(z) = a(g)(z) + a(h)(g ' z) — a(gh)(z), for
all g,h € T and almost every = € X. This proves that ¢ € B(I', LY(X,R)), as desired. |

Remark 7.3. Lemma has a short proof if I' ~ (Y, v) is weakly mixing. In this case, the product
action I' ~ (X x Y3, u x %) is ergodic and so 7 is constant. Since n(x,y1,y3,y2) = —n(x, y1, Y2, y3),
we get that n(x,y1,y2, y3) = 0, for almost every (x,y1,y2,y3) € X x Y3, By Fubini’s theorem, there
is z € Y such that n(z,y1,y2,2) = 0 and thus {(z, y1,y2) = {(z,y1, 2) — (2, y2, 2), for almost every
(x,91,y2) € X x Y2, To prove Lemma in general, we will need a much more involved argument,
working with the maximal compact factors of the actions considered.

Proof of Lemma . First, we argue that the actions I' ~ (X, ) and I' ~ (Y, ) may be assumed
compact. Let I' ~ (Xo, po) and T' ~ (Yp, 1) be their maximal compact factors. Let p : X — X
and ¢ : Y — Y be the I'-equivariant factor maps. Since the Koopman representations of I' on
L?(X)oL?(Xp) and L2(Y)©L3(Yp) are weakly mixing, any T-invariant map 7 : X x Y — R factors
through pxq3. Let p : Xox Y5 — R be measurable such that ) = po(px¢®). By Fubini’s theorem, we
can find = € Y such that p(p(), a(y1), a(ye), a(2)) = &, y1, y2) + (@, y2. 2) — £ (@, 1, 2), for almost
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every (z,y1,92) € X x Y2 Then & : X x Y — R given by &(z,y1,92) = p(p(x), ¢(y1), 4(y2), q(2))
factors through p x ¢? and satisfies the same properties as &. Since it suffices to prove the conclusion
for &y instead of £, we may indeed assume that X = Xy and Y =Y.

Since the ergodic actions I' ~ (X, u) and I' ~ (Y, v) are compact, they are isomorphic to left
translation actions I' ~ G/K and I' ~ G/L, where G is a compact group containing I' densely and
K,L < G are closed subgroups. As n is I'-invariant and I' < G is dense, 7 is G-invariant. Then
Fubini’s theorem gives a € G such that n(gaK, gy1, gy, gy3) = n(aK,y1,y2,y3), for almost every
(g9,y1,y2,y3) € G x Y3, By applying Fubini’s theorem again we find b € G such that
T,(bKa gy1, gy2, gy3) = n(gaKa gy1, gy2, gy3) = n(a’Kﬂ Y1,Y2, y3)7

for almost every (g, 1. 2,s) € bKa™" x Y% Thus, n(bK, gy, gy2, gys) = n(bK, hys, hya, hys), for
almost every (g,h,v1,y2,v3) € (bKa™1)? x Y3. Hence, if we let Ko = bKb~ !, then

(74) U(bK, kyb ky27 ky3) = n(bKa Y1,Y2, y3)7 for almost every (k7 Y1,Y2, y3) € KO X Y3-

Define p € Z'(Ko, L(Y2,R)) by p(k)(y1,42) = (K, k™ y1, k™ ya) — £(bK, y1,42). Then
implies that p(k)(y1,y2) + p(k)(y2, ys) + p(k)(ys,y1) = 0, for almost every (k,y1,y2,y3) € Ko x Y*.
Moreover, we have p(k)(y1,y2) = —p(k)(y2,y1), for every (k,y1,y2) € Kox Y?2. By Fubini’s theorem
we can thus find y3 € Y such that the map o : Ko — L°(Y,R) given by o(k)(y) = p(k)(y, y3) satisfies

(7.5) a(k)(y1) — o (k)(y2) = p(k)(y1,y2), for almost every (k,y1,y2) € Ko x V2.

Since p € Z! (Ko, L°(Y2,R)), implies that for almost every (k,k’,y1,92) € K2 x Y? we have
a(k)(y1) + o (k) (k™ y1) — o (kK (y1) = o (k) (y2) + o (k') (K™ y2) — o (kK')(y2).

Hence, for almost every (k, k") € K2, there is c(k, k') € R such that

(7.6) a(k)(y) + oK) (k™ 1y) — a(kk)(y) = c(k, k'), for almost every y € V.

Then one checks that ¢ € Z*(Kp, R). Since Kj is a compact group, [AM13, Theorem A] implies that
H?(Kp,R) = 0. Thus, we can find b : Ky — R measurable such that c(k, k") = b(k) + b(k') — b(kk'),
for almost every (k, k') € K2. In combination with (7.6) it follows that the map 7 : Ko — L(Y,R)
given by 7(k)(y) = o(k)(y) — b(k) belongs to Z* (Ko, L°(Y,R)). Using again that Ky is a compact
group and [AM13, Theorem A] we get that H(Ko, L°(Y,R)) = 0. Thus, there is f € L°(Y,R) such
that 7(k)(y) = f(k~'y) — f(y), for almost every (k,y) € Ko x Y. By combining this with (7.5 and
the definition of p, we get that for almost every (k,y1,72) € Ko x Y2 we have
EOK, k™ y1, k™ y2) — €K, yi,y2) = (F(K 1) = F(y1) — (F (6 ye) — f(y2)).

Thus, the map ¢ : Y2 — R given by ((y1,vy2) = E(bK, y1,y2) — f(y1) + f(y2) is Ko-invariant. Using
the fact that 7 is G-invariant, for almost every (z,y1,y2,v3) € G x Y3, we get that

g(l’K, Y1, y2) + g(l'K, Y2, y3) + E(I‘K, Ys, yl)

= g(bKv bx_lyla bm_lyZ) + g(bK7 bx_lyQa b$—1y3) =+ {(bK, bx_ly& bx_lyl)

= ((bx~y1, br~ya) 4 C(ba " ya, batys) + C(bx L ys, baly).

Note that the map G XY 3 (z,2) — (z,22) € G x Y is measure preserving. By applying Fubini’s
theorem, we can find z € Y such that for almost every (z,y1,72) € G x Y2, the last displayed
identity holds for y3 = xz. Equivalently, for almost every (z,y1,72) € G x Y2 we have that

f(l‘K, Y1, y2) + f(.’L’K, Y2, .CL‘Z) - {(.’L‘K, Y1, iL'Z) - C(bx_lyla bw_lyQ) + C(bx_1y27 bz) - C(bx_lylv bZ)
Thus, if we define F': G x Y — R by letting F(z,y) = ((zK, y, z2) — ((bxz ™'y, bz) then we have
(7.7) E(xK,y1,y2) — C(ba™ yr, b~ yp) = Fz, 1) — F(z,12),
for almost every (z,y1,y2) € G x Y2,



24 A. IOANA, P. SPAAS, AND M. WIERSMA

Since ( is Ko-invariant, the map G x Y2 3 (z,y1,v2) — ((bx ™1y, bx~1ys) € R factors through
GxY? = G/K xY?2 Define a: G/K xY? — R by letting a(zK,y1,92) = ((bx ™ y1, bz~ ys), and
note that « is I'-invariant.

By combining this fact with we get that F(zk,y1) — F(zk,y2) = F(x,y1) — F(x,y2), for
almost every (z,y1,y2,k) € G x Y2 x K. Hence, there is w : K x G — R measurable such that
F(zk,y) — F(x,y) = w(k, z), for almost every (z,y,k) € G x Y x K. Then w is a 1-cocycle for the
right translation action of K on G. Since K is compact, [AM13] Theorem A] gives a measurable
map v : G — R such that w(k, z) = v(zk) — v(z), for almost every (x,k) € G x K. Thus, the map
GxY > (z,y) = F(z,y) —v(z) € R factors through G xY - G/K xY. Let 5: G/K xY — R
be given by B(zK,y) = F(x,y) — v(x). Finally, rewrites as £(zK,y1,y2) — a(zK,y1,y2) =
B(zK,y1) — B(zK,y2), for almost every (z,y1,v2) € G x Y2. This finishes the proof. |

7.2. Proof of Proposition [F] We begin by introducing some notation and recalling several facts
that we will use in the proof. For a countable p.m.p. equivalence relation R on a probability space
(T, \) we denote by H?(R,R) the second cohomology group of R with values in R [FM77] and by
T\’,‘TO = RN(Tp x Tp) its restriction to a measurable set Ty C T. If Ty C T is a measurable set and T}
is the R-saturation of Ty (i.e., the set of x € T such that there is y € Tp with (x,y) € R), then [Kil7,
Lemma 2.2] shows that H*(Rz,, R) = H*(Rr,,R). Finally, if & ~ (T, A) is a p.m.p. action of a
countable group, we denote by R(X ~T) = {(z,y) € T xT | ¥ -2z = X -y} its orbit equivalence
relation. By [FM77, Theorem 5], if ¥ acts freely, then H?(R(X ~ T),R) = H*(X, L%(T, R)).

Let T" be a countable group with property (T) admitting an ergodic p.m.p. action I' ~ (X, u) with
H%(I',L°(X,R)) # 0. Let A be a countable group that is measure equivalent to I'. By [Fu99al
Corollary 1.4], A has property (T). Moreover, by [Fu99b, Lemma 3.2 and Theorem 3.3], there exist
free ergodic p.m.p. actions I' ~ (Y,v), A ~ (Z,p) that are stably orbit equivalent: there are
non-negligible measurable sets Yy C Y, Zy C Z and a measure preserving isomorphism 6 : Yy — Zj
such that (0 x 0)(R(I' ~Y)y,) = R(A~ Z)|z,-

Consider the product action I' ~ (X x Y,u x v). By using the previous paragraph, one can
construct a free p.m.p. action A ~ (W, n) and a non-negligible measurable set Wy, C W such that
R(I' ~ X X Y)|(xxyy) is isomorphic to R(A ~ W)y, (see [loll, Claim 5, Section 3]). Since the
action I' ~ (Y, v) is ergodic, we have that I - (X x Yp) = X x Y. Denote Wi = A - Wy. Then W
is A-invariant and by combining the facts from the first paragraph of the proof we get that

H?*(R(A ~ W1),R) = H*(R(A ~ W)y, R)
=~ H*(R(F ~ X X Y)|xxyy, R)
~H>(R(I' ~ X xY),R)
~ H3(T,L%(X x Y,R)).

R
R

Since H*(I',L°(X,R)) # 0, using Lemma we conclude that H*(R(A ~ W;),R) # 0. By using
the ergodic decomposition of the free p.m.p. action A ~ (W1, n(W1)~'nu,) and [Kil7, Proposition
2.5] we can find a A-invariant probability measure 7; on W7 such the p.m.p. action A ~ (Wy,m1) is
free and ergodic, and its orbit equivalence relation S satisfies H2(S,R) # 0. Finally, we have that
H2(A,LY((Wy1,m),R)) = H?(S,R) # 0, which proves the conclusion. [ |

7.3. An embedding result for first cohomology.

Theorem 7.4. Let I' 7 (X, u) be a p.m.p. action of a countable group I' with spectral gap.
Then the natural homomorphism HY (T, L?(X,R)) — HYT,L%(X,R)) is injective.
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Proof. Let c: T — L*(X,R) be a 1-cocycle for which there is b € L°(X, R) such that ¢(g) = o4(b)—b,
for all g € . Let M > 0 such that Y = {z € X | |b(z)| < M} satisfies 4(Y) > 3. Since o has
spectral gap, we can find F' C I finite and C; > 0 such that

(73) I = [ € an- 1 < Cuma oy (€) = €]l for every € € 12(X).

For every t € R, let u; = exp(itb) € L°(X,T) and oy = [y uy dpu. Then og(ug)uj = exp(ite(g)).
Using that |exp(iz) — 1| < |z, for all z € R, ||og(ut) —utl|2 = ||og(us)uf — 1|2 and (7.8) we get that

lur — o - |z < Crmax [Jog(ug) — uell2 = C|| exp(ite(g)) — 12 < Crtmax [[c(g)||2-
ger geF

Thus, if we let Co = C1 maxger [|c(g)|l2 < oo, then
(7.9) |lur — ¢ - 1|2 < Cat, for every ¢t € R.

If t € R, then since [, |exp(ith(z)) — ax|? dp(z) < |lug — a¢ - 1]|3 < C3t?, there is z € Y such that
|exp(ith(z) — ay| < v/2Cs|t|. Since z € Y, we have that |exp(ith(z)) — 1| < [tb(z)| < M|t|. Thus,
we get |y — 1| < Cst, where C3 = V205 + M. Letting Cy = Co + C3 and using this gives
that [Ju; — 1]j2 < Cat, for every t € R.

t2
WP(MQM < 6% and %ix]%‘e’q)(it?t% = |b(z)[?, for every t € R and = € X, the dominated
—
convergence theorem implies that [ X |b(x)|?> du(x) < C%. Since this holds for every 6 > 0, the

Finally, for 6 > 0, let Xs = {x € X | |[b(z)] < d§}. Since fxéw du(zr) < C3,

monotone convergence theorem implies that b € L2(X,R), which finishes the proof. |

Corollary 7.5. (cf. [PS12, Corollary 4.2]) Let I' ~ (X, pu) be an ergodic p.m.p. action that is
{T}-cocycle superrigid.

Then HY(T,L%(X,R)) = 0. Moreover, if T' ~ (X, i) has spectral gap, then HY(T',L*(X)) = 0.

Proof. The main assertion is a direct consequence of a result from [MS80]. Let ¢ € Z'(I', L°(X,R)).
For r € R, define ¢, € ZT,L%(X,T)) by ¢.(9) = exp(irc(g)). Since I' ~ (X, ) is {T}-cocycle
superrigid, ¢, is cohomologous to a character 7, : I' — T, for every r € R. Then applying [MS80,
Theorem 6.2, equivalence of conditions (6) and (7)] implies that ¢ € BY(T,L(X,R)), as desired.
The moreover assertion now follows by combining the main assertion and Theorem |

8. PROOF OoF THEOREM [G]

Let T" be a non-finitely presented group with property (T). Assume by contradiction that C*(T")
has the LP. As I is finitely generated |[Ka67|, it has a presentation I' = (s, ..., s, | 7,1 € N). By a
theorem of Shalom (see [Sh00, Theorem 6.7]), there exists m € N such that the finitely presented
group I'o = (s1,...,8% | 71,...,7m) has property (T). Denote by 7 : I'y — I' the canonical onto
homomorphism. Let ¢ : I' — I'g be a map such that 7(d(g)) = g, for every g € I.

Forn € Ny let '), = (s1,..., Sk | 71, -+, "m+n) and 7, : I'g — I';, be the canonical onto homomorphism.
Let M, = L(I';,) and 7, : M, — C be its usual trace. Define ¢, : I' — U(M,) by letting
n(9) = Ur,(5(g))- If g,h €T, then 6(gh)~16(g)d(h) € ker(w). Thus, 6(gh)*6(g)d(h) € ker(m,) so
©n(gh) = pn(g)en(h), for large n. Thus, ¢, : I' = U(M,,), n € N, is an asymptotic homomorphism.
Since C*(I') has the LP, Corollary implies the existence of u.c.p. maps @, : C*(I') — L(I',),
n € N, such that [, (ug) — tr, (s5(9)ll2mm = [[Pnlug) — ©nl(g)ll2,n, — 0, for every g € I'. Thus,

(8.1) ”(I)n(’u,w(g)) — uﬂn((g(w(g)))ugﬂ—n — 0, for every g < Ip.
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If g € Ty, then ¢g7'6(n(g)) € ker(n). Thus, g~'6(n(g)) € ker(m,) and hence 7,(6(7(g))) = mu(g),
for n large enough. In combination with , we deduce that

(8.2) [Pn(tUn(g)) = Un,(g)ll2,m, — 0, for every g € To.

For n € N, let ¢, : Ty — C be the positive definite map given by ,(g) = Tn(tﬁn(uﬂ(g))u;n(g)).

By , Yn(g) — 1, for any g € I'y. Since I'g has property (T), we get sup,er, [¥n(g) — 1| — 0.
Since ||y, (tr(g))]l < 1, we get that || By, (tr(g)) = tn, (g)ll3.5, < 2ltn(g) —1], for every g € Ty. Hence,
we derive that supger, [[Pn(tr(g)) — Un,(g)ll2,7 — 0. As a consequence, there is n € N such that
@n(tn(g)) = Un,(g)ll2,7 < 1, for every g € I'g. Thus, if g € ker(n), then since ®,, is unital we get
that [[1 — ur,(g)ll2,7 < 1 and therefore g € ker(m,). This implies that ker(r) = ker(m,), hence
I' =T, would be finitely presented, which is a contradiction.

Remark 8.1. In this remark we explain why the groups {I', }aer considered in [Oz04al Corollary 5]
are not finitely presented. Assume that G’ := T',, is finitely presented, for some o € I. By the proof
of [0z04a, Theorem 1], there is a torsion-free non-cyclic hyperbolic group G with property (T) such
that G’ is the inductive limit of a sequence of onto homomorphisms Gy := G — G1 — G2 — ...
Equivalently, we can find an increasing sequence Ny := {e} < N; < Ny < ... of normal subgroups
of Gy such that G; = Go/N;, for every i > 0, and G’ = G/N, where N = U;>oN;.

We claim that N; # N, for every ¢ > 0. If N; = N, for some ¢ > 0, then N; = N, for every j > i.
On the other hand, if we enumerate Gy = {g1, g2, ...}, then as in the proof of [Oz04a, Theorem 1]
we have that the image of g; in G2j_2 is torsion-free, while the image of g; in G2;_1 has finite order,
for infinitely many j’s. Thus, Naj_o # Na;_1, for infinitely many j’s, which gives a contradiction.

Since Gy has property (T), it admits a finite generating set S [Ka67]. Let 7 : Fg — Gy and
p: Gy = G' = Gy/N be the natural quotient homomorphisms. Since por : Fg — G’ is onto and G’
is finitely presented, we can find a finite presentation G’ = (S| R) (see [dH00, Proposition V.A.2]).
In other words, ker(p o ) = m~1(N) is generated by the finite set R as a normal subgroup of Fg.
Since R C 77 1(N) = U;jsom }(IV;) and R is finite, we can find i > 0 such that R C 7~1(V;). Since
771(N;) is a normal subgroup of Fg, we get that 7= 1(N) = ker(pon) C 7~ 1(N;). Thus, N C N;
and hence N = N;, which contradicts the claim from the previous paragraph.
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