
Efficient Execution of Dynamic Programming
Algorithms on Apache Spark

Mohammad Mahdi Javanmard
Stony Brook University, USA
mjavanmard@cs.stonybrook.edu

Zafar Ahmad
Stony Brook University, USA
zafahmad@cs.stonybrook.edu

Jaroslaw Zola
University at Buffalo, USA
jzola@buffalo.edu

Louis-Noël Pouchet
Colorado State University, USA
pouchet@colostate.edu

Rezaul Chowdhury
Stony Brook University, USA
rezaul@cs.stonybrook.edu

Robert Harrison
Stony Brook University, USA
robert.harrison@stonybrook.edu

Abstract—One of the most important properties of dis-
tributed computing systems (e.g., Apache Spark, Apache
Hadoop, etc) on clusters and computation clouds is the ability
to scale out by adding more compute nodes to the cluster.
This important feature can lead to performance gain provided
the computation (or the algorithm) itself can scale out. In
other words, the computation (or the algorithm) should
be easily decomposable into smaller units of work to be
distributed among the workers based on the hardware/soft-
ware configuration of the cluster or the cloud. Additionally,
on such clusters, there is an important trade-off between
communication cost, parallelism, and memory requirement.
Due to the scalability need as well as this trade-off, it is
crucial to have a well-decomposable, adaptive, tunable, and
scalable program. Tunability enables the programmer to find
an optimal point in the trade-off spectrum to execute the
program efficiently on a specific cluster. We design and imple-
ment well-decomposable and tunable dynamic programming
algorithms from the Gaussian Elimination Paradigm (GEP),
such as Floyd-Warshall’s all-pairs shortest path and Gaussian
elimination without pivoting, for execution on Apache Spark.
Our implementations are based on parametric multi-way
recursive divide-&-conquer algorithms. We explain how to
map implementations of those grid-based parallel algorithms
to the Spark framework. Finally, we provide experimental
results illustrating the performance, scalability, and porta-
bility of our Spark programs. We show that offloading
the computation to an OpenMP environment (by running
parallel recursive kernels) within Spark is at least partially
responsible for a 2− 5× speedup of the DP benchmarks.

Index Terms—Dynamic Programming, Recursive Divide-
&-Conquer, Distributed-memory Computing, Apache Spark,
I/O-efficiency, Communication-efficiency, Polyhedral Compi-
lation.

I. Introduction

Dynamic programming (DP) is an algorithm design tech-
nique that uses memoization to improve the performance
of the recursive solution to an optimization problem [1]–
[4]. A DP algorithm outperforms the recursive solution by

This work is supported in part by NSF grants CCF-1725611, CCF-
1750399, CMMI-1906344, OAC-1910539, CCF-1725428, CNS-1553510 and
OAC-1931387.

preventing the recomputation of overlapping subproblems.
It computes each subproblem exactly once and stores the
optimal solutions to the subproblems in a DP table to be
reused for building an optimal solution for a larger problem.
A DP algorithm can be viewed as trading off space for lower
computation time [2].
DP is one of the core techniques used in solving a vari-
ety of combinatorial optimization problems [5], [6]. It has
been widely used in many different applications, including
economics [7], bioinformatics and computational biology [8],
big data [9], [10] and machine learning [11], [12].
A wide class of DP algorithms can be represented in
a general form shown in Fig. 1. It is called the Gaussian
Elimination Paradigm (GEP) [13], [14]. In this form, a DP
algorithm processes the underlying DP table whose entries,
to be updated, are chosen from an arbitrary set S. The
cell c[i, j] gets updated based on the output of function
f : S×S×S×S → S over inputs c[i, j], c[i, k], c[k, j], and
c[k, k]. The set of updates the algorithm needs to perform is
denoted by ΣG. Floyd-Warshall’s all-pairs shortest path (FW-
APSP) [15], transitive closure [16], and Gaussian elimination
without pivoting (GE) [3], [17] are among the most important
examples of DP algorithms that fit into this form.

GEP (c, 1, n)

input: matrix c[1..n, 1..n]
1. for k = 1 to n do

2. for i = 1 to n do

3. for j = 1 to n do

4. if 〈i, j, k〉 ∈ ΣG

5. c[i, j] = f(c[i, j], c[i, k], c[k, j], c[k, k])

Fig. 1. The GEP form.

Apache Spark is a high-performance, scalable, general-
purpose distributed computing system [18], [19]. It allows
one to run batch, interactive and streaming jobs on a cluster
using the same unified framework [19]. Through the high-
level abstractions and easy-to-use APIs, it enables program-
mers to process large data sets, beyond what can fit into a
single compute machine [20]. The abstractions and APIs are

337

2020 IEEE International Conference on Cluster Computing (CLUSTER)

978-1-7281-6677-3/20/$31.00 ©2020 IEEE
DOI 10.1109/CLUSTER49012.2020.00044

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

designed in a way that programmers can rapidly implement
Spark applications that operate on datasets small enough to
fit into one machine and then run the same applications on
very large clusters and/or computational clouds without any
significant modification [21].
Currently, Apache Spark is among the most active open-
source projects in the Apache ecosystem [19]. Spark’s in-
memory execution model can lead to up to 100× faster
execution of the same job, compared to Hadoop’s MapReduce
[22], albeit with the cost of more memory consumption
[23]. It has been shown that Spark implementations of Word
Count, k-means and PageRank algorithms are 2.5×, 5×,
and 5× faster than their Hadoop’s MapReduce counterparts,
respectively [24]. This in-memory computing model can have
huge impact on the performance of iterative algorithms
that need to reuse data, including DP algorithms. As a
result of improved efficiency of Apache Spark over Hadoop’s
MapReduce, researchers have been using Apache Spark as the
core engine for solving problems in different areas, including
machine learning and data mining [25], [26], big data and
data science [27], [28], bioinformatics and computational
biology [29]–[31].

Our Contributions. In this paper, for the class of DP
problems in the GEP form (see Fig. 1), we provide well-

decomposable and easily tunable implementations for execu-
tion on Apache Spark. Our implementations are based on
parametric multi-way recursive divide and conquer (r-way
R-DP), which has recursive hierarchical structure. It has
already been shown that hierarchical algorithms are suitable
for hierarchical architectures (including shared-memory as
well as distributed-memory compute machines) [32]–[36]. In
this paper, we show that the parametric and recursive struc-

ture of the r-way R-DP algorithms provides the tunability and
adaptability needed for massively parallel execution on multi-
level software stacks (e.g., Apache Spark), which is a common
standard for execution of large-scale programs on clusters
and computation clouds. Considering the state-of-the-art im-
plementation [37] of FW-APSP algorithm in Apache Spark as
a baseline for one of our benchmarks, we show that using r-
way R-DP kernels instead of iterative kernels and offloading
the computation to an OpenMP environment (by running
parallel recursive r-way R-DP kernels) within Spark can
lead to at least 2× speedup.
The paper is organized as follows. Section II reviews the
basic concepts in Apache Spark. Then Section III provides a
literature survey on DP algorithms and their state-of-the-art
implementations on different architectures such as shared-
memory (multi- and manycores) and distributed-memory ma-
chines. It also provides a summary of existing research com-
paring HPC programming models and Big Data frameworks.
Section IV summarizes design methodologies for r-way R-
DP algorithms [34]–[36], [38], and explains how to map
the algorithms to the Spark framework. Section V provides
detailed experimental results illustrating the performance,
scalability, and portability of the Spark programs for different
DP algorithms. Finally, Section VI concludes the paper.

II. Overview of Apache Spark

There are three important concepts in Apache Spark:
• RDD (Resilient Distributed Datasets): RDD is the core
data abstraction that represents lazily evaluated, compile-
time type-safe, distributed collections [20]. RDD is further
divided into several partitions and distributed among the
executors. They are stored either in main memory or
persistent storage. Each machine in the cluster contains
one or more partitions. Spark keeps RDD partitions in
memory on the compute nodes (executors) to reduce I/Os
in repeated computations [20].

• Transformation: A transformation is a computation that
takes input (or parent) RDDs and generates output (or

child) RDDs. The RDD transformations are lazily evaluated,
which means they get computed only when an action is
triggered. From dependency perspective, transformations
can be classified into two categories [39]:
– Transformation with narrow dependencies: In such
transformations, each partition of the input RDD is used
by at most one partition of the output RDD. Thus, for
executing them, there is no need for data shuffle across
partitions and hence, they can be efficiently combined
and executed together in one pass of the data.

– Transformation with wide dependencies: In such
transformations, multiple output partitions may depend
on each partition in the input RDD. They are slow as
they often require all or some data to be shuffled over
the network1. Transformations with wide dependencies
break down the Spark job into stages [20]. Each stage
is a set of computations (i.e., a group of one or many
transformations with narrow dependencies) that can
be computed without a need for data shuffle. Corre-
sponding to each partition of input RDDs the stage
takes, there is one task. In Spark, task is considered
as the smallest unit of execution. All such tasks which
associate with one stage run the same code but on
different partitions of the input RDDs [20]. The number
of RDD partitions has a direct impact on the overall
performance as it impacts the data distribution through
the cluster and determines the number of tasks that will
be executing RDD transformations [40]. The number of
RDD partitions is configurable and by default, it is equal
to the total number of cores on all executor nodes.

• Action: An action is a computation that takes input RDDs
and generates the final result. Actions trigger the scheduler
to build a directed acyclic graph (DAG). The edges of the
DAG are determined by the dependencies between the
transformations [20]. Spark uses this DAG to define a series
of steps, called execution plan, to produce the final result.
Lazy evaluation helps Spark to optimize the execution plan
by grouping and fusing together the transformations to
avoid doing multiple passes through the underlying data
which leads to improved efficiency [20], [21].

1If Spark knows that the input RDD is already partitioned in a specific
way, the transfomration might not cause data shuffle

338

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

III. Related Work

DP algorithms are specified using recurrence relations that
determine how and in which order one should fill out the
underlying DP table cells using the already-computed values
of other cells. The most common approach to implement DP
algorithms uses a loop-based program that populates the DP
table cells iteratively. Such implementations often have good
spatial locality2 and benefit from prefetching optimizations.
However, they do not perform efficiently due to the lack of
temporal locality3 [13], [41].

To prevail over the shortcomings of the loop-based DP
algorithms, recursive divide-&-conquer DP algorithms (2-
way R-DP) have been introduced [13], [14], [41]. The recur-
sive structure of the algorithms prevents inefficient memory
accesses and hence, provides the best opportunity to gain
excellent temporal locality and consequently much better
performance. Such algorithms execute iterative loop-based
kernels after reaching sufficiently small base cases. Reorder-
ing the execution of instructions inside the kernels enables
further optimizations such as vectorization, parallelization,
etc. I/O efficiency can also be obtained by using an optimizing
compiler transformation called tiling [42]. However, it has
been shown that unlike the tiled programs, recursive divide-
&-conquer DP algorithms are cache oblivious4 [13], [43] and
more importantly cache adaptive5 [41], [44].

Although the standard 2-way (or any fixed r-way) R-DP

algorithms have several advantages over their simple loop-
based counterparts, they have several shortcomings [34]–[36]
that limit their suitability for distributed-memory heteroge-
neous clusters.

• They are not suitable for architectures that have limited
support for recursion and require explicit memory instruc-
tions (either between the compute nodes, e.g., distributed-
memory computation via MPI, or between different levels
of the memory hierarchy, e.g., GPUs).

• One of the most important properties of distributed com-
puting systems (e.g., Spark, Hadoop, etc.) on clusters and
computation clouds is their ability to scale out by adding
more compute nodes to the cluster. This important feature
can lead to performance gain provided the computation
itself can scale out. In other words, the computation should
be easily decomposable into smaller units of work to be
distributed among the workers based on the hardware/-
software configuration of the cluster or the cloud. The
standard 2-way (or any fixed r-way) R-DP algorithms do
such decompositions recursively with low precision often
matching the required sizes only within a constant factor.

2i.e., whenever a cache block is brought into the cache, it contains as
much useful data as possible.
3i.e., whenever a cache block is brought into the cache, as much useful
work as possible is performed on this data before removing the block from
the cache.
4i.e., they are I/O efficient among every two consecutive levels of the
memory hierarchy without any specific tuning of the algorithm
5i.e., they can passively self-adapt to the changes in the size of available
space in a cache shared with other threads and processes

• In distributed cluster and cloud computing, a trade-off
between communication cost, parallelism, and memory
requirement is among the most important performance
challenges. Due to the scalability need as well as this trade-
off, it is crucial for the algorithm to be highly adaptive
and tunable so that the programmer can find the optimal
performance point (either on-the-fly by using adaptive
runtime configuration selection or using estimates from
hardware/software parameters using analytical models).
Though standard 2-way (or any fixed r-way) R-DP al-
gorithms are known to be adaptive and can be tuned, we
seek better precision and control.
The above limitations of 2-way R-DP algorithms have
led to the introduction and development of parametric r-
way recursive divide-&-conquer DP algorithms (r-way R-
DP) [34]–[36]. Section IV explains the design methodologies
of r-way R-DP algorithms which we use for our Spark
implementations. In the rest of this section, we go over
known research results on design and implementation of
several DP algorithms for different architectures. We also
include a brief literature survey on research comparing HPC
programming models and Big Data frameworks.
GPU algorithms have been designed for solving several
DP problems, e.g., Floyd-Warshall’s APSP [45]–[49], the
parenthesis problem family (including CYK algorithm, opti-
mal polygon triangulation, RNA folding, etc.) [50]–[53], and
sequence alignment [54]–[57]. Some results take advantage of
the fact that Floyd-Warshall’s APSP problem can be reduced
to a matrix-matrix multiplication kernel, on a semiring, e.g.,
R-Kleene’s algorithm [48], [58], [59].
Several researchers have introduced high performance
distributed-memory graph algorithms [60]–[62] as well as dy-
namic programming algorithms in various application areas
[61]–[69]. Wang et al. have introduced DPX10, a framework
for generating distributed implementations of iterative DP
programs [70]. DPX10 exploits node-level, and thread-level
parallelism. Hegde et al. have extended AutoGen [41] to
produce MPI-based distributed-memory implementations of
DP algorithms [71]. A runtime system dynamically executes
the 2-way recursive algorithm until the subproblem sizes
become small enough to be assigned to other processes
for execution. Graph algorithms on MapReduce have been
introduced by several researchers [72]–[75]. Apache Spark
provides frameworks such as GraphX [76] and GraphFrame
[77] which can compute multi-source shortest-paths.
Schoeneman and Zola [37] have recently introduced an
efficient implementation of the blocked all-pairs shortest-
paths (FW-APSP) algorithm [78] for Apache Spark. They have
shown the importance of tuning performance factors (e.g.,
block decomposition parameter, RDD partitioning granular-
ity, etc). In addition, their experimental results indicate that a
communication-efficient distributed-memory MPI implemen-
tation [62] outperforms their Spark implementation which
reflects Spark’s trade-off between programmer’s productivity
and scalability. Our work in the current paper improves
over their FW-APSP solver by using r-way R-DP algorithms

339

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

[34]–[36], [38] as kernels instead of using iterative kernels,
and additionally extends their solution, as a general frame-
work, to a wider class of DP problems in GEP form.
Jha et al. [79] and Asaadi et al. [80] have presented
a general comparison of the current HPC programming
models (e.g., MPI, OpenMP, etc) and Big Data frameworks
(e.g., Hadoop, Spark, etc). For several benchmarks from
distributed graph algorithms and machine learning applica-
tions, including Latent Dirichlet Allocation, PageRank, Single
Source Shortest Path, and Canonical Polyadic Decomposition,
Anderson et al. have shown that offloading the computation
to an MPI environment provides 3.1− 17.7× speedups [81].
Similarly, we show that offloading the computation to an
OpenMP environment (by running parallel recursive r-way
R-DP kernels) within Spark is at least partially responsible
for a 2− 5× speedup of the DP benchmarks.
IV. Parametric Multi-way Recursive Divide-&-Conqer

DP (r-wayR-DP) Algorithms

In this section, first we review how to transfrom a standard
2-way R-DP into a parametric r-way R-DP using an inline
and optimize approach [34]–[36]. As an alternative approach,
we also review how to systematically obtain an r-way R-
DP algorithm from the loop-based specification of a DP
algorithm by using polyhedral compiler transformations [36],
[38]. For the rest of the paper, we consider Gaussian Elimi-
nation without pivoting (GE) [3], [17] as a running example.
Although GE is not usually considered a DP algorithm, it fits
into the GEP framework. The GE algorithm is used in Linear
Algebra to solve systems of linear equations [3], [17]. It is also
used for solving LU decomposition of symmetric positive-
definite or diagonally dominant real matrices [3], [17]. In
the GE problem, a system of (n − 1) equations in (n − 1)
unknowns (x1, x2, ..., xn−1) is represented by an n×nmatrix
X , where each row represents an equation. For example,
the pth row, represents the equation

∑n−1
j=1 (X[p, j]× xj) =

X[p, n]. A loop-based implementation of GE is provided in
Fig. 2.

LOOP GE(X)

1. for k = 1 to (n− 1) do
2. for i = (k + 1) to n do

3. for j = k to n do

4. X[i, j]− = (X[i, k]×X[k, j])/X[k, k]

Fig. 2. Iterative algorithm for Gaussian Elimination w/o pivoting (GE).

A. First design methodology: inline and optimize

In this section, we review the first methodology [34]–
[36] for designing r-way R-DP algorithms for several DP
problems in the fractal-DP class [41]. The procedure starts by
using either AutoGen [41] or Bellmania [82] to automatically
obtain the standard 2-way R-DP for the given DP problem.
The 2-way algorithm is, indeed, a special case of the general
2t-way algorithm, where t = 1. To generalize the algorithm
to r-way R-DP (where r = 2t), starting from t = 1, the

approach repeatedly applies the following two refinement
steps until the general pattern representing the algorithm in
a compact form is identifiable. These steps are used to derive
the 2(t+1)-way algorithm from 2t-way:

1) Take the 2t-way R-DP algorithm and inline each recur-
sive function call by one level of recursion based on the
2-way R-DP specification of the function. The output is
an inefficient 2(t+1)-way R-DP algorithm.

2) To execute the algorithm as efficiently as possible (i.e., in
as few parallel stages as possible), move each function call
to the lowest possible stage (i.e., the earliest time) without
violating the following dependency constraints, where for
function F , W (F) denotes the DP subtable F writes to
and R(F) denotes the set of DP subtables F reads from:
• IfW (F1) �= W (F2) andW (F1) ∈ R(F2), then F1 must
be executed before F2 (denoted by F1 → F2).

• If W (F1) = W (F2) and only F1 is flexible, i.e.,
W (F1) /∈ R(F1), then F1 must be executed before F2

(denoted by F1 → F2).
• If W (F1) = W (F2) and both F1 and F2 are flexible,
then they can be executed in any order but not in
parallel (denoted by F1 ←→ F2)

• If F1 and F2 do not satisfy any of the above rules, then
they can be executed in parallel (denoted by F1||F2).

Fig. 3 shows part of refining the 2-way GE algorithm
and reducing the stages of parallelism. After some level of
refinements, the pattern of function calls becomes apparent
and the algorithm in a compact form can be represented.
Fig. 4 shows the r-way R-DP algorithm for GE.

Fig. 3. Refining 2-way R-DP of AGE by one level. The functions in stages
5 and 6 are moved to stages 2 and 3 respectively.

It is worth mentioning that in the r-way R-DP, the prob-
lem size is always assumed to be divisible by the parameter
r. In cases where it is not divisible, virtual padding can be
applied to increase the problem size to the next smallest
value which is divisible by r. Javanmard et al. [34]–[36] have

340

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

AGE(X, r)

1. if X is a small matrix then loop-based GE(X)
2. else
3. for k ← 0 to (r − 1) do
4. AGE(Xkk, r)
5. parallel for i ← k + 1 to (r − 1) do
6. BGE(Xki, Xkk, Xkk, r), CGE(Xik, Xkk, Xkk, r)
7. DGE(Xlm, Xlk, Xkm, Xkk, r), par for l,m ∈ [k+1,r-1]

DGE(X,U, V,W, r)

1. if X is a small matrix then loop-based GE(X,U, V,W)
2. else
3. for k ← 0 to (r − 1) do
4. DGE(Xij , Xik, Vkj ,Wkk, r), par for i ∈ [0,r-1], j ∈ [0,r-1]

BGE(X,U,W, r)

1. if X is a small matrix then loop-based GE(X,U,W)
2. else
3. for k ← 0 to (r − 1) do
4. BGE(Xkj , Ukk,Wkk, r), par for j ∈ [0,r-1]
5. DGE(Xij , Uik, Xkj ,Wkk, r), par for i ∈ [k+1,r-1], j ∈ [0,r-1]

CGE(X,V,W, r)

1. if X is a small matrix then loop-based GE(X,V,W)
2. else
3. for k ← 0 to (r − 1) do
4. CGE(Xik, Vkk,Wkk, r), par for i ∈ [0,r-1]
5. DGE(Xij , Xik, Vkj ,Wkk, r), par for j ∈ [k+1,r-1], i ∈ [0,r-1]

Fig. 4. An r-way R-DP for Gaussian elimination without pivoting (GE).

shown that these algorithms are theoretically and practically
efficient on various architectures including multicores, many-
cores and distribute-memory machines. They have provided
experimental results for GPU and MPI-based distributed-
memory algorithms as well as detailed discussions on how to
choose an optimal value of r and how to map the algorithm
to GPUs and distributed-memory machines.

B. Second design methodology: using polyhedral compiler

transformations

In this section, we review the second methodology for
designing r-way R-DP algorithms using polyhedral com-
piler transformations [36], [38]. The procedure first applies
a mono-parametric tiling transformation [83]. It has been
proven that a mono-parametrically tiled program is a polyhe-
dral program and hence standard polyhedral representation
and analysis can be applied to it [84]. Such a program
consists of a sequence of nested for loops, iterating over
the tiles (called inter-tile loop nests) and inside each tile,
iterating over the points inside the tile (called intra-tile loop
nests). As the second step, the program is transformed into a
recursive form [85], by (1) replacing the intra-tile loop nest
with a recursive function call with proper loop bounds and
recursion variables (e.g., base case size and the parameter r)
and (2) including recursion base case. After applying the first
two transformations, a single-function recursive program is
generated which reads one or more input tiles and updates
the output tile. However, by further analysis of the recursive
function calls, we can identify the cases (i.e., the function
calls) where the input tiles can fully overlap with or be
entirely disjoint from the output tile.
As the third step, using index set splitting transformation
[86] with the criteria of disjointness of the output tile
from the input tiles, the inter-tile loop is decomposed into
different cases with different degree of overlap or disjointness
among the input and output tiles. For each such case, a
new recursive function is introduced, with the purpose of
providing further opportunity for the next transformation
to produce a more efficient algorithm from the parallelism
perspective: the more disjoint the input and output tiles are,

the more relaxed the data dependencies among the tiles and
hence, more parallelism across calls can be exploited. Each
of the newly introduced recursive functions is processed in
the same manner. The final step is applying data dependence
analysis among the function calls [87] (whether there exists a
loop-carried data dependence, and between each consecutive
function calls whether there is any data dependence) and
emitting a (doall and docross) parallel implementation.

C. Apache Spark r-way R-DP Implementations

By carefully analyzing the r-wayR-DP algorithm, we find
a general iterative pattern of recursive function calls (e.g., in
Fig. 4 function AGE first calls AGE recursively, then calls
functions BGE , and CGE , etc). This pattern indicates how
to map them to the Apache Spark framework. Considering
the top level recursive function (e.g., AGE), we design an
algorithm which executes the same sequence of recursive
function calls. In Spark implementations, those functions
are ARecGE, BRecGE, CRecGE, and DRecGE, which corre-
spond to AGE , BGE , CGE , and DGE , respectively, in Fig. 4.
Each iteration of the algorithm is further decomposed into
stages and each stage consists of some function calls exe-
cuting concurrently. In our implementations, the underlying
DP table is decomposed into r× r tiles, where, for achieving
better performance, the decomposition parameter r can be
tuned, either on-the-fly by using adaptive runtime configu-
ration selection or using estimates from hardware/software
parameters based on analytical models. We use pair RDD [21]
to represent the underlying DP, which is a mapping, whose
key (i, j) (where i, j ∈ [0, r − 1]) is the coordinate of the
tile and whose value is the corresponding tile DP (i, j) in
Spark. It is worth mentioning that the grid-based DP table
decomposition is different from the Spark’s RDD partitioning
scheme. Single RDD partition can have multiple DP blocks.
For our benchmarks introduced in Section V-A, irrespective
of whether the function kernels are recursive or iterative, we
provide two implementations [37]:
• In-Memory (IM) Implementation: In each iteration of r-
way R-DP algorithms, since there are data dependencies
between function kernels in one stage and the previous

341

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

stage, each function kernel is responsible for making an
updated output tile/block as well as making copies of the
updated tile/block required for the function kernels in
the next stage. For example, in an r-way GE algorithm,
in iteration k (for k<r), function ARecGE updates the
block with key (k,k) and makes 2 × (r − k − 1) +
(r − k − 1)2 copies of it to be used by functions BRecGE
(which updates the block DP(k,j) using the input tile
DP(k,k) for j>k), CRecGE (which updates the block
DP(i,k) using the input tile DP(k,k) for i>k), and
DRecGE (which updates the block DP(i,j) using the
input tiles DP(i,k), DP(k,j), and DP(k,k) for i>k
and j>k) in the next stages of the current iteration of
the algorithm. These copies are, indeed, a mapping from
(i, k) or (k, j) or (i, j) to the updated block DP(k,k).
By using a transformation combineByKey(), they are
coupled with the block DP (i, k) or DP (k, j) or DP (i, j)
for executing functions BRecGE or CRecGE or DRecGE,
respectively (e.g., the transformation combineByKey()
makes a mapping from (i, k) to [DP (k, k), DP (i, k)]).
Although this implementation is completely based on
Apache Spark features, because of using communication-
expensive transformations with wide dependencies (e.g.,
combineByKey()), it has two major drawbacks, which
in some benchmarks (with complicated and heavy commu-
nication patterns), can lead to a very poor performance:
1) Data shuffles can incur high communication cost.
2) It is also constrained by the size of the underlying
SSDs [37]. This constraint is due to the fact that for
executing transformations with wide dependencies, the
intermediate data should be staged in the local SSDs
before shuffling and hence, for large inputs or small
inputs with many replicates, it can lead to a failure in
the execution of the algorithm.

Listing 1 shows the In-Memory Spark implementation of
the GE algorithm.

1 for k in range(0, r):
2 # Stage 1: calling function A
3 aBlocks = DP.filter(FilterA(k)).flatMap(ARecGE)
4 .partitionBy(p,partitioner)
5 # Stage 2: calling functions B and C
6 abcBlocks = DP.filter(FilterA(k) or FilterB(k) or
7 FilterC(k))
8 .union(aBlocks).combineByKey(..)
9 .flatMap(BCRecGE)
10 .partitionBy(p,partitioner)
11 # Stage 3: calling functions D
12 abcdBlocks = DP.filter(FilterD(k)).union(abcBlocks)
13 .combineByKey(..)
14 .mapPartitions(DRecGE)
15 .partitionBy(p,partitioner)
16 # Preparation for the next iteration
17 # prevBlocks: blocks not touched in this iteration
18 prevBlocks = DP.filter(not(FilterA(k) or
19 FilterB(k) or
20 FilterC(k) or
21 FilterD(k)))
22 DP = sc.union([prevBlocks,abcdBlocks])
23 .partitionBy(p,partitioner)

Listing 1. In-Memory implementation of GE R-way R-DP algorithm.

• Collect-Broadcast (CB) Implementation: Unlike the
IM implementation, instead of using transformations with

wide dependencies, such as combineByKey(), we alle-
viate the costly data shuffle by using collect() which
brings the required block(s) to the Spark’s driver node.
Then the driver node distributes the block(s) to the execu-
tors via shared persistent storage. So, the function kernels
(e.g., ARecGE, etc) do not make any copy after making an
updated output tile/block. In this way, we trade efficiency
at the expense of using auxiliary storage. Listing 2 shows
the Collect-Broadcast Spark implementation of GE.
In the Spark implementations, we use predicate functions
FilterX (X ∈ {A, B, C, D}) to extract the correct
set of blocks to be updated. They are defined based on
the lower bounds and upper bounds of the for loops in
the function AGE in Fig. 4. For example, FilterD is
defined as FilterD[((l,m),DP(l,m)),k]: return
(l>k&&l<r&&m>k&&m<r). Functions ARecGE, BCRecGE,
and DRecGE can be implemented iteratively or recursively
using the I/O efficient r-way R-DP algorithms [34]–[36]. As
a result, we have two important parameters to tune: (1) the
block decomposition parameter r used in the top level Spark
program (e.g., in line 1 of Lst. 1, and Lst. 2), and (2) rshared
which is used for recursive kernels to execute rshared-way
recursive R-DP in executors.

1 for k in range(0, r):
2 # Stage 1: calling function A
3 aBlock = DP.filter(FilterA(k)).map(ARecGE)
4 aBlock.collect().tofile()
5 # Stage 2: calling functions B and C
6 bcBlocks = DP.filter(FilterB(k) or FilterC(k))
7 .map(BCRecGE)
8 bcBlockscollect = bcBlocks.collect()
9 for block in bcBlocks: block.tofile()
10 # Stage 3: calling functions D
11 dBlocks = DP.filter(FilterD(k)).map(DEecGE)
12 # Preparation for the next iteration
13 # prevBlocks: blocks not touched in this iteration
14 prevBlocks = DP.filter(not(FilterA(k) or
15 FilterB(k) or
16 FilterC(k) or
17 FilterD(k)))
18 DP = sc.union([prevBlocks,aBlock,bcBlocks,dBlocks])
19 .partitionBy(p,partitioner)

Listing 2. Collect-Broadcast implementation of GE R-way R-DP algorithm.

V. Experimental Results

In this section, we present the performance, scalability and
portability plots for our Spark implementations. Specifically,
for the all-pairs shortest path problem [15], we compare our
implementations with the state-of-the-art Spark implementa-
tion by Schoeneman and Zola [37] which contains only iter-
ative kernels and works on undirected graphs. We extended
their implementation to the more general case of directed
graphs. Additionally, our implementation has the flexibility
of having either iterative kernels or recursive (rshared-way
recursive R-DP for different values of rshared) kernels
implemented in OpenMP. Our experimental results indicate
that optimized I/O-efficient recursive kernels employed by
Spark executors outperform the iterative kernels (i.e., the
baselines). We also illustrate how the tunable parameters –
(1) the block decomposition parameter r used in the top level
Spark program, and (2) rshared used inside the executors for
recursive kernels – impact the overall performance.

342

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

����������
OMP NUM
THREADS

executor-
cores 32 16 8 4 2 1

2 381 387 425 461 771 1302
4 264 262 288 324 534 944
8 213 211 280 262 421 741
16 292 285 429 330 407 696
32 581 601 752 656 668 829

TABLE I
Comparing performance of GE benchmark (in seconds) for different
combinations of executor-cores and OMP NUM THREADS

A. Benchmarks

From the GEP class of DP algorithms, we consider the
following two algorithms – one solving a graph problem and
the other solving a problem from linear algebra:
• Floyd-Warshall’s All-Pairs Shortest Path (FW-APSP).

Floyd [15] introduced a DP algorithm that finds the short-
est path between every pair of vertices in a directed graph.
Warshall introduced an algorithm for finding transitive
closure [16]. Later, Aho et al. introduced an algebraic
structure, known as closed semiring, as a general frame-
work for solving path problems in directed graphs [88].
They have introduced an algorithm for finding a set of all
paths between each pair of vertices in a directed graph.
Indeed, the algorithms introduced by Floyd and Warshall
are specific cases of the problem in the closed semiring
introduced by Aho et al. A directed graph is represented
as G = (V,E), where V = {v1, v2, ..., vn} contains the
vertices of the graph and each edge (vi, vj) is labeled by an
element l(vi, vj) of some closed semiring (S,

⊕
,
⊙

, 0, 1).
For i, j ∈ [1, n] and k ∈ [0, n], let d(k)[i, j] represent
the smallest cost path from vi to vj with intermediate
vertices from the set {v1, v2, ..., vk}. Then d(n)[i, j] is the
cost of the shortest path from vi to vj . Assuming d0[i, j]
= l(vi, vj), i �= j and d0[i, i] = 1, the following recurrence
computes all d(k)[i, j] for all k > 0:

d(k)[i, j] = d(k−1)[i, j]
⊕

(d(k−1)[i, k]
⊙

d(k−1)[k, j])

The FW-APSP algorithm computes over a particular closed
semiring (R,min,+,+∞, 0). Fig. 5 represents the loop-
based iterative implementation of FW-APSP.

LOOP FW − APSP (X)

1. for k = 1 to n do

2. for i = 1 to n do

3. for j = 1 to n do

4. d[i, j] = d[i, j]
⊕

(d[i, k]
⊙

[k, j])

Fig. 5. Iterative algorithm for FW-APSP problem.

FW-APSP is among the most fundamental graph algo-
rithms. It has applications in various scientific and engi-
neering areas, including logic programming [89], optimiz-
ing compilers [90], verification and model-checking tools
[91], software-defined computer networks [92], transporta-
tion research [93]–[95], wireless sensor networks [96], etc.

����������
OMP NUM
THREADS

executor-
cores 32 16 8 4 2 1

2 339 347 451 696 1209 2233
4 310 310 334 508 864 1608
8 302 303 321 403 688 1274
16 318 323 342 410 591 1084
32 363 360 382 446 605 977

TABLE II
Comparing performance of FW-APSP benchmark (in seconds) for

different combinations of executor-cores and OMP NUM THREADS

• Gaussian Elimination without Pivoting (GE). GE is
among the most important linear algebra algorithms which
is used to solve systems of linear equations and LU
decomposition of symmetric positive-definite or diagonally
dominant real matrices [3], [17]. Further explanation of GE
algorithm was provided in Section IV.

B. Experimental Setup

For each of the above benchmarks, we have four different
implementations: (1) IM implementation with the iterative
kernel, (2) IM implementation with recursive r-way R-DP

kernel, (3) CB implementation with the iterative kernel, and
(4) CB implementation with recursive r-way R-DP kernel.
We have used Spark 2.2.0 pySpark and Python 2.7. The
iterative kernels are implemented using Python and Numba
v0.47 JIT compiler [97]. The iterative kernels are offloaded
to bare-metal via Numpy 1.16.6 and SciPy. The recursive
kernels are implemented in C and OpenMP [98]. They are
compiled by gcc 7.3.0 with -Ofast and --march=native
optimization flags to generate shared objects and called by
the executors using Cython 0.29.14 [99], [100].
The experiments were carried out on a standalone Apache
Spark cluster with 16 compute nodes, which are intercon-
nected through GbE network. For weak scalability plots
(Fig. 9), we used a cluster with 1, 8, or 64 compute nodes.
Each node in the cluster had two 16-core Intel Skylake
(Intel Xeon Gold 6130 2.10GHz) processors with 32KB L1
and 1024KB L2 caches, and 192GB of RAM. Each node had
one standard 1TB SSD drive. We allocated one executor per
compute node. Additionally, inside each compute node, the
Spark executor used all the cores. The implementation is
available at [101]

C. Performance Results

Irrespective of the type of kernels (iterative or recursive)
used, for distributed-memory parallel computations we solely
rely on the capabilities of Apache Spark. For parallelism
inside each compute node (i.e., shared-memory parallelism),
(1) we have one executor per node and set multiple tasks
(or logical cores) to run in parallel inside each executor
(by setting the parameter executor-cores to the total
number of physical cores in each compute node), and (2)
we set the total number of RDD partitions to a value
larger than the total number of physical cores in the cluster

343

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Various Spark implementation of our benchmarks.

(based on Spark guidelines [102], 2× to 4× the total num-
ber of cores, and we chose to have 2× the total number
of cores, similar to [37]). However, for recursive kernels,
since we used OpenMP, we have one more key perfor-
mance factor: OMP NUM THREADS. As a result, for shared-
memory parallelism we had to check various combinations
of executor-cores and OMP NUM THREADS.
Table I shows excerpt of execution of GE (on a 16-
node cluster), for problem size 32K × 32K with blocks of
size 1K × 1K , using a CB implementation with recursive
4-way R-DP kernels. Table II shows the same for FW-
APSP but using an IM implementation with recursive 16-
way R-DP kernels. These results confirm that for any
specific value of executor-cores, increasing the value
of OMP NUM THREADS can improve the overall perfor-
mance up to some point but increasing further results in
thread oversubscription (similar to [103]) which leads to
drastic degradation of performance. As a result, For the
benchmarks with parallel recursive kernels, to ensure that
we have obtained the best performance to report, we set the
executor-cores to the total number of physical cores
in each compute node but executed the benchmarks with
various values for OMP NUM THREADS and reported the
one producing the best performance.

In addition to the performance factors explained above,
there are other important factors to explore, which are:
(1) different types of kernels (iterative and recursive), (2)
the block decomposition parameter r used in the top level
Spark program (which determines the block size executors
are processing), and (3) rshared used inside the executors
for recursive kernels (which determines the recursive fan-out
and hence coarse-grained parallelism as well as the sub-block

size for the recursive kernels).

For each of the benchmarks, we ran several experiments
for block sizes in {256, 512, 1024, 2048, 4096} (i.e., for the
problem size 32K × 32K , having blocking factor r ∈
{64, 32, 16, 8}). For rshared-way R-DP recursive kernels,
we tried rshared values from {2, 4, 8, 16} (with various
OMP NUM THREADS). We fixed the following parameters:

• We set the problem size to 32K×32K , i.e., the underlying
DP table has size 32K × 32K .

• We set the number of executors to 16 (we ran the experi-
ments on a cluster with 16 compute nodes).

• We set the executor/driver memory to 160GB.
• We set the number of RDD partitions to 1024 which
is 2× total number of cores = 2× number of compute
nodes × (number of cores in each compute node) =
2 × 16 × 32 = 1024. To minimize the frequency of Spark
shuffles, blocks to be processed should be assigned to the
same partitions, and partitions should be evenly distributed
among executors [102]. However, due to the probabilistic
nature of the default partitioner, there is no such guarantee.
As a result, to have a better load balance, the ratio between
the total number of RDD partitions and the number of
available cores should be more than one. That’s why, we
decided to have 2× the total number of cores as the
number of RDD partitions.

• We used Spark’s default partitioner.

Fig. 6 compares various Spark implementations of our
benchmarks (in seconds). The missing bars (e.g., IM 16-
way for FW-APSP) indicate experiments taking more than

344

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

8 hours to run6. In our FW-APSP experiments, unlike the
GE benchmark, IM implementations outperformed CB imple-
mentations in most of the cases. There are two main reasons
for such behavior:
• In FW-APSP, the dependencies among the kernels are much
lighter and simpler than the GE benchmark and hence, in
IM implementations, making multiple copies of the blocks
and distributing them among the consumer kernels (in the
next stage, i.e, kernels B and C) is not a bottleneck for the
overall computation (see Fig. 7). However, in the GE bench-
mark, as kernel A has to copy the block it just updated
to almost all other kernels B, C, and D and redistributes
it, the dependency pattern among the kernels are much
heavier and more complicated. Hence, making multiple
copies of the blocks and distributing them becomes a huge
performance bottleneck for the overall performance in IM
implementations for small block sizes (the smaller the
block size, the more blocks exist and hence, more time-
consuming the block copy and distribution process). A
CB implementation of the GE benchmark alleviates this
problem at the expense of using auxiliary storage.

• In an IM implementation, there are multiple executions of
the partitioner, unlike in a CB implementation which has
one execution of the partitioner at the end of each iteration
of the outermost loop which can lead to a potentially better
load-balanced execution (see Lst. 1 and Lst. 2).

Fig. 7. Data dependencies among kernels are shown with arrows.

In the FW-APSP benchmark, for the iterative kernel, the
best running time of 651 seconds is obtained by the IM
execution with block size 256. However, the best running
time with the recursive kernel is for the IM execution
with 16-way recursive kernel with block size 1024 and 8
OMP NUM THREADS, which is 302 seconds (2.1× faster).
For the GE benchmark, as explained above, CB implemen-
tations outperformed the IM implementations. Additionally,
for iterative kernels, the best running time of 1032 seconds is
obtained by the CB execution with block size 512. However,
the best running time with the recursive kernel is obtained
by the CB execution with a 4-way recursive kernel with
block size 2048 and OMP NUM THREADS= 16, which is
204 seconds (5× faster). Looking at the running time patterns
for the iterative kernels (in both benchmarks), we observe
that the block size directly impacts the level of available
parallelism, and the level of data movement. Too large a block

6For the readability of the plots, we intentionally omit the bars for the
iterative kernels with block size 4096. For the FW-APSP benchmark, the IM
implementation took 14530 seconds and the CB implementation took 14480
seconds. For the GE benchmark, the IM and the CB implementations took
11344 seconds 15548 seconds, respectively.

Fig. 9. Weak scaling of benchmarks FW-APSP and GE.

size may serialize the Spark execution or make staging data
blocks in the auxiliary storage a performance bottleneck. On
the other hand, very small blocks lead to huge overheads due
to task scheduling and data shuffling. As a result, the block
size should be selected carefully. Another important take-
away from the figure is that for small block sizes (i.e., 512)
since the blocks fit in the L2 cache, performance of iterative
kernels and recursive kernels are similar. However, for larger
block sizes (i.e., 1024 and beyond), since the blocks do not
fit in L2, the recursive kernels significantly outperform the
iterative kernels.
To generate weak scalability plots, for FW-APSP, we set

work per compute node (i.e., N3

p) to the fixed value of
4K and for the GE benchmark, we set work per compute
node to the fixed value of 8K . We chose some of the
efficient configurations for both kernels. For FW-APSP, the
first configuration was an IM execution with an iterative
kernel using block size 512, and the second was an IM exe-
cution with 4-way recursive kernel with block size 1024 and
OMP NUM THREADS= 8. For GE, the first configuration
was a CB execution with an iterative kernel using block
size 512, and the second configuration was a CB execution
with a 4-way recursive kernel using block size 1024 and
OMP NUM THREADS= 8. Fig. 9 illustrates weak scalability
of various kernels. As the Figure shows, the 4-way recursive
kernel CB execution of GE scales better than its iterative
kernel CB execution.
Additionally, in order to evaluate performance portability
and robustness of our implementations, we used another
standalone Apache Spark cluster with 16 compute nodes and
repeated the FW-APSP experiments. In this cluster, each node
had dual 10-core Intel Haswell (Xeon E5-2650v3 2.30GHz)
processors and 64GB of RAM. All nodes were interconnected
via a standard GbE network. The local storage in each node
was deployed on 7500rpm SATA spinning hard drives. For
this cluster, we fixed the following parameters:
• We set the number of executors to 16.
• We set the problem size to 32K×32K , i.e., the underlying

345

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Comparing performance of FW-APSP benchmark in two different clusters

DP table has size 32K × 32K .
• We set the number of RDD partitions to 640, which is 2×
the total number of cores = 2× 16× 20 = 640.

• We set executor/driver memory to 60GB.
Fig. 8 provides the performance comparison between the two
clusters. The missing bars (e.g., CB and IM iterative kernel
executions for block size 4096) indicate time-out, mainly for
the weaker cluster which is cluster #2, as our experiments
were constrained to terminate within 8 hours. Results in
Fig. 8 confirm that for the Spark implementations, if block
decomposition factor r as well as rshared for recursive
kernels are chosen independent of the system configuration,
the resulting implementation can be very inefficient. For
example, on the first cluster, the IM implementation with
4-way recursive kernel with block size 1024 runs in 302
seconds (almost the best performance obtained in the first
cluster). However, the same combination of parameters on
the second cluster takes 3144 seconds which is 3.3× slower
than the best running time obtained with the second cluster
(951 seconds). As a result, to run efficiently on a given cluster,
the value of these two important parameters may need to
be different based on the hardware/software configuration
(including the number of compute nodes, cores per compute
node available, and the sizes of memory/caches at different
levels of the memory hierarchy).

VI. Conclusion

In this paper, we proposed and implemented r-way R-
DP algorithms from the Gaussian Elimination Paradigm
using the Apache Spark framework. We summarized dif-
ferent design methodologies to obtain the algorithms. We
provided several implementations for each of the benchmarks
including IM and CB implementations with iterative and
recursive kernels. We learned that the dependency structure
among the kernels determines whether the IM or the CB
implementation performs better. For shared-memory parallel

implementations, in order to obtain high-performance, we
emphasized the importance of finding the right combination
of executor-cores and OMP NUM THREADS, and the
value of rshared for parallel recursive rshared-way R-DP

kernels. Additionally, we illustrated how the tunable block
decomposition parameter r used in the top level Spark
program impacts the overall performance. Experiments on
two different clusters suggest that the recursive kernels
are more robust than iterative kernels under changes in
the amount of available memory. Such experiments also
reveal the importance of tuning the algorithmic (i.e., r
and rshared) and runtime parameters (executor-cores
and OMP NUM THREADS) to find the high-performance
execution. In summary, experimental results illustrate the
importance of scalability, tunability and adaptability of r-
way R-DP algorithms which make them great candidates
for heterogeneous supercomputers, clusters and computation
clouds.
Some potential future directions extending our current
work are as follows.
• We would like to extend the framework to include other
data-intensive DP algorithms (beyond GEP) and later, be-
yond DP algorithms, which can benefit from the recursive
divide-and-conquer structure of r-way R-DP algorithms.

• In this work, we have used Apache Spark’s default par-
titioner. However, the dependency structure among the
kernels provides an opportunity to design and implement
highly-efficient custom partitioners. We will design and
implement such partitioners next.

Acknowledgments.The authors would like to acknowledge
support provided by the Center for Computational Research
at the University at Buffalo. The authors would like to
thank anonymous reviewers for valuable comments that have
significantly improved the paper.

346

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

References

[1] R. Bellman et al., “The theory of dynamic programming,” Bulletin of
the American Mathematical Society, vol. 60, no. 6, pp. 503–515, 1954.

[2] S. S. Skiena,The algorithm design manual: Text. Springer, 1998, vol. 1.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd ed. The MIT Press, 2009.
[4] M. Sniedovich, Dynamic programming: foundations and principles.
CRC press, 2010.

[5] V. T. Paschos, Concepts of Combinatorial Optimization. John Wiley
& Sons, 2014.

[6] D. A. Pierre, Optimization theory with applications. Courier Corpo-
ration, 1986.

[7] J. Rust, “Numerical dynamic programming in economics,” Handbook
of Computational Economics, vol. 1, pp. 619–729, 1996.

[8] D. Gusfield, Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge university press, 1997.

[9] K. Gai, M. Qiu, M. Liu, and Z. Xiong, “In-memory big data analytics
under space constraints using dynamic programming,” Future Gener-
ation Computer Systems, vol. 83, pp. 219–227, 2018.

[10] H. Zhao, M. Qiu, M. Chen, and K. Gai, “Cost-aware optimal data
allocations for multiple dimensional heterogeneous memories using
dynamic programming in big data,” Journal of Computational Science,
vol. 26, pp. 402–408, 2018.

[11] D. Eaton and K. Murphy, “Bayesian structure learning using dynamic
programming and mcmc,” arXiv preprint arXiv:1206.5247, 2012.

[12] A. P. Singh and A. W. Moore, “Finding optimal Bayesian networks by
dynamic programming,” 2004.

[13] R. A. Chowdhury and V. Ramachandran, “Cache-oblivious dynamic
programming,” in SODA’06, 2006, pp. 591–600.

[14] ——, “The cache-oblivious gaussian elimination paradigm: theoreti-
cal framework and experimental evaluation,” in Proceedings of the
eighteenth annual ACM symposium on Parallelism in algorithms and
architectures. ACM, 2006, pp. 236–236.

[15] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

[16] S. Warshall, “A theorem on boolean matrices,” in Journal of the ACM.
Citeseer, 1962.

[17] R. A. Chowdhury and V. Ramachandran, “The cache-oblivious Gaus-
sian Elimination Paradigm: theoretical framework, parallelization and
experimental evaluation,” TCS, vol. 47, no. 4, pp. 878–919, 2010.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[19] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
Spark: a unified engine for big data processing,” Communications of
the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[20] H. Karau and R. Warren, High performance Spark: best practices for
scaling and optimizing Apache Spark. ” O’Reilly Media, Inc.”, 2017.

[21] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark:
lightning-fast big data analysis. ” O’Reilly Media, Inc.”, 2015.

[22] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,
“Shark: Sql and rich analytics at scale,” in SIGMOD’13. ACM, 2013,
pp. 13–24.

[23] L. Gu and H. Li, “Memory or time: Performance evaluation for
iterative operation on Hadoop and Spark,” in HPCC’13 and EUC’13.
IEEE, 2013, pp. 721–727.

[24] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan, “Clash of the titans: Mapreduce vs. Spark for large scale
data analytics,” VLDB Endowment, vol. 8, no. 13, pp. 2110–2121, 2015.

[25] S. Ramı́rez-Gallego, H. Mouriño-Talı́n, D. Martı́nez-Rego, V. Bolón-
Canedo, J. M. Benı́tez, A. Alonso-Betanzos, and F. Herrera, “An
information theory-based feature selection framework for big data
under Apache Spark,” IEEE TSMC: Systems, vol. 48, no. 9, pp. 1441–
1453, 2017.

[26] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in Apache Spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[27] J. G. Shanahan and L. Dai, “Large scale distributed data science using
Apache Spark,” in KDD’15. ACM, 2015, pp. 2323–2324.

[28] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data
analytics on Apache Spark,” International Journal of Data Science and
Analytics, vol. 1, no. 3-4, pp. 145–164, 2016.

[29] A. Bahmani, A. B. Sibley, M. Parsian, K. Owzar, and F. Mueller,
“Sparkscore: leveraging Apache Spark for distributed genomic infer-
ence,” in IPDPSW’16. IEEE, 2016, pp. 435–442.

[30] B. Xu, C. Li, H. Zhuang, J. Wang, Q. Wang, and X. Zhou, “Efficient
distributed smith-waterman algorithm based on Apache Spark,” in
CLOUD’17. IEEE, 2017, pp. 608–615.

[31] F. Jiang, C. K. Leung, O. A. Sarumi, and C. Y. Zhang, “Mining
sequential patterns from uncertain big DNA in the Spark framework,”
in BIBM’16. IEEE, 2016, pp. 874–881.

[32] D. E. Keyes, H. Ltaief, and G. Turkiyyah, “Hierarchical algorithms
on hierarchical architectures,” Philosophical Transactions of the Royal
Society A, vol. 378, no. 2166, p. 20190055, 2020.

[33] R. Carratalá-Sáez, M. Faverge, G. Pichon, G. Sylvand, and E. Quintana-
Ortı́, “Tiled algorithms for efficient task-parallel h-matrix solvers,” in
21st IEEE International Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC 2020), 2020.

[34] M. M. Javanmard, P. Ganapathr, R. Das, Z. Ahmad, S. Tschudi, and
R. Chowdhury, “Toward efficient architecture-independent algorithms
for dynamic programs: poster,” in PPoPP’19. ACM, 2019, pp. 413–414.

[35] M. M. Javanmard, P. Ganapathi, R. Das, Z. Ahmad, S. Tschudi, and
R. Chowdhury, “Toward efficient architecture-independent algorithms
for dynamic programs,” in ISC HPC’19. Springer, 2019, pp. 143–164.

[36] M. M. Javanmard, “Parametric multi-way recursive divide-and-
conquer algorithms for dynamic programs,” Ph.D. dissertation, State
University of New York at Stony Brook, 2020.

[37] F. Schoeneman and J. Zola, “Solving all-pairs shortest-paths problem
in large graphs using Apache Spark,” in ICPP’19. ACM, 2019, p. 9.

[38] M. M. Javanmard, Z. Ahmad, M. Kong, L.-N. Pouchet, R. Chowdhury,
and R. Harrison, “Deriving parametric multi-way recursive divide-
and-conquer dynamic programming algorithms using polyhedral com-
pilers,” in Proceedings of the 18th ACM/IEEE International Symposium
on Code Generation and Optimization, 2020, pp. 317–329.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in
NSDI’12. USENIX Association, 2012, pp. 2–2.

[40] P. Zecevic and M. Bonaci, Spark in Action. Manning Publications
Co., 2016.

[41] R. Chowdhury, P. Ganapathi, J. J. Tithi, C. Bachmeier, B. C. Kuszmaul,
C. E. Leiserson, A. Solar-Lezama, and Y. Tang, “Autogen: Automatic
discovery of cache-oblivious parallel recursive algorithms for solving
dynamic programs,” in ACM SIGPLAN Notices, vol. 51, no. 8, p. 10.

[42] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
PLDI’08, vol. 43, no. 6. ACM, 2008.

[43] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” in FOCS’1999. IEEE, 1999.

[44] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh, R. Johnson,
and S. McCauley, “Cache-adaptive algorithms,” in SODA’14, 2014.

[45] P. Harish and P. Narayanan, “Accelerating large graph algorithms on
the GPU using CUDA,” in HiPC’07, 2007, pp. 197–208.

[46] G. J. Katz and J. T. Kider Jr, “All-pairs shortest-paths for large graphs
on the GPU,” in GH08, 2008, pp. 47–55.

[47] K. Matsumoto, N. Nakasato, and S. G. Sedukhin, “Blocked all-pairs
shortest paths algorithm for hybrid CPU-GPU system,” in HPCC’11,
2011, pp. 145–152.

[48] A. Buluç, J. R. Gilbert, and C. Budak, “Solving path problems on the
GPU,” Parallel Computing, vol. 36, no. 5, pp. 241–253, 2010.

[49] B. Lund and J. W. Smith, “A multi-stage cuda kernel for floyd-
warshall,” arXiv preprint arXiv:1001.4108, 2010.

[50] P. Steffen, R. Giegerich, and M. Giraud, “GPU parallelization of
algebraic dynamic programming,” in PPAM’09, 2009, pp. 290–299.

[51] G. Rizk and D. Lavenier, “GPU accelerated RNA folding algorithm,”
in ICCS’09, 2009.

[52] S. Solomon and P. Thulasiraman, “Performance study of mapping
irregular computations on GPUs,” in IPDPSW’10, 2010, pp. 1–8.

[53] K. Nishida, K. Nakano, and Y. Ito, “Accelerating the dynamic program-
ming for the optimal polygon triangulation on the gpu,” in ICA3PP’12,
2012, pp. 1–15.

[54] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig, “Bio-
sequence database scanning on a GPU,” in IPDPS’06, 2006, pp. 8–pp.

347

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

[55] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig, “Streaming algo-
rithms for biological sequence alignment on GPUs,” TPDS’07, vol. 18,
no. 9, pp. 1270–1281, 2007.

[56] G. M. Striemer and A. Akoglu, “Sequence alignment with GPU:
Performance and design challenges,” in IPDPS’09, 2009, pp. 1–10.

[57] S. Xiao, A. M. Aji, and W.-c. Feng, “On the robust mapping of dynamic
programming onto a graphics processing unit,” in ICPADS’09, 2009, pp.
26–33.

[58] J. F. Sibeyn, “External matrix multiplication and all-pairs shortest
path,” IPL’04, vol. 91, no. 2, 2004.

[59] P. D’Alberto and A. Nicolau, “R-Kleene: A high-performance divide-
and-conquer algorithm for the all-pair shortest path for densely
connected networks,” Algorithmica, vol. 47, no. 2, 2007.

[60] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph partitioning
for complex networks,” TPDS’17, vol. 28, no. 9, pp. 2625–2638, 2017.

[61] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel
computing: design and analysis of algorithms. Benjamin/Cummings
Redwood City, 1994, vol. 400.

[62] E. Solomonik, A. Buluc, and J. Demmel, “Minimizing communication
in all-pairs shortest paths,” in IPDPS’13. IEEE, 2013, pp. 548–559.

[63] J.-F. Jenq and S. Sahni, “All pairs shortest paths on a hypercube
multiprocessor,” 1987.

[64] V. Kumar and V. Singh, “Scalability of parallel algorithms for the
all-pairs shortest-path problem,” Journal of Parallel and Distributed
Computing, vol. 13, no. 2, pp. 124–138, 1991.

[65] M. B. Habbal, H. N. Koutsopoulos, and S. R. Lerman, “A decomposition
algorithm for the all-pairs shortest path problem on massively parallel
computer architectures,” Transportation Science, vol. 28, no. 4, pp. 292–
308, 1994.

[66] S. Holzer and R. Wattenhofer, “Optimal distributed all pairs shortest
paths and applications,” in PODC’12. ACM, 2012.

[67] P. Krusche and A. Tiskin, “Efficient longest common subsequence
computation using bulk-synchronous parallelism,” in ICCSA’06.
Springer, 2006, pp. 165–174.

[68] S. Im, B. Moseley, and X. Sun, “Efficient massively parallel methods
for dynamic programming,” in Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, 2017, pp. 798–811.

[69] J. Zola, X. Yang, A. Rospondek, and S. Aluru, “Parallel-tcoffee: A
parallel multiple sequence aligner.” ISCA-PDCS’07, vol. 7, pp. 248–253,
2007.

[70] C. Wang, C. Yu, S. Tang, J. Xiao, J. Sun, and X. Meng, “A general
and fast distributed system for large-scale dynamic programming
applications,” Parallel Computing, vol. 60, pp. 1–21, 2016.

[71] N. Hegde, Q. Chang, and M. Kulkarni, “D2p: Automatically creating
distributed dynamic programming codes,” 2018.

[72] J. Lin and M. Schatz, “Design patterns for efficient graph algorithms in
mapreduce,” in Eighth Workshop on Mining and Learning with Graphs.
ACM, 2010, pp. 78–85.

[73] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii, “Filtering: a method
for solving graph problems in mapreduce,” in SPAA11. ACM, 2011,
pp. 85–94.

[74] M. F. Husain, P. Doshi, L. Khan, and B. Thuraisingham, “Storage
and retrieval of large rdf graph using hadoop and mapreduce,” in
CLOUD’09. Springer, 2009, pp. 680–686.

[75] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin, “Scalable
big graph processing in mapreduce,” in SIGMOD’14. ACM, 2014, pp.
827–838.

[76] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A
resilient distributed graph system on Spark,” in GRADES’13. ACM,
2013, p. 2.

[77] A. Dave, A. Jindal, L. E. Li, R. Xin, J. Gonzalez, and M. Zaharia,
“Graphframes: an integrated api for mixing graph and relational
queries,” in GRADES’16. ACM, 2016, p. 2.

[78] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A blocked all-
pairs shortest-paths algorithm,” JEA, vol. 8, pp. 2–2, 2003.

[79] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox, “A tale of two data-
intensive paradigms: Applications, abstractions, and architectures,” in
BigData Congress, 2014, pp. 645–652.

[80] H. Asaadi, D. Khaldi, and B. Chapman, “A comparative survey of
the hpc and big data paradigms: Analysis and experiments,” in
CLUSTER’16. IEEE, 2016, pp. 423–432.

[81] M. Anderson, S. Smith, N. Sundaram, M. Capotă, Z. Zhao, S. Dulloor,
N. Satish, and T. L. Willke, “Bridging the gap between hpc and big

data frameworks,” Proceedings of the VLDB Endowment, vol. 10, no. 8,
pp. 901–912, 2017.

[82] S. Itzhaky, R. Singh, A. Solar-Lezama, K. Yessenov, Y. Lu, C. Leis-
erson, and R. Chowdhury, “Deriving divide-and-conquer dynamic
programming algorithms using solver-aided transformations,” in ACM
SIGPLAN Notices, vol. 51, no. 10. ACM, 2016, pp. 145–164.

[83] M. M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam,
and P. Sadayappan, “Parameterized tiling revisited,” in Proceedings of
the 8th annual IEEE/ACM international symposium on Code generation
and optimization. ACM, 2010, pp. 200–209.

[84] G. Iooss, S. Rajopadhye, C. Alias, and Y. Zou, “Mono-parametric tiling
is a polyhedral transformation,” Ph.D. dissertation, INRIA Grenoble-
Rhône-Alpes; CNRS, 2015.

[85] Q. Yi, V. Adve, and K. Kennedy, “Transforming loops to recursion for
multi-level memory hierarchies,” ACM Sigplan Notices, vol. 35, no. 5,
pp. 169–181, 2000.

[86] M. Griebl, P. Feautrier, and C. Lengauer, “Index set splitting,” Inter-
national Journal of Parallel Programming, vol. 28, no. 6, pp. 607–631,
2000.

[87] P. Feautrier, “Dataflow analysis of array and scalar references,” Inter-
national Journal of Parallel Programming, vol. 20, no. 1, pp. 23–53,
1991.

[88] A. V. Aho and J. E. Hopcroft, The design and analysis of computer
algorithms. Pearson Education India, 1974.

[89] C. Papadimitriou and M. Sideri, “On the floyd–warshall algorithm for
logic programs,” The journal of logic programming, vol. 41, no. 1, pp.
129–137, 1999.

[90] W. Bielecki, K. Kraska, and T. Klimek, “Using basis dependence
distance vectors in the modified floyd–warshall algorithm,” Journal
of Combinatorial Optimization, vol. 30, no. 2, pp. 253–275, 2015.

[91] L. Ridi, J. Torrini, and E. Vicario, “Developing a scheduler with
difference-bound matrices and the floyd-warshall algorithm,” IEEE
software, vol. 29, no. 1, pp. 76–83, 2011.

[92] A. Ojo, N.-W. Ma, and I. Woungang, “Modified floyd-warshall algo-
rithm for equal cost multipath in software-defined data center,” in 2015
IEEE International Conference on Communication Workshop (ICCW).
IEEE, 2015, pp. 346–351.

[93] M. G. Bell, “Alternatives to dial’s logit assignment algorithm,” Trans-
portation Research Part B: Methodological, vol. 29, no. 4, pp. 287–295,
1995.

[94] A. Pradhan and G. Mahinthakumar, “Finding all-pairs shortest path for
a large-scale transportation network using parallel floyd-warshall and
parallel dijkstra algorithms,” Journal of Computing in Civil Engineering,
vol. 27, no. 3, pp. 263–273, 2013.

[95] I. K. L. D. Pandika, B. Irawan, and C. Setianingsih, “Apllication of
optimization heavy traffic path with floyd-warshall algorithm,” in 2018
International Conference on Control, Electronics, Renewable Energy and
Communications (ICCEREC). IEEE, 2018, pp. 57–62.

[96] P. Khan, G. Konar, and N. Chakraborty, “Modification of floyd-
warshall’s algorithm for shortest path routing in wireless sensor
networks,” in 2014 Annual IEEE India Conference (INDICON). IEEE,
2014, pp. 1–6.

[97] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python jit
compiler,” in LLVM’15. ACM, 2015, p. 7.

[98] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable
shared memory parallel programming. MIT press, 2008, vol. 10.

[99] I. M. Wilbers, H. P. Langtangen, and Å. Ødegård, “Using cython to
speed up numerical python programs,” Proceedings of MekIT, vol. 9,
pp. 495–512, 2009.

[100] K. W. Smith, Cython: A Guide for Python Programmers. ” O’Reilly
Media, Inc.”, 2015.

[101] “DP Spark implementation,” https://github.com/TEAlab/DPSpark,
2020.

[102] “Tuning Spark,” https://spark.apache.org/docs/latest/tuning.html.
[103] S. Cadambi, G. Coviello, C.-H. Li, R. Phull, K. Rao, M. Sankaradass,

and S. Chakradhar, “Cosmic: middleware for high performance and
reliable multiprocessing on xeon phi coprocessors,” in Proceedings of
the 22nd international symposium on High-performance parallel and
distributed computing, 2013, pp. 215–226.

348

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 01,2021 at 01:41:12 UTC from IEEE Xplore. Restrictions apply.

