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Scheme 1. Scope of Decarbonylative Suzuki–Miyaura Cross-Coupling of Aroyl Chloridesa 

 
aConditions: acyl chloride (1.0 equiv), boronic acid (1.5 equiv), NaHCO3 (3 equiv), [(1-t-Bu-ind)PdCl]2 (7.5 mol%), 30 mol% PPh3, dioxane (0.10 M), 160 °C, 
15 h. Isolated yields. b20 mol% DPEPhos. See SI for details.  

Scheme 2. Late-Stage Functionalization of Pharmaceuticals and Natural Productsa 

 
aConditions: carboxylic acid (1.0 equiv), SOCl2, DMF, toluene, 75 °C, 12 h, then boronic acid (1.5 equiv), NaHCO3 (3 equiv), [(1-t-Bu-ind)PdCl]2 (7.5 mol%), 
30 mol% PPh3, dioxane (0.10 M), 160 °C, 15 h. Isolated yields. See SI for details.  
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catalytic cycle is the transmetallation step via TS16. This step 
requires an overall barrier of 29.9 kcal/mol comparing with the 
on-cycle resting state acyl-palladium intermediate 10. 

An additional point is the speciation of Pd catalyst at 160 °C. 
Decarbonylation of 6 to 7 occurs at 60 ºC (1 h, 13%) and the 
entire reaction at 100 ºC (3a, 21%). Therefore, we can make a 
reasonable assumption of catalyst speciation between 25-80 °C 
and apply it to our reaction conditions. Moreover, considering 
the boiling point of 1,4-dioxane, the system temperature should 
be close to 120 °C in the stoichiometric transformation. Further-
more, we have made attempts to determine the fate of the Pd in 
stoichiometric reactions of 7. Preliminary studies indicate the 
formation of Pd(PPh3)2 in the cross-coupling of 7 (0.5 h, 17%). 

In summary, we have identified a new catalyst system for the 
decarbonylative Suzuki–Miyaura cross-coupling of aroyl chlo-
rides. Synthetically, aroyl chlorides are the most fundamental 
carboxylic acid derivatives. This report demonstrates that aroyl 
chlorides could be successfully utilized in the powerful Suzuki-
Miyaura biaryl cross-coupling manifold. The synthetic utility 
has been highlighted in the direct functionalization of pharma-
ceuticals and natural products capitalizing on the presence of 
carboxylic acid moiety. Mechanistic and DFT studies have pro-
vided insight into the high reaction selectivity and established 
facile decarbonylation, and decarbonylation preceding 
transmetallation. Our future studies will be focused on expand-
ing the scope of coupling partners in this process.  
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