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Summary: Palladium-catalyzed cross-coupling reactions are a subject of extensive research in
numerous areas of science because of their remarkable capacity to enable bond forming events in
medicinal chemistry, materials science and agrochemicals. In this context, the development of
more reactive, general, easily accessible and readily available Pd(II)-NHC precatalysts remains a
key challenge in homogeneous catalysis. Although commercially-available [PA(NHC)(allyl)Cl]

complexes are among the most powerful Pd catalysts, their reactivity is limited by the formation



of off-cycle, inactive Pd(I) bridging allyl complexes. In this study, we establish air-stable NHC—
Pd(II) chloro dimers, [PA(NHC)(u-C1)Cl]2, as the most reactive Pd(II)-NHC catalysts developed
to date. Most crucially, compared with [Pd(NHC)(allyl)Cl] complexes, replacement of the allyl
throw-away ligand with chloride allows for a more facile activation step, while effectively
preventing the formation of off-cycle [Pdx(p-allyl)(u-CI)(NHC)2] products. The utility of this
class of catalysts is demonstrated via broad compatibility with privileged biaryls and the direct,
late-stage functionalization of common pharmaceuticals. Extensive computational studies
provide key insight into the NHC—Pd(II) chloro dimer activation pathway. With the goal of
providing increasingly practical technologies, a facile synthesis of NHC—Pd(II) chloro dimers in
one-pot from NHC salts is reported. Considering the tremendous utility of Pd-catalyzed cross-
coupling reactions in chemical synthesis and the overwhelming success of [Pd(NHC)(allyl)Cl]
precatalysts, we believe that NHC-Pd(II) chloro dimers, [Pd(NHC)(u-C1)Cl]2, should be

considered as go-to precatalysts of choice in cross-coupling processes.

Introduction: Palladium-catalyzed cross-coupling reactions are among the most powerful
molecular assembly tools in chemistry by enabling facile construction of C—C and C—heteroatom
bonds (Molander et al., 2013; Colacot, 2015; Diez-Gonzalez et al., 2009). Tremendous advances
have been achieved through the discovery of tailor-made ligands that facilitate challenging
oxidative addition and reductive elimination elementary steps (Fortman et al., 2011; Martin et
al., 2008). The Pd-catalyzed Suzuki—Miyaura reaction now ranks as the most frequently executed
catalytic transformation in production of pharmaceuticals, with numerous commercial syntheses
of drugs singularly relying on this bond forming technology (Blakemore et al., 2018).

Mechanistically, it is now established that achieving high activity of Pd catalysts involves the



formation of monoligated Pd(0) species (Christmann et al., 2005). As a result, the development
of well-defined Pd(0) and Pd(II) precatalysts, wherein Pd and ligand are in a 1:1 ratio, represents
a major direction in catalyst design (Molander et al., 2013; Colacot, 2015; Diez-Gonzalez et al.,
2009; Fortman et al., 2011; Martin et al., 2008). In this context, commercially-available
[PA(NHC)(allyl)C1] (NHC = N-heterocyclic carbene) complexes developed by one of us (S.P.N.)
are among the most powerful and widely used Pd catalysts for various cross-coupling reactions
worldwide (Marion et al., 2006; Hopkinson et al., 2014; Nolan et al., 2017); however, their
reactivity is limited by the formation of off-cycle Pd(I) allyl products (Figures 1A-B)

(Hruszkewycz et al., 2014; Melvin et al., 2015; Johansson Seechurn et al., 2017).

The [PA(NHC)(allyl)CI] complexes were first introduced in 2002 (Marion et al., 2006;
Viciu et al., 2002). The proposed activation pathway involved a nucleophilic addition to the allyl
or the halide displacement with an alkoxide and reductive elimination to give the active NHC—
Pd(0) species. In 2006, it was established that addition of bulky substituents at the 1-position of
the allyl ligands, such as cinnamyl or prenyl, resulted in a dramatic increase of catalyst efficiency
(Marion et al., 2006). In the meantime, [Pd(NHC)(cin)Cl] (cin = cinnamyl) have become a
commercially-available class of Pd catalysts of choice for cross-coupling reactions. The use of
NHC ancillary ligands expedites the reaction development owing to the strong o-donating
properties of NHC ligands cf. phosphines (Martin et al., 2008; Marion et al., 2006; Hopkinson et
al., 2014; Nolan et al., 2017). These [Pd(NHC)(allyl)CI] catalysts are now available in several
forms from various suppliers, facilitating challenging C—C and C-heteroatom cross-couplings
worldwide. It should also be noted that in addition to Pd(II)-NHC precatalysts bearing highly

effective allyl-type or palladacycle-type throw-away ligands (Figure 1A), heteroatom donors,



including the PEPPSI-class of catalysts have attracted considerable attention (Chart 1) (Nolan et

al., 2017; O’Brien et al., 2006).

In 2014, it was identified that the formation of inactive [Pdx(u-allyl)(u-Cl)(NHC):]
dimers during the activation of [Pd(NHC)(allyl)Cl] complexes takes place (Figure 1B)
(Hruszkewycz et al., 2014). It was established that the monoligated NHC—Pd(0) species
undergoes comproportionation with [Pd(NHC)(allyl)Cl] monomers to give the inactive allyl-
bridged Pd(I) dimers, [Pdz(p-allyl)(u-CI)(NHC)2]. The extent of formation of this inactive
dipalladium complex is dependent on the presence of substituents at the allylic terminal position.
Thus, allyl-type complexes bearing sterically-bulky #z-Bu-indenyl ligand, [Pd(NHC)(1-#-Bu-
ind)CI] showed high reactivity by suppressing formation of the inactive Pd(I) allyl products
(Melvin et al., 2015). However, this class of catalysts still relies on catalyst activation by allyl
displacement (cf. dissociation), multi-step synthesis and the introduction of waste-generating
throw-away allyl ligand, which is less than desirable from the activation-, reactivity-, atom-,

step- and cost-economy perspective.
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Figure 1. (a) Structures of well-defined Pd(Il) precatalysts. (b) Comproportionation mechanism.

Over the past years, we have introduced Pd-NHC complexes for the cross-coupling of
amides through oxidative addition of N—C(O) bonds, which is also instrumental for the cross-
coupling of bench-stable esters via acyl-metals from common amides and esters (Shi et al.,
2018). In the context, we have studied PdA-NHC complexes with various throw-away ligands

(M.S.) (Lei et al., 2017).



In this study, we establish air-stable NHC—Pd(II) chloro dimers, [PA(NHC)(u-C1)Cl]2, as
the most reactive Pd(II)-NHC catalysts developed to date. Most crucially, compared with
[PA(NHC)(allyl)CI] complexes, replacement of the allyl throw-away ligand with chloride allows
for a more facile activation step, while effectively preventing the formation of off-cycle [Pda(p-
allyl)(u-CI)(NHC),] products. These catalysts are highly reactive, easy to prepare, readily
activated to Pd(0)-NHC by dimer dissociation (cf. allyl displacement), avoid cost- and waste-
generating allyl ligands. The utility of this class of catalysts is demonstrated via broad
compatibility with privileged biaryls and the direct, late-stage functionalization of common
pharmaceuticals. Extensive computational studies provide key insight into the NHC-Pd(II)
chloro dimer activation pathway. With the goal of providing increasingly practical technologies,
a facile synthesis of NHC—Pd(II) chloro dimers in one-pot from NHC salts is reported.
Considering the tremendous utility of Pd-catalyzed cross-coupling reactions in chemical
synthesis and the overwhelming success of [Pd(NHC)(allyl)Cl] precatalysts, we believe that
NHC-Pd(II) chloro dimers, [PA(NHC)(u-CI)Cl]2, should be considered as go-to precatalysts of

choice in cross-coupling processes.

Results and Discussion. Catalytic Studies. Our investigation of the reactivity of NHC-Pd(II)
chloro dimers, [PA(NHC)(n-CI)Cl]2, was initiated by evaluating the reactivity of a model IPr-
based catalyst (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) in the cross-coupling of
amide 7 with boronic acids. Somewhat ironically, it is worth noting that the [Pd(IPr)(u-CI)Cl]2
catalyst was first reported by one of us (S.P.N.) in 2002; however, at that point the focus was
aimed at the seemingly more reactive [Pd(NHC)(allyl)CI] complexes (Viciu et al, 2002; Navarro

et al., 2003). Now, after nearly 20 years in catalyst development (Marion et al., 2006; Shi et al.,



2018), we hypothesized that [PA(NHC)(u-C1)Cl]2 complexes might be of great benefit in cross-
coupling reactions due to facile activation and elimination of the off-cycle products in the
absence of problematic allyl throw-away ligands.

Selected optimization results are summarized in Table 1. Full optimization results are
presented in the Supplemental Information. After preliminary experiments, we found that the
desired cross-coupling occurred in >98% yield at 0.25 mol% catalyst loading under very mild
room temperature conditions (Table 1, entry 3). Furthermore, the reaction could be successfully
performed at 0.050-0.025 mol% catalyst loading (>95% conversion) by increasing the
temperature to 40 °C (Table 1, entries 7-8).

At this point, kinetic profiling studies were conducted to gain insight into the reaction and
compare the reactivity of [Pd(IPr)(u-Cl)Cl]> with other classes of PA(II)-NHC catalysts (Figure
2). Crucially, in kinetic profiling studies, we found that [Pd(IPr)(u-C1)Cl]2 (6) was a superior
catalyst to [Pd(IPr)(cin)Cl] and [Pd(IPr)(1-z-Bu-ind)CI] (Marion et al., 2006; Melvin et al.,
2015), while the heterocycle-based Pd-PEPPSI-IPr (10) (O’Brien et al., 2006) (Chart 1) showed
the lowest reactivity. It is well-known that activation of Pd-PEPPSI-type catalysts is slow
(Hopkinson et al., 2014). However, it should also be noted that in specific cases the rate of
catalyst activation might differ between substrates, including cases when substrate activation by
nucleophilic addition takes place (Shi et al., 2018). The reaction of amide 7 gave 89% conversion
after 4 h using 6 as catalyst, which can be compared with 42% and 25% conversion when using
[Pd(IPr)(cin)CI] and [Pd(IPr)(1-#-Bu-ind)CI] catalysts. Crucially, initial rates revealed that the
NHC-PA(IT) chloro dimer [Pd(IPr)(u-CI)Cl]> catalyst gives 3.1 and 4.2 times faster reaction than

the cinnamyl- and #-Bu-indenyl-based catalysts.



Table 1. Optimization of Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of Amides®

O [Pd(IPr)(u-Cl)Cll, o
Ph)Lle/Ph + 4-Tol—B(OH), onditions Ph)k4-T0|
7 Boc 8 9
Entry Catalyst Boroniq Acid Bas.e HzQ Yield®

(mol%) (equiv) (equiv) (equiv) (%)
1 1.5 1.2 2.0 0 56
2 1.5 1.2 2.0 5 >08
3 0.25 1.05 1.1 5 >98
4 0.05 1.05 1.1 5 32
5¢ 0.05 2.0 1.1 5 74
64 0.05 2.0 3.0 5 85
7¢¢ 0.05 2.0 3.0 5 >98
8¢ 0.025 2.0 3.0 5 96

“Conditions: amide (1.0 equiv), catalyst (x mol%), 4-Tol-B(OH)> (1.05-2.0 equiv), KoCO3 (1.1-
3.0 equiv), H2O (0-5 equiv), THF (0.25 M), 23 °C, 12 h. °GC/'H NMR yields. €0.50 M. “Toluene.
40 °C. See Transparent Methods for full details. IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-
ylidene.

Our preliminary studies indicate that sterically-hindered imidazolylidene as well as
saturated imidazolinylidene ligands perform well as ancillary ligands in [Pd(NHC)(u-CHClI]2
complexes. As such, two other chloro dimers [Pd(NHC)(u-Cl)ClI]2 based on SIPr and IPr* NHC
ancillary ligands were prepared and evaluated in the cross-coupling of amide 7 with 4-Tol-
B(OH): (see Scheme S1). The reactivity of saturated imidazolinylidene-based catalyst SIPr (SIPr
= 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene) (74% yield) and sterically-hindered IPr*
(IPr* = 1,3-bis(2,6- bis(diphenylmethyl)4-methylphenyl)imidazol-2-ylidene) (Izquierdo et al.,

2014) (24% yield) at 0.050 mol% loading was identified as promising but provided lower yields



than 6. Our ongoing studies are focused on the development of NHC ligands that can be broadly

utilized as supporting ligands in cross-coupling reactions.
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Figure 2. Kinetic profile of Suzuki-Miyaura cross-coupling of amides. Conditions: 7a

(PhCONBocPh), 4-Tol-B(OH)> (2.0 equiv), catalyst ([Pd(IPr)(u-CI)Cl]2, 0.05 mol%; other
catalysts, 0.10 mol%), KoCO3 (3.0 equiv), H2O (5 equiv), toluene (0.50 M), 23 °C, 0-20 h.
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Chart 1. Structure of Pd-PEPPSI-IPr (10).

The substrate scope of amide bond cross-coupling using the NHC—Pd(II) chloro dimer
[PA(IPr)(u-CDCl]2 6 was briefly investigated (Scheme 1). As such, the cross-coupling of
electronically-varied amides and boronic acids, including electrophilic functional groups (9e),
alkyl amides (9d) and deactivated substrates (9¢, 9b’), could be achieved at room temperature at
low catalyst loading in excellent yields. Furthermore, a turnover number (TON) of 14,800 was

calculated for the cross-coupling of amide 7a ([Pd(IPr)(u-CD)Cl]2 (6), 25 ppm, 4-Tol-B(OH)a,



120 °C, 2-MeTHF). The use of 2-MeTHF is preferred for TON determination due to much better
solubility of the base in this solvent (see Scheme S3).

Scheme 1. Scope of Amide Suzuki—Miyaura Cross-Coupling”

i [NHC-Pd], K,CO4 o
_Ph +  Ar—B(OH),
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“Conditions: amide (1.0 equiv), Ar-B(OH): (2.0 equiv), [Pd(IPr)(u-CI)Cl]2, 0.25 mol%, K>CO3
(3.0 equiv), H2O (5 equiv), toluene (1.0 M), 23 °C, 12 h. ’Isolated yields. €0.50 mol%.
PA(IPr*)(u-C1)Cl]2, 0.25 mol%. See Transparent Methods for details.

At this stage, we turned our attention to the more synthetically significant biaryl Suzuki—
Miayura cross-coupling. Beyond doubt, the biaryl Suzuki—Miyaura synthesis ranks as the most
important and powerful C—C bond forming cross-coupling reaction discovered to date (Fyfe et
al., 2017). The impact of the biaryl Suzuki—Miayura cross-coupling is clearly illustrated by the
change of the shape of bioactive pharmacophores that are now prepared as medicines and
scaffolds in drug discovery enabled by the emergence of this cross-coupling technology (Yet,
2018).

Our initial optimization focused on two standard conditions that are routinely applied in
the development of Suzuki—Miyaura cross-coupling, namely the much preferred conditions using

weak base (K>COs) and the alternative conditions using strong base (KO#-Bu) (see Table S1).

Crucially, the NHC-Pd(II) chloro dimer [Pd(IPr)(u-C1)CI]2 6 promoted the model cross-coupling

10



of 4-chlorotoluene with Ph—B(OH), in quantitative yield under both conditions in EtOH as a

solvent.
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Figure 3. Kinetic profile of biaryl Suzuki-Miyaura cross-coupling of aryl chlorides. Conditions:
13a (4-Tol-Cl), Ph-B(OH)2 (1.05 equiv), catalyst ([Pd(IPr)(u-C1)Cl]2, 0.50 mol%; [Pd(IPr)(1-¢-
Bu-ind)Cl], 1.0 mol%), KOz-Bu (1.1 equiv)/K2COs (2.2 equiv), EtOH (0.50 M), 23 °C, 0-1 h.
Next, kinetic profiling studies revealed the NHC—Pd(II) chloro dimer [Pd(IPr)(p-C1)Cl]2
6 is a superior catalyst to [Pd(IPr)(1-#-Bu-ind)Cl] under the much preferred mild base conditions
using K>CO; (orange triangles vs. red triangles, Figure 3) consistent with facile activation by
dimer dissociation. Interestingly, the reactivity of 6 is similar to [Pd(IPr)(1-z-Bu-ind)Cl] under
KOr#-Bu conditions (green squares vs. blue squares, Figure 3). It is also worth noting that K2CO;
is the preferred based in case of selected substrates (see Scheme S5 and S6). We have further
evaluated the comparative reactivity of the NHC—Pd(II) chloro dimer [Pd(IPr)(u-CI)Cl]2> 6 and
[PA(IPr)(1-#-Bu-ind)CI] in the cross-coupling of electron-rich and sterically-hindered substrates,
wherein 6 also showed better reactivity. Our preliminary studies indicate that [PA(NHC)(u-
CDCl]z are efficient is cross-coupling of sterically-hindered 2,6-di-substituted aryl chlorides (see
Scheme S6). Our future studies will focus on expanding the scope of reactions enabled by

[PA(NHC)(p-C1)C1]; catalysts.

11



With the knowledge that the NHC—Pd(II) chloro dimer [Pd(IPr)(u-CI)Cl]2 6 is a highly
effective catalyst operating under mild, synthetically-useful conditions, we next investigated the
synthetic scope of 6 with a focus on compatibility with privileged biaryls and the direct, late-

stage functionalization of common drugs (Schemes 2-4).

Scheme 2. Scope of Pd-Catalyzed Biaryl Suzuki-Miyaura Cross-Coupling®
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60 °C, 86% yield 60 °C, 89% yield 60 °C, 99% yield MeOH, 60 °C, 87% yield 60 °C, 84% yield

“Conditions: Ar-X (1.0 equiv), Ar-B(OH): (2.0 equiv), K2COs (3.0 equiv), [PA(IPr)(un-C1)Cl]2 (6)
(y mol %), EtOH (0.50 M), 12 h. Isolated yields. See Transparent Methods for details.

As outlined in Schemes 2 and 3, the NHC—Pd(II) chloro dimer [Pd(IPr)(u-CI)Cl]> 6 can

be deployed successful with a remarkably broad range of aryl chlorides and boronic acids (Afagh
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et al., 2010). Most crucially, the highlighted functional groups are among the most commonly
encountered in pharmaceuticals and allow for further functionalization by traditional or
orthogonal cross-coupling methods (Blakemore et al., 2018). A variety of synthetically useful
substituents is tolerated, including nitriles, unprotected hydroxyl, free amines, pyridines, esters,
free indoles, triazines, benzofurazans, aldehydes, free carboxylic acids, dioxolanes,
polyfluorinated substrates, Boc-protected amines, NH-benzamides, pyridazines, primary,
secondary, tertiary amides, sulfonamides, 2,1,3-benzothiadiazoles, pyrazines, bis-heterocycles,
pyrimidines, functionalized indoles, benzotriazoles and pyrroles, enabling the synthesis of
privileged biaryl motifs in excellent yields. When aryl chlorides gave lower conversion or are not

easily available, aryl bromides could be used successfully.
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Scheme 3. Scope of Pd-Catalyzed Biaryl Suzuki-Miyaura Cross-Coupling®
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“Conditions: Ar-X (1.0 equiv), Ar-B(OH)2 (2.0 equiv), KoCOs (3.0 equiv), [Pd(IPr)(u-C1)Cl]2 (6)
(y mol %), EtOH (0.50 M), 12 h. Isolated yields. Ar-B(OH), (3.0 equiv). See Transparent
Methods for details.

Furthermore, the NHC-Pd(II) chloro dimer [Pd(IPr)(u-CI)Cl]2 6 could be readily
deployed in the direct cross-coupling of densely-functionalized pharmaceuticals (Scheme 4),
such as Fenofibrate, Haloperidol, Indomethacin, Chlorpromazine, Glibenclamide, Griseofulvin,
and Chlorquine, thus clearly demonstrating the potential impact on the synthesis and potential
late-stage further derivatization of complex biaryls in pharmaceutical settings. The selected
substrates further demonstrate the functional group tolerance with respect to privileged motifs

that are broadly present in pharmaceutical development.
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Scheme 4. Direct Cross-Coupling of Pharmaceuticals®
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“Conditions: Ar-X (1.0 equiv), Ar-B(OH)2 (2.0 equiv), K2COs (3.0 equiv), [PA(IPr)(u-C1)Cl]2 (6)
(y mol %), EtOH (0.50 M), 12 h. Isolated yields. %-PrOH. K>COs (5 equiv). “+-BuOH. See
Transparent Methods for details.

Preliminary studies using the NHC—Pd(II) chloro dimer [Pd(IPr)(n-CI)Cl]2 6 indicated
that the cross coupling at 25 ppm catalyst loading is also feasible using K>CO3z as a mild
carbonate base (see Scheme S7). To our knowledge, these results establish the NHC—-Pd(II)
chloro dimer [Pd(IPr)(pu-CI)Cl]> 6 as the most active Pd(II)-NHC catalysts discovered to date,
and a major improvement over the overwhelmingly successful [Pd(NHC)(allyl)Cl] catalysts. The
use of the commonly available IPr ligand and the commercial availability on large scale (i.e. kg
scale) surely make the NHC—Pd(II) chloro dimer [Pd(IPr)(u-CI1)Cl]2 6 an attractive tool to be

used in small and larger scale molecular assembly cross-coupling strategies.
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Mechanism Studies. To gain further insight into the reactivity of the palladium halide
dimer catalysts, [PA(NHC)(u-X)X]., we prepared the bromo- and iodo-based congeners,
[PA(IPr)(u-Br)Br]z and [PA(IPr)(u-DI]2, and evaluated their reactivity in the model Suzuki cross-
coupling (see Table S2). The bromo dimer showed slightly lower reactivity than the chloro
relative, while the iodo dimer was completely unreactive across electronically- and sterically-
differentiated substrates at room temperature; however, moderate conversion was observed at 60
°C. This establishes the reactivity order of the halide dimer catalysts: Cl > Br > I, which is
consistent with the activation of [Pd(INHC)(u-X)X]> halide dimer catalysts to yield the active,
monoligated NHC—Pd(0) complex (Fairlamb et al., 2006).

To further understand the high reactivity of 6, we measured the activation rate to the
monoligated IPr-Pd(0) (Scheme 5). The rate was measured in the presence of dvds (dvds = 1,3-
divinyl-1,1,3,3-tetramethyldisiloxane) and base (Hruszkewycz et al., 2014). We found that in a
comparison between [Pd(IPr)(allyl)Cl], [Pd(IPr)(cin)Cl] and [Pd(IPr)(u-CI)Cl]2 (6) the allyl
complex is activated the fastest (kobs = 1.1 * 103 s7), while the chloro dimer (kobs = 7.0 * 107 s7)
was activated faster than the cinnamyl complex (kobs = 3.0 * 10 s7!) (see Scheme S8). The
absence of an allyl moiety in 6 obviously excludes a decomposition route leading to bridged-allyl
dinuclear palladium complexes. The high activation rate of [Pd(IPr)(u-C1)Cl]; is consistent with

the excellent activity of this catalyst in cross-coupling.

16



Scheme 5. Rates of Activation of Allyl, Cinnamyl and Chloro Dimer, [(NHC)Pd(u-CI)Cl]a,

Complexes®
Me Me
1, [Pd(IPr)(allyl)CI] \/éi\/Me MeOH-d, /\/éi\/Me
2. [PA(IPr)(cin)CI] + KO-tBu + o ———= P—prd 0
6, [PA(IPr)(u-CI)CI1, /st 23°C /st
MeMe MeMe

(10 equiv) (10 equiv)

“Conditions: PdA-NHC (1.0 equiv), KO#-Bu (10 equiv), dvds (10 equiv), MeOH-d4, 23 °C, 0-3 h.

Computational Analysis of  [(Pr)Pd(u-Cl)Cl]; Activation. DFT studies
(M06/Def2TZVP~SDD//BP86-d3(PCM,THF)/SVP~SDD) were conducted to gain insight into
the exact activation pathway employed by 6 and compare it with those of other classes of air-
stable Pd(II) precatalysts. From catalyst 6, via a barrierless step (checked by a linear transit), the
simple cleavage of the dimer requires 17.6 kcal/mol, thus affordable at room temperature.
Analyzing the halide that holds together the dimer structure, calculations validated the results
found in the reactivity order of the halide dimer catalysts (see Table S2), with higher
thermodynamic cost for the dimer cleavage of 2.1 and 10.5 kcal/mol for Br and I, respectively.
The latter value is in perfect agreement with experiments and confirms the activity at 60 °C and
the poorer results at rt. Secondly, the analysis moved to the different NHC ligands that occupy
different space around the metal. The mechanism to activate catalysts 6, 11 and 12, i.e. that leads
to the active catalytic Pd(0) species, is included in Figure 4. The computed values for the
barrierless dimer cleavage are 17.6 (IPr), 16.8 (SIPr) and 26.5 (IPr*) kcal/mol, thus becoming
unflavored for larger NHC ligands (Falivene et al., 2019; Falivene et al., 2016). The higher

energy cost for the cleavage of 12 is in agreement with experimental results (see Scheme S1),
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explaining the poor performance of the sterically very encumbered 12 at rt, but much improved

activity at more elevated temperatures.
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Figure 4. DFT-optimized pathway (relative energies to Pd(0) in kcal/mol) for the activation of
catalysts 6 (black), 11 (red) and 12 (blue). 6 = IPr, 11 = SIPr, 12 = [Pr*, [Pd(NHC)(u-CD)Cl]..
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Post dimer cleavage, we envisaged that Ph-B(OH), together with the base K,CO3; must
assist in the displacement/removal of one of the halides and deliver a phenyl ligand. This
hypothesis is supported by results in Table 1 where better catalytic performance is obtained with
an excess of boronic acid. After a first rearrangement caused by the entering K,COs3, the Ph-
B(OH)> bonds to the ionic KCO3; moiety, and the aryl group on boron is transferred to the
palladium in the e>f step with an energetic cost of 21.7, 22.1 and 22.4 kcal/mol for 6, 11, and
12, respectively, calculated not from intermediate d, but ¢ as a reference. In the absence of base,
the aryl transfer to the metal shows an increase in the energy barrier for 6 of 18.2 kcal/mol. Next,
there is the favorable thermodynamic dissociation of the K,CO3;CIB(OH), moiety, followed by a
second coordination of a base that in combination of a second Ph-B(OH)> moiety allows the aryl
transfer from boron to palladium (see Figure 5). The kinetic requirement of the latter j=2>Kk step is
23.3,24.6 and 23.6 kcal/mol for 6, 11, and 12, respectively, calculated from intermediate i. In the
precatalyst activation sequence, this latter step becomes the rate determining step (rds) for 6 and
11, whereas for 12 this remains the halide bond cleavage of the dimer. Finally once the
K>COs;CIB(OH): moiety is released, the two aryl groups bound to palladium eliminate and form
biphenyl and yield a Pd(0) species. Alternatively, instead of involving a second equivalent of
base, the release of chlorobenzene from the initially formed [Pd(NHC)(Ph)Cl] was studied. This
reductive elimination was found to be not kinetically facile, with an energy barrier of 22.4
kcal/mol, together with a thermodynamic cost of 18.1 kcal/mol (see Figure S1). Using the Pd(0)
species for the acyl Suzuki—Miyaura cross-coupling of amides by N—-C(O) cleavage has been
previously shown to involve upper energy barriers of 23.8 and 26.5 for catalysts 6 and 12 (Li et

al., 2017), thus mirroring the same trend as in the pre-activation of the corresponding catalysts.
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Figure 5. DFT-optimized transition state of the second aryl transfer from boron to palladium for

6 (left) and 12 (right); main distances are given in A.

We also compared the energetics for the dimeric 6 with those for the monomeric 1 and 2
leading to the Pd(0) species (see Figure S2). Even though the kinetics require just 25.3 and 23.3
kcal/mol for 1 and 2, respectively, generation of an active species is hindered by the starting
metal catalyst since formation of a bridged allyl dipalladium is highly favored by 17.4 and 14.3
kcal/mol. And this forces a kinetic requirement of 30.9 and 27.2 kcal/mol to recover the Pd(0)
species. Thus, the catalyst itself with the off-cycle intermediate blocks the formation of the
catalytic active species Pd(0) at mild temperature, contrarily to what happens with simple halide
bridged catalysts 6, 11, and even 12, studied here. Not having any allyl or substituted allyl
supporting ligand appears to represent the simplest solution to avoiding catalyst deactivation.

One-Pot Synthesis of [Pd(IPr)(u-Cl)Cl]>. Our catalytic experiments clearly indicated the
excellent activity of the NHC—Pd(II) chloro dimer [Pd(IPr)(u-CI)Cl]2 6. To provide practical
synthetic technologies to practitioners, we developed a facile one-pot synthesis of NHC—Pd(II)
chloro dimers from NHC salts (Scheme 6). As such, the air-stable NHC—Pd(II) chloro dimer

[PA(IPr)(pn-ChCl]2 6 could be readily prepared both on a small scale (0.11 mmol, ca. 60 mg) or
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on a preparative gram scale (3.7 mmol, 1.69 g) in 81% yield. The rapid availability of 6
compares very favorably with other Pd(II)-NHC precatalysts®'* (note that 6 is also already
commercially available) and should provide facile access to this class of catalysts for various
cross-coupling technologies as well as for a plethora of other catalytic reactions that require
monoligated Pd complexes, including C—H activation and hydrofunctionalization processes

(Hopkinson et al., 2014; Nolan et al., 2017).

Scheme 6. Facile, One-Step Synthesis of 6

s
1. Pd(OAc),, K,CO3  Dipp Pd Pd Di
Me\' I’M€ tol, 80 °C, overnight c’ N\~ PP

o )
%N\ NP 2.HCI, 1 hr, RT Dipp,N(\J}

6, [Pd(IPr)(u-C1)CI],
81% yield, 1.58 g

(1.0 equlv)

“Conditions: IPrHCI (1.0 equiv, 3.7 mmol), Pd(OAc): (1.2 equiv), K2COs3 (4 equiv), toluene, 80

°C, followed by addition of HCI.

Conclusions

In summary, we have established air-stable NHC—-Pd(II) chloro dimers, [PA(NHC)(u-
CI)Cl]2, as the most reactive Pd(II)-NHC catalysts developed to date. The key feature of this
class of catalysts is that replacement of the allyl throw-away ligand from the overwhelmingly
successful [Pd(NHC)(allyl)Cl] complexes by a bridging chloride imparts a facile activation by
dissociation, prevents the formation of off-cycle allyl products, and eliminates synthetic and
economic technological issues associated with allyl ligands. These catalysts are highly reactive,

easy to prepare, readily activated to Pd(0)-NHC by dimer dissociation (cf. allyl displacement),
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avoid cost- and waste-generating allyl ligands. The utility of this class of catalysts has been
demonstrated in the synthesis of privileged biaryls and the direct, late-stage functionalization of
pharmaceuticals, showing excellent functional group tolerance and chemoselectivity.
Computational studies provided key insight into the NHC-Pd(II) chloro dimer activation
pathway and rationalized the superior catalytic performance of the dimer catalysts compared to
that of the allyl and substituted-allyl palladium catalysts. Crucially, a facile, one-pot synthesis of
NHC-Pd(II) chloro dimers has been developed, thus enabling simple and scalable access to
[PA(NHC)(u-CDCl]2 complexes. Overall, the scope of the reactions catalyzed by [PA(NHC)(p-
CI)CI]2 complexes supersedes other classes of Pd-NHC catalysts, including activation, rate of
cross-coupling of model substrates in different reaction classes and catalyst synthesis. Our future
studies will be focused on expanding the range of transformations mediated by [Pd(NHC)(u-
CI)Cl]2 complexes.

Considering the tremendous impact of Pd-catalyzed cross-coupling reactions in chemical
synthesis and the tremendous success of [Pd(NHC)(allyl)Cl] precatalysts by practitioners
worldwide, we believe that NHC—-Pd(II) chloro dimers, [Pd(NHC)(u-Cl)Cl]2, should be routinely
considered as go-to precatalysts of choice in cross-coupling processes. The exceptional
performance of [PA(NHC)(u-CI)Cl]> catalysts provides a strong foundation to accelerate

applications in the synthesis of medicines, organic molecules and polymers.

Experimental Procedures: Full experimental procedures are provided in the Supplemental

Information.

Supplemental Information: Supplemental Information includes Supplemental Figures

Supplemental Tables, Transparent Methods, and Supplemental References.
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