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Figure 4. (a) Plot of N–C bond length [Å] in thioamides 1-6 vs. amides 7-12. (b) Plot of N–Ph bond length [Å] in thioamides 1-6 vs. amides 7-12. (c) Corre-
lation of C–C(S) bond length [Å] to C–C(O) bond length [Å] for thioamides 1-6 vs. amides 7-12 (B3LYP/6-311++G(d,p)). See SI for additional details. 

 

 

Figure 5. (a) Resonance energies for thioamides 1-6 (kcal/mol). (b) Plot of log(RE) vs. Charton parameter in thioamides 1-6 vs. amides 7-12. Note that () 
value for C(CH3)=CH2 is not available. (c) Correlation of E [kcal/mol] to X–C–C–C [°] in 1 and 7 (B3LYP/6-311++G(d,p)). See SI for additional details. 

barrier to rotation than in the oxygen counterpart with a planar 
thioamide bond conformation (the energy minimum at ca. 0° 
S–C–N–C angle; the energy maximum at ca. 90° S–C–N–C 
angle). The rotational barrier was determined to be 14.02 
kcal/mol (90° S–C–N–C angle), and 10.84 kcal/mol (70° O–
C–N–C angle). It is worth noting that as suggested by the res-
onance energies thioamide 6 shows one conformer in the 
NMR spectrum. This effect is driven by minimization of steric 
interactions between the R substituent and the sulfur atom. 
Both steric and electronic effects of the substituents play a key 
role in adopting the cis conformation.  

Several additional studies were conducted (Scheme 1 and 
see SI). (1) To further confirm the intrinsic preference of N-
methyl-thioanilides to exist in the cis conformation, the rela-
tive stabilities of trans isomers for both sulfur and oxygen 
analogues were determined at the B3LYP/6-311++G(d,p) lev-
el, showing that cis isomers are more stable in all cases (S: 
avg. 3.1 kcal/mol; O: avg. 2.7 kcal/mol, see SI). (2) Difference 
in proton affinities (PA) in representative thioamide 1 indi-
cates that these thioanilides strongly favor protonation at sul-
fur19 (PA = 17.0 kcal/mol, SPA vs. NPA), which can be com-
pared with the oxygen analogue 7 (PA = 11.0 kcal/mol, OPA 
vs. NPA),19e and is in agreement with the findings on the en-
hanced nN → *

C=X conjugation in thioamides (Scheme 1A). 
(3) To push the prospects of resonance alteration, RE of deriv-
atives 13-16 varying by a single substituent on each aromatic 
ring were determined (Scheme 1B) (13: R = 4-NMe2/R’ = 4-
NO2; 14: R = 4-MeO/R’ = 4-CN; 15:  R = 4-CN/R’ = 4-MeO; 

16: R = 4-NO2/R’ = 4-NMe2). The RE in 13-16 of 8.7, 11.1 
19.6, 20.6 kcal/mol spans the range of 11.9 kcal/mol, which 
supersedes the effects observed in the oxygen counterparts of 
9.5 kcal/mol determined earlier.19e Overall, these studies 
strongly support significantly enhanced conformational but-
tressing effects upon O to S substitution. 

Scheme 1. Protonation Aptitude and Resonance Energies 

 

In summary, amide bond architecture represents one of the 
most vital motifs in organic chemistry and biology. Although 
typical acyclic amides exist in the trans conformation, N-
methyl-anilides undergo conformation switch to the cis geom-
etry, an effect that has been engaged as a conformational an-
chor in many systems across chemical disciplines.8–11 The 
present study demonstrates and quantifies that the amide to 
thioamide replacement in these systems results in a higher 
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preference for cis conformation in a unique compacted tem-
plate intrinsic to the thioamide structure. The effect of sterics, 
substitution, resonance effects, barriers to rotation and proton 
affinities have been discussed and quantified. The attractive 
properties of thioamides, including photoisomerization, should 
facilitate the widespread use of N-methyl-thioanilides as cis-
conformational locks in various facets of chemistry. Future 
studies will focus on further determination of conformational 
preferences of amides and thioamides by spectroscopic and 
computational methods.  
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