

Highly Selective and Divergent Acyl and Aryl Cross-Coupling of Amides via Ir-Catalyzed C–H Borylation/N–C(O) Activation

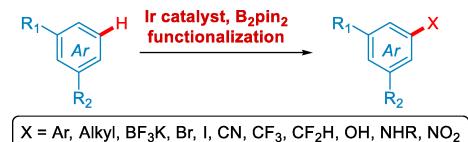
Pengcheng Gao[†] and Michal Szostak^{*,†}

[†]Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States

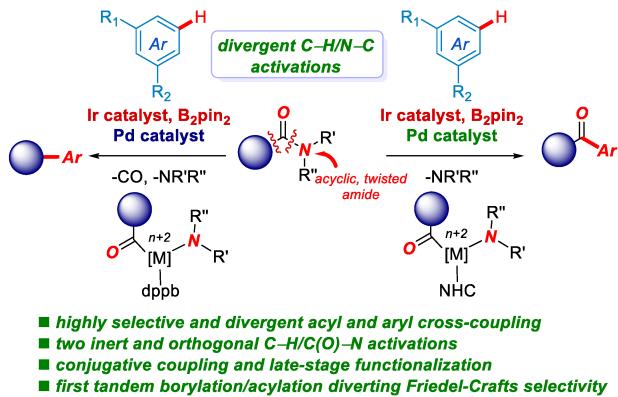
Supporting Information

ABSTRACT: Herein, we demonstrate that amides can be readily coupled with non-activated arenes via sequential Ir-catalyzed C–H borylation/N–C(O) activation. This methodology provides facile access to biaryl ketones and biaryls by the sterically-controlled Ir-catalyzed C–H borylation and divergent acyl and decarbonylative amide N–C(O) and C–C activation. The methodology diverts the traditional acylation and arylation regioselectivity, allowing to directly utilize readily available arenes and amides to produce valuable ketone and biaryl motifs.

Non-directed activation of C–H bonds is among the most important tools for transforming functional groups in organic synthesis.¹ The value of non-directed C–H functionalizations lies in the fact that these transformations enable the construction of complex fragments by exploiting readily available arenes (Figure 1A).² One of the most promising applications of these methods are Ir-catalyzed C–H borylations, wherein the development of sterically- and ligand-controlled C–H functionalizations enables transformative fragment couplings by exploiting new routes to organoboron building blocks of broad relevance to pharmaceuticals, functional materials and the synthesis of fine chemicals.^{2–5}


Simultaneously, the recent years have witnessed the development of powerful strategies for activation of amide N–C(O) bonds,⁶ whereby the traditional amide resonance ($n_N \rightarrow \pi^* C=O$ delocalization)^{7,8} is diverted into facile oxidative addition of the N–C(O) amide bond by ground-state destabilization and diminution of amide resonance.^{9–12} The value of amide cross-coupling lies in the fact that amides are among the most ubiquitous functional groups in organic synthesis, serve as essential scaffolds in polymers, and, most importantly, constitute key linkages in peptides and proteins.^{6–8} A prominent feature of amide bond cross-coupling is that the acyl-metal intermediate formed after metal insertion can undergo CO extrusion, resulting in an overall N–C(O)/C–C bond activation to afford an aryl-metal, which allows for the direct installation of arenes by de-amidative cleavage.¹³

Recently, we became interested in establishing the synergistic merger of non-directed C–H activation with amide N–C(O) cross-coupling (Figure 1B). The utilization of readily available arenes^{1–5} as an abundant source of coupling partners together with the selective breaking of nitrogen–carbon bonds in amides^{6–8} holds significant promise to define new paradigms in transformation of functional groups crucial to many synthetic and biological processes.¹⁴


Herein, we detail the successful development of highly selective and divergent acyl and aryl cross-coupling of amides with non-activated arenes via C–H/N–C(O) activation. This methodology connects the classic sterically-hindered Ir-catalyzed C–H borylation^{2,3} with the biorelevant manifold of amide bond activation^{6–8} to provide straightforward access to biaryl ketones and biaryls by two inert bond activation events and diverting the traditional acylation and arylation regioselectivity. The method shows excellent functional group tolerance, chemo- and regioselectivity. We demonstrate the synthetic utility by late-stage derivatization of pharmaceuticals and conjugative cross-coupling of bioactive molecules. The synergistic merger with non-activated arenes opens the door to routinely utilize amides as acyl and aryl cross-coupling electrophiles in a wide range of chemical processes.^{1–14}

The arylation of N,N-Boc-benzamide, which is readily prepared in single step from benzamide,^{7a} with 4-tol-Bpin was selected as the starting point of our study to identify conditions for the cross-coupling of boronic esters with amides (Table S1, Supporting Information). Encouragingly, we found that the

A: Previous work: C–H functionalization of non-activated arenes

B: This work: highly selective and divergent acyl and aryl coupling of non-activated arenes with amides

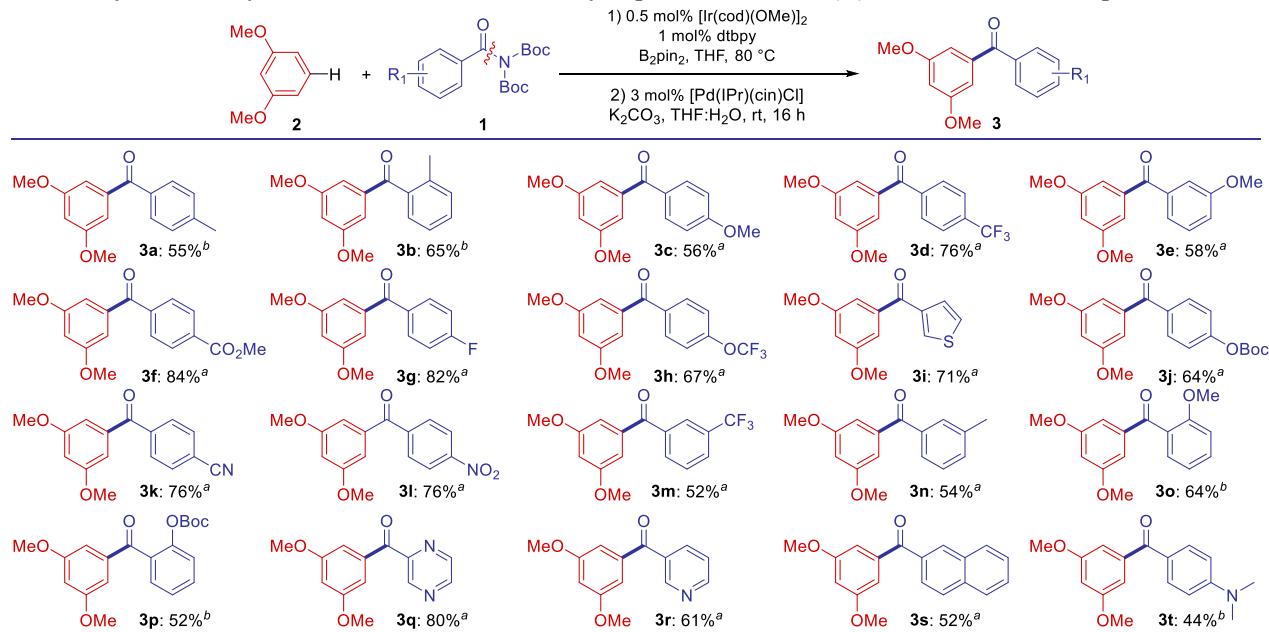
Figure 1. (A) Meta-borylation in organic synthesis. (B) Present work.

broadly applicable, air- and moisture-stable $[\text{Pd}(\text{IPr})(\text{cin})\text{Cl}]$ (Neolyst CX31, cin = cinnamyl)¹⁵ serves as an efficient catalyst for this coupling to give the model biaryl ketone product in 98% yield (entry 13). Notably, this cross-coupling with boronic esters was found to be sensitive to the amount of water and temperature, controlling the release of aryl boronic acid,¹⁶ with best results obtained in THF:H₂O (9:1) at 23 °C (cf. Table S2 for arylation). The key difference between the two Pd catalytic systems (Table S1 vs. Table S2) is that Pd–NHCs facilitate oxidative addition/reductive elimination steps due to strong σ -donation and flexible bulk,^{9a} respectively, while Pd–phosphine systems in the presence of weak base favour decarbonylation due to slowing down transmetalation relative to CO de-insertion step.¹³ Note that the substrates are presented on schemes to reflect how the reactions were carried out. $[\text{Pd}(\text{IPr})(\text{cin})\text{Cl}]$ is the catalyst of choice for amide bond Suzuki cross-coupling.^{9a,15}

With the identified conditions in hand, we explored the scope of the sequential C–H/N–C(O) activation (Scheme 1). The borylation was conducted with 0.75 equiv of B_2pin_2 in the presence of 0.50 mol% of $[\text{Ir}(\text{cod})(\text{OMe})]_2$ and 1.0 mol% of dtbpy.^{2a,b} Arylboronate esters were subjected to the C(O)–N amide cross-coupling after removing of volatiles and addition of amide derivatives. 1,3-Dimethoxybenzene was used for the borylation reaction as the model arene substrate.^{2a,b} As shown in Scheme 1, the scope of the reaction with respect to amide precursors is very broad and encompasses a wide variety of functional groups. Electron-rich (**3a**, **3c**, **3e**, **3t**), sterically-hindered (**3b**, **3o**, **3p**), and electron-deficient (**3d**, **3f**, **3g**, **3h**) groups were well-tolerated. Electrophilic functional groups, such as ester (**3f**), carbonate (**3j**, **3p**), cyano (**3k**), nitro (**3l**), which would be problematic with classical Weinreb amides, gave the desired ketone products in high yields. Furthermore, heterocyclic amides, including thiophene (**3i**), pyrazine (**3q**) and pyridine (**3r**) readily undergo coupling. Of note, the latter example (**3r**) represents a direct activation of vitamin B3 (nicotinamide), while 4-hydroxybenzamide (**3j**) is a common amide pharmaceutical intermediate, demonstrating potential pharmaceutical applications (*vide infra*). Notably, in all cases, the meta-substituted product was formed with exquisite selectivity, which is in sharp contrast to the traditional acylation with arenes giving ortho products.

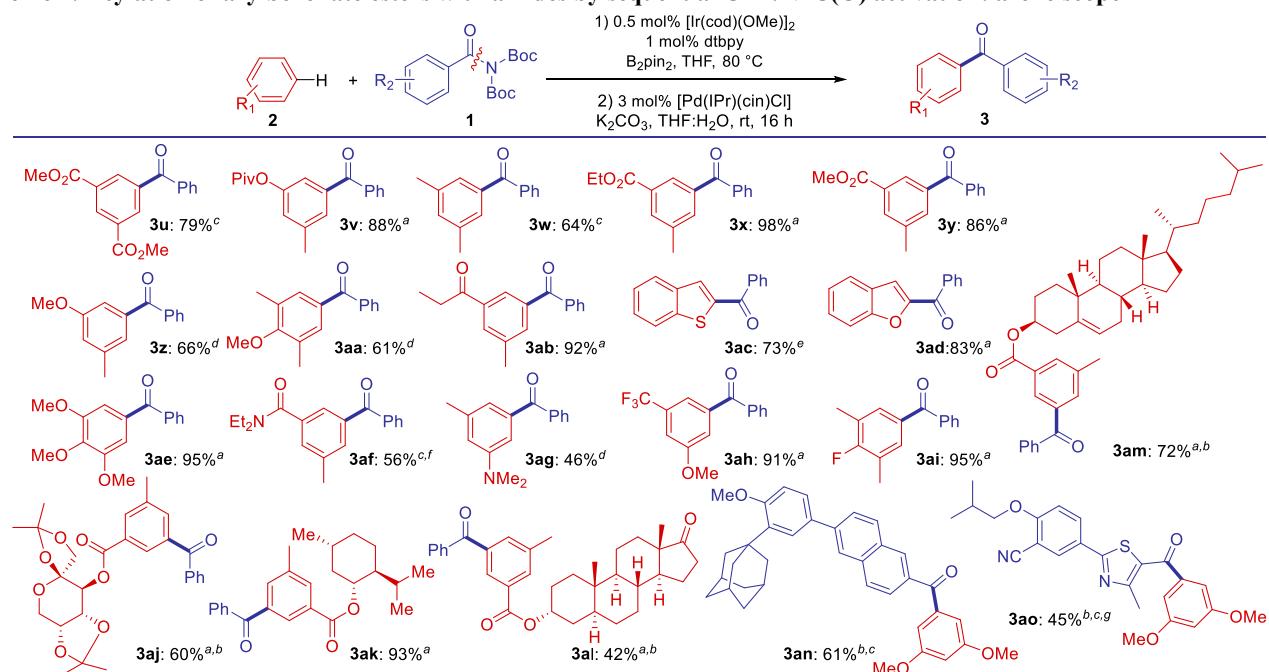
The scope of the arene was also extensively studied (Scheme 2). Pleasingly, we found that this C–H/N–C(O) acylation is compatible with a broad range of 1,3-disubstituted arenes giving the cross-coupling products in good to excellent yields. Acylation of challenging electron-deficient organoboranes substituted with ester groups (**3u**, **3x**, **3y**) is well-tolerated. Pivalates (**3v**), alkyl groups (**3w**), ethers (**3z**, **3aa**), ketones (**3ab**), heterocycles (**3ac**, **3ad**), amides (**3af**), amines (**3ag**) and fluorinated arenes (**3ah**, **3ai**) afford the desired ketone products in high yields, in all cases featuring exclusive arylation regioselectivity. The divergent chemoselectivity for the activated amide is noteworthy (**3af**). Notably, this method could be employed for the direct derivatization of esters of natural products and pharmaceuticals with complex architecture as illustrated by the esters of fructose (**3aj**), menthol (**3ak**), *trans*-androsterone (**3al**), cholesterol (**3am**) as well as adapalene (**3an**), and febuxostat (**3ao**).

The applicability to various amides was explored (Figure S1). This C–H/N–C(O) activation works with N-acyl-glutarimides (**1w**), N-acyl amides (**1x**), N-Ts-sulfonamides (**1y**) and N-Boc-carbamates (**1z**), which expands the scope of amide component to N-cyclic and N-acyclic amides.^{6–9}


Encouraged by the success of C–H/N–C(O) acylative coupling, we considered the possibility of developing divergent aryl coupling by triple C–H/N–C(O)/C–C bond activation (Scheme 3). For this type of cross-coupling, critical is the control of the rate of boronic acid release to match with decarbonylation of the acyl-metal.¹³ Although initial results gave no or little conversion to the biaryl product, we discovered that the use of $\text{MeB}(\text{OH})_2$ additive facilitates the organoborinate release under these conditions,^{16a} leading to the efficient coupling (Table S2).

We examined the generality of the C–H/N–C(O)/C–C biaryl coupling (Scheme 3). This method is compatible with diverse substituents on both reaction components, including esters (**4a**, **4d**, **4e**, **4g**), heterocycles (**4b**), electronically-deactivated substrates (**4c**), halides (**4f**), tosylates (**4h**), ketones (**4j**), and sterically-hindered substrates (**4m**), delivering the biaryl products in good to high yields. Notably, this method delivers functional handles for further derivatization, including electrophilic groups.

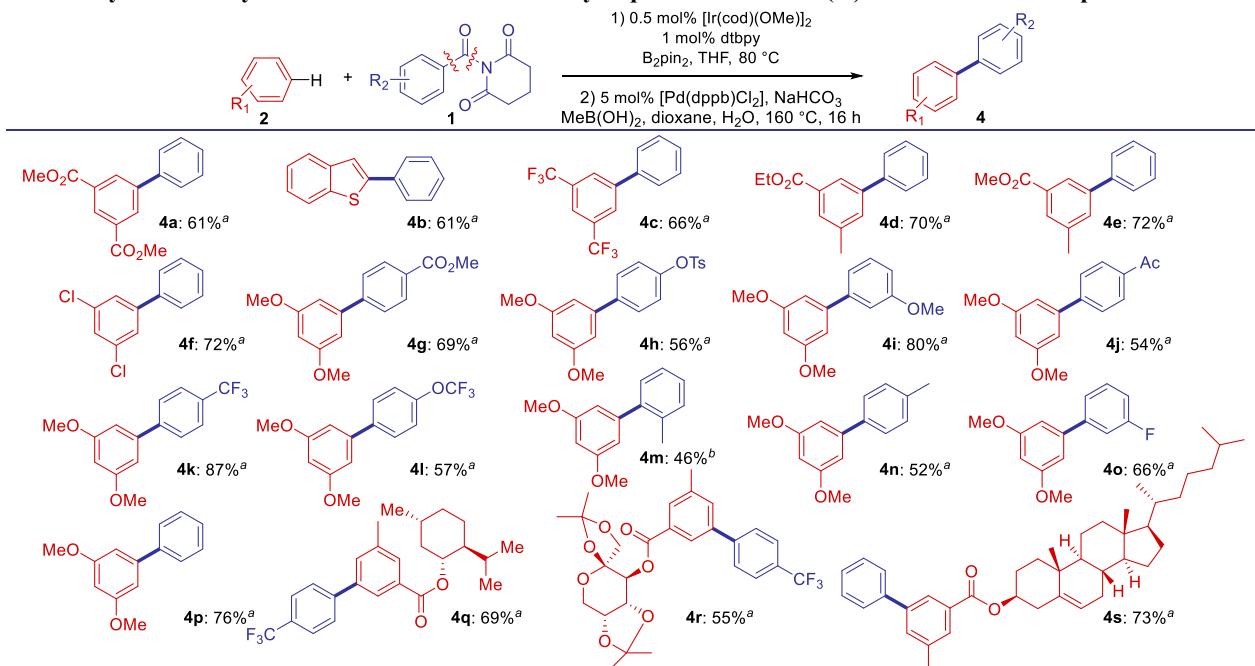
Most crucially, the synthetic potential of this biaryl C–H/N–C(O)/C–C coupling was demonstrated in the rapid late-stage modification of esters of natural products, such as, menthol (**4q**), fructose (**4r**), and *trans*-androsterone (**4s**), thus underscoring the synthetic potential of this activation platform.


An assessment of various amides in the biaryl coupling was performed (Figure S2, Supporting Information). Pleasingly, N-cyclic (**1w**) as well as N-acyclic amides, such as N-acyl (**1x**), N-Ts-sulfonamide (**1y**) and N-Ms-sulfonamide (**1ak**) can be utilized in this coupling protocol to deliver biaryls from arenes and amides in good yields.

Scheme 1. Acylation of arylboronate esters with amides by sequential C–H/N–C(O) activation: amide scope^a

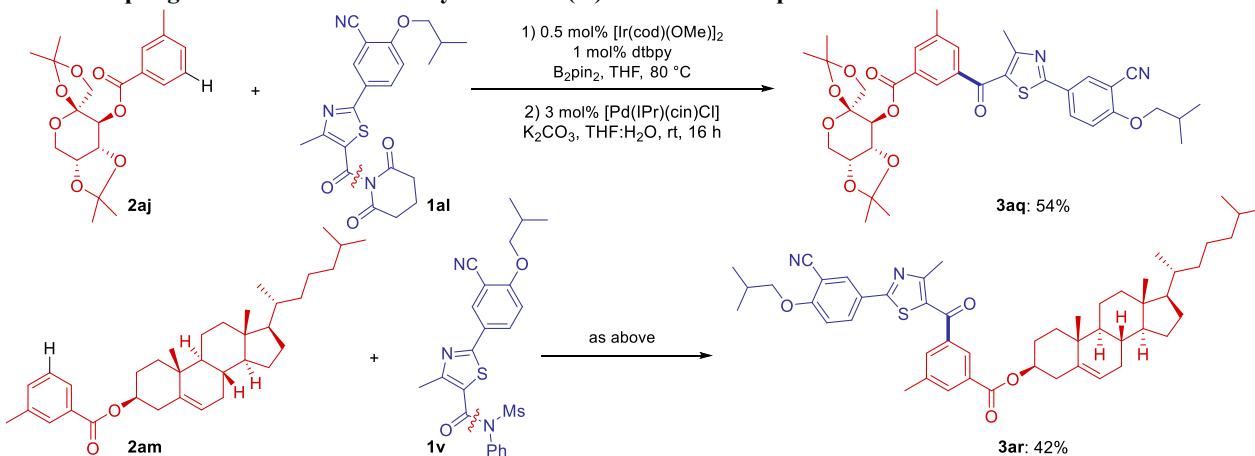
^aConditions: 2 (2.0 equiv), B_2pin_2 (0.75 equiv), $[\text{Ir}(\text{cod})(\text{OMe})]_2$ (0.5 mol%), dtbpy (1 mol%), THF, 80 °C, 24 h, 1 (1.0 equiv), $[\text{Pd}(\text{IPr})(\text{cin})\text{Cl}]$ (3 mol%), K_2CO_3 (3.0 equiv), THF:H₂O = 9:1 (0.20 M), 23 °C, 16 h. ^b Cs_2CO_3 (3.0 equiv), 60 °C.

Scheme 2. Acylation of arylboronate esters with amides by sequential C–H/N–C(O) activation: arene scope^a


^aConditions: see Scheme 1. ^b $[\text{Pd}(\text{IPr})(\text{cin})\text{Cl}]$ (5 mol%). ^c Cs_2CO_3 , 60 °C. ^dKOH, 60 °C. ^e Cs_2CO_3 , THF, 80 °C. ^fStep 1: hexane. ^gN-Ms-N-phenylbenzamide.

Finally, we applied our C–H/N–C(O) activation technology to conjugative coupling of bioactive molecules (Scheme 4). Thus, the direct derivatization of complex arenes and amides is readily accomplished to deliver conjugates between complex bioactive molecules and amides under standard conditions (3aq–3ar).^{1b}

In conclusion, an expedient method for the cross-coupling of non-activated arenes with amides via sequential Ir-catalyzed C–H borylation/N–C(O) activation has been developed. This reaction provides facile access to biaryl ketones


and biaryls by exploiting regioselective C–H activation with the divergent reactivity of the amide bond by acyl and decarbonylative pathways. This methodology tolerates a wide variety of functional groups, including various amides and direct derivatization of natural products and pharmaceuticals with intricate architectures. Based on this methodology, we demonstrated conjugative coupling between complex biomolecules. This study opens the door for arene-amide coupling in a wide variety of chemical processes.

Scheme 3. Arylation of arylboronate esters with amides by sequential C–H/N–C(O)/C–C activation: scope^a

^aConditions: **2** (2.0 equiv), B₂pin₂ (0.6 equiv), [Ir(cod)(OMe)]₂ (0.5 mol%), dtbpy (1 mol%), THF, 80 °C, 24 h, **1** (1.0 equiv), [Pd(dppb)Cl₂] (5 mol%), NaHCO₃ (4 equiv), MeB(OH)₂ (1.5 equiv), dioxane (0.125 M), H₂O, 160 °C, 16 h. ^b2-Methyl-N-Ms-N-phenylbenzamide. See SI for details.

Scheme 4. Coupling of arenes with amides by C–H/N–C(O) activation: complex arenes and amides^a

^aConditions: **2** (2.0 equiv), B₂pin₂ (0.75 equiv), [Ir(cod)(OMe)]₂ (0.5 mol%), dtbpy (1 mol%), THF, 80 °C, 24 h, **1** (1.0 equiv), [Pd(IPr)(cin)Cl] (3 mol%), K₂CO₃ (3.0 equiv), THF:H₂O = 9:1 (0.20 M), 23 °C, 16 h.

ASSOCIATED CONTENT

Supporting Information

Procedures and analytical data. This material is available free of charge via the Internet at <http://pubs.acs.org>.

AUTHOR INFORMATION

Corresponding Author

michal.szostak@rutgers.edu

ACKNOWLEDGMENT

Rutgers University and the NSF (CAREER CHE-1650766) are gratefully acknowledged for support. The 500 MHz spectrometer was supported by the NSF-MRI grant (CHE-1229030). We thank Dr. Shicheng Shi (Rutgers University) for preliminary studies.

REFERENCES

(1) For representative reviews, see: (a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krška, S. W. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. *Chem. Soc. Rev.* **2016**, *45*, 546–576. (b) Blakemore, D. C., Castro, L., Churcher, I., Rees, D. C., Thomas, A. W., Wilson, D. M., and Wood, A. Organic Synthesis Provides Opportunities to Transform Drug Discovery. *Nat. Chem.* **2018**, *10*, 383–394.

(2) For reviews, see: (a) Hartwig, J. F. Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations. *Acc. Chem. Res.* **2012**, *45*, 864–873. (b) Mkhald, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C–H Activation for the Construction of C–B Bonds. *Chem. Rev.* **2010**, *110*, 890–931.

(3) For representative examples, see: (a) Maleczka, Jr., R. E.; Shi, F.; Holmes, D.; Smith, III, M. R. C–H Activation/Borylation/Oxidation: A One-Pot Unified Route To Meta-Substituted Phenols Bearing Ortho-/Para-Directing Groups. *J. Am. Chem. Soc.* **2003**, *125*, 7792–7793. (b) Robbins, D. W.; Hartwig, J. F. Sterically controlled arylation of arenes through iridium-catalyzed C–H borylation. *Angew. Chem. Int. Ed.* **2013**, *52*, 933–937. (c) Murphy, J. M.; Tzschucke, C. C.; Hartwig, J. F. One-Pot Synthesis of Aryl-

boronic Acids and Aryl Trifluoroborates by Ir-Catalyzed Borylation of Arenes. *Org. Lett.* **2007**, *9*, 757-760. (d) Robbins, D. W.; Hartwig, J. F. A C–H Borylation Approach to Suzuki–Miyaura Coupling of Typically Unstable 2-Heteroaryl and Polyfluorophenyl Boronates. *Org. Lett.* **2012**, *14*, 4266-4269. (e) Joliton, A.; Carreira, E. M. Ir-Catalyzed Preparation of SF5-Substituted Potassium Aryl Trifluoroborates via C–H Borylation and Their Application in the Suzuki–Miyaura Reaction. *Org. Lett.* **2013**, *15*, 5147-5149. (f) Hong, B.; Li, C.; Wang, Z.; Chen, J.; Li, H.; Lei, X. Enantioselective Total Synthesis of (–)-Incarviatone A. *J. Am. Chem. Soc.* **2015**, *137*, 11946-11949. (g) Murphy, J. M.; Liao, X.; Hartwig, J. F. Meta Halogenation of 1,3-Disubstituted Arenes via Iridium-Catalyzed Arene Borylation. *J. Am. Chem. Soc.* **2007**, *129*, 15434-15435. (h) Liskey, C. W.; Liao, X.; Hartwig, J. F. Cyanation of Arenes via Iridium-Catalyzed Borylation. *J. Am. Chem. Soc.* **2010**, *132*, 11389-11391. (i) Feng, Z.; Min, Q. Q.; Fu, X. P.; An, L.; Zhang, X. Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalyzed by palladium. *Nat. Chem.* **2017**, *9*, 918-923.

(4) For further examples, see: (a) Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka Jr., R. E.; Smith, III, M. R. Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C–H Bonds. *Science* **2002**, *295*, 305-308. (b) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate. *J. Am. Chem. Soc.* **2002**, *124*, 390-391. (c) Chotana, G. A.; Rak, M. A.; Smith, III, M. R. Sterically Directed Functionalization of Aromatic C–H Bonds: Selective Borylation Ortho to Cyano Groups in Arenes and Heterocycles. *J. Am. Chem. Soc.* **2005**, *127*, 10539-10544. (d) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. Mechanism of the Mild Functionalization of Arenes by Diboron Reagents Catalyzed by Iridium Complexes. Intermediacy and Chemistry of Bipyridine-Ligated Iridium Trisboryl Complexes. *J. Am. Chem. Soc.* **2005**, *127*, 14263-14278. (e) Eliseeva, M. N.; Scott, L. T. Pushing the Ir-Catalyzed C–H Polyborylation of Aromatic Compounds to Maximum Capacity by Exploiting Reversibility. *J. Am. Chem. Soc.* **2012**, *134*, 15169-15172. (f) Preshlock, S. M.; Ghaffari, B.; Maligres, P. E.; Kraska, S. W.; Maleczka, Jr., R. E.; Smith, III, M. R. High-Throughput Optimization of Ir-Catalyzed C–H Borylation: A Tutorial for Practical Applications. *J. Am. Chem. Soc.* **2013**, *135*, 7572-7582.

(5) Fyfe, J. W. B.; Watson, A. J. B. Recent Developments in Organoboron Chemistry: Old Dogs, New Tricks. *Chem* **2017**, *3*, 31-55.

(6) Greenberg, A.; Breneman, C. M.; Liebman, J. F. *The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science*; Wiley-VCH: New York, 2003.

(7) For studies on amide bond ground-state destabilization pertinent to N–C activation, see: (a) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. Ground-State Distortion in *N*-Acyl-*tert*-butyl-carbamates (Boc) and *N*-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N–C Cross-Coupling. *J. Org. Chem.* **2016**, *81*, 8091-8094. (b) Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. Reversible Twisting of Primary Amides via Ground State N–C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides. *J. Am. Chem. Soc.* **2018**, *140*, 727-734. (c) Liu, C.; Shi, S.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. The Most Twisted Acyclic Amides: Structures and Reactivity. *Org. Lett.* **2018**, *20*, 7771-7774.

(8) For selected examples, see: (a) Roughley, S. D.; Jordan, A. M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. *J. Med. Chem.* **2011**, *54*, 3451-3479. (b) Kaspar, A. A.; Reichert, J. M. Future Directions for Peptide Therapeutics Development. *Drug Discov. Today* **2013**, *18*, 807-817. (c) Marchildon, K. Polyamides: Still Strong After Seventy Years. *Macromol. React. Eng.* **2011**, *5*, 22-54.

(9) For representative reviews on N–C bond activation, see: (a) Shi, S.; Nolan, S. P.; Szostak, M. Well-Defined Palladium(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalysts for Cross-Coupling Reactions of Amides and Esters by Selective Acyl CO–X (X = N, O) Cleavage. *Acc. Chem. Res.* **2018**, *51*, 2589-2599. (b) Liu, C.; Szostak, M. Decarbonylative Cross-Coupling of Amides. *Org. Biomol. Chem.* **2018**, *16*, 7998-8010. (c) Bourne-Branchu, Y.; Gosmini, C.; Danoun, G. N-Boc-Amides in Cross-Coupling Reactions. *Chem. Eur. J.* **2019**, *25*, 2663-2674. (d) Chaudhari, M. B.; Gnanaprakasam, B. Recent Advances in the Metal-Catalyzed Activation of Amide Bonds. *Chem. Asian J.* **2019**, *14*, 76-93.

(10) For selected examples, see: (a) Meng, G.; Szostak, M. Sterically Controlled Pd-Catalyzed Chemoselective Ketone Synthesis via N–C Cleavage in Twisted Amides. *Org. Lett.* **2015**, *17*, 4364-4367.

(b) Meng, G.; Shi, S.; Szostak, M. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides via Site-Selective N–C Bond Cleavage by Cooperative Catalysis. *ACS Catal.* **2016**, *6*, 7335-7339. (c) Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Conversion of Amides to Esters by the Nickel-Catalysed Activation of Amide C–N Bonds. *Nature* **2015**, *524*, 79-83. (d) Ni, S.; Zhang, W.; Mei, H.; Han, J.; Pan, Y. Ni-Catalyzed Reductive Cross-Coupling of Amides with Aryl Iodide Electrophiles via C–N Bond Activation. *Org. Lett.* **2017**, *19*, 2536-2539. (e) Amani, J.; Alam, R.; Badir, S.; Molander, G. A. Synergistic Visible-Light Photoredox/Nickel-Catalyzed Synthesis of Aliphatic Ketones via N–C Cleavage of Imides. *Org. Lett.* **2017**, *19*, 2426-2429. (f) Reina, A.; Krachko, T.; Onida, K.; Bouyssi, D.; Jeanneau, E.; Monteiro, N.; Amgoune, A. Development and Mechanistic Investigations of a Base-Free Suzuki–Miyaura Cross-Coupling of α,α -Difluoroacetamides via C–N Bond Cleavage. *ACS Catal.* **2020**, *10*, 2189-2197. (g) Buchspies, J.; Szostak, M. Recent Advances in Acyl Suzuki Cross-Coupling. *Catalysts* **2019**, *9*, 53.

(11) For representative decarbonylative coupling, see: (a) Meng, G.; Szostak, M. General Olefin Synthesis by the Palladium-Catalyzed Heck Reaction of Amides: Sterically Controlled Chemoselective N–C Activation. *Angew. Chem. Int. Ed.* **2015**, *54*, 14518-14522. (b) Shi, S.; Meng, G.; Szostak, M. Synthesis of Biaryls through Nickel-Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Bond Cleavage. *Angew. Chem. Int. Ed.* **2016**, *55*, 6959-6963. (c) Meng, G.; Szostak, M. Rhodium-Catalyzed C–H Bond Functionalization with Amides by Double C–H/C–N Bond Activation. *Org. Lett.* **2016**, *18*, 796-799. (d) Yue, H.; Guo, L.; Liao, H. H.; Cai, Y.; Zhu, C.; Rueping, M. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C–O and C–C Bond Activation. *Angew. Chem. Int. Ed.* **2017**, *56*, 4282-4285. (e) Yue, H.; Guo, L.; Lee, S. C.; Liu, X.; Rueping, M. Selective Reductive Removal of Ester and Amide Groups from Arenes and Heteroarenes through Nickel-Catalyzed C–O and C–N Bond Activation. *Angew. Chem. Int. Ed.* **2017**, *56*, 3972-3976. (f) Shi, S.; Szostak, M. Decarbonylative Cyanation of Amides by Palladium Catalysis. *Org. Lett.* **2017**, *19*, 3095-3098. (g) Zhou, P. X.; Shi, S.; Wang, J.; Zhang, Y.; Li, C.; Ge, C. Palladium/copper-catalyzed decarbonylative heteroarylation of amides via C–N activation. *Org. Chem. Front.* **2019**, *6*, 1942-1947.

(12) For studies on N–C activation, see: (a) For a biomimetic esterification, see: Wybon, C. C. D.; Mensch, C.; Hollanders, K.; Gadals, C.; Herrebout, W. A.; Ballet, S.; Maes, B. U. W. Zn-Catalyzed *tert*-Butyl Nicotinate-Directed Amide Cleavage as a Biomimic of Metallo-Exopeptidase Activity. *ACS Catal.* **2018**, *8*, 203-218. (b) For a Cr-catalyzed N–C activation, see: Chen, C.; Liu, P.; Luo, M.; Zeng, X. Kumada Arylation of Secondary Amides Enabled by Chromium Catalysis for Unsymmetric Ketone Synthesis under Mild Conditions. *ACS Catal.* **2018**, *8*, 5864-5858. For a σ bond N–C activation, see: (c) Zhang, Z. B.; Ji, C. L.; Yang, C.; Chen, J.; Hong, X.; Xia, J. B. Nickel-Catalyzed Kumada Coupling of Boc-Activated Aromatic Amines via Nondirected Selective Aryl C–N Bond Cleavage. *Org. Lett.* **2019**, *21*, 1226-1231. (d) Ni, S.; Li, C. X.; Mao, Y.; Han, J.; Wang, Y.; Yang, H.; Pan, Y. Ni-catalyzed deaminative cross-electrophile coupling of Katritzky salts with halides via C–N bond activation. *Sci. Adv.* **2019**, *5*, 9516. (e) Hu, J.; Wang, M.; Pu, X.; Shi, Z. Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins. *Nat. Commun.* **2017**, *8*, 14993. (f) For a recent pertinent C–H borylation, see: Lv, J.; Chen, X.; Xue, X. S.; Zhao, B.; Liang, Y.; Wang, M.; Jin, L.; Yuan, Y.; Han, Y.; Zhao, Y.; Lu, Y.; Zhao, J.; Sun, W. Y.; Houk, K. N.; Shi, Z. Metal-free directed sp^2 C–H borylation. *Nature* **2019**, *575*, 336-340.

(13) Zhou, T.; Li, C. L.; Hong, X.; Szostak, M. Palladium-Catalyzed Decarbonylative Suzuki–Miyaura Cross-Coupling of Amides by Carbon–Nitrogen Activation. *Chem. Sci.* **2019**, *10*, 9865-9871.

(14) (a) Carey, F. A.; Sundberg, R. J. *Advanced Organic Chemistry: Part B: Reactions and Synthesis*; Springer: New York, 2001. (b) Smith, M. B.; March, J. *Advanced Organic Chemistry*; Wiley: New York, 2007.

(15) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. Modified (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes for room-temperature Suzuki–Miyaura and Buchwald–Hartwig reactions. *J. Am. Chem. Soc.* **2006**, *128*, 4101-4111.

(16) Hinkes, S. P. A.; Klein, C. D. P. Virtues of Volatility: A Facile Transesterification Approach to Boronic Acids. *Org. Lett.* **2019**, *21*, 3048-3052.