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ABSTRACT: A range of environmentally friendly solvents was evaluated in the Suzuki-Miyaura 

coupling of amides in an attempt to provide the first solvent selection guide for the powerful C–C 

coupling by amide bond cleavage. Of the 14 solvents and 10 Pd–NHC catalysts (NHC = N-heterocyclic 

carbene) considered, i-PrOAc was identified as the recommended, environmentally-friendly solvent for 

the coupling. The obtained data permit for an overall ranking of recommended solvents in the Suzuki–

Miyaura coupling of amides, with methyl t-butyl ether (MTBE), cyclopentyl methyl ether (CPME), 

diethyl carbonate (DEC), p-cymene, dimethylcarbonate (DMC) and anisole as alternative recommended 

solvents in terms of health, safety and environmental ranking for the coupling. The data should facilitate 

the replacement of hazardous solvents with green organic solvents in the biorelevant manifold of amide 

bond coupling for the further implementation of amide bond activation methods. 
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INTRODUCTION 

Amide bond cross-coupling is a powerful transformation that is vital for transforming traditionally inert 

amide bonds into cross-coupling synthons through the cleavage of N–C bonds under mild and modular 

transition-metal-catalyzed conditions (Figure 1).1–29 The immense potential of the amide bond cross-

coupling stems from the inherent presence of amides in biomolecules, polymers, and as the most 

common functional group in pharmaceutical development.30–38  

 

Figure 1. Amides as electrophiles in the Suzuki–Miyaura cross-coupling. 

The fundamental impact of solvents on the environment and the synthesis of active pharmaceutical 

ingredients has led to the development of a number of green solvent selection guides to reduce the 

environmental and health concerns.39–55 In consideration of the pervasive presence of solvents in 

chemical transformations, wherein solvents constitute up to 90% of the non-aqueous waste in the 

synthesis of APIs, it is critical to use environmentally friendly and greener solvents in modern chemical 

processes.47–55 Evaluation of health, safety and environmental criteria of the most common solvents 

define sets of recommended solvents, while minimizing the environmental and health impact.47–49  

However, the most common solvent for the Pd-catalyzed Suzuki–Miyaura coupling of amides is 

tetrahydrofuran (THF), which is classified as hazardous or problematic at best by all solvent selection 

guides.47–55 To address the urgent need for the replacement of hazardous solvents in the biorelevant 

manifold of amide bond cross-coupling, we present the first solvent selection guide for the powerful 

Suzuki–Miyaura C–C coupling by amide bond cleavage. We show that of the 14 solvents and 10 Pd–

NHC catalysts (NHC = N-heterocyclic carbene) considered (see Table 1 and Figure 3), i-PrOAc47–49 is 

the recommended, environmentally-friendly solvent for the coupling, in agreement with the recent 
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solvent selection guides in terms of sustainability, health impact and stability,39–57 while methyl t-butyl 

ether (MTBE)58–60, cyclopentyl methyl ether (CPME)61–64, diethyl carbonate (DEC)65–67, p-cymene 

(pCy)68–71, dimethylcarbonate (DMC)65,72,73 and anisole47–49 should be considered as alternative 

recommended solvents. The data should facilitate green organic solvent selection for the further 

implementation of amide bond activation methods. It is also important to note that i-PrOAc is 

inexpensive and has already found common applications in process chemistry, which should facilitate 

its application in amide bond cross-coupling.  

Pd-NHCs (NHC = N-heterocyclic carbene) have been identified as the most active catalysts for the 

Suzuki–Miyaura coupling of amides.1–16,74–76 The high activity of these catalysts hinges upon strong σ-

donation of the NHC ancillary ligand, while accommodating steric requirements for the oxidative 

addition of the N–C(O) bond to the monoligated NHC–Pd(0) and reductive elimination steps by flexible 

N-wingtip substitution.76–80 As an added advantage Pd–NHCs are applied as air- and moisture-stable 

Pd(II) precatalysts, which facilitates their rapid adoption into the synthetic toolbox.77–85 

 

RESULTS AND DISCUSSION 

For the study, we selected 14 solvents outlined in Table 1. In general, the solvent selection was 

guided by the environmental and health impact as defined by solvent selection guides.39–55 We have also 

focused on selecting the solvents that are readily available in both academic and industrial laboratories, 

inexpensive and readily removable from the reaction mixtures (vide infra). It should be noted that 

alcohols are not suitable solvents for amide coupling due to facile amide bond alcoholysis of the twisted 

amide bond,8 while ketones are unsuitable due to aldol type side reactions observed in amide bond 

cross-coupling.74 Neolyst CX31, [Pd(IPr)(cin)Cl],75 was selected for the initial evaluation due to the 

versatility, robustness and commercial availability of this Pd-NHC catalyst.86  

As shown in Table 1, we were pleased to find that several green recommended solvents performed 

extremely well in the model Suzuki–Miyaura cross-coupling of amide (1a) with 4-Tol-B(OH)2 (2a, 2 
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equiv) in the presence of Neolyst CX31 (3 mol%) and K2CO3 (3 equiv) as a base.9 As such, this initial 

evaluation identified 2-MeTHF,87–89 cyclopentyl methyl ether (CPME),61–64 i-PrOAc,47–49 p-cymene,68–71 

diethyl carbonate (DEC),65–67 methyl t-butyl ether (MTBE),61–64 ethyl acetate (EA),47–49 anisole47–49 and 

dimethyl carbonate (DMC)65,72,73 as the superior green solvents to THF in the coupling. Other solvents, 

such as propylene carbonate (PC),65 eucalyptol (1,8-cineole),90,91 γ-valerolactone (GVL)92,93 and ethyl 

levulinate94,95 resulted in lower yields. All cross-coupling products were isolated by chromatography on 

silica gel. We hypothesize that lower yields are a result of side reactions, low solubility of the reaction 

components and inefficient generation of the catalytically active species. It is also worthwhile to note 

that the use of high-boiling green solvents introduces additional challenges in product isolation and 

purification. 

Table 1. Selection of Green Solventsa 

 

entry solvent yield (%)b 

1 THF 94 

2 2-MeTHF 96 

3 CPME 98 

4 i-PrOAc 96 

5 PC 37 

6 p-cymene 98 

7 DEC 98 

8 MTBE 98 

9 EA 98 

10 anisole 97 

11 1,8-cineole 24 

12 DMC 98 
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13 GVL 63 

14 ethyl levulinate 66 

aAmide (1.0 equiv), Ar-B(OH)2 (2.0 equiv), [Pd] (3 mol%), K2CO3 (3.0 equiv), H2O (5.0 equiv), solvent 

(0.25 M), 23 °C, 15 h. bGC/1H NMR yields. 

 

Having identified 9 green recommended solvents for the coupling that resulted in excellent 

conversions in the model reaction, we conducted kinetic studies to gain further insight into the relative 

reaction rates (Figure 2). As shown, the kinetic profiling studies revealed i-PrOAc to be the most 

efficient solvent for the cross-coupling followed by MTBE and CPME, which showed similar kinetic 

profiles, and then by DEC and p-cymene, while other solvents examined, namely 2-MeTHF, anisole, 

EA, and DMC, resulted in inferior reactivity. The reactions were completely quenched after 4 h. It is 

interesting to note the difference in rate between i-PrOAc and EtOAc. While the explanation is not clear 

at present, we note that we have observed low reactivity in amide bond cross-coupling in EtOAc using 

Pd-catalysis while developing other reactions of amides by N–C(O) activation. 

 

Figure 2. Kinetic profile in the Suzuki–Miyaura cross-coupling with 4-tolylboronic acid catalyzed by 

Pd(IPr)(cin)Cl (3 mol%) at room temperature. 1a (1.0 equiv), 4-Tol-B(OH)2 (2.0 equiv), [Pd] (3 mol%), 
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K2CO3 (3.0 equiv), H2O (5.0 equiv), solvent (0.25 M), 23 °C, 0-240 min. 

At this stage, we conducted comprehensive evaluation of Pd-NHC catalysts using i-PrOAc as the 

preferred solvent identified by the kinetic studies. As shown in Figure 3, we selected 10 Pd-NHC 

catalysts guided by their commercial-availability, type of the NHC scaffold and class of throw-away 

ligand (i.e. ligand that must dissociate from the metal centre). In general, the Pd-NHC catalysts selected 

can be classified as  imidazolylidene (IPr, IMes) or imidazolinylidene ligands (SIPr) bearing allyl-type 

throw-away ligands (allyl, cin, t-Bu-ind), heterocyclic ligands (3-Cl-py), chloro-dimers ([Pd(IPr)(μ-

Cl)Cl]2) and palladacycles (SingaCycle A3).96–102 We have also selected the sterically-demanding IPr* 

ligand due to its high efficiency in select cross-couplings.97 As shown in Table 2, we found that Neolyst 

CX3175 is the most efficient Pd catalyst for the coupling, closely followed by Pd–PEPPSI–IP98 and 

SingaCycle A399, which all resulted in >90% yields in the model reaction. Two other catalysts, namely 

[Pd(IPr)(μ-Cl)Cl]2
75,102 and the allyl-based [Pd(IPr)(t-Bu-ind)Cl]100 also showed promising reactivity, 

while other catalysts showed much lower ([Pd(IPr)(allyl)Cl]75, [Pd(SIPr)(cin)Cl]75, 

[Pd(IMes)(allyl)Cl]101) or significantly lower (Pd–PEPPSI–SIPr102, Pd–PEPPSI–IPr*97) reactivity. It 

should be noted that N-alkyl-based NHC catalysts are unsuitable for amide bond coupling.76 In general, 

N-alkyl-NHCs feature low flexibility around the metal centre and thus are less effective in the 

transmetallation step, which is proposed as the rate-determining step in the Suzuki cross-coupling of 

aryl halides and amides.74  
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Figure 3. Structures of Pd(II)-NHC precatalysts in the Suzuki−Miyaura cross-coupling of amides. 

Table 2. Selection of Pd-NHC Precatalystsa 

 

entry catalyst yield (%)b 
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1 Pd(IPr)(cin)Cl 96 

2 Pd–PEPPSI–IPr 93 

3 Pd(IPr)(t-Bu-ind)Cl 84 

4 Pd(IPr)(allyl)Cl 52 

5 Pd(IMes)(allyl)Cl 63 

6 Pd–PEPPSI–SIPr 10 

7 Pd(SIPr)(cin)Cl 65 

8 Pd–PEPPSI–IPr* 27 

9 [Pd(IPr)(μ-Cl)Cl]2 87 

10 SingaCycle A3 93 

aAmide (1.0 equiv), Ar-B(OH)2 (2.0 equiv), [Pd] (3 mol%), K2CO3 (3.0 equiv), H2O (5.0 equiv), i-

PrOAc (0.25 M), 23 °C, 15 h. bGC/1H NMR yields. 

 

Next, we examined the scope utilizing the 5 most effective green solvents identified in the 

optimization and kinetic studies, namely i-PrOAc, MTBE, CPME, DEC and p-cymene (Tables 3 and 4). 

The effect of solvents on the substrate scope with respect to the boronic acid component is shown in 

Table 3. This study further confirmed the beneficial effect of i-PrOAc as the recommended green 

solvent for Suzuki–Miyaura coupling of amides. As shown, in the coupling using sterically-hindered 2-

Tol-B(OH)2 and the challenging electronically-deactivated 4-CF3-C6H4-B(OH)2 all solvents performed 

well, resulting in 57-78% and 86-98% yields, respectively. i-PrOAc is clearly the preferred solvent 

using electronically-deactivated boronic acids bearing electrophilic functional groups, such as 4-Ac-

C6H4-B(OH)2 and 4-MeO2C-C6H4-B(OH)2 as well as heterocyclic substrates, such as 3-thienyl boronic 

acid. Interestingly, MTBE and CPME are also effective solvents in the latter case, albeit the reaction is 

lower yielding than using i-PrOAc. In general, we hypothesize that the trend of solvent yield vs. activity 

and rate of reaction is closely dependent on several factors, including the generation of the active 

monoligated NHC–Pd(0), solubility of the reaction components, stability of the amide bond to the 

deactivating N–Boc scission and stabilization of the catalytically active NHC–Pd(0) species.  
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Table 3. Scope of the Suzuki–Miyaura Cross-Coupling of Amides in Green Solvents: Scope of 

Boronic Acidsa,b,c 

 

entry boronic acid 

i-PrOAc 

yield 

(%) 

MTBE 

yield 

(%) 

CPME 

yield 

(%) 

DEC 

yield 

(%) 

p-cymene 

yield 

(%) 

1 

 

58 78 57 67 72 

2 

 

97 98 90 86 96 

3 

 

65 12 5 16 11 

4 

 

86 17 11 38 <5 

5 
 

98 87 78 17 11 

aAmide (1.0 equiv), Ar-B(OH)2 (2.0 equiv), [Pd] (3 mol%), K2CO3 (3.0 equiv), H2O (5.0 equiv), solvent 

(0.25 M), 23 °C, 15 h. bIsolated yields. cKey: red – yield < 50%; yellow – yield 50–89%; green – yield ≥ 
90%. 

 

The observed reactivity trend with respect to the green solvent selection is confirmed in the scope 

study with respect to the amide component as shown in Table 4. Thus, i-PrOAc is uniformly the most 

effective solvent in the coupling of sterically-hindered, electronically-deactivated, electrophilic 

substrates, heterocyclic amides and alkyl substitution, resulting in generally high yields. Interestingly, 

MTBE could also be used to effectively cross-couple various amides as shown in Table 4, albeit in 

lower yields than i-PrOAc, while the performance of CPME and DEC ranges from very good (89-92%) 
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to low (<5%). p-Cymene is the least effective solvent under these conditions. Overall, the scope studies 

shown demonstrate i-PrOAc as the general solvent for coupling of a variety of amides and boronic acids 

through N–C bond activation. Furthermore, the coupling is also applicable to N-sulfonamide activation 

(N-Ph/Ts) and N-Boc2 activation, which enables to engage other classes of amides in the coupling with 

the yields ranging from 87-98% to 78-95%, respectively (see SI). 

 

Table 4. Scope of the Suzuki–Miyaura Cross-Coupling of Amides in Green Solvents: Scope of 

Amidesa,b,c  

 

entry amide 

i-PrOAc 

yield 

(%) 

MTBE 

yield 

(%) 

CPME 

yield 

(%) 

DEC 

yield 

(%) 

p-cymene 

yield 

(%) 

1 

 

91 78 26 42 14 

2 

 

94 98 92 89 45 

3 

 

93 98 72 11 <5 

4 

 

98 98 44 <5 <5 

5 

 

84 76 41 <5 <5 

aAmide (1.0 equiv), Ar-B(OH)2 (2.0 equiv), [Pd] (3 mol%), K2CO3 (3.0 equiv), H2O (5.0 equiv), solvent 

(0.25 M), 23 °C, 15 h. bIsolated yields. cKey: red – yield < 50%; yellow – yield 50–89%; green – yield ≥ 
90%. 

The Suzuki–Miyaura amide bond cross-coupling provides opportunities to functionalize amide 
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containing pharmaceuticals through late-stage functionalization. To demonstrate the utility of green 

solvent protocol in the Suzuki–Miyaura cross-coupling, we carried out the late-stage functionalization 

of Febuxostat (antigout)103,104 and Probenecid (antihyperuricemic)105 using i-PrOAc as the 

recommended solvent (Table 5). As shown, the cross-coupling proceeded in excellent yields, further 

demonstrating the functional group tolerance to electrophilic functional group and demonstrating the 

potential in the synthesis of active pharmaceutical agents. 

 

Table 5. The Late-Stage Functionalization of Pharmaceuticalsa 

 

entry product yield (%)b 

1 

 

88 

2 

 

93 

aAmide (1.0 equiv), Ar-B(OH)2 (2.0 equiv), [Pd] (3 mol%), K2CO3 (3.0 equiv), H2O (5.0 equiv), i-

PrOAc (0.25 M), 60 °C, 15 h. bIsolated yields. 

 

CONCLUSIONS 

In conclusion, we have presented the first green solvent selection guide for the powerful C–C coupling 

by amide bond cleavage. The emergence of amide bond coupling allows for the mild and 

chemoselective generation of C–C bonds by harnessing N–C bond cleavage. This process has a 

profound impact on synthetic disconnections owing to the inherent presence of amide bonds in organic 
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synthesis, including in drug discovery. This study identified i-PrOAc as the recommended green solvent 

for the coupling. It should be noted that i-PrOAc ranks as one of the most preferred solvents in terms of 

health, safety and environmental impact in the recent solvent selection guides published by several 

pharmaceutical companies.44–55 Several other solvents, such as methyl t-butyl ether (MTBE), 

cyclopentyl methyl ether (CPME), diethyl carbonate (DEC), p-cymene, dimethylcarbonate (DMC) and 

anisole have been identified as alternative solvents for the coupling in select cases. The compatibility 

has been demonstrated in the late-stage functionalization of pharmaceuticals. We fully expect that the 

study will facilitate the development of much-needed protocols for the cross-coupling of amides using 

environmentally friendly and greener solvents. Future innovations in the activation of the amide bond 

should incorporate sustainability criteria to maximize chemical impact.106 
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Synopsis: A range of environmentally friendly solvents was evaluated in the Suzuki-Miyaura coupling 

of amides to provide the first solvent selection guide for the C–C coupling by amide bond cleavage. 


