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We report a general and practical palladium-catalyzed intramolecular decarbonylative coupling of thioesters via C–S bond 

cleavage, decarbonylation and C–S bond reformation. This robust approach shows excellent functional group tolerance 

and broad substrate scope using commercially-available, cheap, and practical Pd(OAc)2 catalyst and phosphine ligands. 

This strategy operates under base-free conditions. The catalytic system represents the simplest method for intramolecular 

decarbonylation of thioesters by palladium catalysis reported to date. This versatile protocol is readily performed on a 

gram scale and applied in late-stage drug derivatization. 

Introduction 

Thioethers are similar to ethers except that they feature a 

sulfur atom instead of oxygen, which embodies them with 

increased lipophilicity and represents one of the most 

important moieties in pharmaceutical development (Figure 

1A).1,2 Thus, the development of methodologies for the 

synthesis of thioethers is highly desirable.3 Typical methods 

involve preparation of thioethers by alkylation of thiols,4 

reaction between disulfides and Grignard reagents,5 addition 

of thiols to alkenes by thiol-ene reactions,6 and Pummerer 

rearrangement.7 With the invention of new methodologies in 

this field, cross-couplings of aryl halides or pseudohalides with 

thiols have emerged as the most powerful method for the 

synthesis of thioethers.8 It noteworthy that recent progress in 

transition-metal-catalyzed cross-couplings involve 

decarbonylation of readily available and bench-stable amides, 

esters and carboxylic acids.9-15 Typical electrophiles used for 

the synthesis of thioethers via cross-coupling involve 

functionalized substrates. From the standpoints of atom 

economy and practicality, transition-metal-catalyzed 

intramolecular decarbonylation represents the most direct 

strategy for the synthesis of thioethers. In 1991, Wenkert 

reported the first intramolecular decarbonylation of thioesters 

using stoichiometric nickel as a promoter and zinc as a 

reducing agent, which was successfully applied to 12 examples 

in up to 86% yield (Figure 1B).16 In Ni-catalysis, in 2018, 

Sanford reported a nickel-catalyzed base-free intramolecular 

decarbonylation of thioesters, which performed under 

catalytic conditions and without reducing reagents; however, 

the experimental conditions necessitated operating in a glove 

box due to air- and moisture-sensitive Ni(cod)2 catalyst.17 In 

2018, we disclosed a nickel-catalyzed intramolecular 

decarbonylation of thioesters using air- and moisture-stable 

nickel precatalysts, which allowed for the reactions to be 

performed on a bench-top and glove box set-up was not 

required.18 Shortly afterwards, another Ni-catalyzed 

intramolecular decarbonylation of thioesters with Ni(OAc)2 as 

a catalyst and P(n-Bu)3 or dppb as ligands was reported.19 

Pd-catalyzed intramolecular decarbonylation of thioesters is 

another robust approach for the synthesis of thioethers. In 

1987, Yamamoto reported the first Pd-catalyzed 

intramolecular decarbonylation of thioesters, which proceed 

with 5-20 mol% of the air-sensitive Pd(PCy3)2 as a catalyst;20 

however, the method was showed to be effective in only 3 

examples. Afterwards, Kambe group also reported a 

palladium-catalyzed intramolecular decarbonylation of 

thioesters using Pd(PPh3)4 as a precatalyst, which is similar to 

Yamamoto’s catalyst.21 Unsurprisingly, the method using the 

coordinatively saturated and unstable Pd(0) complex showed 

narrow substrate scope and very low functional group 

tolerance. For broadening the scope and improving the 

functional group tolerance, Sanford group reported a 

palladium-catalyzed intramolecular decarbonylation of 

thioesters, which employed 10 mol% Pd[P(o-tol)3]2 precatalyst 

and 20 mol% PAd2Bn ligand.17 This method was successfully 

applied to 23 examples in up to 85% yield for the synthesis of 

thioethers. In 2020, Lee reported Pd-catalyzed decarbonylative 

thioetherification of 2-pyridyl thioesters.22 Other Ni catalyzed 

methods have been reported.11d,19 In light of these findings, 

herein, we report our study on the development of a general 

and practical palladium-catalyzed method for thioether 

synthesis via a robust palladium-catalyzed base-free 

intramolecular decarbonylation of thioesters. 

The following features of our findings are noteworthy: (1) 

this powerful method represents the first general and practical 

palladium-catalyzed base-free intramolecular decarbonylation 

of thioesters; (2) the method uses cheap, air-stable,  
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commercially-available catalysts and ligands; (3) the method 

offers a complementary avenue to nickel-catalyzed and other 

palladium-catalyzed methods for intramolecular 

decarbonylation of thioesters; (4) the method holds a 

significant potential for the industrial synthesis of thioethers 

using thioesters as the ultimate precursors.  

Results and Discussion 

For optimization, PhCOSPh 1a was selected as a modular, 

unbiased substrate (Table 1). After experimentation, we 

identified the optimal conditions for the Pd-catalyzed 

intramolecular decarbonylation of thioesters, furnishing the 

desired thioether product in excellent 95% yield (Table 1, entry 

1). As expected, no product was formed in the absence of the 

catalyst (<2%) (Table 1, entry 2). Control experiments indicated 

that organic and inorganic bases lead to a decrease in catalytic 

ability (Table 1, entries 3-4). A range of phosphine ligands was 

investigated. It is noteworthy that dppp, dpppent, SPhos, 

PCyPh2 and PPh3 are able to deliver the decarbonylative 

product in high yields under these conditions (Table 1, entries 

5-15). Furthermore, Pd(OAc)2 is preferred over Pd2(dba)3 

(Table 1, entry 16), and toluene is a superior solvent to 

dioxane in this methodology (Table 1, entry 17). Further 

optimization revealed that the catalyst loading could be 

decreased to 3 mol% (Table 1, entry 18), while appreciable 

conversion was observed at as low temperatures as 100 °C 

(Table 1, entry 22), consistent with high efficiency under these 

conditions. 

Table 1. Optimization of the Reaction Conditions.a,b 

 

Entry catalyst ligand base Yield [%] 

1 Pd(OAc)2 dppb - 95 

2 - - - <2 

3 Pd(OAc)2 dppb Et3N 59 

4 Pd(OAc)2 dppb Na2CO3 40 

5 Pd(OAc)2 dppp - 95 

6 Pd(OAc)2 dpppent - 90 

7 Pd(OAc)2 dppf - 80 

8 Pd(OAc)2 BINAP - 85 

9 Pd(OAc)2 XantPhos - 72 

10 Pd(OAc)2 DavePhos - 74 

11 Pd(OAc)2 XPhos - 67 

12 Pd(OAc)2 SPhos - 95 

13 Pd(OAc)2 PCy3HBF4 - 65 

14 Pd(OAc)2 PCyPh2 - 92 

15 Pd(OAc)2 PPh3 - 93 

16 Pd2(dba)3 dppb - 66 

17c Pd(OAc)2 dppb - 73 

18d Pd(OAc)2 dppb - 95 

19e Pd(OAc)2 dppb - 61 

20d,f Pd(OAc)2 dppb - 85 

21d,g Pd(OAc)2 dppb - 80 

22d,h Pd(OAc)2 dppb - 79 

aConditions: thioester (1.0 equiv), catalyst (5 mol%), ligand (10 mol%),  base 

(1.5 equiv), toluene (0.20 M), 160 °C, 15 h. bGC/1H NMR yields. cdioxane as 

solvent. dcatalyst (3 mol%), ligand (6 mol%). ecatalyst (1 mol%), ligand (2 

mol%). f140 °C. g120 °C. h100 °C. 

Under the optimal conditions, this method exhibits a very 

broad scope with respect to aryl-aryl, aryl-heteroaryl and aryl-

alkyl products (Schemes 1-2). As shown, a range of 

electronically-diverse thioesters underwent efficient 

intramolecular decarbonylation (2a-j), including electron-

neutral (2a-c), electron-rich (2d), and electron-deficient 

substrates (2e). Importantly, halide-functionalized substrates, 

such as fluoro- (2f) and chloro- (2g) thioesters can be well 

tolerated. Full conversion was achieved for a cyano- 

containing-substrate (2h). It is important that full selectivity for 

decarbonylation was observed in the reaction of ester and 

ketone containing substrates (2i-j), attesting to the high 

chemoselectivity of this method. Steric hindrance was well 

tolerated (2k-l). Meta-functionalization was well compatible 

(2m). In addition, heterocyclic thioesters can be readily 

incorporated to furnish thioethers in excellent yields (2n-o). 

Finally, styryl-thioester was also well tolerated in this method 

(2p). 

With respect to the thiophenol moiety, we were delighted 

to find that a broad range of electron-neutral (2c’), electron-

donating (2d’) and electron-withdrawing (2e’-f’) thioesters can 

be readily engaged to generate the thioether products in good 

to excellent yields (Scheme 2). Furthermore, steric-hindrance 

(2k’) and heterocyclic thioesters (2o’) readily participate in this 

practical approach. Finally, the method is also feasible for aryl- 
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Scheme 1. Scope of Pd-Catalyzed General Intramolecular 

Decarbonylation of Thioesters. 

alkyl coupling to deliver to desired thioether product (2q), 

which is a challenging substrate in this manifold. 

To further demonstrate the synthetic utility of this general 

and practical Pd-catalyzed decarbonylative coupling of 

thioesters, we conducted selectivity studies, gram scale 

synthesis and drug derivatization (Scheme 3). In 2017, 

Yamaguchi and Itami reported the intramolecular 

decarbonylation of esters, which effectively enabled 

decarbonylative etherification of aromatic esters.23 Thus, we 

were curious to test if the carbonyl group in the ester 

functional group could be tolerated under our catalytic 

conditions. Thus, the compound containing ester and thioester 

functional group was synthesized and applied to our protocol 

(Scheme 3A).21 The result showed that the carbonyl group in 

thioester group can be readily removed under our catalytic 

conditions but the carbonyl group in ester group remains fully 

intact, demonstrating the excellent chemoselectivity of this 

approach. Furthermore, we conducted the coupling on a gram 

scale, which resulted in 92% yield (0.80 g) of the thioether 

product, showing the scalability of the method (Scheme 3B). 

Finally, we employed Probenecid, an antihyperuricemic drug, 

which could be readily converted to the corresponding 

thioether in 89% yield (Scheme 3C). Notably, this protocol is 

superior to previous palladium- and nickel-catalyzed methods 

in terms of operational-simplicity, broad scope, and excellent 

functional group tolerance. 

 

Scheme 2. Scope of Pd-Catalyzed General Intramolecular 

Decarbonylation of Thioesters. 

 

Scheme 3. (A) Selectivity Study. (B) Gram Scale Reaction. (C) 

Expedient Synthesis of Probenecid Thioether. 

Finally, a plot of conversion vs. time for thioester 1a was 

conducted to provide insight into the kinetic profile of the 

reaction (Figure 2). The plot showed that the method can 

deliver the desired thioether product in >90% yield within 5 h, 

which is in accord with the high efficiency of this catalytic 

system. 
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Figure 2. Kinetic profile of 1a. Conditions: 1a (1.0 equiv), 

Pd(OAc)2 (3.0 mol%), dppb (6.0 mol%), toluene, 160 °C.  

Conclusions 

In summary, in this Update article, we have reported the 

general and practical palladium-catalyzed base-free 

intramolecular decarbonylation of thioesters. The developed 

catalytic system employs commercially-available, cheap, and 

practical Pd(OAc)2 as a catalyst and phosphine as ligands. The 

system shows major advantages over other palladium- and 

nickel-catalyzed methods and should be considered as the 

first-choice protocol for performing intramolecular 

decarbonylation of thioesters to furnish valuable thioether 

products. The method was successfully applied to achieve 

intramolecular decarbonylations of a wide range of 

electronically- and sterically-varied thioesters to thioethers in 

good to excellent yields under operationally practical 

conditions. The scalability of the method was evaluated on a 

gram scale reaction. The synthetic application to late-stage 

derivatization was demonstrated. We anticipate that the 

findings reported in this manuscript will facilitate the 

development of general methods for the synthesis of 

thioethers using palladium catalysis. Future studies will focus 

on the development of tandem reactions utilizing CO recycling 

and mechanistic studies on this reaction manifold.  
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