


 

 

 

Figure 1. (a) Amide bond resonance. (b) Activation of amides and deriva-
tives. (c) This work: Nlp to Ar conjugation switch, N-acyl-carbazoles: new 
class of highly reactive amides for N–C(O) cross-coupling.  

After significant experimentation optimizing amide bond 
geometry, we identified N-acyl-carbazoles as suitable sub-
strates for this process. The amide bond in a model N-benzoyl-
carbazole (1a) is relatively planar16c,d ( = 25.1°; N = 3.2°, 
Winkler-Dunitz parameters, N–C(O) bond length of 1.400 Å, 
C=O of 1.212 Å), which can be compared with a model pre-
dominantly planar N-methyl-anilide (N–C(O) bond length of 
1.355 Å, C=O of 1.230 Å).13  

Selected optimization studies of the Suzuki–Miyaura cross-
coupling of N-benzoyl-carbazole (1a) with 4-tolylboronic acid 
are presented in Table 1. The optimized conditions utilize Pd–
PEPPSI–IPr (3 mol%), K2CO3 (4.5 equiv) in THF at 80 °C 
(Table 1, entry 1, see Figure SI-1 for catalyst structures). The 
use of other bases, including K3PO4, Na2CO3, Cs2CO3 and 
KOH was less successful (entries 2-5). The low yields using 
Na2CO3 and Cs2CO3 are likely a balance in precatalyst activa-
tion and acyl-metal stability. Several other solvents were ex-
amined, such as toluene, dioxane and DCE, and provided infe-
rior results (entries 6-8). Higher temperature was also compat-
ible with this reaction, consistent with the stability of N-acyl-
carbazole moiety under these conditions (entry 9). Interesting-
ly, the screen of various Pd(II)–NHC catalysts indicated that 
catalysts bearing allyl-type throw-away ligands, such as 
Pd(IPr)(cin)Cl, Pd(IPr)(1-t-Bu-ind)Cl, Pd(IPr)(allyl)Cl are also 
effective in this reaction, delivering the coupling product in 
good to high yields (entries 10-12). In contrast, there is a sig-
nificant impact of the steric demand of the NHC ancillary lig-
and, with both less-sterically demanding IMes and more-
hindered IPent giving low yield of the cross-coupling product 
(entries 13-14). Finally, we also tested the use of 

Table 1. Optimization of Cross-Coupling of N-Acyl-

Carbazolesa 

 

entry catalyst base  solvent  
yield 
(%)b  

1 [Pd–PEPPSI–IPr] K2CO3 THF 93 

2 [Pd–PEPPSI–IPr] K3PO4 THF 52 

3 [Pd–PEPPSI–IPr] Na2CO3 THF <5 

4 [Pd–PEPPSI–IPr] Cs2CO3 THF 17 

5 [Pd–PEPPSI–IPr] KOH THF 13 

6 [Pd–PEPPSI–IPr] K2CO3 toluene 89 

7 [Pd–PEPPSI–IPr] K2CO3 dioxane 51 

8 [Pd–PEPPSI–IPr] K2CO3 DCE 28 

9c [Pd–PEPPSI–IPr] K2CO3 THF 86 

10 [Pd(IPr)(cin)Cl] K2CO3 THF 92 

11 [Pd(IPr)(1-t-Bu-ind)Cl] K2CO3 THF 81 

12 [Pd(IPr)(allyl)Cl] K2CO3 THF 71 

13 [Pd–PEPPSI–IPent] K2CO3 THF 50 

14 [Pd–PEPPSI–IMes] K2CO3 THF 15 

15d Pd(OAc)2/PCy3HBF4 K2CO3 THF 12 
aConditions: amide (1.0 equiv), 4-Tol-B(OH)2 (3.0 equiv), catalyst (3 
mol%), base (4.5 equiv), solvent (0.25 M), 80 °C, 15 h. bGC/1H NMR 
yields. c120 °C. dPd(OAc)2 (3 mol%), PCy3HBF4 (12 mol%), H3BO3 (2.0 
equiv), 80 °C. cin = cinnamyl; ind = indenyl; PEPPSI = 3-Cl-pyridine. 

Pd/phosphane conditions, which resulted in low conversion 
(entry 15); thus, the high -donation of the NHC ligand using 
bench-stable, well-defined Pd(II)–NHCs is highly beneficial 
for the coupling.  

With the optimized conditions in hand, the scope of this 
transformation was examined with respect to the amide com-
ponent (Scheme 1). As shown, this amide bond activation is 
well-compatible with neutral (3a), electron-donating (3b-3c) 
and electron-withdrawing (3d-3g) substituents on the amide. It 
is particularly noteworthy that electrophilic functional groups 
that would be problematic in classical addition of hard organ-
ometallics, such as ketones (3f) and esters (3g) are tolerated 
under these catalytic conditions. Furthermore, steric-hindrance 
(3h), aliphatic amides (3i) and heterocyclic amides conjugated 
at the deactivating, electron-rich position (3j-3k) were easily 
tolerated. Next, we examined the scope of the reaction with 
respect to the boronic acid component (Scheme 1). As shown, 
electron-neutral (3b’), electron-rich (3c’) and electron-
deficient (3d’, 3f’-3g’) arylboronic acids were successful sub-
strates, albeit a lower yield using electron-withdrawing groups 
has been noted (vide infra). Furthermore, sterically-hindered 
boronic acids (3h’), polyaromatic boronic acids (3l-3m) and 
heterocyclic boronic acids (3k’, 3n-3o) furnished the cross-
coupling products in good to high yields. Note that the moder-
ate yield for the thienyl product is likely a result of amide de-
activation by resonance. At the present stage, alcohols are not 
compatible with the reaction conditions. Non-activated amides 
are recovered unchanged. (4-Aminophenyl)boronic acid is not 
tolerated. Note that the reaction time has not been optimized. 



 

 

Scheme 1. [Pd–NHC]-Catalyzed Suzuki-Miyaura Cross-

Coupling of N-Acyl-Carbazolesa 

 

aConditions: amide (1.0 equiv), Ar-B(OH)2 (3.0 equiv), [Pd] (3 mol%), 
K2CO3 (4.5 equiv), THF (0.25 M), 80 °C, 15 h. See Supporting Infor-
mation (SI) for details.  

Encouraged by the success of the Suzuki–Miyaura cross-
coupling of N-acyl-carbazoles, we investigated the cross-
coupling of N-acyl-indoles (Scheme 2). Similar to N-acyl-
carbazoles, N-acyl-indoles are important structural motifs in 
numerous biologically active compounds and as synthetic 
intermediates.16 We were pleased to find that the conditions 
optimized for the cross-coupling of N-acyl-carbazoles are also 
suitable for the cross-coupling of N-acyl-indoles. As shown 
using representative examples, electronic- (3a, 3c, 3f, 3b’, 3c’, 
3g’) and steric variation (3h’) is well-accommodated in the 
cross-coupling of N-acyl-indoles, indicating the generality of 
the reaction conditions.  

We were further interested to test N-acyl-carbazoles as pre-
cursors in acyl-Buchwald-Hartwig-type reactions (Scheme 3).2a 
We were pleased to find that a model N-benzoyl-carbazole 

underwent smooth transamidation under Pd–NHC conditions. 
It is expected that this class of reagents will provide an attrac-
tive means to trigger various reactions of amides. Note that the 
Suzuki-Miyaura coupling takes place under chemoselective 
conditions to transamidation of amides.2a  

Scheme 2. [Pd–NHC]-Catalyzed Suzuki-Miyaura Cross-

Coupling of N-Acyl-Indolesa 

  

aConditions: see Scheme 1.  

Scheme 3. [Pd–NHC]-Catalyzed Acyl-Buchwald-Hartwig 

Cross-Coupling of N-Acyl-Carbazoles 

 

Scheme 4. Synthesis of N-Acyl-Carbazoles from 1° Amides 

 

The synthetic advantage of N-acyl-carbazoles stems from 
the well-established stability of the amide bond to hydroly-
sisconditions, resulting in bench-stable, easily-handled, amide-
based acyl-transfer reagents.16 Furthermore, N-acyl-carbazoles 
are readily prepared from 1° amides by double N-arylation19a 
or by acid-catalyzed double electrophilic cyclization using 2,5-
dimethoxytetrahdyrofuran19b (Scheme 4). This disconnection 
permits to generate acyl-metal intermediates from common 1° 
amides. While several other strategies for activating primary 
amides directly have been reported, including N,N-Boc2,7d N-
pyrimidyl,10 and N-Ac activation,9 N-acyl-carbazoles benefit 
from the stability of N-Ar linkage cf. other precursors.  

Intrigued by the high reactivity of N-acyl-carbazoles in the 
cross-coupling, we conducted selectivity and kinetic studies 
(Scheme 5). (1) Selectivity experiments demonstrated that N-
acyl-carbazoles are significantly more reactive than N-methyl-
anilides (Scheme 5A) and N-phenyl-anilides (Scheme 5B). (2)  





 

 

unlikely, PA values are consistent with high hydrolytic stabil-
ity of N-acyl-carbazoles.16 An interesting point regarding RE 
of N-acyl-carbazoles vs. pyrroles vs. indoles might be derived 
from C7–H steric interaction (indole). Studies to further ad-
dress this trend are ongoing and will be published separately. 

Diminution of amidic resonance can be performed by both 
steric and electronic factors.2–6 The high feasibility of N-acyl-
carbazoles in oxidative insertion stems from Nlp to Ar conjuga-
tion, wherein the presence of carbazole -system and the pla-
narity of the ring with respect to the amide Nlp ensures maxi-
mum delocalization switch away from the amide bond.4,6 This 

amide bond delocalization concept is likely to find applica-

tions in catalytic reactions of the amide bond7–18 as well as the 

design of more active amide bond analogues.2–6  

In summary, we have developed the palladium-catalyzed 
Suzuki–Miyaura cross-coupling of N-acyl-carbazoles and N-
acyl-indoles with arylboronic acids by highly selective N–
C(O) bond cleavage. The reaction is performed using bench-
stable and operationally-convenient Pd(II)-NHC precatalysts, 
and a variety of reaction partners are compatible. This reaction 
exploits N-acyl-indoles and especially N-acyl-carbazoles as 
highly effective amide bond electrophiles for selective oxida-
tive insertion into the N–C(O) bond. This activation concept of 
amide bonds by electronic conjugation sets the stage for sim-
ple N-Ar amides to be broadly applied in various catalytic 
processes by N–C(O) bond activation. N-acyl-carbazoles are 
bench-stable, easy to handle and generate acyl-metals from 1° 
amides. Mechanistic studies provided key insight into amide 
bond ground-state-destabilization and for the first time showed 
that the reactivity of N-acyl-carbazoles is similar to that of N-
acyl-sulfonamides. Further development of amide cross-
coupling reactions and new catalytic applications will be 
closely tied to the discovery of more effective amide bond 
electrophiles. Full account on amide bond geometry optimiza-
tion will be forthcoming.  
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