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Abstract—An active area of research in computational science is the design of algorithms for solving the subgraph matching problem

to find copies of a given template graph in a larger world graph. Prior works have largely addressed single-channel networks using a

variety of approaches. We present a suite of filtering methods for subgraph isomorphisms for multiplex networks (with different types of

edges between nodes and more than one edge within each channel type). We aim to understand the entire solution space rather than

focusing on finding one isomorphism. Results are shown on several classes of datasets: (a) Sudoku puzzles mapped to the subgraph

isomorphism problem, (b) Erdős-Rényi multigraphs, (c) real-world datasets from Twitter and transportation networks, (d) synthetic data

created for the DARPA MAA program.

Index Terms—subgraph isomorphism, graph isomorphism, graph matching, subgraph matching, multiplex network
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1 INTRODUCTION

MULTIPLEX networks (labeled directed multigraphs,
Definition 1.1) [32] are increasingly useful data struc-

tures for representing entities and their interactions in dis-
ciplines such as bioinformatics [73], social networks [65],
ecological networks [49], and neural networks [5]. Subgraph
matching is the process of determining whether a given
template network occurs as a subgraph of a world network,
and if so, exactly where it occurs and how many times [13].

Subgraph matching is commonly used in bioinformatics
[71], social network analysis [19], [68], and other applica-
tions [13]. It is also an important subroutine in frequent
subgraph mining [28], [67] and graph database search [74].
Despite the abundance of multiplex network data in these
applications, there are relatively few subgraph matching
algorithms that expressly support multiplex networks [29],
[43] compared to the number of algorithms that support
single-channel networks [6], [9], [10], [14], [24], [57], [61].
In this paper, we introduce a new algorithm for subgraph
matching on multiplex networks and discuss some simplifi-
cations of the subgraph matching problem.

We refer to any subgraph of the world that matches
the template as a signal. For sufficiently simple templates,
there are efficient algorithms for counting and listing out
all corresponding signals [1], [53], [54]. However, in general
there can be a nonsensically large number of signals, in
which case listing or even counting them can be impossible.
In such situations, it is appealing to have methods that
can characterize the space of all signals in some way. For
example, one might be interested in the set of world nodes
which participate in at least one signal. Alternatively, one
may seek the set of world nodes which correspond to a
particular template node in at least one signal. We find that
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these problems can be feasible, even when it is impossible
to list or count the signals.

Definition 1.1 (Multiplex Network). A multiplex network
G = (V , E ,L, C) is a set of nodes (frequently called vertices),
directed edges between the nodes, labels on the nodes, and channels
on the edges. The number of nodes is denoted n. Each node v ∈ V
has a label L(v) belonging to some arbitrary set of labels. There
can be any number of edges between each pair of nodes (u,v) in
either direction. Each edge belongs to one of the channels C. Edges
between the same pair of nodes in the same channel with the same
direction are indistinguishable. The function E : V × V → N

|C|

describes the number of edges in each channel between each pair
of nodes. In particular, E(u,v) can be represented as a |C|-
dimensional vector the kth element of which is the number of edges
from node u to node v in the kth channel. |E|0 denotes the number
of distinguishable edges in G.

In the remainder of this section, we will define several
problems related to subgraph matching and discuss existing
approaches to solve these problems. In Section 1.3, we
explain our contributions to solving these problems. We
expand on the details of our approach in Sections 2, 3.1
and 3.2. In Section 4, we perform several experiments to
show that the methods we discuss are successful in solving
the problems of interest. We make some concluding remarks
and suggest some future avenues for research in Sections 5
and 6 respectively.

1.1 Problem Statements

Given two multiplex networks, a template Gt =
(Vt, Et,Lt, C) and a world Gw = (Vw, Ew,Lw, C), we explore
the space of all subgraphs of the world which match the tem-
plate. There are several closely related problems that achieve
this aim to different extents with different computational
costs. Each of these problems relies on the same concept of
subgraph isomorphism (SI) which characterizes what it means
for a subgraph of the world to match the template.
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Definition 1.6 (SNSP: Signal Node Set Problem). Given
a template Gt = (Vt, Et,Lt, C) and a world Gw =
(Vw, Ew,Lw, C), find all world nodes that belong to at least one
signal. That is,

find
⋃

f∈F(Gt,Gw)

f(Vt). (SNSP)

A compromise between the compactness of the SNSP
and the descriptive power of the SMP is to find for each
template node its minimal candidate set, the smallest set
containing all world nodes that correspond to that template
node in any signal. This preserves the relation between
template nodes and world nodes, but loses some informa-
tion about compatibility between candidates for different
template nodes.

Definition 1.7 (MCSP: Minimal Candidate Sets Problem).
Given a template Gt = (Vt, Et,Lt, C) and a world Gw =
(Vw, Ew,Lw, C), for each template node v ∈ Vt find all world
nodes which correspond to v in at least one signal. That is,

find
⋃

f∈F(Gt,Gw)

{f(v)} for each v ∈ Vt. (MCSP)

A naive algorithm for solving the MCSP is to solve the
SIP with the added constraint u = f(v) for each (u,v) ∈
Vw × Vt. Thus, solving the MCSP is at most |Vt| |Vw| times
as hard as the hardest among those SIPs.

1.2 Related Work

Most state of the art algorithms for subgraph matching fol-
low one of three approaches [9], [10]: tree search, constraint
propagation, and graph indexing. Existing algorithms are
largely restricted to the single-channel case and thus are not
applicable to multiplex networks. Also, existing algorithms
focus mainly on addressing the SIP, SMP, and SICP, and do
not address the MCSP or SNSP directly.

Tree search approaches keep track of a search state,
and navigate the tree of possible search states, backtracking
when they reach the end of a branch. Due to the enormity
of this tree, to limit computational complexity as much as
possible, these approaches refine the search space at each
step of the search to avoid unnecessary branches. Examples
of tree search approaches include Ullmann’s algorithm [61],
VF2 [14] and its variants (VF2Plus [11], VF3 [9], [10], VF2++
[30]), and for specific graphs, RI/RI-DS [7].

Constraint propagation approaches view subgraph iso-
morphism as a constraint satisfaction problem, where vari-
ables are assigned values while satisfying a given set of
constraints. These approaches keep track of a compatibil-
ity matrix, which indicates which nodes in the world are
possible matches for which template nodes. By repeatedly
applying local constraints, this matrix is reduced until only
a few possible candidate matchings remain. The matrix can
then be explored to find all solutions. Examples of constraint
propagation approaches include McGregor [42], nRF+ [36],
ILF [69], LAD [57] (and its variants, IncompleteLAD and
PathLAD [35]), McCreesh and Prosser (Glasgow) [40], and
FocusSearch [62].

Graph indexing approaches seek to retrieve from a
database of graphs all graphs that match a given subgraph
query. To accelerate searching, they construct indexes for

the database, so that future searches will be efficient. These
indexes are often based on characteristic substructures of
the template. A Cartesian product is then performed on
the results of these indexed queries, identifying all possible
matches. Next, there is a verification step to check which
retrieved graphs fully match the pattern; this typically in-
volves running another subgraph isomorphism algorithm,
such as VF2. Examples of graph indexing approaches in-
clude GraphQL [25], SPath [72], GADDI [71], QuickSI [55],
TurboISO [24], BoostISO [52], CFL-Match [6], and CNI-
Match [45]. Though our problem does not involve graph
databases and we thus do not construct indices, several of
these approaches involve filtering techniques which can be
used independently of the indices they construct [58].

1.2.1 Ullmann’s Algorithm

Ullmann’s algorithm [61] is a backtracking tree search with
refinement. For every template node v, they create a list of
candidate nodes in the world which could correspond to v.
Initially, this is simply all nodes with degree greater than or
equal to the degree of v. At each step in the tree search, can-
didate node u is chosen as a match for template node v. To
reduce computation time, the remaining candidates are then
refined as follows. For every pair of template nodes joined
by an edge, their candidates should also be joined by an
edge in the world. Any candidate for one of these connected
nodes that does not have an edge to any candidate for the
other connected node can be removed from consideration.
Our topology filter, as detailed in Section 2.3, is a simple
extension of this constraint to the multiplex network case.

1.2.2 VF2

VF2 [14] generalizes Ullmann’s algorithm to directed graphs
and extends refinement with additional semantic feasibility
rules. They distinguish matched nodes (nodes with only one
candidate) from other nodes, and ensure that candidates
have more matched neighbors and unmatched neighbors
than their corresponding template node; in the directed case,
these neighbors must have edges with matching directions.
They also enforce a matching order where neighbors of
previously matched nodes are matched before other nodes.

1.2.3 Constraint Propagation Approaches

In [36], the authors classify existing constraints using two
categorizations: binary vs. non-binary and forward checking
(FC) vs. really forward look ahead (RF). Binary constraints
map n variables to m values using an nxm matrix of binary-
valued variables, while non-binary constraints use a vec-
tor of length n, whose entries are restricted to m values.
The authors propose nRF+, a non-binary really forward
lookahead algorithm, with specific look ahead for subgraph
isomorphism. They enforce the constraint that if vw is a
candidate for template node vt, then the number of vt’s
neighbors must be less than or equal to the number of
candidates for those neighbors that are adjacent to vw.

In [57], many constraints previously used in different
subgraph isomorphism algorithms are classified. The author
proposes a new algorithm, LAD, using the constraint that
for a match to exist between nodes m and n, there must
exist a matching between their neighborhoods subject to
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the alldifferent constraint introduced in [51], which can be
identified using the Hopcroft-Karp algorithm [27].

1.2.4 Graph Indexing Approaches

In GraphQL [25], the authors describe a graph query
language and provide an algorithm for resolving graph
database queries. In particular, they iterate a constraint
similar to that of [57], where there must exist a bipartite
matching between the neighborhoods of a template node
and its candidate. This approach is further expanded upon
in SPath [72], where the k-distance neighborhood is also
considered.

TurboISO proposes a method for handling permutable
template nodes, as well as addressing the order of matching
when identifying isomorphisms. They construct an NEC
tree, whose vertices represent groups of permutable tem-
plate nodes, and perform matching using this tree. At the
end, they combine and permute the candidates for each of
these template nodes. For the matching order, they divide
the graph into candidate subregions, each of which contains
a group of candidates that may take part in a signal. They
then prioritize searching the smaller candidate subregions.
We take a similar approach in Section 3.1, prioritizing nodes
with the least number of candidates.

In CFL-Match [6], the template is first decomposed into
three types of structures: Core, Forest, and Leaf. To do this,
they first construct a spanning tree of the template. Then,
they compute the minimal connected subgraph containing
all nontree edges of the template. They then iteratively
remove all nodes with degree 1, updating the degree counts
after each removal. The remaining nodes form the core.

For each node in the core that is connected to a non-core
node, a forest structure is created, consisting of that node
and all non-core nodes it is connected to. Finally, the leaf
structure consists of chains of removed non-core nodes.

After decomposing the template in this way, each struc-
ture is queried independently. In order to postpone the
Cartesian product of the results as much as possible, the
core is queried first, and the results are then used to restrict
queries for each forest structure. Similarly, the leaf queries
are restricted by the results of the forest queries.

1.2.5 Multiplex Approaches

Though most subgraph isomorphism algorithms in the
literature focus on the single-channel networks, there are
two algorithms that explicitly solve the multiplex SMP.
SuMGrA [29] is a graph indexing and backtracking tree
search approach and RI [7] can be extended to the multiplex
case (MultiRI) [43]. These existing multiplex approaches are
designed to solve the SMP. However, the SMP is infeasible
when there are too many SIs as in many of the problem
instances in Section 4. Additionally, the networks considered
by SuMGrA and MultiRI differ slightly from Definition 1.1.
Though they allow multiple edges between nodes, they do
not allow multiple edges between a pair of nodes in the
same channel. SuMGra also does not allow directed edges.

To extend any existing single-channel algorithms to mul-
tiplex networks, one possibility is to use a single-channel
approach (e.g., VF2, LAD) to solve the SMP in each channel
and take an intersection across all channels. However, this
approach is infeasible when there are too many SIs in any

channel, even if there are relatively few SIs overall. We will
show in Section 4 that in some cases the number of SIs is too
large to solve the multiplex SMP, let alone the single-channel
SMP.

1.3 Contributions

We extend existing constraint satisfaction approaches to
operate on multiplex networks. We demonstrate experimen-
tally that these approaches allow us to list out or count
all SIs for world graphs with thousands to hundreds of
thousands of nodes and templates with tens to hundreds
of nodes.

Due to the underconstrained nature of the templates in
some datasets, there are often too many SIs to reasonably
list, or sometimes even count. In such situations, we propose
that a natural problem to solve in place of the SMP or SICP
is the MCSP. On datasets where we can solve the MCSP,
we observe that the output of our filters can be a good
approximation to the solution of the MCSP.

We have published our code as an open-source
Python package available on GitHub (https://github.com/
jdmoorman/uclasm/tree/master) [44].

2 FILTERING

Our algorithms for solving the problems discussed in Sec-
tion 1.1 revolve around the use of filters to cheaply approx-
imate the solution of the MCSP (Definition 1.7). For each
template node vt ∈ Vt, we keep track of its candidates
D(vt) ⊆ Vw. Initially, we treat every world node as a candi-
date for every template node. Each filter enforces a different
set of constraints to eliminate candidates which cannot be
part of any signal. The filters are applied repeatedly until
no further candidates can be eliminated (Algorithm 1),
applying the cheaper filters before the more expensive ones.

Algorithm 1 Filtering

1: Input template Gt, world Gw, candidate set D(vt) for
each vt ∈ Vt, list of filters filters

2: converged← False
3: while converged is False
4: converged← True . Stop unless progress is made
5: for filter ∈ filters
6: D ← filter(Gt,Gw, D) . Apply the filter
7: if |D(vt)| decreased for some vt ∈ Vt
8: converged← False . Progress was made
9: Break . Restart from the first filter

10: Output updated candidate set D(vt) for each vt ∈ Vt

In this paper, in general, we are not searching for in-
duced subgraphs: we do not require equal number of edges
to exist between nodes in the template and nodes in the
world graph; instead, we only require the edges between
template nodes to be less than or equal to the number of
edges between their corresponding candidates in the world.
However, modifying our filters to find induced subgraphs
is simple: in Algorithm 3, change ≥ to == on Lines 6 and 7,
and in the Algorithm 5, change≥ to == each time it appears
on Line 8.
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2.1 Node Label Filter

In order for a world node vw to be a candidate for a template
node vt, the label Lw(vw) must match the label Lt(vt). For
example, consider the template and world shown in Figure 1
in which the node labels correspond to their shapes. By the
label filter, the square world nodes 2, 5, 8, and 9 can be
eliminated as candidates for the circular template nodes A

and C, while the circular world nodes 1, 3, 4, 6, 7, and
10 can be eliminated as candidates for the square template
node B. The label filter is run only once, immediately after
receiving the template and world.

In some applications, template node labels cannot be
specified exactly. For example, in geospatial applications,
template node labels may represent broad regions, whereas
world node labels may represent exact coordinates. In such
applications, it does not make sense to require equality be-
tween template node labels and world node labels. Rather,
one should require the world node labels to be somehow
“compatible” with the template node labels. The notion of
compatibility will depend on the application. In Section 4.3.1
we discuss an example application where a world node is
compatible with a template node if the coordinates of the
world node lie within the region of the template node.

2.2 Node-level Statistics Filter

The idea behind the node-level statistics filter (Algorithm 2)
is intuitive: for a world node vw to be a candidate for a
template node vt, certain statistical properties of vw should
not be less than those of vt. The idea of the node-level statis-
tics filter has been applied to simpler settings in the related
literature [43], [57]. Any statistic that is non-decreasing as
nodes and/or edges are added to a graph can be used as
part of the filter. The statistics that have been applied in our
filter include in/out-degree, number of in/out-neighbors,
number of reciprocated edges, and number of self-edges.
Each of these statistics can be used in each channel in the
networks.

Algorithm 2 Node-level Statistics Filter

1: Input template Gt, world Gw, candidate set D(vt) for
each vt ∈ Vt

2: for statistic ∈ [in-degree, out-degree, . . . ]
3: for template or world node v ∈ Vt ∪ Vw
4: Compute statistic(v)

5: for template node vt ∈ Vt
6: for candidate vw ∈ D(vt)
7: if statistic(vw) < statistic(vt)
8: Remove vw from D(vt)

9: Output updated candidate set D(vt) for each vt ∈ Vt

Other more complex statistics can be used in each chan-
nel, such as number of triangles, number of nodes within k

steps, and number of paths of length `. Statistics combining
information from multiple channels can also be used, such
as the number of in-neighbors in channel a which are also
out-neighbors in channel b. We use only the simplest statis-
tics to ensure that the cost of computing the statistics will
scale only linearly in the number of distinguishable edges
(edges whose source, destination, direction, and channel are
distinct).

Fig. 2: In the network shown, there is only one valid signal
for the template: 1 for A, 2 for B, and 4 for C.

Template World

A B C 1 2 3 4 5

in-degree 1 1 1 1 2 2 1 0
out-degree 1 0 2 1 0 1 2 2

TABLE 3: In/out-degree for nodes in the template and
world shown in Figure 2

As an example, consider applying an in/out-degree filter
to the problem in Figure 2. The in-degree and out-degree of
each template and world node are listed in Table 3. Node
A has one out-going edge and one in-coming edge, thus
nodes 2 and 5 can be ruled out as candidates since node 2

has no out-going edges and node 5 has no in-coming edges.
Similarly, node B has one in-coming edge, so node 5 can
be ruled out as a candidate since it does not have any in-
coming edges. Finally, node C has two out-going edges and
one in-coming edge, so all of the world nodes except 4 are
eliminated as candidates since 4 is the only world node with
at least two out-going edges and at least one in-coming edge.
The candidates for each template node after applying the
node-level statistics filter are summarized in the “Statistics”
column of Table 4.

Filters run

statistics
statistics,
topology

statistics,
topology,

repeated-sets

Candidates for A 1,3,4 1 1

Candidates for B 1,2,3,4 1,2 2

Candidates for C 4 4 4

TABLE 4: Candidates per template node for the problem
shown in Figure 2 after various filters have been applied.

The node-level statistics filter is the second cheapest filter
to apply, after the node label filter, and is most effective
when some template nodes have local structure that is un-
common in the world. Narrowing down the candidates for
even one template node can enhance the ability of the other
filters to refine the candidates for the remaining template
nodes.

2.3 Topology Filter

In the topology filter, we enforce the constraint proposed
by [61], extended to multiplex networks. The original con-
straint, denoted as AC(Edges) [57], is that if vw is a candidate
for template node vt, then for every template node ut

neighboring vt, there must exist a candidate uw for ut that
neighbors vw. The natural extension to multiplex networks

Authorized licensed use limited to: UCLA Library. Downloaded on May 01,2021 at 00:50:23 UTC from IEEE Xplore.  Restrictions apply. 



2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3056329, IEEE

Transactions on Network Science and Engineering

6

is that if vw is a candidate for template node vt, then for
every template node ut neighboring vt, there must exist
a candidate uw for ut which has as many edges in each
channel and direction between vw and uw as there are
between vt and ut.

Algorithm 3 Topology Filter

1: Input template Gt, world Gw, candidate set D(vt) for
each vt ∈ Vt

2: for neighboring template nodes vt and ut

3: for candidate vw ∈ D(vt)
4: nbr_cand_found← False
5: for candidate uw ∈ D(ut)
6: enough_out← Ew(vw,uw) ≥ Et(vt,ut)
7: enough_in← Ew(uw,vw) ≥ Et(ut,vt)
8: if enough_out and enough_in
9: nbr_cand_found← True

10: break
11: if nbr_cand_found is not True
12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

To clarify the concept, consider applying the topology
filter to the problem in Figure 2 after already applying the
node-level statistics filter. Since node 4 is the only candidate
for node C, nodes 3 and 4 are eliminated from the candidate
lists for both nodes A and B because they do not have
neighbors that are candidates for node C. This results are
shown in Table 4.

In terms of computational complexity, the topology filter
scales linearly with the number of distinguishable template
edges, and with the number of world nodes squared. In
practice, by using sparse matrices, the second factor can
be reduced to the number of distinguishable world edges.
Thus, the computational complexity is O(|Et|0 |Ew|0).

The topology filter is particularly useful when one or
more template nodes have few candidates remaining after
applying other filters. In such situations, it can significantly
reduce the candidates for neighboring template nodes.

2.4 Repeated-Sets Filter

Here, we apply another constraint, GAC(AllDiff) [57], [64]:
generalized arc consistency (also known as hyper-arc consis-
tency) for the alldifferent constraint. GAC(AllDiff) requires
that for a world node vw to be a candidate for template
node vt, there must exist some injective mapping from
the template nodes to their candidates under which vt is
mapped to vw. To enforce GAC(AllDiff), we identify sets of
template nodes T ⊆ Vt where the union of their candidates
⋃

vt∈T D(vt) has the same cardinality as T . These are
known as tight sets [64]. Candidates for template nodes in
a tight set cannot be candidates for any nodes outside of the
tight set, since this would violate GAC(AllDiff).

Standard algorithms for enforcing GAC(AllDiff) run

in O
(

√

|Vt|+ |Vw|
∑

vt∈Vt
|D(vt)|

)

time complexity [23],

[51]. Some improvements and modifications to the stan-
dard algorithms have been explored to mixed benefit
[23]. In the repeated-sets filter (Algorithm 4), we enforce
GAC(AllDiff) by directly considering unions of candidate

sets to find tight sets. Though the number of candidate set
unions grows exponentially with the number of template
nodes [64], we restrict this growth by not considering unions
with more nodes than there are template nodes. We also
keep track of template nodes which belong to tight sets and
do not use them in unions. In practice, template sizes are
often small, and we don’t observe the worst case exponen-
tial scaling. In terms of the world graph, naive maximum

cardinality matching-based algorithms scale as O(|Vw|
3/2

),
whereas Algorithm 4 scales linearly with |Vw|.

Algorithm 4 Repeated-Sets Filter

1: Input template Gt, world Gw, candidate set D(vt) for
each vt ∈ Vt

2: unions← EmptyMap()

. Map sets of world nodes Uw to sets of template
nodes Ut for which Uw =

⋃

vt∈Ut
D(vt). Any Ut with

|unions[Ut]| == |Ut| is a tight set.
3: T ← Ø . Nodes known to belong to tight sets.
4: todo← {vt ∈ Vt : |D(vt)| < |Vt|}

. Template nodes with too many candidates cannot
belong to a tight set.

5: while |todo| > 0
6: vt ← element of todo with fewest candidates D(vt)
7: todo← todor {vt}
8: for (Uw,Ut) ∈ unions
9: Uw ← Uw ∪D(vt)

10: if |Uw| < |Vt|
11: Ut ← Ut ∪ {vt}
12: if |Ut| == |Uw| . Ut is a tight set.
13: T ← T ∪ Ut
14: D(ut)← D(ut) r Uw for ut ∈ Vt r Ut
15: else
16: unions[Uw]← Ut
17: if D(vt) 6∈ unions
18: if |D(vt)| == 1 . {vt} is a tight set.
19: T ← T ∪ {vt}
20: D(ut)← D(ut) rD(vt) for ut ∈ Vt r {vt}
21: else
22: unions[D(vt)]← {vt}

23: todo← {vt ∈ todo : |D(vt)| < |Vt r T |}

24: Output updated candidate set D(vt) for vt ∈ Vt

To illustrate the application of the repeated-sets filter,
consider the example in Figure 2. Using the node-level
statistics and topology filters, the candidates for the tem-
plate nodes were narrowed down to those in Table 4. Since
A has only one candidate, {A} is a tight set and 1 can be
removed as a candidate for the remaining template nodes.
This leaves only one candidate for each template node,
exactly corresponding to the only signal in Figure 2.

The repeated-sets filter is most important when some
template nodes have only one candidate, since any template
node with only one candidate forms a tight set. It is also
useful for templates such as those discussed in Sections 4.4.1
and 4.4.5 which contain some nodes that are structurally
interchangeable.
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2.5 Neighborhood Filter

In this filter, we extend the local alldifferent (LAD) con-
straint introduced in [57] to the multiplex network case.
In the undirected single-layer graph context, the LAD con-
straint ensures that for a world node vw to be a candidate for
a template node vt, there must be some injective mapping
f` from the neighbors of vt to their candidates under which
f`(ut) is a neighbor of vw for each ut. We extend this to the
multiplex network context by requiring not just that f`(ut)
neighbors of vw, but also that there are enough edges in
each channel and direction

Ew(vw,uw) ≥ Et(vt,ut)

and Ew(uw,vw) ≥ Et(ut,vt)
(1)

where uw = f`(ut). In the neighborhood filter (Algo-
rithm 5), we enforce the multiplex LAD constraint by search-
ing for such a mapping f`. If none exists, we eliminate vw

as a candidate for vt.
We now transform the search for a mapping f` into a

matching problem on a bipartite graph B. Let Nvt
and Nvw

denote the neighborhoods of vt and vw respectively. Define
the undirected bipartite graph B with parts Nvt

and Nvw

to have an edge between nodes ut ∈ Nvt
and uw ∈ Nvw

whenever uw is a candidate for ut and Equation (1) holds.
A matching on B is a subset of its edges where no two edges
share a node. A mapping f` is equivalent to a matching on
B of size |Nvt

| where each edge (ut,uw) in the matching
corresponds to f`(ut) = uw. The Hopcroft-Karp algorithm
[27] can be used to find the maximum cardinality matching
on B in O(

√

|Nvt
|+ |Nvw

| |EB|) time, where EB denotes the
set of edges of B.

Algorithm 5 Neighborhood Filter

1: Input template Gt, world Gw, candidate set D(vt) for
each vt ∈ Vt

2: for template node vt ∈ Vt
3: for candidate vw ∈ D(vt)
4: Nvt

← Neighborhood(vt)
5: Nvw

← Neighborhood(vw)
6: B ← EmptyBipartiteGraph(Nvt

,Nvw
)

7: for (ut,uw) ∈ Nvt
×Nvw

8: if











uw ∈ D(ut)

and Ew(vw,uw) ≥ Et(vt,ut)

and Ew(uw,vw) ≥ Et(ut,vt)

9: Add an edge between ut and uw in B

10: max_match = MaxCardinalityMatching(B)
11: if |max_match| < |Nvt

|
12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

In the example from earlier, in Figure 2, the node-level
statistics, topology, and repeated-sets filters were sufficient
to narrow down the candidates until they solve the MCSP
(Definition 1.7). In Figure 3, we give an example where those
filters are not sufficient. The resulting candidates before and
after neighborhood filter are given in Table 5. Before the
neighborhood filter is applied, node 4 remains a candidate
for node C because node 3 is a candidate for its neighbors
A and B. The biadjacency matrix of B corresponding to

vt = C and vw = 4 is shown in Table 6. Since the
maximum cardinality matching on B has only two elements,
the neighborhood filter is able to eliminate node 4 as a
candidate for node C.

Fig. 3: An example template and world for which the
neighborhood filter plays a role in eliminating candidates.

Filters run

statistics,
topology,

repeated-sets

statistics,
topology,

repeated-sets,
neighborhood

Candidates for A 1, 3, 4 1, 4
Candidates for B 1, 3, 4 1, 4
Candidates for C 3, 4 3

Candidates for D 2, 5, 6 5

TABLE 5: Candidates per template node for the problem
shown in Figure 3 after various filters have been applied.

NC

N4
2 3 6

A 0 1 0
B 0 1 0
D 1 0 1

TABLE 6: Biadjacency matrix of B used in the matching
problem between the neighborhoods of template node C

and world node 4.

2.6 Elimination Filter

The elimination filter (Algorithm 6) attempts to eliminate
candidates by identifying any contradictions that would
result from them being assigned. For each template node-
candidate pair (vt,vw), we do a one step lookahead. We
assign vw to vt and iterate over all other filters until conver-
gence. If this results in one or more template nodes having
no candidates, then vt cannot be mapped to vw and we
eliminate vw as a candidate for vt.

As the elimination filter is a very expensive operation,
scaling with the number of remaining candidates, we re-
strict its use until all other filters have converged and no
further candidates can be removed by other means. In
certain contexts, the elimination filter can be impractical to
use. However, in others, it can greatly reduce the number
of candidates. A simple example where elimination filter
proves useful can be seen in Figure 4, where we have three
cycle graphs consisting of 3, 4 and 5 nodes respectively. We
also assume that each edge is bidirectional and there is only
one channel.
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