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ABSTRACT: Ruthenium(II)-catalyzed ortho-C–H alkylation of naphthylamines with diazo compounds for the synthesis of 

2,2-disubstituted -extended 3-oxindoles has been developed. The method represents the first example of C–H alkylation 
via carbenoid insertion in water as a sustainable solvent. The procedure exploits inexpensive ruthenium catalyst, aqueous 

media, and results in the release of benign N2. The -extended 3-oxindole products exhibit favorable antitumor properties 
and remarkable fluorescent properties in aqueous solution for fluorescent imaging. 

π-Extended polycyclic heteroarenes play a pivotal role as 
versatile and important scaffolds in numerous natural 
products, biologically-active molecules and organic func-
tional materials.1 Amongst them, π-extended 3-oxindoles 
(3-indolinones) display favorable optoelectronic proper-
ties and have found numerous applications as dyes and 
pharmaceutical products.2 In this context, transition-
metal-catalyzed C–H functionalization of nitrogen-
containing scaffolds is essential to organic synthesis.3 
While the ortho-position of anilides (N-acyl-anilines) can 
be readily functionalized through carbonyl-directed C–H 
activation, the direct C–H functionalization of free anilines 
is rare.4 Although of significant value, C–H functionaliza-
tion of π-extended naphthylamines has been much less 
explored than that of simple anilines.5 More generally, di-
rect C–H activation of 1-substituted naphthalenes can pos-
sibly lead to peri-C8 or ortho-C2 functionalization,6 giving 
access to products of great synthetic value that are difficult 
to prepare by conventional methods.  

In recent years, diazo compounds have been widely used 
in directed C–H functionalization/cyclization to construct 
useful N-heteroarenes, including indoles,7 pyridine N-
oxides,8 isoquinolines,9 isoquinoline N-oxides10 and iso-
quinolinones.11 However, while progress in carbenoid in-
sertion of C(sp2)–H bonds has been achieved using 
Co(III),12 Rh(III),13 and Ir(III)14 catalysts, versatile and in-
expensive  ruthenium complexes15–21 have rarely been ex-
plored for C–H insertion reactions using diazo com-
pounds.22 

Herein, we report the ruthenium(II)-catalyzed ortho-C–H 
alkylation of naphthylamines with diazo compounds for 
the synthesis of 2,2-disubstituted π-extended 3-oxindoles 
(Figure 1). Notable features of this protocol include (1) the 
first example of C–H alkylation via carbenoid insertion in 
water as a sustainable solvent; (2) a sustainable strategy 
directly using readily available naphthylamines without 
prefunctionalization; (3) unprecedented C–H alkyla-
tion/migration sequence allowing the synthesis of π-
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extended 3-oxindoles bearing sterically-hindered quater-
nary center; (4) favorable antitumor properties and re-
markable fluorescent properties in aqueous solution for 
fluorescent imaging of the C–H activation products. This 
method showcases a significantly opportunity for using 
cost-effective, operationally-simple and functional group 
tolerant ruthenium catalysis for direct C–H alkylation in 
environmentally benign reaction media.23,24  

 

Figure 1. This work: Ru(II)-catalyzed cascade C–H alkyla-
tion/1,2-shift in water for the synthesis of 2,2-disubstituted 3-
oxindoles.  

Table 1. Optimization of Reaction Conditionsa 

 

entry catalyst additive solvent 
yield 
(%)b 

1 [Ru(p-cymene)Cl2]2 CsOAc DCE 0 

2 [Ru(p-cymene)Cl2]2 CsOAc DMSO 0 

3 [Ru(p-cymene)Cl2]2 CsOAc PhCH3 0 

4 [Ru(p-cymene)Cl2]2 CsOAc EtOH <5 

5 [Ru(p-cymene)Cl2]2 CsOAc H2O 38 

6c [Ru(p-cymene)Cl2]2 CsOAc H2O 56 

7d [Ru(p-cymene)Cl2]2 CsOAc H2O 76 

8d [Ru(p-cymene)Cl2]2 AgSbF6 H2O 57 

9d [Ru(p-cymene)Cl2]2 KOAc H2O 34 

10d [Ru(p-cymene)Cl2]2 Cu(OAc)2 H2O 26 

11d [Ru(p-cymene)Cl2]2 NaOAc H2O 35 

12d,e [Ru(p-cymene)Cl2]2 CsOAc H2O 16 

13d,f [Ru(p-cymene)Cl2]2 CsOAc H2O 24 

14d [Cp*RhCl2]2 CsOAc H2O 54 

15d [Cp*IrCl2]2 CsOAc H2O 17 

16d Pd(OAc)2 CsOAc H2O 0 
aConditions: 1a (1.0 equiv), 2a (2.0 equiv), catalyst (5 mol%), additive 
(25 mol%), solvent (0.05 M), 65 °C, 16 h. bIsolated yields. cWith 30 

equiv of DMSO. dWith 30 equiv of EtOH. eWith 1 equiv of AcOH. fWith 1 
equiv of PivOH. See ESI for details. 

Within our program on Ru-catalyzed C–H functionaliza-
tion,16 we sought to develop an alkylation reaction of π-
extended systems that is currently unavailable using other 
catalysts. We initiated our study by examining reaction 
conditions for alkylation of 1-naphthylamine (1a) with 
diazo ester (2a) as model substrates (Table 1). Although 
no reaction was observed using DCE, DMSO, toluene or 
EtOH in the presence of [RuCl2(p-cym)]2 (entries 1-4), we 
were delighted to find the formation of a π-extended 2,2-
disubstitued 3-oxindole (3aa) using water as the reaction 
solvent (entry 5). The structure of a C2-Ph derivative (3ai) 
was confirmed by x-ray analysis (vide infra). The products 
resulting from non-selective peri-C8 functionalization were 
not detected (vide infra), thus establishing an unprece-
dented C2-selective C–H functionalization/migration se-quence that furnishes challenging to prepare π-extended 
3-oxindoles bearing sterically-hindered quaternary center. 
Further optimization established that adding a small 
amount of a co-solvent, such as DMSO or EtOH to promote 
solubility of the substrate, significantly improved the yield 
(entries 6-7). Examination of different additives, including 
AgSbF6, KOAc, Cu(OAc)2, NaOAc and CsOAc, revealed that 
CsOAc was optimal (entries 7-11). Furthermore, addition 
of Brønsted acids, such as AcOH or PivOH to promote mi-
gration, resulted in lower yields (entries 12-13). Finally, 
examination of other metal catalysts, including 
[Cp*RhCl2]2, [Cp*IrCl2]2 and Pd(OAc)2 (entries 14-16), re-
vealed that Ru is a superior promoter for this reaction. 

 

 

Scheme 1 Substrate Scope of Naphthylaminesa,b 
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termediate. A possible mechanism could also involve acti-
vation of the diazo compound with the formation of metal 
carbene, followed by attack of the amino group at the elec-
trophilic carbene center with concomitant C-H activation. 
Ongoing work in our laboratory is focused on mechanistic  

 
 

Figure 2. Fluorescent properties and fluorescent imaging 
of compound 3da in living cells. 

studies in Ru-catalysis, and this work will be published in 
due course.  

Since one of the major goals of C–H activation methods is 
preparing novel structural motifs for pharmaceutical and 
biochemical research, we were interested to test the activi-
ty of these novel products as potential cytotoxic lead com-
pounds. Thus, all of the synthesized products were tested 
against human prostate cancer cells (PC3), human lung 
cancer cells (A549), and human breast adeno-carcinoma 
cells (MCF-7). The results of inhibitory activity are summa-
rized in the SI. In particular, 3ia showed the most potent 
activity (IC50 = 22.98 mM against PC3 cells, IC50 = 21.06 
mM against A549 cells, IC50 = 21.29 mM against MCF-7 
cells). These results demonstrate that π-extended 3-oxo-
indole derivatives represent promising leads for the devel-
opment of new cytotoxic agents. 26  

Even more interestingly, we observed that these C–H ac-
tivation products show bright cyan fluorescence in aque-
ous solutions, which renders them attractive for fluores-
cent imaging in living cells (Figure 2a-c, Figure. S1 and 
Table S1, see SI for discussion).27  

In summary, we have developed a cascade Ru(II)-
catalyzed C–H alkylation of naphthylamines with diazo 
compounds for the synthesis of 2,2-disubstituted π-
extended 3-oxindoles in water. The unprecedented C–H 
functionalization/migration is enabled through a rare 
strategy directly using readily available naphthylamines 
for the selective ortho-C–H alkylation. The C–H functionali-
zation 2,2-disubstituted π-extended 3-oxindole products 
show promising cytotoxic activity and favorable fluores-
cence in aqueous solutions that could enable their biologi-
cal applications in living cells. 
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