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attractive catalyst for several classes of cross-coupling reactions [29–33]; however, transamidations 68 

and amidation reactions using this well-defined catalyst have been elusive.  69 

We initiated our studies by evaluating the reaction conditions for the [CpNi(IPr)Cl]-catalyzed 70 

transamidation of N-Boc activated amide 1a with 4-methoxyaniline 2a (Table 1). Of note, twisted N-71 

Boc amides are readily prepared from the corresponding secondary amides by N-chemoselective tert-72 

butoxycarbonylation. The N-carbamate activation permits for decreasing amidic resonance (RE, 73 

resonance energy, 7.2 kcal/mol), while providing a thermodynamic pathway for transamidation by 74 

rendering the leaving group non-nucleophilic [14,15]. After optimization, we have identified 75 

conditions for the transamidation in quantitative yield using [CpNi(IPr)Cl] (10 mol%) as a catalyst in 76 

the presence of K2CO3 as a base in toluene at 140 °C (Table 1, entry 1). We found that K3PO4 is also an 77 

effective base under these conditions (Table 1, entry 2). Furthermore, decreasing the catalyst loading 78 

to [CpNi(IPr)Cl] (5 mol%) resulted in lower conversions (Table 1, entries 3-4). Importantly, control 79 

reactions in the absence of the [CpNi(IPr)Cl] catalyst resulted in the recovery of the starting material, 80 

thus demonstrating that the catalyst is required for the reaction (Table 1, entries 5-6). Several other 81 

optimization conditions are worth noting (not shown): (1) lowering the reaction temperature resulted 82 

in significantly lower conversion (110 °C, 26%); (2) reactions at low catalyst loading resulted in low 83 

conversion (1 mol%, 13%). 84 

 85 

Table 1. Optimization of Transamidation of Amide 1a using [CpNi(IPr)Cl].1  86 

 87 

Entry Catalyst [Ni] (mol%) Base Solvent Yield (%)2 

1 [CpNi(IPr)Cl] 10 K2CO3 toluene >98 

2 [CpNi(IPr)Cl] 10 K3PO4 toluene >98 

3 [CpNi(IPr)Cl] 5 K2CO3 toluene 74 

4 [CpNi(IPr)Cl] 5 K3PO4 toluene 52 

5 [CpNi(IPr)Cl] - K2CO3 toluene <10 

6 [CpNi(IPr)Cl] - K3PO4 toluene <10 

1Conditions: amide (1.0 equiv), 4-MeO-C6H4-NH2 (2.0 equiv), base (3.0 equiv), [Ni] (0-10 mol%), 88 

toluene (0.25 M), 140 °C, 18 h. 2Determined by 1H NMR. 89 

 90 

With the optimized conditions in hand, the scope of the transamidation reaction catalyzed by 91 

the well-defined [CpNi(IPr)Cl] complex was examined with respect to the aniline component (Table 92 

2). As shown, the reaction performed well using electron-donating (3a), para-substituted (3b), ortho-93 

sterically-hindered (3c), meta-substituted (3d), and electron-withdrawing (3e-f) anilines. It is 94 

worthwhile to note that the reaction efficiency decreased using electron-deficient nucleophiles. 95 

Furthermore, di-ortho-substituted anilines were unproductive substrates in the reaction, indicating 96 

excessive steric hindrance.  97 

Next, the scope of the reaction with respect to the amide group was evaluated (Table 2). As 98 

shown, primary and secondary alkyl amides (3g-h), electron-rich (3i-j) as well as electron-deficient 99 

(3k) aromatic amides underwent efficient transamidation under Ni–NHC catalysis. Furthermore, 100 

cinnamyl amide was found to be a suitable reaction partner for the transamidation (3l). Similar to the 101 

scope of anilines, steric hindrance on the amide component was not tolerated.        102 

 103 

104 
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Table 2. Scope of Anilines in Transamidation of Amide 1a using [CpNi(IPr)Cl].1  105 

  106 

Entry Amide Ar-NH2 3 Yield (%)2 

1 C6H5 4-MeO-C6H4 3a 98 

2 C6H5 4-Me-C6H4 3b 97 

3 C6H5 2-Me-C6H4 3c 77 

4 C6H5 3,5-Me2-C6H3 3d 71 

5 C6H5 4-F-C6H4 3e 64 

6 C6H5 4-CF3-C6H4 3f 43 

1Conditions: amide (1.0 equiv), Ar-NH2 (2.0 equiv), K2CO3 (3.0 equiv), [CpNi(IPr)Cl] (10 mol%), 107 

toluene (0.25 M), 140 °C, 18 h. 2Determined by 1H NMR. 108 

 109 

Table 3. Scope of Amides in Transamidation with Aniline 2a using [CpNi(IPr)Cl].1  110 

  111 

Entry Amide Ar-NH2 3 Yield (%)2 

1 n-C9H19 4-MeO-C6H4 3g 92 

2 Cyclohexyl 4-MeO-C6H4 3h 98 

3 4-Me-C6H4 4-MeO-C6H4 3i 86 

4 4-MeO-C6H4 4-MeO-C6H4 3j 62 

5 4-CF3-C6H4 4-MeO-C6H4 3k 62 

6 Ph-CH=CH 4-MeO-C6H4 3l 73 

1Conditions: amide (1.0 equiv), Ar-NH2 (2.0 equiv), K2CO3 (3.0 equiv), [CpNi(IPr)Cl] (10 mol%), 112 

toluene (0.25 M), 140 °C, 18 h. 2Determined by 1H NMR. 113 

 114 

In consideration of the promising reactivity of twisted N-Boc amides using well-defined 115 

cyclopentadienyl half-sandwich [CpNi(IPr)Cl], we further explored amidation reactions of activated 116 

phenolic esters and unactivated methyl esters (Schemes 1-2). We were pleased to find that amidation 117 

of phenyl benzoate proceeded in quantitative yield using K3PO4 as a base under otherwise the same 118 

reaction conditions as for transamidation of amides (Scheme 1). Importantly, control reactions in the 119 

absence of the catalyst unambiguously verified that [CpNi(IPr)Cl] is required for the reaction. 120 

Interestingly, we also found that amidation of unactivated methyl benzoate proceeded in 67% yield, 121 

while a substantial enhancement of reactivity (94% yield) was observed by increasing the reaction 122 

temperature to 160 °C (Scheme 2). As expected, no reaction was observed in the absence of 123 

[CpNi(IPr)Cl] (<2%, not detected).  124 

To gain preliminary insight into the reaction profile, kinetic studies were performed (Figure 3). 125 

As shown, the reaction reached 60% conversion after 3 h, while 77% conversion was observed after 6 126 

h. The induction period was not observed in the kinetic profiling studies. We tentatively propose that 127 

the mechanism involves oxidative addition of the N–C bond to nickel. Other nickel sources, such as 128 
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NiCp2 or NiCl2, catalyze the reaction albeit in lower yields. Studies on the mechanism and the 129 

expansion of the substrate scope are ongoing and will be reported in due course.  130 

 131 

Scheme 1. Amidation of Activated Phenolic Ester using [CpNi(IPr)Cl]. 132 

 133 

Scheme 2. Amidation of Unactivated Methyl Ester using [CpNi(IPr)Cl]. 134 

 135 

Figure 3. Kinetic profile of 1a. Conditions: 1a, 4-MeO-C6H4-NH2 (2.0 equiv), [CpNi(IPr)Cl] (10 mol%), 136 

K2CO3 (3.0 equiv), toluene (0.25 M), 140 °C, 0-18 h.  137 

3. Conclusions 138 

In summary, we have reported on the transamidation reactions of N-activated amides by 139 

selective N–C(O) cleavage mediated by well-defined, air- and moisture-stable half-sandwich 140 

[CpNi(IPr)Cl] complex. This class of Ni(II)–NHC cyclopentadienyl complexes has gained significant 141 

attention in organometallic catalysis owing to the beneficial properties of this class of catalysts; 142 

however, transamidation reactions of amides and amidation reactions of esters mediated by these 143 

complexes have been elusive. The present study demonstrates that highly selective transamidation 144 

of the N–C(O) bond in twisted N-Boc amides as well as activated phenolic and unactivated methyl 145 

esters with non-nucleophilic anilines under [CpNi(IPr)Cl] catalysis is feasible, thus providing an 146 

unconventional and unified method for the synthesis of secondary anilides by C(acyl)–N and 147 

C(acyl)–O bond cleavage reactions. It should be mentioned that the twisted amide starting materials 148 

are prepared from 2° amides by N-chemoselective tert-butoxycarbonylation [14], which provides a 149 

two-step transamidation method that could potentially be applied in late-stage derivatization of 150 

pharmaceuticals and natural products. The unique versatility of [CpNi(IPr)Cl] sets the stage for the 151 
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broad application of Ni(II)–NHC cyclopentadienyl complexes in amide bond forming reactions by 152 

N–C(O)/O–C(O) cleavage. Future studies will focus on the development of new classes of 153 

[CpNi(NHC)X] complexes for selective transformations of amide and esters bonds by N–C(O)/O–154 

C(O) activation. 155 

4. Materials and Methods 156 

General Information. General methods have been published.[18] 157 

General Procedure for [CpNi(IPr)Cl] Catalyzed Transamidation. In a typical procedure, an 158 

oven-dried vial was charged with a N-Boc amide or ester substrate (neat, 1.0 equiv), aniline (2.0 159 

equiv), K2CO3 (3.0 equiv), [CpNi(IPr)Cl] (10 mol%), placed under a positive pressure of argon, and 160 

subjected to three evacuation/backfilling cycles under high vacuum. Toluene (0.25 M) was added at 161 

room temperature, the reaction was placed in a preheated oil bath at 140 °C, and stirred at 140 °C. 162 

After the indicated time, the reaction was cooled down, diluted with CH2Cl2 (10 mL), filtered, and 163 

concentrated. The sample was analyzed by 1H NMR (CDCl3, 500 MHz) and GC-MS to obtain 164 

conversion, selectivity and yield using internal standard and comparison with authentic samples. All 165 

yields have been determined by 1H NMR spectroscopy (CDCl3, 500 MHz).  166 

Representative Isolation Procedure for [CpNi(IPr)Cl] Catalyzed Transamidation. An oven-167 

dried vial was charged with tert-butyl benzoyl(phenyl)carbamate (neat, 29.7 mg, 1.0 equiv), 4-168 

methoxyaniline (24.6 mg, 2.0 equiv), K2CO3 (41.6 mg, 3.0 equiv), [CpNi(IPr)Cl] (10 mol%, 5.6 mg), 169 

placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under 170 

high vacuum. Toluene (0.25 M) was added at room temperature, the reaction mixture was placed in 171 

a preheated oil bath at 140 °C, and stirred for 18 h at 140 °C. After the indicated time, the reaction was 172 

cooled down, diluted with CH2Cl2 (10 mL), filtered, and concentrated. A sample was analyzed by 1H 173 

NMR (CDCl3, 500 MHz) and GC-MS to obtain conversion, yield and selectivity using internal 174 

standard and comparison with authentic samples. Purification by chromatography on silica gel 175 

(hexanes/ethyl acetate) afforded the title product. Yield 88% (20.1 mg). N-(4-176 

Methoxyphenyl)benzamide. White solid. 1H NMR (500 MHz, CDCl3) δ 7.86 (d, J = 7.5 Hz, 2 H), 7.76 177 

(s, 1 H), 7.59-7.51 (m, 3 H), 7.47 (t, J = 7.4 Hz, 2 H), 6.91 (d, J = 8.9 Hz, 2 H), 3.81 (s, 3 H). 13C NMR (125 178 

MHz, CDCl3) δ 157.00, 135.40, 132.04, 131.35, 129.10, 127.31, 122.43, 114.61, 55.86. [CpNi(IPr)Cl] has 179 

been prepared by the previously reported procedure.[1] 180 
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