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N-Acyl-Carbazoles: New Coupling Reagents by Selective N-C(O) Cleavage
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ABSTRACT: The development of new amide precursors for selective, catalytic activation of carbon—nitrogen bonds in amides is a
fundamental objective of this emerging reactivity manifold. We report the palladium-catalyzed Suzuki—Miyaura cross-coupling of
N-acyl-carbazoles and N-acyl-indoles with arylboronic acids by a highly selective N—C(O) cleavage. The key amide bond ground-
state-destabilization stems from Nj, to Ar conjugation and enables for the first time to achieve reactivity similar to N-acyl-
sulfonamide and N-acyl-carbamate activation in simple anilides.

Activation of amide bonds by selective oxidative insertion
into the N—C(O) bond is a particularly attractive strategy for
generating acyl-metals from amides.! Traditionally, the selec-
tive activation of N—C(O) amide bonds has been a major chal-
lenge due to the classic amidic resonance (nN—m'c-o conjuga-
tion, RE, resonance energy, 15-20 kcal/mol in planar amides)
(Figure 1A-B). In this context, the development of catalytic
amide bond cross-couplings is of broad interest to selectively
functionalize organic molecules due to the ubiquity of amide
bonds in organic synthesis, polymers and drug discovery.*’

Recently, methods for ground-state-destabilization of amide
bonds in acyclic amides have been reported.®® The most
common is ny—7'coyo and ny—n's-o delocalization in N-
acyl-carbamates and N-acyl-sulfonamides.” Alternatively, N-
acyl-glutarimides® and N-acyl-mono-amides’® represent twisted
tri- and di-imides that rely on ny—7'cr-o destabilization.
This activation concept leads to the twisting of amide bonds
out of planarity and enables the catalytic generation of acyl-
metals by a combined steric and electronic destabilization.!%!?

In contrast, few methods for selective activation of compar-
atively planar, electronically-activated N-Ar amides have been
reported.’*”'> These studies are predominantly limited to N-
methyl-anilides (RE = 13.5 kcal/mol),'* which have been suc-
cessfully utilized in the oxidative addition of N—C(O) bond to
Ni; however, are generally much less reactive than other am-
ide precursors and unreactive using other metals. Although N-
acyl-pyrroles (RE = 9.3 kcal/mol) have been shown to be reac-
tive electrophiles in the oxidative addition of N—C(O) bonds

using Pd, these substrates are unsuitable as amides for general
cross-coupling reactions due to their well-recognized hydrolyt-
ic instability triggered by the release of the azolide ring.'®'8

As a part of our ongoing research interest in amide bond ac-
tivation, we recently questioned whether Ny, to Ar conjugation
switch in N-Ar amides might be used to effect highly selective
oxidative insertion into the amide N—-C(O) bond (Figure 1C).

Herein, we report the palladium-catalyzed Suzuki—Miyaura
cross-coupling of N-acyl-carbazoles and N-acyl-indoles with
arylboronic acids by highly selective N—C(O) bond cleavage.
The following features of our findings are noteworthy: (1)
Most importantly, this study introduces N-acyl-indoles and in
particular N-acyl-carbazoles as highly effective amide bond
electrophiles for selective activation of the N—C(O) bond. (2)
The key amide bond ground-state-destabilization stems from
Nijp to Ar conjugation in a flat carbazole ring, enabling for the
first time to achieve reactivity similar to N-sulfonamide and
N-carbamate activation in simple anilides. (3) Mechanistic
studies provide key insight into bond destabilization of the
amide bond. Overall, we expect that bench- and hydrolytical-
ly-stable N-acyl-azolides that permit facile N-C(O) activation
will provide a very attractive approach to the generation of
acyl-metals from amides for a variety of coupling reactions.

In agreement with our previous studies, we hypothesized
that diminution of amidic resonance in anilides might be ren-

dered possible by channeling the ny—m'c-o resonance into
another functional group.
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Figure 1. (a) Amide bond resonance. (b) Activation of amides and deriva-
tives. (c) This work: Ny, to Ar conjugation switch, N-acyl-carbazoles: new
class of highly reactive amides for N—C(O) cross-coupling.

After significant experimentation optimizing amide bond
geometry, we identified N-acyl-carbazoles as suitable sub-
strates for this process. The amide bond in a model N-benzoyl-
carbazole (1a) is relatively planar'®®¢ (1 = 25.1°; yn = 3.2°,
Winkler-Dunitz parameters, N-C(O) bond length of 1.400 A,
C=0 of 1.212 A), which can be compared with a model pre-
dominantly planar N-methyl-anilide (N-C(O) bond length of
1.355 A, C=0 0f 1.230 A)."?

Selected optimization studies of the Suzuki—-Miyaura cross-
coupling of N-benzoyl-carbazole (1a) with 4-tolylboronic acid
are presented in Table 1. The optimized conditions utilize Pd—
PEPPSI-IPr (3 mol%), K,CO; (4.5 equiv) in THF at 80 °C
(Table 1, entry 1, see Figure SI-1 for catalyst structures). The
use of other bases, including K3PO4, Na,COj;, Cs,COs3 and
KOH was less successful (entries 2-5). The low yields using
Na,CO3 and Cs>CO; are likely a balance in precatalyst activa-
tion and acyl-metal stability. Several other solvents were ex-
amined, such as toluene, dioxane and DCE, and provided infe-
rior results (entries 6-8). Higher temperature was also compat-
ible with this reaction, consistent with the stability of N-acyl-
carbazole moiety under these conditions (entry 9). Interesting-
ly, the screen of various Pd(I)-NHC catalysts indicated that
catalysts bearing allyl-type throw-away ligands, such as
Pd(IPr)(cin)Cl, Pd(IPr)(1-£-Bu-ind)Cl, Pd(IPr)(allyl)Cl are also
effective in this reaction, delivering the coupling product in
good to high yields (entries 10-12). In contrast, there is a sig-
nificant impact of the steric demand of the NHC ancillary lig-
and, with both less-sterically demanding IMes and more-
hindered IPent giving low yield of the cross-coupling product
(entries 13-14). Finally, we also tested the use of

Table 1. Optimization of Cross-Coupling of N-Acyl-

Carbazoles”
B(OH), fo)
cat. [Pd], L
conditions Me
2 Me 3
entry catalyst base solvent yiel‘}

(%)

1 [Pd—PEPPSI-IPr] K,COs THF 93
2 [Pd—PEPPSI-IPr] K;PO4 THF 52
3 [Pd—PEPPSI-IPr] Na,CO; THF <5
4 [Pd—PEPPSI-IPr] Cs,COs THF 17
5 [Pd—PEPPSI-IPr] KOH THF 13
6 [Pd—PEPPSI-IPr] K,COs toluene 89
7 [Pd—PEPPSI-IPr] K,COs dioxane 51
8 [Pd—PEPPSI-IPr] K,COs DCE 28
9¢ [Pd—PEPPSI-IPr] K,COs THF 86
10 [Pd(IPr)(cin)Cl] K,COs THF 92
11 [Pd(IPr)(1-z-Bu-ind)Cl] K,COs THF 81
12 [Pd(IPr)(ally])C1] K,COs THF 71
13 [Pd—PEPPSI-IPent] K,COs THF 50
14 [Pd—PEPPSI-IMes] K,COs THF 15
15¢ Pd(OAc),/PCy;HBF, K,COs THF 12

“Conditions: amide (1.0 equiv), 4-Tol-B(OH), (3.0 equiv), catalyst (3
mol%), base (4.5 equiv), solvent (0.25 M), 80 °C, 15 h. *‘GC/'H NMR
yields. €120 °C. “Pd(OAc), (3 mol%), PCysHBF, (12 mol%), HsBO; (2.0
equiv), 80 °C. cin = cinnamyl; ind = indenyl; PEPPSI = 3-Cl-pyridine.
Pd/phosphane conditions, which resulted in low conversion
(entry 15); thus, the high o-donation of the NHC ligand using
bench-stable, well-defined Pd(II)-NHCs is highly beneficial
for the coupling.

With the optimized conditions in hand, the scope of this
transformation was examined with respect to the amide com-
ponent (Scheme 1). As shown, this amide bond activation is
well-compatible with neutral (3a), electron-donating (3b-3c)
and electron-withdrawing (3d-3g) substituents on the amide. It
is particularly noteworthy that electrophilic functional groups
that would be problematic in classical addition of hard organ-
ometallics, such as ketones (3f) and esters (3g) are tolerated
under these catalytic conditions. Furthermore, steric-hindrance
(3h), aliphatic amides (3i) and heterocyclic amides conjugated
at the deactivating, electron-rich position (3j-3k) were easily
tolerated. Next, we examined the scope of the reaction with
respect to the boronic acid component (Scheme 1). As shown,
electron-neutral (3b’), electron-rich (3¢’) and electron-
deficient (3d’, 3f-3g’) arylboronic acids were successful sub-
strates, albeit a lower yield using electron-withdrawing groups
has been noted (vide infra). Furthermore, sterically-hindered
boronic acids (3h’), polyaromatic boronic acids (31-3m) and
heterocyclic boronic acids (3k’, 3n-30) furnished the cross-
coupling products in good to high yields. Note that the moder-
ate yield for the thienyl product is likely a result of amide de-
activation by resonance. At the present stage, alcohols are not
compatible with the reaction conditions. Non-activated amides
are recovered unchanged. (4-Aminophenyl)boronic acid is not
tolerated. Note that the reaction time has not been optimized.



Scheme 1. [Pd-NHC]-Catalyzed Suzuki-Miyaura Cross-
Coupling of N-Acyl-Carbazoles®
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“Conditions: amide (1.0 equiv), Ar-B(OH), (3.0 equiv), [Pd] (3 mol%),
K,CO; (4.5 equiv), THF (0.25 M), 80 °C, 15 h. See Supporting Infor-

mation (SI) for details.

Encouraged by the success of the Suzuki-Miyaura cross-
coupling of N-acyl-carbazoles, we investigated the cross-
coupling of N-acyl-indoles (Scheme 2). Similar to N-acyl-
carbazoles, N-acyl-indoles are important structural motifs in
numerous biologically active compounds and as synthetic
intermediates.'® We were pleased to find that the conditions
optimized for the cross-coupling of N-acyl-carbazoles are also
suitable for the cross-coupling of N-acyl-indoles. As shown
using representative examples, electronic- (3a, 3¢, 3f, 3b’, 3¢’,
3g’) and steric variation (3h’) is well-accommodated in the
cross-coupling of N-acyl-indoles, indicating the generality of
the reaction conditions.

We were further interested to test N-acyl-carbazoles as pre-
cursors in acyl-Buchwald-Hartwig-type reactions (Scheme 3).%
We were pleased to find that a model N-benzoyl-carbazole

underwent smooth transamidation under PA-NHC conditions.
It is expected that this class of reagents will provide an attrac-
tive means to trigger various reactions of amides. Note that the
Suzuki-Miyaura coupling takes place under chemoselective
conditions to transamidation of amides.?*

Scheme 2. [Pd-NHC]-Catalyzed Suzuki-Miyaura Cross-
Coupling of N-Acyl-Indoles”
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Scheme 3. [Pd-NHC]-Catalyzed Acyl-Buchwald-Hartwig
Cross-Coupling of N-Acyl-Carbazoles
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The synthetic advantage of N-acyl-carbazoles stems from
the well-established stability of the amide bond to hydroly-
sisconditions, resulting in bench-stable, easily-handled, amide-
based acyl-transfer reagents.'® Furthermore, N-acyl-carbazoles
are readily prepared from 1° amides by double N-arylation'**
or by acid-catalyzed double electrophilic cyclization using 2,5-
dimethoxytetrahdyrofuran'®® (Scheme 4). This disconnection
permits to generate acyl-metal intermediates from common 1°
amides. While several other strategies for activating primary
amides directly have been reported, including N,N-Boc,,” N-
pyrimidyl,'® and N-Ac activation,” N-acyl-carbazoles benefit
from the stability of N-Ar linkage cf. other precursors.
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Intrigued by the high reactivity of N-acyl-carbazoles in the
cross-coupling, we conducted selectivity and kinetic studies
(Scheme 5). (1) Selectivity experiments demonstrated that N-
acyl-carbazoles are significantly more reactive than N-methyl-
anilides (Scheme 5A) and N-phenyl-anilides (Scheme 5B). (2)



Scheme 5. Selectivity Studies
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Furthermore, intermolecular competition experiments

demonstrated full selectivity for the cross-coupling of N-acyl-
carbazoles vs. N-phenyl-anilides (Scheme 5C). (3) Most im-
portantly, kinetic studies demonstrated comparable reactivity
of N-acyl-carbazoles to N,N-Ph/Ts sulfonamide activation
(Scheme 5D). N-Acyl-carbamates have not been used in kinet-
ic studies due to low stability of N-Boc linkage under the reac-
tion conditions. Thus, N-carbazolyl activation permits to
achieve reactivity similar to N-sulfonamide activation in sim-
ple anilides. %

Furthermore, intermolecular competition experiments with
differently substituted amides and boronic acids showed that
clectron-deficient amides are more reactive (4-CF3:4-MeO =
85:15) (Scheme SI-1), while electron-rich boronic acids are
more reactive (4-MeQO:4-CF; = 73:27) (Scheme SI-1), con-
sistent with metal insertion as the rate limiting step.

The development of new amide bond precursors with ra-
tionally-modified amidic resonance is fundamental for the
future progress of amide bond cross-coupling.>™'® In agreement
with our design, N-acyl-carbazoles are predisposed for N—
C(O) activation by Nj, to Ar conjugation. The delocalization is
much enhanced by the flat carbazole ring (Figure 1B).

To gain insight into the energetic parameters of the amide
bond, we conducted computational studies on ground-state-
destabilization in N-acyl-carbazoles (Scheme 6). As summa-
rized in Scheme 6, N-acyl-carbazoles should be benchmarked
two-directionally against anilides (such as, N-Me-anilide and

Scheme 6. Effect of Activating Group: Amides Employed
in Computational Studies and Rotational Profile”
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“Note a gradual decrease of RE by changing N-substituents at the nitrogen
atom. RE of planar DMAc, MeCONMe, = 18.3 kcal/mol. See SI.
N-Ph-anilide)!* and N-acyl-azolides (such as, N-acyl-pyrrole
and N-acyl-indole).'*!¢

(1) Thus, resonance energy determined using the COSNAR
method® showed that resonance in 1a (RE = 7.8 kcal/mol) is
significantly lower than in 7-9 (4a: 10.5 kcal/mol; 7: 9.3
kcal/mol; 8: 12.0 kcal/mol; 9: 13.5 kcal/mol). Note that in this
series, N-acyl-pyrrole is hydrolytically-unstable.'® The low RE
of 1a can be compared with N-Ts amides (8.0 kcal/mol).7*¢

(2) Rotational profiles determined by systematic rotation
along the O—C—N-C dihedral angle showed the energy mini-
mum at ca. 20° O—C-N-C angle for 1a (t= 26.48° yn =
8.41°), and 10° O-C-N-C angle for 4a (t= 14.38°% yn =
7.67°) in a syn O—C—N-Ar conformation (ca. 10° O—C-N-C
dihedral angle), while the energy maximum is located at ca.
90° O—C-N-C dihedral angle for 1a (t = 71.97°; yn = 34.36°,
5.42 kcal/mol) and 90° O—C-N-C dihedral angle for 4a (t =
73.16°; yn = 31.90°, 8.12 kcal/mol) for 1a. These values can
be compared with the barrier of ca. 7.78 kcal/mol in N-acyl-
pyrroles and 7.01 kcal/mol in N-Ts amides.

(3) APA, the difference between N-/O-protonation affinities,
indicated that 1a favors protonation at oxygen (APA = 10.7
kcal/mol), which is significantly lower than in 7 (APA = 21.4
kcal/mol; cf. 4a: 17.4 kcal/mol; 8: 14.2 kcal/mol; 9: 11.0
kcal/mol). Thus, while N-activation of 1 by N-protonation is



unlikely, PA values are consistent with high hydrolytic stabil-
ity of N-acyl-carbazoles.! An interesting point regarding RE
of N-acyl-carbazoles vs. pyrroles vs. indoles might be derived
from C7-H steric interaction (indole). Studies to further ad-
dress this trend are ongoing and will be published separately.

Diminution of amidic resonance can be performed by both
steric and electronic factors.”® The high feasibility of N-acyl-
carbazoles in oxidative insertion stems from Nj, to Ar conjuga-
tion, wherein the presence of carbazole m-system and the pla-
narity of the ring with respect to the amide Ny, ensures maxi-
mum delocalization switch away from the amide bond.*® This
amide bond delocalization concept is likely to find applica-
tions in catalytic reactions of the amide bond”'® as well as the
design of more active amide bond analogues.”™®

In summary, we have developed the palladium-catalyzed
Suzuki—Miyaura cross-coupling of N-acyl-carbazoles and N-
acyl-indoles with arylboronic acids by highly selective N—
C(O) bond cleavage. The reaction is performed using bench-
stable and operationally-convenient Pd(I[)-NHC precatalysts,
and a variety of reaction partners are compatible. This reaction
exploits N-acyl-indoles and especially N-acyl-carbazoles as
highly effective amide bond electrophiles for selective oxida-
tive insertion into the N—C(O) bond. This activation concept of
amide bonds by electronic conjugation sets the stage for sim-
ple N-Ar amides to be broadly applied in various catalytic
processes by N—C(O) bond activation. N-acyl-carbazoles are
bench-stable, easy to handle and generate acyl-metals from 1°
amides. Mechanistic studies provided key insight into amide
bond ground-state-destabilization and for the first time showed
that the reactivity of N-acyl-carbazoles is similar to that of N-
acyl-sulfonamides. Further development of amide cross-
coupling reactions and new catalytic applications will be
closely tied to the discovery of more effective amide bond
electrophiles. Full account on amide bond geometry optimiza-
tion will be forthcoming.
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