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ABSTRACT: Ruthenium(II)-catalyzed ortho-C-H alkylation of naphthylamines with diazo compounds for the synthesis of
2,2-disubstituted m-extended 3-oxindoles has been developed. The method represents the first example of C-H alkylation
via carbenoid insertion in water as a sustainable solvent. The procedure exploits inexpensive ruthenium catalyst, aqueous
media, and results in the release of benign N2. The n-extended 3-oxindole products exhibit favorable antitumor properties

and remarkable fluorescent properties in aqueous solution for fluorescent imaging.

m-Extended polycyclic heteroarenes play a pivotal role as
versatile and important scaffolds in numerous natural
products, biologically-active molecules and organic func-
tional materials.! Amongst them, m-extended 3-oxindoles
(3-indolinones) display favorable optoelectronic proper-
ties and have found numerous applications as dyes and
pharmaceutical products.2 In this context, transition-
metal-catalyzed C-H functionalization of nitrogen-
containing scaffolds is essential to organic synthesis.3
While the ortho-position of anilides (N-acyl-anilines) can
be readily functionalized through carbonyl-directed C-H
activation, the direct C-H functionalization of free anilines
is rare.* Although of significant value, C-H functionaliza-
tion of m-extended naphthylamines has been much less
explored than that of simple anilines.> More generally, di-
rect C-H activation of 1-substituted naphthalenes can pos-
sibly lead to peri-C8 or ortho-C2 functionalization,® giving
access to products of great synthetic value that are difficult
to prepare by conventional methods.

In recent years, diazo compounds have been widely used
in directed C-H functionalization/cyclization to construct
useful N-heteroarenes, including indoles,” pyridine N-
oxides,® isoquinolines,® isoquinoline N-oxides'® and iso-
quinolinones.!® However, while progress in carbenoid in-
sertion of C(sp?)-H bonds has been achieved using
Co(II1),12 Rh(III),3 and Ir(Il1)* catalysts, versatile and in-
expensive ruthenium complexes'>-21 have rarely been ex-
plored for C-H insertion reactions using diazo com-
pounds.??

Herein, we report the ruthenium(II)-catalyzed ortho-C-H
alkylation of naphthylamines with diazo compounds for
the synthesis of 2,2-disubstituted m-extended 3-oxindoles
(Figure 1). Notable features of this protocol include (1) the
first example of C-H alkylation via carbenoid insertion in
water as a sustainable solvent; (2) a sustainable strategy
directly using readily available naphthylamines without
prefunctionalization; (3) unprecedented C-H alkyla-
tion/migration sequence allowing the synthesis of -



extended 3-oxindoles bearing sterically-hindered quater-
nary center; (4) favorable antitumor properties and re-
markable fluorescent properties in aqueous solution for
fluorescent imaging of the C-H activation products. This
method showcases a significantly opportunity for using
cost-effective, operationally-simple and functional group
tolerant ruthenium catalysis for direct C-H alkylation in
environmentally benign reaction media.?32*
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Figure 1. This work: Ru(Il)-catalyzed cascade C-H alkyla-
tion/1,2-shift in water for the synthesis of 2,2-disubstituted 3-
oxindoles.

Table 1. Optimization of Reaction Conditions®

Me
NH, o) HN—t CO2Et

CO,Et catalyst (5 mol%) 0o
+ Me —_—
N, additives (25 mol%)

solvent 65 °C 16 h

1a 2a 3aa
entry catalyst additive  solvent el
(%)°
1 [Ru(p-cymene)Clz]2  CsOAc DCE 0
2 [Ru(p-cymene)Clz]z  CsOAc DMSO 0
3 [Ru(p-cymene)Clz]2  CsOAc PhCHs 0
4 [Ru(p-cymene)Clz]2  CsOAc EtOH <5
5 [Ru(p-cymene)Clz]2  CsOAc H20 38
6¢ [Ru(p-cymene)Clz]2  CsOAc H20 56
7d [Ru(p-cymene)Clz]2 CsOAc H20 76
8d [Ru(p-cymene)Clz]2  AgSbFs H20 57
9d [Ru(p-cymene)Clz]2  KOAc H20 34
104 [Ru(p-cymene)Clz]z  Cu(OAc)z  H20 26
114 [Ru(p-cymene)Clz]2 NaOAc H20 35
12de  [Ru(p-cymene)Clz]z CsOAc H20 16
134f  [Ru(p-cymene)Clz]2  CsOAc H20 24
14¢  [Cp*RhClz]: CsOAc H20 54
154  [Cp*IrCl:]2 CsOAc H20 17
16¢  Pd(OAc): CsOAc H20 0

aConditions: 1a (1.0 equiv), 2a (2.0 equiv), catalyst (5 mol%), additive
(25 mol%), solvent (0.05 M), 65 °C, 16 h. Isolated yields. <With 30

equiv of DMSO. “With 30 equiv of EtOH. ¢With 1 equiv of AcOH. /With 1
equiv of PivOH. See ESI for details.

Within our program on Ru-catalyzed C-H functionaliza-
tion,'® we sought to develop an alkylation reaction of -
extended systems that is currently unavailable using other
catalysts. We initiated our study by examining reaction
conditions for alkylation of 1-naphthylamine (1a) with
diazo ester (2a) as model substrates (Table 1). Although
no reaction was observed using DCE, DMSO, toluene or
EtOH in the presence of [RuClz(p-cym)]: (entries 1-4), we
were delighted to find the formation of a m-extended 2,2-
disubstitued 3-oxindole (3aa) using water as the reaction
solvent (entry 5). The structure of a C2-Ph derivative (3ai)
was confirmed by x-ray analysis (vide infra). The products
resulting from non-selective peri-C8 functionalization were
not detected (vide infra), thus establishing an unprece-
dented C2-selective C-H functionalization/migration se-
quence that furnishes challenging to prepare m-extended
3-oxindoles bearing sterically-hindered quaternary center.
Further optimization established that adding a small
amount of a co-solvent, such as DMSO or EtOH to promote
solubility of the substrate, significantly improved the yield
(entries 6-7). Examination of different additives, including
AgSbFs, KOAc, Cu(0Ac)z2, NaOAc and CsOAc, revealed that
CsOAc was optimal (entries 7-11). Furthermore, addition
of Brgnsted acids, such as AcOH or PivOH to promote mi-
gration, resulted in lower yields (entries 12-13). Finally,
examination of other metal -catalysts, including
[Cp*RhCl2]2, [Cp*IrClz]2 and Pd(OAc)2 (entries 14-16), re-
vealed that Ru is a superior promoter for this reaction.
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@Conditions: 1 (1.0 equiv), 2a (2.0 equiv), [RuClz(p-cym)]2 (5 mol%),
CsOAc (25 mol%), H20/EtOH (6.7/1 v/vol, 0.043 M), 65 °C, 16 h. *I-
solated yields.

Scheme 2 Substrate Scope of Diazo Compoundsa?
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aConditions: 1 (1.0 equiv), 2a (2.0 equiv), [RuClz(p-cym)]z (5 mol%),
CsOAc (25 mol%), H20/EtOH (6.7/1 v/vol, 0.043 M), 65 °C, 16 h. *I-
solated yields. X-ray structure, 3ai (50% ellipsoids). Inset shows an-
gles around the quaternary center. CCDC 1965995.

With the optimized conditions in hand, various readily
available substituted naphthylamines were tested. As
summarized in Scheme 1, the cyclization occurred very
smoothly for 1-napthylamines bearing substituents at the
para position. In particular, we found that the bromo sub-
stitution is well-tolerated (3ba). Selective mono-C-H func-
tionalization was observed using 1,4-diaminonaphthalene
(3ca). The use of a bromide handle permits rapid synthesis
of m-extended 2-oxindole biaryls that have interesting op-
toelectronic properties (3da-3ja).2s Furthermore, the reac-
tion could be extended to N-methyl naphthylamine (3ka),
thus demonstrating that N-alkyl substitution is tolerated.
However, no product was formed from the electron-

deficient N-phenyl-1-naphthylamine (3la). Finally, we
were pleased to find that these sustainable reaction condi-
tions are also applicable to the functionalization of 4-
aminoindole, thus producing the m-extended heterocyclic
3-oxindole (3ma) in good yield.

Scheme 3 Labelling Experiments
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We next examined the generality of this C-H activation
cascade with respect to the diazo compound component.
As shown in Scheme 2, we found that this protocol toler-
ates a wide range of diazo compounds, thus enabling the
selective synthesis of various C3-substituted m-extended 3-
oxindoles. We were pleased that various esters, including
ethyl (3aa), methyl (3ab), benzyl (3ac) and tert-butyl
(3ad) can be installed using this new protocol. Gratifying-
ly, the reaction also tolerates various alkyl groups, includ-
ing n-alkyl, such as methyl, ethyl or propyl (3ad-3af) as
well as 2° alkyl, such as i-Pr (3ag), and 3° alkyl, such as
tert-Bu (3ah), and aromatic rings, such as Ph (3ai). Nota-
bly, the reaction enables the synthesis of extremely hin-
dered o-branched C2-disubstituted m-extended 3-
oxindoles that are not accessible by other methods.

While verdict on the mechanism is premature at this
point, Uchimaru established that Ru-catalyzed ortho-
directed C-H activation of aniline is feasible.?> To gain in-
sight into the positional C2/C8 selectivity of the reaction,
we conducted control experiments employing D20/CD30D
as the solvent (Scheme 3). (1) We observed exclusive C-
H/C-D exchange at the C2 position (Scheme 3A). Im-
portantly, the scrambling occurred in the absence of the
diazo compound. It should be noted that there is no H/D
exchange in the absence of ruthenium. (2) Furthermore,
significant C-H/C-D exchange occurred at the methyl posi-
tion in (3aa) when the reaction was performed in the
presence of the diazo compound (Scheme 3B). It should be
noted that H/D exchange was not observed in the reisolat-
ed substrate. We believe that the H/D exchange in the me-
thyl group is a result of keto/enol exchange under the re-
action conditions. (3) Furthermore, control reactions with
2-napthylamine, 2-toluidine and aniline as C-H activation
substrates resulted in unproductive reactions, emphasiz-
ing the key role of 1-napthylamine template. It should be
noted that deuterium incorporation at the exchangeable
NH position is not observed due to product isolation on
silica gel. There is no productive reaction using diazo sub-
strates from 1,3-diketones or TMS diazomethane. We be-
lieve that naphthylamines are preferred substrates due to
the conjugated system stabilizing the four-membered in-
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termediate. A possible mechanism could also involve acti-
vation of the diazo compound with the formation of metal
carbene, followed by attack of the amino group at the elec-
trophilic carbene center with concomitant C-H activation.
Ongoing work in our laboratory is focused on mechanistic
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Figure 2. Fluorescent properties and fluorescent imaging
of compound 3da in living cells.

studies in Ru-catalysis, and this work will be published in
due course.

Since one of the major goals of C-H activation methods is
preparing novel structural motifs for pharmaceutical and
biochemical research, we were interested to test the activi-
ty of these novel products as potential cytotoxic lead com-
pounds. Thus, all of the synthesized products were tested
against human prostate cancer cells (PC3), human lung
cancer cells (A549), and human breast adeno-carcinoma
cells (MCF-7). The results of inhibitory activity are summa-
rized in the SI In particular, 3ia showed the most potent
activity (ICso = 22.98 mM against PC3 cells, ICso = 21.06
mM against A549 cells, ICso = 21.29 mM against MCF-7
cells). These results demonstrate that m-extended 3-oxo-
indole derivatives represent promising leads for the devel-
opment of new cytotoxic agents. 26

Even more interestingly, we observed that these C-H ac-
tivation products show bright cyan fluorescence in aque-
ous solutions, which renders them attractive for fluores-
cent imaging in living cells (Figure 2a-c, Figure. S1 and
Table S1, see SI for discussion).2”

In summary, we have developed a cascade Ru(Il)-
catalyzed C-H alkylation of naphthylamines with diazo
compounds for the synthesis of 2,2-disubstituted m-
extended 3-oxindoles in water. The unprecedented C-H
functionalization/migration is enabled through a rare
strategy directly using readily available naphthylamines
for the selective ortho-C-H alkylation. The C-H functionali-
zation 2,2-disubstituted m-extended 3-oxindole products
show promising cytotoxic activity and favorable fluores-
cence in aqueous solutions that could enable their biologi-
cal applications in living cells.
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