Preference of cis-Thioamide Structure in N-Thioacyl-N-Methylanilines
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Thioanilides: strong preference for cis conformation
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ABSTRACT: The thioamide group represents a highly attractive isostere of the amide bond. We report a combined structural and
computational study on cis-thioamide conformation of N-thioacyl-N-methylanilines. Amide to thioamide replacement in a class of
anilides that are highly valuable as conformational locks results in a higher preference for cis conformation in a unique compacted
template intrinsic to the thioamide structure. The study strongly supports the use of N-methyl-thioanilides as cis-conformational

locks in various facets of chemistry.

In their classic study, Itai demonstrated the cis-preference of
the amide bond in N-methylbenzanilides (Figure 1A).! Alt-
hough acyclic amides strongly prefer trans conformation
around the N—C(O) bond,>* as exemplified by closely related
benzanilides, their N-methylated counterparts undergo the
conformational switch arising from avoidance of unfavorable
steric interactions,*® while retaining substantial double bond
character of the amide bond through ny — m'c-o conjuga-
tion.%” This unexpected finding opened the door for the im-
plementation of frans to cis conformational switch to control
substituent geometry around the amide bond in a variety of
fields utilizing amides, including medicinal chemistry, bio-
chemistry, molecular recognition, conformation relays, syn-
thetic switches and organic synthesis.®!!

Recently, significant attention has been given to thioamides
as attractive amide bond isosteres.!> The oxygen to sulfur re-
placement is particularly attractive considering (1) the privi-
leged role of sulfur-based functional groups in pharmaceuti-
cals, wherein more than 25% of APIs contain sulfur as the key
component;'® and (2) the unique electronic properties inherent
to thioamides vs. amides, including long van der Waals radius
of sulfur vs. oxygen (1.85 A vs. 1.40 A), elongated C=X bonds
(1.64 A vs. 1.19 A, HC=XNHy) and significantly lower polari-
zation of the C=X bond (electronegativity, S: 2.58 vs. O:
3.44).'* A prominent feature of thioamides is their role in in-
creasing the stabilization of proteins owing to strong n — 1’
interactions'® and a plethora of thioamide-containing natural
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Figure 1. (a) Classical study on cis-preference of anilides, selected appli-
cations. (b) This work: Conformational preference of thioanilides.
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Figure 2. Structures of thioamides used in the present study.

products.'® Elegant studies on macrocyclic amide to thioamide
replacement have attracted considerable interest over the last
years.! 18

As part of our program on amide bonds, ' herein, we re-
port a combined structural and computational study on cis-
thioamide conformation of N-thioacyl-N-methylanilines. Most
importantly, we demonstrate that amide to thioamide replace-
ment results in a higher preference for cis conformation in a
unique compacted template intrinsic to the thioamide struc-
ture. The present study strongly supports the use of N-methyl-
thioanilides as highly valuable cis-conformational locks®!! in
various facets of chemistry.

Guided by the study by Itai and our own studies in amide
bond chemistry, we selected six thioamides shown in Figure 2
(1-6). These thioamides are readily synthesized from the cor-
responding amides using Lawesson’s reagent (see SI, Support-
ing Information). The selected compounds mirror the amide
counterparts used by Itai (Figure 2, 7-12).

We commenced by obtaining X-ray structures of N-
methylthioanilides (Figure 3). All thioamides 1-5 feature cis
conformation in the crystal. Selected structural parameters
relevant to the thioamide geometry are presented in Table 1
and SI. Compound 6 is a liquid and is not suitable for crystal-
lographic analysis (vide infra). There are several instructive
structural correlations between thioamides 1-5 and their amide
counterparts 7-11 obtained from crystallographic studies, in-
cluding (1) a significant decrease of the N—C(X) bond length
(avg. 1.337 A, X = S; avg. 1.352 A, X = 0); (2) a significant
increase of the C=X bond length (avg. 1.660 A, X = S; avg.
1.228 A, X = 0); (3) an increase in C—C(Ph) bond length (avg.
1.443 A, X = S; avg. 1.439 A, X = 0); and (4) an excellent
linear correlation between the C—C(S) and C-C(O) bond
lengths (R* = 0.92, see SI for correlation plots).?!

Next, we performed computational studies to gain insight
into the structures of thioamides 1-6 and compare them with
their oxygen counterparts 7-12. As shown by our previous
studies,'® computed data provide vastly improved correlations
vs. solid state structures, and this approach is particularly ef-
fective when considering multiple series of compounds using
x-ray structures for geometry optimization. Geometry optimi-
zation was performed at the B3LYP/6-311++G(d.p) level.
Extensive studies have shown that this level is accurate in
predicting structural and energetic properties of amides. '

4) (5)
Figure 3. Crystal structures of 1-5. See SI for expanded structures. 50%
ellipsoids. Crystallographic data have been deposited with the Cambridge
Crystallographic Data Center. CCDC 2039785 (1); CCDC 2039803 (2);
CCDC 2039815 (3); CCDC 2039816 (4); CCDC 2039817 (5).

Table 1. Selected Crystallographic Structural Parameters
of Thioamides 1-5°

thioamide N-C C=S C-C(S) N-Ph N-Me

no: ®) [A] [A] [A] [A] [A]
1 Ph 1.342 1.658 1.485 1.440 1.463
2 C(CH;3)=CH, 1.333 1.655 1.490 1.447 1.466
3 Cy 1.332 1.664 1.481 1.441 1.467
4 i-Pr 1.338 1.659 1.519 1.442 1.469
5 t-Bu 1.341 1.662 1.546 1.444 1.476

“This study. X-ray structures, see SI for details.

Computations closely parallel the experimental properties of
the amide to thioamide bond substitution, and allow to include
non-crystalline compounds 6 and 12 in the correlation (Figure
4 and SI). Thus, amide to thioamide replacement is accompa-
nied by a reinforced ny to ©"c=x conjugation as evidenced by a
shortening of the N—C(X) bond. This effect is accompanied by
C=X bond elongation as well as C—C(X) bond shortening and
C—Cpny bond elongation, consistent with a weakened ny — Ar
conjugation. Overall, these effects lead to a compacted cis
amide bond geometry in the thioanilide template.

Next, resonance energies of the thioamide bond in 1-6 were
calculated using the COSNAR method.?? Resonance energy in
1-6 ranges between 9.6-19.9 kcal/mol and is higher than in the
corresponding oxygen counterparts 7-12 (9.8-15.4 kcal/mol)
(Figure 5A and SI). Remarkably, there is an excellent inverse
linear correlation between a plot of log(ARE) of the sulfur and
oxygen analogues and the steric Charton (v) value (Figure 5B,
R? = 0.91). Overall, the energetic parameters in 1-6 vs. 7-12
indicate a reinforced bond resonance upon O to S replacement.
The resonance manifests as a function of the R substituent
converging at the sterically-demanding substitution. This un-
expected effect likely arises from the increased van der Waals
radius of sulfur vs. oxygen atoms minimizing steric interac-
tions.

To gain further insight into the effect of O to S replacement,
we obtained a detailed rotational profile of the parent thioam-
ide 1 by systematic rotation along the X—C—-N-C dihedral an-
gle (Figure 5C). The rotation was performed in both directions
using the X-ray structure of 1 as the starting geometry. Figure
5C shows rotational profile of 1 (X = S) in comparison with 7
(X'=0). Rotational profile in 1 confirms significantly higher

2



Plot of N-C Bond Length in Thioamides vs. Amides

lh\oamidﬁ 1440

amide

17 2 8 5 11 6 12 17 2 8 3 9

39
Thioamide vs. amide

4 10

Plot of N-Ph Bond Length in Thicamides vs. Amides

4 10

C

Pilot of C-C(S) Bond Length vs. C-C{0) Bond Length
57

-Ih\usmidﬁ = .
— 156 y=1.197x - 0.304, R* = 0.996
158
154
e
@,
Qs
o
15
150,
149 -
148

T.49 1.50 1.51 1.52 153 1.55 156

C-C(O) [A]

1.54

5 11 6 12
Thicamide vs. amide

Figure 4. (a) Plot of N—C bond length [A] in thioamides 1-6 vs. amides 7-12. (b) Plot of N-Ph bond length [A] in thioamides 1-6 vs. amides 7-12. (c) Corre-
lation of C—C(S) bond length [A] to C—C(O) bond length [A] for thioamides 1-6 vs. amides 7-12 (B3LYP/6-311++G(d,p)). See SI for additional details.
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Figure 5. (a) Resonance energies for thioamides 1-6 (kcal/mol). (b) Plot of log(ARE) vs. Charton parameter in thioamides 1-6 vs. amides 7-12. Note that (v)
value for C(CH;3)=CH, is not available. (c) Correlation of AE [kcal/mol] to X—~C—C—C [°] in 1 and 7 (B3LYP/6-311++G(d,p)). See SI for additional details.

barrier to rotation than in the oxygen counterpart with a planar
thioamide bond conformation (the energy minimum at ca. 0°
S—-C-N-C angle; the energy maximum at ca. 90° S—C-N-C
angle). The rotational barrier was determined to be 14.02
kcal/mol (90° S—C-N-C angle), and 10.84 kcal/mol (70° O-
C-N-C angle). It is worth noting that as suggested by the res-
onance energies thioamide 6 shows one conformer in the
NMR spectrum. This effect is driven by minimization of steric
interactions between the R substituent and the sulfur atom.
Both steric and electronic effects of the substituents play a key
role in adopting the cis conformation.

Several additional studies were conducted (Scheme 1 and
see SI). (1) To further confirm the intrinsic preference of N-
methyl-thioanilides to exist in the cis conformation, the rela-
tive stabilities of trans isomers for both sulfur and oxygen
analogues were determined at the B3LYP/6-311++G(d,p) lev-
el, showing that cis isomers are more stable in all cases (S:
avg. 3.1 kcal/mol; O: avg. 2.7 kcal/mol, see SI). (2) Difference
in proton affinities (APA) in representative thioamide 1 indi-
cates that these thioanilides strongly favor protonation at sul-
fur'® (APA = 17.0 kcal/mol, Spa vs. Npa), which can be com-
pared with the oxygen analogue 7 (APA = 11.0 kcal/mol, Opa
vs. Npa),'* and is in agreement with the findings on the en-
hanced ny — m'c-x conjugation in thioamides (Scheme 1A).
(3) To push the prospects of resonance alteration, RE of deriv-
atives 13-16 varying by a single substituent on each aromatic
ring were determined (Scheme 1B) (13: R = 4-NMe/R’ = 4-
NO;; 14: R = 4-McO/R’ = 4-CN; 15: R =4-CN/R’ = 4-MeO;

16: R = 4-NO»/R’ = 4-NMe;). The RE in 13-16 of 8.7, 11.1
19.6, 20.6 kcal/mol spans the range of 11.9 kcal/mol, which
supersedes the effects observed in the oxygen counterparts of
9.5 kcal/mol determined earlier.'®® Overall, these studies
strongly support significantly enhanced conformational but-
tressing effects upon O to S substitution.

Scheme 1. Protonation Aptitude and Resonance Energies

A APA = 17.0 APA = 11.0

©)k'/Me kcal/mol ©)k(l\/le kcal/mol

R/R' = 4-NMe,/4-NO, (13) Eg = 8.7 kcal/mol
R/R' = 4-MeO/4-CN (14) Eg = 11.1 kcal/mol
R/R' = 4-CN/4-MeO (15) Eg = 19.6 kcal/mol
RIR' = 4-NO,/4-NMe, (16) Eg = 20.6 kcal/mol

In summary, amide bond architecture represents one of the
most vital motifs in organic chemistry and biology. Although
typical acyclic amides exist in the trans conformation, N-
methyl-anilides undergo conformation switch to the cis geom-
etry, an effect that has been engaged as a conformational an-
chor in many systems across chemical disciplines.*!! The
present study demonstrates and quantifies that the amide to
thioamide replacement in these systems results in a higher
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preference for cis conformation in a unique compacted tem-
plate intrinsic to the thioamide structure. The effect of sterics,
substitution, resonance effects, barriers to rotation and proton
affinities have been discussed and quantified. The attractive
properties of thioamides, including photoisomerization, should
facilitate the widespread use of N-methyl-thioanilides as cis-
conformational locks in various facets of chemistry. Future
studies will focus on further determination of conformational
preferences of amides and thioamides by spectroscopic and
computational methods.
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Experimental procedures and characterization data. Cartesian
coordinates and energies. Detailed description of computational
methods used. CIF files for 1-5. This material is available free of
charge via the Internet at http://pubs.acs.org.
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