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ABSTRACT: Herein, we demonstrate that amides can be readily coupled with non-activated arenes via sequential Ir-catalyzed C—
H borylation/N—C(O) activation. This methodology provides facile access to biaryl ketones and biaryls by the sterically-controlled
Ir-catalyzed C—H borylation and divergent acyl and decarbonylative amide N—C(O) and C—C activation. The methodology diverts
the traditional acylation and arylation regioselectivity, allowing to directly utilize readily available arenes and amides to produce

valuable ketone and biaryl motifs.

Non-directed activation of C—H bonds is among the most
important tools for transforming functional groups in organic
synthesis.! The value of non-directed C—H functionalizations
lies in the fact that these transformations enable the construc-
tion of complex fragments by exploiting readily available
arenes (Figure 1A).2 One of the most promising applications
of these methods are Ir-catalyzed C—H borylations, wherein
the development of sterically- and ligand-controlled C—H
functionalizations enables transformative fragment couplings
by exploiting new routes to organoboron building blocks of
broad relevance to pharmaceuticals, functional materials and
the synthesis of fine chemicals.>”

Simultaneously, the recent years have witnessed the devel-
opment of powerful strategies for activation of amide N—C(O)
bonds,® whereby the traditional amidic resonance
(ny—1*C=0 delocalization)”?® is diverted into facile oxidative
addition of the N-C(O) amide bond by ground-state-
destabilization and diminution of amidic resonance.”'? The
value of amide cross-coupling lies in the fact that amides are
among the most ubiquitous functional groups in organic syn-
thesis, serve as essential scaffolds in polymers, and, most im-
portantly, constitute key linkages in peptides and proteins.®® A
prominent feature of amide bond cross-coupling is that the
acyl-metal intermediate formed after metal insertion can un-
dergo CO extrusion, resulting in an overall N-C(O)/C—C bond
activation to afford an aryl-metal, which allows for the direct
installation of arenes by de-amidative cleavage.'

Recently, we became interested in establishing the synergis-
tic merger of non-directed C—H activation with amide N—C(O)
cross-coupling (Figure 1B). The utilization of readily available
arenes!™ as an abundant source of coupling partners together
with the selective breaking of nitrogen—carbon bonds in am-
ides®® holds significant promise to define new paradigms in
transformation of functional groups crucial to many synthetic
and biological processes.!*

Herein, we detail the successful development of highly se-
lective and divergent acyl and aryl cross-coupling of amides
with non-activated arenes via C-H/N-C(O) activation. This
methodology connects the classic sterically-hindered Ir-
catalyzed C—H borylation?* with the biorelevant manifold of
amide bond activation®® to provide straightforward access to
biaryl ketones and biaryls by two inert bond activation events
and diverting the traditional acylation and arylation regioselec-
tivity. The method shows excellent functional group tolerance,
chemo- and regioselectivity. We demonstrate the synthetic
utility by late-stage derivatization of pharmaceuticals and con-
jugative cross- coupling of bioactive molecules. The synergis-
tic merger with non-activated arenes opens the door to routine-
ly utilize amides as acyl and aryl cross-coupling electrophiles
in a wide range of chemical processes.'™™*

The arylation of N,N-Boc-benzamide, which is readily pre-
pared in single step from benzamide,”® with 4-tol-Bpin was
selected as the starting point of our study to identify conditions
for the cross-coupling of boronic esters with amides (Table S1,
Supporting Information). Encouragingly, we found that the
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Figure 1. (A) Meta-borylation in organic synthesis. (B) Present work.

broadly applicable, air- and moisture-stable [Pd(IPr)(cin)CI)]
(Neolyst CX31, cin = cinnamyl)" serves as an efficient cata-
lyst for this coupling to give the model biaryl ketone product
in 98% yield (entry 13). Notably, this cross-coupling with
boronic esters was found to be sensitive to the amount of wa-
ter and temperature, controlling the release of aryl boronic
acid,'® with best results obtained in THF:H,O (9:1) at 23 °C
(cf. Table S2 for arylation). The key difference between the
two Pd catalytic systems (Table S1 vs. Table S2) is that Pd—
NHCs facilitate oxidative addition/reductive elimination steps
due to strong o-donation and flexible bulk,*® respectively,
while Pd-phosphine systems in the presence of weak base
favour decarbonylation due to slowing down transmetallation
relative to CO de-insertion step.!> Note that the substrates are
presented on schemes to reflect how the reactions were carried
out. [Pd(IPr)(cin)Cl)] is the catalyst of choice for amide bond
Suzuki cross-coupling.®®!3

With the identified conditions in hand, we explored the
scope of the sequential C—H/N—-C(O) activation (Scheme 1).
The borylation was conducted with 0.75 equiv of Bopin, in the
presence of 0.50 mol% of [Ir(cod)(OMe)]> and 1.0 mol% of
dtbpy.?*® Arylboronate esters were subjected to the C(O)-N
amide cross-coupling after removing of volatiles and addition
of amide derivatives. 1,3-Dimethoxybenzne was used for the
borylation reaction as the model arene substrate.”*® As shown
in Scheme 1, the scope of the reaction with respect to amide
precursors is very broad and encompasses a wide variety of
functional groups. Electron-rich (3a, 3¢, 3e, 3t), sterically-
hindered (3b, 30, 3p), and eclectron-deficient (3d, 3f, 3g, 3h)
groups were well-tolerated. Electrophilic functional groups,
such as ester (3f), carbonate (3j, 3p), cyano (3Kk), nitro (31),
which would be problematic with classical Weinreb amides,
gave the desired ketone products in high yields. Furthermore,
heterocyclic amides, including thiophene (3i), pyrazine (3q)
and pyridine (3r) readily undergo coupling. Of note, the latter
example (3r) represents a direct activation of vitamin B3 (nic-

otinamide), while 4-hydroxybenzamide (3j) is a common am-
ide pharmaceutical intermediate, demonstrating potential
pharmaceutical applications (vide infra). Notably, in all cases,
the meta-substituted product was formed with exquisite selec-
tivity, which is in sharp contrast to the traditional acylation
with arenes giving ortho products.

The scope of the arene was also extensively studied
(Scheme 2). Pleasingly, we found that this C—H/N-C(O) acyl-
ation is compatible with a broad range of 1,3-disubstitued
arenes giving the cross-coupling products in good to excellent
yields. Acylation of challenging electron-deficient organobo-
ranes substituted with ester groups (3u, 3x, 3y) is well-
tolerated. Pivalates (3v), alkyl groups (3w), cthers (3z, 3aa),
ketones (3ab), heterocycles (3ac, 3ad), amides (3af), amines
(3ag) and fluorinated arenes (3ah, 3ai) afford the desired ke-
tone products in high yields, in all cases featuring exclusive
arylation regioselectivity. The divergent chemoselectivity for
the activated amide is noteworthy (3af). Notably, this method
could be employed for the direct derivatization of esters of
natural products and pharmaceuticals with complex architec-
ture as illustrated by the esters of fructose (3aj), menthol
(3ak), trans-androsterone (3al), cholesterol (3am) as well as
adapalene (3an), and febuxostat (3ao0).

The applicability to various amides was explored (Figure
S1). This C-H/N-C(O) activation works with N-acyl-
glutarimides (1w), N-acyl amides (1x), N-Ts-sulfonamides
(1y) and N-Boc-carbamates (1z), which expands the scope of
amide component to N-cyclic and N-acyclic amides.®

Encouraged by the success of C—H/N-C(O) acylative cou-
pling, we considered the possibility of developing divergent
aryl coupling by triple C—H/N-C(O)/C-C bond activation
(Scheme 3). For this type of cross-coupling, critical is the con-
trol of the rate of boronic acid release to match with decar-
bonylation of the acyl-metal.’* Although initial results gave no
or little conversion to the biaryl product, we discovered that
the use of MeB(OH), additive facilitates the organoboronate
release under these conditions,'** leading to the efficient cou-
pling (Table S2).

We examined the generality of the C—H/N-C(O)/C-C
biaryl coupling (Scheme 3). This method is compatible with
diverse substituents on both reaction components, including
esters (4a, 4d, 4e, 4g), heterocycles (4b), eclectronically-
deactivated substrates (4¢), halides (4f), tosylates (4h), ketones
(4j), and sterically-hindered substrates (4m), delivering the
biaryl products in good to high yields. Notably, this method
delivers functional handles for further derivatization, including
electrophilic groups.

Most crucially, the synthetic potential of this biaryl C—
H/N-C(0)/C-C coupling was demonstrated in the rapid late-
stage modification of esters of natural products, such as, men-
thol (4q), fructose (4r), and frans-androsterone (4s), thus un-
derscoring the synthetic potential of this activation platform.

An assessment of various amides in the biaryl coupling
was performed (Figure S2, Supporting Information). Pleasing-
ly, N-cyclic (1w) as well as N-acyclic amides, such as N-acyl
(1x), N-Ts-sulfonamide (1y) and N-Ms-sulfonamide (1ak) can
be utilized in this coupling protocol to deliver biaryls from
arenes and amides in good yields.



Scheme 1. Acylation of arylboronate esters with amides by sequential C-H/N-C(QO) activation: amide scope*
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“Conditions: 2 (2.0 equiv), Bopin, (0.75 equiv), [Ir(cod)(OMe)], (0.5 mol%), dtbpy (1 mol%), THF, 80 °C, 24 h, 1 (1.0 equiv), [Pd(IPr)(cin)Cl] (3 mol%),
K,CO; (3.0 equiv), THF:H,0 = 9:1 (0.20 M), 23 °C, 16 h. *Cs,COs (3.0 equiv), 60 °C.

Scheme 2. Acylation of arylboronate esters with amides by sequential C—H/N-C(O) activation: arene scope*
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and biaryls by exploiting regioselective C—H activation with
the divergent reactivity of the amide bond by acyl and decar-

Finally, we applied our C-H/N-C(O) activation technol-
ogy to conjugative coupling of bioactive molecules (Scheme

4). Thus, the direct derivatization of complex arenes and am-
ides is readily accomplished to deliver conjugates between
complex bioactive molecules and amides under standard con-
ditions (3aq-3ar).'®

In conclusion, an expedient method for the cross-
coupling of non-activated arenes with amides via sequential Ir-
catalyzed C—H borylation/N—-C(O) activation has been devel-
oped. This reaction provides facile access to biaryl ketones

bonylative pathways. This methodology tolerates a wide varie-
ty of functional groups, including various amides and direct
derivatization of natural products and pharmaceuticals with
intricate architectures. Based on this methodology, we demon-
strated conjugative coupling between complex biomolecules.
This study opens the door for arene-amide coupling in a wide
variety of chemical processes.



Scheme 3. Arylation of arylboronate esters with amides by sequential C-H/N-C(O)/C-C activation: scope*
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Scheme 4. Coupling of arenes with amides by C-H/N-C(O) activation: complex arenes and amides”
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