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ABSTRACT: A range of environmentally friendly solvents was evaluated in the Suzuki-Miyaura
coupling of amides in an attempt to provide the first solvent selection guide for the powerful C—C
coupling by amide bond cleavage. Of the 14 solvents and 10 PdA-NHC catalysts (NHC = N-heterocyclic
carbene) considered, i-PrOAc was identified as the recommended, environmentally-friendly solvent for
the coupling. The obtained data permit for an overall ranking of recommended solvents in the Suzuki—
Miyaura coupling of amides, with methyl #-butyl ether (MTBE), cyclopentyl methyl ether (CPME),
diethyl carbonate (DEC), p-cymene, dimethylcarbonate (DMC) and anisole as alternative recommended
solvents in terms of health, safety and environmental ranking for the coupling. The data should facilitate
the replacement of hazardous solvents with green organic solvents in the biorelevant manifold of amide

bond coupling for the further implementation of amide bond activation methods.

Keywords: solvents; amide cleavage, amide activation; N-C(O) activation, Pd—NHCs,; N-heterocyclic

carbenes; Suzuki cross-coupling



INTRODUCTION

Amide bond cross-coupling is a powerful transformation that is vital for transforming traditionally inert
amide bonds into cross-coupling synthons through the cleavage of N—C bonds under mild and modular
transition-metal-catalyzed conditions (Figure 1).!? The immense potential of the amide bond cross-
coupling stems from the inherent presence of amides in biomolecules, polymers, and as the most
common functional group in pharmaceutical development.3*-3%

B Amides as new electrophiles in transition-metal-catalyzed C-C cross-coupling
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Figure 1. Amides as electrophiles in the Suzuki—Miyaura cross-coupling.

The fundamental impact of solvents on the environment and the synthesis of active pharmaceutical
ingredients has led to the development of a number of green solvent selection guides to reduce the
environmental and health concerns.>®> In consideration of the pervasive presence of solvents in
chemical transformations, wherein solvents constitute up to 90% of the non-aqueous waste in the
synthesis of APIs, it is critical to use environmentally friendly and greener solvents in modern chemical
processes.*’ > Evaluation of health, safety and environmental criteria of the most common solvents
define sets of recommended solvents, while minimizing the environmental and health impact.*’*

However, the most common solvent for the Pd-catalyzed Suzuki—Miyaura coupling of amides is
tetrahydrofuran (THF), which is classified as hazardous or problematic at best by all solvent selection
guides.*’> To address the urgent need for the replacement of hazardous solvents in the biorelevant
manifold of amide bond cross-coupling, we present the first solvent selection guide for the powerful
Suzuki—Miyaura C—C coupling by amide bond cleavage. We show that of the 14 solvents and 10 Pd-

NHC catalysts (NHC = N-heterocyclic carbene) considered (see Table 1 and Figure 3), i-PrOAc*”* is

the recommended, environmentally-friendly solvent for the coupling, in agreement with the recent



solvent selection guides in terms of sustainability, health impact and stability,*>’

while methyl #-butyl
ether (MTBE)*® % cyclopentyl methyl ether (CPME)®!"% diethyl carbonate (DEC)®¢, p-cymene
(pCy)®® 7!, dimethylcarbonate (DMC)%7>"3 and anisole*’* should be considered as alternative
recommended solvents. The data should facilitate green organic solvent selection for the further
implementation of amide bond activation methods. It is also important to note that i-PrOAc is
inexpensive and has already found common applications in process chemistry, which should facilitate
its application in amide bond cross-coupling.

Pd-NHCs (NHC = N-heterocyclic carbene) have been identified as the most active catalysts for the
Suzuki-Miyaura coupling of amides.!"'%’#+7¢ The high activity of these catalysts hinges upon strong c-
donation of the NHC ancillary ligand, while accommodating steric requirements for the oxidative
addition of the N-C(O) bond to the monoligated NHC—-Pd(0) and reductive elimination steps by flexible
N-wingtip substitution.”®*® As an added advantage Pd-NHCs are applied as air- and moisture-stable

Pd(II) precatalysts, which facilitates their rapid adoption into the synthetic toolbox.”” %3

RESULTS AND DISCUSSION

For the study, we selected 14 solvents outlined in Table 1. In general, the solvent selection was
guided by the environmental and health impact as defined by solvent selection guides.**>> We have also
focused on selecting the solvents that are readily available in both academic and industrial laboratories,
inexpensive and readily removable from the reaction mixtures (vide infra). It should be noted that
alcohols are not suitable solvents for amide coupling due to facile amide bond alcoholysis of the twisted
amide bond,® while ketones are unsuitable due to aldol type side reactions observed in amide bond
cross-coupling.” Neolyst CX31, [Pd(IPr)(cin)Cl],”> was selected for the initial evaluation due to the
versatility, robustness and commercial availability of this Pd-NHC catalyst.®

As shown in Table 1, we were pleased to find that several green recommended solvents performed

extremely well in the model Suzuki—Miyaura cross-coupling of amide (1a) with 4-Tol-B(OH), (2a, 2



equiv) in the presence of Neolyst CX31 (3 mol%) and K,COs3 (3 equiv) as a base.’ As such, this initial
evaluation identified 2-MeTHF,*”-* cyclopentyl methyl ether (CPME),’"%* i-PrOAc,*”* p-cymene,®®"!
diethyl carbonate (DEC),% %7 methyl z-butyl ether (MTBE),®'~% ethyl acetate (EA),*”*° anisole*’*° and
dimethyl carbonate (DMC)%7>73 as the superior green solvents to THF in the coupling. Other solvents,
such as propylene carbonate (PC),% eucalyptol (1,8-cineole),”®*! y-valerolactone (GVL)*** and ethyl
levulinate®*® resulted in lower yields. All cross-coupling products were isolated by chromatography on
silica gel. We hypothesize that lower yields are a result of side reactions, low solubility of the reaction
components and inefficient generation of the catalytically active species. It is also worthwhile to note
that the use of high-boiling green solvents introduces additional challenges in product isolation and
purification.

Table 1. Selection of Green Solvents”

B(OH):  [pd(IPr)(cin)Cl]

(0] (o)
OO w2 O QL
Ph Solvent, RT

1 2 3
entry solvent yield (%)
1 THF 94
2 2-MeTHF 96
3 CPME 98
4 i-PrOAc 96
5 PC 37
6 p-cymene 98
7 DEC 98
8 MTBE 98
9 EA 98
10 anisole 97
11 1,8-cineole 24
12 DMC 98



13 GVL 63

14 ethyl levulinate 66

“Amide (1.0 equiv), Ar-B(OH): (2.0 equiv), [Pd] (3 mol%), K2COs3 (3.0 equiv), H>O (5.0 equiv), solvent
(0.25 M), 23 °C, 15 h. °GC/'H NMR yields.

Having identified 9 green recommended solvents for the coupling that resulted in excellent
conversions in the model reaction, we conducted kinetic studies to gain further insight into the relative
reaction rates (Figure 2). As shown, the kinetic profiling studies revealed i-PrOAc to be the most
efficient solvent for the cross-coupling followed by MTBE and CPME, which showed similar kinetic
profiles, and then by DEC and p-cymene, while other solvents examined, namely 2-MeTHF, anisole,
EA, and DMC, resulted in inferior reactivity. The reactions were completely quenched after 4 h. It is
interesting to note the difference in rate between i-PrOAc and EtOAc. While the explanation is not clear
at present, we note that we have observed low reactivity in amide bond cross-coupling in EtOAc using

Pd-catalysis while developing other reactions of amides by N—C(O) activation.
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Figure 2. Kinetic profile in the Suzuki—Miyaura cross-coupling with 4-tolylboronic acid catalyzed by

Pd(IPr)(cin)CI (3 mol%) at room temperature. 1a (1.0 equiv), 4-Tol-B(OH)2 (2.0 equiv), [Pd] (3 mol%),



K>COs (3.0 equiv), H20 (5.0 equiv), solvent (0.25 M), 23 °C, 0-240 min.

At this stage, we conducted comprehensive evaluation of Pd-NHC catalysts using i-PrOAc as the
preferred solvent identified by the kinetic studies. As shown in Figure 3, we selected 10 Pd-NHC
catalysts guided by their commercial-availability, type of the NHC scaffold and class of throw-away
ligand (i.e. ligand that must dissociate from the metal centre). In general, the Pd-NHC catalysts selected
can be classified as imidazolylidene (IPr, IMes) or imidazolinylidene ligands (SIPr) bearing allyl-type
throw-away ligands (allyl, cin, #~-Bu-ind), heterocyclic ligands (3-Cl-py), chloro-dimers ([Pd(IPr)(p-
CI)Cl],) and palladacycles (SingaCycle A3).2°192 We have also selected the sterically-demanding IPr*
ligand due to its high efficiency in select cross-couplings.”” As shown in Table 2, we found that Neolyst
CX317° is the most efficient Pd catalyst for the coupling, closely followed by Pd—PEPPSI-IP*® and
SingaCycle A3%°, which all resulted in >90% yields in the model reaction. Two other catalysts, namely
[PA(IPr)(u-C1)Cl1]2">1%% and the allyl-based [Pd(IPr)(z-Bu-ind)CI]'® also showed promising reactivity,
while  other catalysts showed much lower ([Pd(IPr)(allyl)C1]°,  [Pd(SIPr)(cin)CI]",
[Pd(IMes)(allyl)CI]'®") or significantly lower (Pd—PEPPSI-SIPr!®?, Pd-PEPPSI-IPr*°7) reactivity. It
should be noted that N-alkyl-based NHC catalysts are unsuitable for amide bond coupling.’® In general,
N-alkyl-NHCs feature low flexibility around the metal centre and thus are less effective in the
transmetallation step, which is proposed as the rate-determining step in the Suzuki cross-coupling of

aryl halides and amides.”
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Figure 3. Structures of Pd(II)-NHC precatalysts in the Suzuki—Miyaura cross-coupling of amides.

Table 2. Selection of Pd-NHC Precatalysts®

0 B(OH), [Pd-NHC] 0
©)£<’,V/BOC . K,CO3
Ph i-PrOAc, RT
1 2 3

entry catalyst yield (%)’




1 Pd(IPr)(cin)Cl 96

2 Pd-PEPPSI-IPr 93
3 Pd(IPr)(#-Bu-ind)Cl 84
4 Pd(IPr)(ally)Cl1 52
5 Pd(IMes)(allyl)Cl 63
6 Pd-PEPPSI-SIPr 10
7 Pd(SIPr)(cin)Cl 65
8 Pd-PEPPSI-IPr* 27
9 [PA(IPr)(u-C1)ClI]2 87
10 SingaCycle A3 93

“Amide (1.0 equiv), Ar-B(OH)> (2.0 equiv), [Pd] (3 mol%), KoCOs (3.0 equiv), H2O (5.0 equiv), i-
PrOAc (0.25 M), 23 °C, 15 h. °GC/'H NMR yields.

Next, we examined the scope utilizing the 5 most effective green solvents identified in the
optimization and kinetic studies, namely i-PrOAc, MTBE, CPME, DEC and p-cymene (Tables 3 and 4).
The effect of solvents on the substrate scope with respect to the boronic acid component is shown in
Table 3. This study further confirmed the beneficial effect of i-PrOAc as the recommended green
solvent for Suzuki—-Miyaura coupling of amides. As shown, in the coupling using sterically-hindered 2-
Tol-B(OH): and the challenging electronically-deactivated 4-CF3-C¢H4-B(OH): all solvents performed
well, resulting in 57-78% and 86-98% yields, respectively. i-PrOAc is clearly the preferred solvent
using electronically-deactivated boronic acids bearing electrophilic functional groups, such as 4-Ac-
CsH4-B(OH)> and 4-MeO,C-CsHs-B(OH), as well as heterocyclic substrates, such as 3-thienyl boronic
acid. Interestingly, MTBE and CPME are also effective solvents in the latter case, albeit the reaction is
lower yielding than using i-PrOAc. In general, we hypothesize that the trend of solvent yield vs. activity
and rate of reaction is closely dependent on several factors, including the generation of the active
monoligated NHC-Pd(0), solubility of the reaction components, stability of the amide bond to the

deactivating N—Boc scission and stabilization of the catalytically active NHC—Pd(0) species.



Table 3. Scope of the Suzuki—-Miyaura Cross-Coupling of Amides in Green Solvents: Scope of

Boronic Acids®?

[Pd(IPr)(cin)Cl] o

©)‘:<N,Boc . _B(OH), K,CO3 R @)‘\Ar
R Solvent, RT
1 R=Ph 2 3
i-PrOAc MTBE CPME DEC p-cymene
entry boronic acid yield yield yield yield yield
(%0) (%) (o) (o) (o)
Me
1 ©/B‘°“)2 58 78 57 67 72
B(OH),
2 /©/ 97 98 90 86 96
F,;C

B(OH),
3 Me\[(©/

o
B(OH),
oI
MeO,C
S . gB(OH)Z

65

86

98 87 78

“Amide (1.0 equiv), Ar-B(OH): (2.0 equiv), [Pd] (3 mol%), KoCOs (3.0 equiv), H>O (5.0 equiv), solvent
(0.25 M), 23 °C, 15 h. “Isolated yields. “Key: red — yield < 50%; yellow — yield 50-89%; green — yield >

90%.

The observed reactivity trend with respect to the green solvent selection is confirmed in the scope

study with respect to the amide component as shown in Table 4. Thus, i-PrOAc is uniformly the most

effective solvent in the coupling of sterically-hindered, electronically-deactivated, electrophilic

substrates, heterocyclic amides and alkyl substitution, resulting in generally high yields. Interestingly,

MTBE could also be used to effectively cross-couple various amides as shown in Table 4, albeit in

lower yields than i-PrOAc, while the performance of CPME and DEC ranges from very good (89-92%)

10



to low (<5%). p-Cymene is the least effective solvent under these conditions. Overall, the scope studies
shown demonstrate i-PrOAc as the general solvent for coupling of a variety of amides and boronic acids
through N—C bond activation. Furthermore, the coupling is also applicable to N-sulfonamide activation
(N-Ph/Ts) and N-Boc; activation, which enables to engage other classes of amides in the coupling with

the yields ranging from 87-98% to 78-95%, respectively (see SI).

Table 4. Scope of the Suzuki—-Miyaura Cross-Coupling of Amides in Green Solvents: Scope of

Amides®b¢
o i (0]
[Pd(IPr)(cin)CI]
B(OH
Ar)gillv,Boc . ©/ (OH), K,CO4 _ Ar)K(j
R Solvent, RT
1 R=Ph 2 3
i-PrOAc MTBE CPME DEC p-cymene
entry amide yield yield yield yield yield
(%0) (%) (%) (%) (7o)
Me O
.Boc
1 N 91 78
Ph
o
2 /@LN'BOC 94 98
Ph
MeO
o
.Boc
3 J@)Hv 93 98
Ph
MeOZC
(0]
4 ©)k~f'3°° 98 98
\ o Il’h
(0]
5 CgHw)J\NfB“ 84 76
|
Ph

“Amide (1.0 equiv), Ar-B(OH): (2.0 equiv), [Pd] (3 mol%), K2COs3 (3.0 equiv), H>O (5.0 equiv), solvent
(0.25 M), 23 °C, 15 h. ’Isolated yields. “Key: red — yield < 50%; yellow — yield 50-89%; green — yield >
90%.

The Suzuki—Miyaura amide bond cross-coupling provides opportunities to functionalize amide

11



containing pharmaceuticals through late-stage functionalization. To demonstrate the utility of green
solvent protocol in the Suzuki—Miyaura cross-coupling, we carried out the late-stage functionalization
of Febuxostat (antigout)'®»!% and Probenecid (antihyperuricemic)'®® using i-PrOAc as the
recommended solvent (Table 5). As shown, the cross-coupling proceeded in excellent yields, further
demonstrating the functional group tolerance to electrophilic functional group and demonstrating the

potential in the synthesis of active pharmaceutical agents.

Table 5. The Late-Stage Functionalization of Pharmaceuticals®

o [Pd(IPr)(cin)CI] o

R)giN'BOC ©/B(OH)2 K,CO4 R)Hij
| + >
R i-PrOAc, 60 °C

1 R=Ph 2 3

entry product yield (%)?

N

\ (o]
| o sm 88

>\/ N
N
(0]
O\

2 ' 93

.S
SN \\o

g

“Amide (1.0 equiv), Ar-B(OH): (2.0 equiv), [Pd] (3 mol%), K2COs (3.0 equiv), H20 (5.0 equiv), i-
PrOAc (0.25 M), 60 °C, 15 h. “Isolated yields.

CONCLUSIONS

In conclusion, we have presented the first green solvent selection guide for the powerful C—C coupling
by amide bond cleavage. The emergence of amide bond coupling allows for the mild and
chemoselective generation of C—C bonds by harnessing N—C bond cleavage. This process has a

profound impact on synthetic disconnections owing to the inherent presence of amide bonds in organic

12



synthesis, including in drug discovery. This study identified i-PrOAc as the recommended green solvent

for the coupling. It should be noted that i-PrOAc ranks as one of the most preferred solvents in terms of

health, safety and environmental impact in the recent solvent selection guides published by several

pharmaceutical companies.**> Several other solvents, such as methyl t-butyl ether (MTBE),

cyclopentyl methyl ether (CPME), diethyl carbonate (DEC), p-cymene, dimethylcarbonate (DMC) and

anisole have been identified as alternative solvents for the coupling in select cases. The compatibility

has been demonstrated in the late-stage functionalization of pharmaceuticals. We fully expect that the

study will facilitate the development of much-needed protocols for the cross-coupling of amides using

environmentally friendly and greener solvents. Future innovations in the activation of the amide bond

should incorporate sustainability criteria to maximize chemical impact.'%
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Green Solvent Selection in Suzuki Cross-Coupling of Amides

o B(OH), o
R “ [Pd-NHC]
N+ Ar
R" /\& Green Solvent

B green solvent M broad tolerance
H mild conditions ™ air-stable Pd-NHC ™ high efficiency

Synopsis: A range of environmentally friendly solvents was evaluated in the Suzuki-Miyaura coupling

of amides to provide the first solvent selection guide for the C—C coupling by amide bond cleavage.
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