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ABSTRACT: Herein, we report a catalyst system for Pd-catalyzed decarbonylative Suzuki-Miyaura cross-coupling of aroyl chlorides
with boronic acids to furnish biaryls. This strategy is suitable for a broad range of common aroyl chlorides and boronic acids. The
synthetic utility is highlighted in the direct late-stage functionalization of pharmaceuticals and natural products capitalizing on the
presence of carboxylic acid moiety. Extensive mechanistic and DFT studies provide key insight into the reaction mechanism and high

decarbonylative cross-coupling selectivity.

The Suzuki-Miyaura cross-coupling of aryl chlorides is one
of the most powerful reactions developed (Figure 1A).12 On the
other hand, very little progress has been made in the develop-
ment of the biaryl Suzuki-Miyaura cross-coupling of aroyl chlo-
rides.? To date, only one catalyst system has been developed by
Sanford and co-workers using Pd[P(o-tol); ]»/BrettPhos,* how-
ever, it involves a sequential decarbonylative chlorination/aryl
chloride cross-coupling rather than direct decarbonylative
cross-coupling. This Suzuki reaction was successful in only two
examples of electronically-activated aroyl chlorides.

Herein, we report to the best of our knowledge the first cata-
lytic system for the direct decarbonylative Suzuki-Miyaura
cross-coupling of aroyl chlorides (Figure 1B). The method em-
ploys [Pd(n3-1-r-Bu-ind)Cl]»/PPh; or DPEPhos and NaHCO; as
a weak base to slow down transmetallation relative to decar-
bonylation.!! The utility of this method is highlighted in the di-
rect functionalization of pharmaceuticals and natural products
that capitalize on the presence of the carboxylic acid moiety to
introduce the biaryl motif in a decarbonylative fashion (Figure
1C). Furthermore, we present detailed mechanistic and DFT
studies to elucidate the mechanistic pathway and provide
benchmark for the development of future synthetic methods.

In general, aroyl chlorides, R—C(O)Cl are the most funda-
mental and ubiquitous carboxylic acid derivatives.® Despite
some limitations, such as stability, aroyl chlorides are the most
common acyl transfer reagents used on daily basis in academic
and industrial laboratories worldwide.>¢ In particular, nucleo-
philic acyl substitution using aroyl chlorides is among the most
popular synthetic methods at present,’ however, an arsenal of
acyl cross-couplings of aroyl chlorides has also been developed
permitting access to biaryl ketones.”

In contrast to these methods, the direct arylation of aroyl
chlorides remains a major challenge. Although decarbonylative
cross-couplings have been developed as a powerful reactivity
manifold, few methods involving simple aroyl chlorides have
been established.® In this context, although aroyl chlorides are
the most fundamental carboxylic acid derivatives,>>S the biaryl
Suzuki—Miyaura cross-coupling — one of the most powerful
synthetic transformations within the field of chemistry'? — us-
ing aroyl chlorides as electrophiles remains a challenging goal.

Within our program on decarbonylative cross-coupling reac-
tions,’ we questioned whether decarbonylative Suzuki-Miyaura
cross-coupling of aroyl chlorides might be accomplished using
versatile Pd catalysis.'*'* Notable features of our study include
(1) the first example of a direct decarbonylative Suzuki-
Miyaura cross-coupling of aroyl chlorides. Aroyl chlorides rep-
resent a fundamental functional group in organic synthesis. The
reaction involves a fundamental elementary step, oxidative ad-
dition of an acyl-Cl bond (cf. acyl-OCOR bond).”f (2) a new
catalytic system for decarbonylative cross-coupling of aroyl
electrophiles (cf. acid anhydrides), which we believe would be
useful for the development of future cross-coupling methods.

Our studies were initiated by the examination of the cross-
coupling of benzoyl chloride with 4-methoxyphenyl boronic
acid as the nucleophile (eq 1). The key challenge in decarbonyl-
ative cross-coupling is the reactivity of acyl- and aryl-metal in-
termediates in elementary organonometallic steps. After very
extensive optimization (see Tables S1-S10, SI), we have iden-
tified a catalyst system consisting of [Pd(n>-1-t-Bu-ind)Cl], as
the Pd source, PPh; or DPEPhos as a phosphine ligand and Na-
HCOj; as a base. Under the optimized conditions, the biaryl
product was formed in 93% yield with >95:5 selectivity for the
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Figure 1. (a) Suzuki cross-coupling of aryl chlorides. (b-c) This study: De-
carbonylative Suzuki-Miyaura cross-coupling of aroyl chlorides.
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biaryl vs. acyl coupling. In the model cross-coupling, the same
yield was observed using preformed (n’-1-t-Bu-
ind)Pd(CI)(PPh;) and the catalyst formed in situ from [Pd(n>-1-
t-Bu-ind)Cl], and PPh;. To our knowledge, this is the first ex-
ample of a beneficial effect of allyl-supported precatalysts in
decarbonylative cross-coupling, a finding which may lead to the
development of more effective Pd(Il) precatalysts in this catal-
ysis platform.!3-17

It is further interesting to note that a comprehensive optimi-
zation of n3-allyl throw-away ligands, " such as n*-allyl, n3-cin,
n*-ind, 13-1--Bu-ind in [Pd(n?-ally])Cl], catalysts across vari-
ous boronic acids was conducted and confirmed the beneficial
effect of n-1-r-Bu-ind in all cases examined (see SI).

With the optimized conditions in hand, the scope and limita-
tions of this Suzuki—Miyaura cross-coupling were investigated
(Scheme 1). As shown, the scope of the reaction is very broad
using unbiased electrophile and accommodates a significant
electronic and steric variation. As such, electron-rich (3a-3b)
and electron-deficient (3¢-3h) boronic acids are well-tolerated.
It is noteworthy that the reaction readily accommodates electro-
philic groups, such as ketones (3c¢), esters (3d), chlorides (3g),
aldehydes (3h). In particular, the tolerance to aryl chloride (3g)
highlights the orthogonal nature of decarbonylative cross-cou-
pling vs. the conventional aryl chloride cross-coupling. Further-
more, steric-hindrance (3i-3j) and a variety of other substrates
(3k-3t), including heterocycles (3r-3t) are readily accommo-
dated by this decarbonylative cross-coupling. Importantly, the
scope with respect to the aroyl chloride component is similarly
broad (3u-3ak), including electrophilic substrates such as chlo-
ride (3z), ester (3ab) or cyano (3ah-3aj). Several additional
points and limitations should be noted.'® At this stage, mono-

ortho-substitution on acyl chlorides is tolerated, while di-ortho-
substituted aroyl chlorides are not suitable substrates. The 4-ni-
tro substituent on the boronic acid allows for the cross-coupling
(4-nitro-1,1'-biphenyl, 42% yield). The ratio of 3:4 = 81:19 is
consistent with the electron-withdrawing effect of the nitro
group. The 4-nitro group on aroyl chloride is tolerated (4-meth-
oxy-4'-nitro-1,1'-biphenyl, 31% yield, 3:4 >95:5). It should also
be noted that aroyl chlorides are potential lachrymators (LCs
inhalation, rat, 1.45 mg/L) and have several other hazards.'®

The synthetic utility is highlighted in the direct late-stage
functionalization of pharmaceuticals and natural products that
feature carboxylic acid moiety that is readily converted in situ
to aroyl chlorides using thionyl chloride — a classic sequence in
nucleophilic acyl additions®>%!* (Scheme 2). The synthesis of
biaryls from probenecid (3al, antihyperuricemic), bexarotene
(3am, antineoplastic), methone (3an, monoterpene) and choles-
terol (3ao, steroid) illustrate the capacity of this coupling in the
synthesis of biaryls with a range of potential applications.'’

To study the mechanism, we conducted stoichiometric exper-
iments with isolated intermediates (Scheme 3 and SI).

A. To gain insight into the facility of decarbonylation, we
prepared acyl-palladium complex 6 and subjected this complex
to the cross-coupling (Scheme 3A). Decarbonylation of 6 oc-
curs at 80 °C, while full conversion is achieved at 160 °C after
30 min. Furthermore, we have independently prepared aryl-Pd
complex 7 (Scheme 3A).2° The reverse reaction of 7 to give 6
occurs under atmospheric pressure of CO within 2 h at rt. These
findings confirm that decarbonylation of acyl-palladium 6 can
occur under mild conditions at 80 °C.?! Decarbonylation of 6 is
not observed at lower temperatures than 80 °C (see SI).

B. Stoichiometric experiments using benzoyl chloride in the
presence of palladium precursor and phosphine ligand using
[Pd] (1 equiv) (Pd(dba), or [Pd(n3-1--Bu-ind)Cl],) and PPh; (2
equiv) give aryl-Pd complex 7 exclusively (Scheme 3B), con-
sistent with fast decarbonylation of acyl-palladium 6.2!

C. Experiments with acyl-Pd complex 6 in the presence of
boronic acid and base under different conditions show that at rt
only ketone 4a resulting from acyl coupling was formed, how-
ever, at higher temperatures only biaryl 3a was observed, even
after short reaction times, reaching full conversion at 160 °C
after 15 min (Scheme 3C).

D. Stoichiometric experiments with 7 in the presence of bo-
ronic acid and base show full conversion of aryl-palladium 7 to
biaryl 3a after 15 min at 160 °C (Scheme 3D).

E-F. Further experiments probing the effect of CO (Scheme
3E) and the potential of acyl-palladium complex 6 as a catalyst
(Scheme 3F) demonstrate that acyl coupling is more facile than
aryl coupling and that 6 is catalytically active, consistent with 6
as a catalytic intermediate in the cross-coupling. Scheme 4 pre-
sents a summary of stoichiometric studies. The results suggest
that decarbonylation precedes transmetallation. Decarbonyla-
tion is facile and occurs at temperatures as low as 80 °C. The
results indicate transmetallation as the rate-limiting step.

To gain further insight into the mechanism of this novel
cross-coupling, we have performed extensive computational
studies to delineate the origin of high reactivity and the energies
of elementary steps. The DFT-computed free energy profile of
Pd/PPh;-catalyzed decarbonylative biaryl Suzuki-Miyaura
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“Conditions: acyl chloride (1.0 equiv), boronic acid (1.5 equiv), NaHCOs (3 equiv), [(1-z-Bu-ind)PdCl], (7.5 mol%), 30 mol% PPhs, dioxane (0.10 M), 160 °C,
15 h. Isolated yields. ®20 mol% DPEPhos. See SI for details.

Scheme 2. Late-Stage Functionalization of Pharmaceuticals and Natural Products®
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Figure 2. DFT-computed free-energy-profile of Pd/PPhs-catalyzed decarbonylative biaryl Suzuki-Miyaura coupling of benzoyl chloride. See SI for details.

Scheme 3. Mechanistic Studies with Isolated Intermediates
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cross-coupling with benzoyl chloride is shown in Figure 2.
From the substrate-coordinated complex 8, the oxidative addi-
tion of benzoyl chloride through TS9 is very facile, generating
the acyl-palladium intermediate 10. 10 dissociates one of the
phosphine coordinates to allow the subsequent decarbonylation
via TS12, and the ligand-CO exchange leads to the bisligated
aryl-palladium species 14. From 14, the base-promoted
transmetallation occurs via an outer-sphere mechanism (TS16)
to generate the biaryl-palladium intermediate 17. The alterna-
tive base-free, bicarbonate-facilitated, or inner-sphere

Scheme 4. Summary of Mechanistic Studies”
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transmetallation processes were found less favorable (Figure
S1). 17 undergoes a facile aryl-aryl reductive elimination
through TS18 to produce the produce-coordinated complex 19.
Subsequent product liberation regenerates the palladium cata-
lyst and completes the catalytic cycle. We want to emphasize
that the isolated chloride anion is a simplification of its form in
the catalytic system, complexation with cationic species could
further stabilize the dissociated chloride anion and make the
product liberation more exergonic. Based on the DFT-
computed free energy profile, the rate-determining step of the

4



catalytic cycle is the transmetallation step via TS16. This step
requires an overall barrier of 29.9 kcal/mol comparing with the
on-cycle resting state acyl-palladium intermediate 10.

An additional point is the speciation of Pd catalyst at 160 °C.
Decarbonylation of 6 to 7 occurs at 60 °C (1 h, 13%) and the
entire reaction at 100 °C (3a, 21%). Therefore, we can make a
reasonable assumption of catalyst speciation between 25-80 °C
and apply it to our reaction conditions. Moreover, considering
the boiling point of 1,4-dioxane, the system temperature should
be close to 120 °C in the stoichiometric transformation. Further-
more, we have made attempts to determine the fate of the Pd in
stoichiometric reactions of 7. Preliminary studies indicate the
formation of Pd(PPhs); in the cross-coupling of 7 (0.5 h, 17%).

In summary, we have identified a new catalyst system for the
decarbonylative Suzuki-Miyaura cross-coupling of aroyl chlo-
rides. Synthetically, aroyl chlorides are the most fundamental
carboxylic acid derivatives. This report demonstrates that aroyl
chlorides could be successfully utilized in the powerful Suzuki-
Miyaura biaryl cross-coupling manifold. The synthetic utility
has been highlighted in the direct functionalization of pharma-
ceuticals and natural products capitalizing on the presence of
carboxylic acid moiety. Mechanistic and DFT studies have pro-
vided insight into the high reaction selectivity and established
facile decarbonylation, and decarbonylation preceding
transmetallation. Our future studies will be focused on expand-
ing the scope of coupling partners in this process.
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