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ABSTRACT

Recently, multispectral and hyperspectral data fusion models based on deep learning have been proposed to
generate images with a high spatial and spectral resolution. The general objective is to obtain images that improve
spatial resolution while preserving high spectral content. In this work, two deep learning data fusion techniques
are characterized in terms of classification accuracy. These methods fuse a high spatial resolution multispectral
image with a lower spatial resolution hyperspectral image to generate a high spatial-spectral hyperspectral image.
The first model is based on a multi-scale long short-term memory (LSTM) network. The LSTM approach
performs the fusion using a multiple step process that transitions from low to high spatial resolution using an
intermediate step capable of reducing spatial information loss while preserving spectral content. The second
fusion model is based on a convolutional neural network (CNN) data fusion approach. We present fused images
using four multi-source datasets with different spatial and spectral resolutions. Both models provide fused images
with increased spatial resolution from 8m to 1m. The obtained fused images using the two models are evaluated
in terms of classification accuracy on several classifiers: Minimum Distance, Support Vector Machines, Class-
Dependent Sparse Representation and CNN classification. The classification results show better performance in
both overall and average accuracy for the images generated with the multi-scale LSTM fusion over the CNN
fusion.

Keywords: Hyperspectral image, Multispectral image, Fully Connected Network, Data fusion, Machine learning
learning, Decision fusion
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1. INTRODUCTION

Given the high availability of data captured by different remote sensing instruments, the classification of multi-

spectral and hyperspectral images (HSI) is an important topic in remote sensing. Different classifiers have been

proposed for this task.1 Nevertheless, the classification of HSI can become an arduous task for different reasons.

For example, the availability of reference data (validation data) often implies a short or limited amount of train-

ing samples as well as redundant features. It is well understood that as the number of dimensions increases, the

number of samples needed to have high classification accuracy increases as well.2,3

Traditional classifiers include: Minimum Distance (e.g. Euclidean, City block and Mahalanobis), Maximum

Likelihood and Support Vector Machines (SVM).3,4 Recently, class-dependent Sparse Representation Classifiers



(cdSRC)5–7 as well as Deep Learning methods such as Convolutional Neural Networks (CNN)8 have shown to

provide high classification accuracy.

With the recent increase of sensors available, the fusion of these multiple sources of data is being adopted

as a mechanism to improve the classification results.9,10 In particular, HSI and Multispectral Images (MSI) are

fusing to generate Hyperspectral Enhanced Images (HSEI), which have both a high spatial resolution and a high

spectral resolution.11,12 Recently, multispectral and hyperspectral data fusion models based on deep learning

have been proposed.13,14 These techniques generate images with high spatial and spectral resolution. However,

a study regarding the effects of such fusions in terms of classification accuracy has not been presented.

In this work, two deep learning data fusion techniques to generate HSEI are characterized in terms of classifi-

cation accuracy. These methods fuse a high spatial resolution multispectral image with a lower spatial resolution

hyperspectral image to generate a high spatial-spectral hyperspectral image. The first model performs the HSEI

data fusion based on a Long Short-Term memory (LSTM) network.13 The second fusion model uses a convo-

lutional neural network (CNN)14 to generate de HSEI. For the images generated by both models, we compute

the Average Accuracy (AA) and Overall Accuracy (OA) as metrics of classification performance using several

supervised classifiers.

2. FRAMEWORK

As mentioned, two deep learning data fusion techniques are being employed to generate the HSEIs used in this

paper. These data fusion processes attempt to improve results from a traditional pansharpening method. In

particular, a component substitution method is adopted in which the network learns to enhance the spatial-

resolution of an HS image by integrating the data of interest provided by a MS image. The deep learning

techniques based on LSTM and CNN networks are presented in subsections 2.1 and 2.2, respectively.

We use Minimum Euclidian Distance, SVM (with the linear kernel), cdSRC (with city block distance as

regularization) and CNN classifiers to measure the effects of using HSEI for supervised classification. The

classification process we followed is described in details in subsection 2.3.



2.1 LSTM for spatial-resolution enhancement

The LSTM approach fuses HSI and MS using a multiple-step process. This technique does a transition from

low to high spatial resolution using an intermediate step. It is capable of reducing spatial information loss while

preserving spectral content.13

Figure 1: LSTM architecture for high spatial resolution images

This architecture is designed to retain information from low resolution to intermediate resolution in order

to get to the desired high resolution. Figure 1 presents the model for high spatial resolution images based on

LSTM.

2.2 CNN for spatial-resolution enhancement

The CNN network is a deep learning technique that integrates the variability of 2D shapes.15 The CNN method

to fuse MS and HSI images to obtain HSEI was proposed by Palsson.14 The CNN network employed consists of

three convolutional layers, with 32, 64, and 10 filters, respectively.



2.3 Classifiers

• Minimum Euclidian Distance

Minimum distance classifiers belong to a family of classifiers referred to as sample classifiers.16 The clas-

sification of each pixel depends on a group measure, more than its particular spectral response. Let S be

the set of pixels-samples whose class is known. For each class compute statistical properties ( as mean x̂i,

variance σi), then the minimum distance decision rule consists of computing the di distances of each pixel

to each subset sample observations, the class of the pixel corresponding to the min value calculated. The

Euclidian Distance di is usually defined as:

di =

√√√√ N∑
j=1

(x[j]− x̂i[j])2 , ∀i ∈ classes of S (1)

where x ∈ RN is the pixel-vector, x̂i ∈ RN is the mean value of each class.

• SVM

The SVM classifier is a generalization of linear decision boundaries for classification. SVM computes

the best hyperplane that separates all data points in two classes. Finding the best hyperplane means to

identify the hyperplane with the largest margin between classes. This produces nonlinear boundaries by

the construction of a linear boundary in a transformed version of the feature space.17

The mathematical formulation of the two-class problem18 begins with the hyperplane f(x) defined as:

f(x) = xTβ + β0 = 0 (2)

where xj , β ∈ RN , β0 ∈ R.

For each pixel xj , their respective class is labeled as yj = ±1. Find β and β0 that minimize ‖β‖ subjet to:

yj ∗ f(xj) ≥ 1 , for all data points (xj , yj). (3)

Additionally, the values xj at the boundary yj ∗ f(xj) = 1 are called support vectors.



For multiclass problems, the main idea is to solve iteratively many two-class problems.17 There are several

ways to compute SMV classifier using different loss functions and suitable kernels (Gaussian, Linear,

Polynomial) according to application.19 In this work, we use a linear kernel, and fitcecoc function available

as part of the Statistics and Machine Learning Toolbox in MATLAB R2015a.

• cdSRC

In the SRC method, each test pixel is approximated by the span of training pixels of each class,5 i.e., let

y be a test pixel, let Xj be a matrix formed by the train pixels of class j, then

y ≈ Xjα
T
j (4)

where αj is a vector who project the test pixel y in the span of the train pixels matrix Xj . By extending

the projection over training pixels of all classes,

y ≈ Xα (5)

where X = [X1, X2, . . . , XN ] and α = [α1, α2, . . . , αN ]. The approximation (5) of y must be better

than (4) because generated space by all classes contains each span of Xj . Now the solution of the (5) for

each test pixel produces the classification of the data.

In this work, we use the cdSRC method using the Moore-Penrose pseudoinverse, to solve (5) (proposed by

Arias, Sierra and Arzuaga6). This implementation reduces the time complexity and obtains a comparable

classification accuracy with the state of art methods.

• CNN

The CNN classification method, integrates the variability of 2D shapes, which means high performance in

recognition problems, and an intrinsic architecture adequate to classify hyperspectral images.20 The layers

used are [conv - relu - maxpool] x 2 - [affine - relu] x 2 - affine - softmax, this configuration is state of art.21



We use 11 pixels as a block-size and the Deep Learning Toolbox in MATLAB R2019b.

3. EXPERIMENTAL DATA

The experimental data used in this work are four different hyperspectral images: Indian Pines, Salinas, and

Enrique Reef. These images are described as follows:

• The Salinas hyperspectral image has a spatial resolution of 3.7m, 204 bands, and was collected by the

AVIRIS sensor. It consists of 512× 217 pixels and 16 classes, illustrated in Figure 2b.

(a) (b)

Figure 2: 2a The Salinas hyperspectral dataset. 2b The Salinas classification map

• The Indian Pines hyperspectral image was gathered by the AVIRIS sensor and consists of 145× 145 pixels

and 224 spectral bands in the wavelength range of 400 to 2500 nm. The number of bands was reduced to

200 by removing high water absorption bands. This scene has 16 classes depicted in Figure 3b.

• The Enrique Reef hyperspectral image consists of 120 bands taken from the AISA Eagle sensor with a

spatial resolution of 1, 2, 4, and 8m. The images were captured by the Galileo group in 2007. For our



(a) (b)

Figure 3: 3a Indian Pines HSI. 3b Indian Pines Classification Map.

tests, we used the high-resolution hyperspectral image (1m), and the low-resolution hyperspectral image

(8m). There are six classes illustrated in Figure 4b.

(a) (b)

Figure 4: 4a Enrique HSI . 4b Enrique Classification Map

All of these images are used to generate simulated data. A low spatial resolution hyperspectral image is simulated

by applying image decimation to the original dataset following the procedure presented in.13,14 Likewise, a high

spatial resolution multispectral image is simulated from the original data set by averaging bands from different

spectral ranges: 1) Blue: 445-516nm, 2) Green: 506-595nm, 3) Red: 632-698nm and 4) NIR = 757-853nm. Both



simulated images are then fused using the CNN and LSTM techniques13,14 to generate two HSEI. Since the

Enrique Reef dataset provides real data from 1m and 8m a fourth experiment is conducted with real sensor data

by using the 8m hyperspectral dataset as the low spatial resolution image and simulating the multispectral image

with the 1m dataset.

4. EXPERIMENTAL PROCEDURE

To provide a performance analysis in terms of classification, we classify the HSEI generated images from the

datasets presented in Section 3. The low-resolution hyperspectral image of each dataset is enhanced using the

deep learning data fusion techniques, and the obtained HSEI was classified using Minimum Euclidean Distance

(MD), Support Vector Machine (SVM), class-dependent Sparse Representation Classifier (cdSRC), and CNN

classifiers. The MD and SMV are traditional classifiers while cdSRC and CNN are state of the art classifiers in

current HSI classification literature, which should provide an excellent range of different supervised classification

schemes for comparison in classification terms. Furthermore, the original dataset is also classified and compared

with the classification of the HSEI cube.

5. EXPERIMENTAL RESULTS

The classificaiton experiments considered two main cases: first PCA feature extraction transformation was

performed, reducing data dimensionality to 20 bands (since some sets have up to sixteen classes), and the second

case used the full bands range. Additionally, we gradually change the amount of data to train each classifier: 10,

30, 50 and 75 percent of the data randomly chosen. The average and overall classification accuracy are presented

for each case.

5.1 Indian Pines Hyperspectral Dataset Results

Table 1 presents the Overall and Average Accuracy, for each classifier, for the Indian Pines reference dataset.

These values are used to compare how much the classification improves by using a model to improve spatial

resolution. Tables 2 and 3 present the Overall and Average Accuracy, respectively, of the generated HSEI using

the Indian Pines dataset reduced to 20 bands.



Overall Accuracy Average Acuracy
Train / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 39.79% 61.10% 56.66% 66.84% 48.91% 50.04% 39.62% 56.81%
30 / 70 39.45% 61.98% 65.45% 73.71% 49.66% 55.37% 47.22% 74.58%
50 / 50 38.74% 62.60% 73.01% 83.66% 47.78% 54.60% 52.37% 85.63%
75 /25 39.89% 63.32% 80.64% 87.17% 49.87% 56.69% 62.78% 90.76%

Table 1: Classification results for Indian Pines reference data, reduced to 20 bands. Each row represents an
amount of training data, i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier,
i.e., MD, SVM, cdSRC and CNN classifiers, respectively.

In the same manner, tables 4 and 5 present the Overall and Average Accuracy, respectively, of the generated

HSEI using the Indian Pines dataset spanning the full bands range.

Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 26.45% 66.39% 61.91% 53.46% 42.78% 70.31% 75.19% 70.68%
30 / 70 23.95% 68.58% 74.37% 58.15% 43.09% 71.42% 89.15% 77.23%
50 / 50 24.84% 69.57% 82.42% 64.83% 44.38% 72.05% 93.02% 86.38%
75 /25 24.45% 69.36% 88.48% 71.79% 45.16% 72.32% 96.59% 90.79%

Table 2: Experiment with Indian Pines dataset, reduced to 20 bands. The overall accuracy is shown for each
method of spatial enhancement resolution: CNN and LSTM, each row represents an amount of training data,
i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD, SVM, cdSRC and
CNN classifiers, respectively.

Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 30.77% 56.32% 38.56% 37.87% 51.30% 69.95% 57.48% 62.57%
30 / 70 26.91% 63.53% 53.64% 47.74% 52.50% 71.19% 83.62% 78.29%
50 / 50 30.04% 66.39% 62.39% 55.90% 52.31% 75.43% 84.14% 90.69%
75 /25 28.18% 67.05% 74.36% 72.84% 52.55% 76.52% 94.88% 90.75%

Table 3: Experiment with Indian Pines dataset, reduced to 20 bands. The average accuracy is shown for each
method of spatial enhancement resolution: CNN and LSTM, each row represents an amount of training data,
i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD, SVM, cdSRC and
CNN classifiers, respectively.

Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 26.65% 92.00% 86.61% 73.15% 44.29% 94.63% 93.21% 75.58%
30 / 70 24.28% 96.39% 97.00% 87.35% 44.90% 96.39% 98.38% 98.98%
50 / 50 25.06% 99.03% 98.50% 93.60% 46.05% 99.57% 99.39% 99.80%
75 /25 24.69% 97.83% 99.00% 93.95% 46.96% 99.79% 99.76% 99.95%

Table 4: Experiment with Indian Pines dataset, full bands range. The overall accuracy is shown for each method
of spatial enhancement resolution: CNN and LSTM, each row represents an amount of training data, i.e., 10,
30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD, SVM, cdSRC and CNN
classifiers, respectively.

We can observe from tables 1-5, of Indian Pines classification results, that the HSEI using both methods

manage provide better classification results than using the original dataset. This results validate that the



Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 31.35% 81.07% 67.62% 61.98% 54.44% 86.48% 84.04% 76.55%
30 / 70 27.82% 95.08% 85.90% 86.46% 54.42% 95.08% 97.44% 99.15%
50 / 50 30.57% 96.65% 95.68% 94.72% 53.96% 97.92% 98.86% 99.74%
75 /25 28.85% 98.26% 97.57% 95.02% 54.31% 98.70% 99.71% 99.78%

Table 5: Experiment with Indian Pines dataset, full bands range. The average accuracy is shown for each method
of spatial enhancement resolution: CNN and LSTM, each row represents an amount of training data, i.e., 10,
30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD, SVM, cdSRC and CNN
classifiers, respectively.

enhancement produced by the data fusion methods provide a higher quality image which enables a better

classification of the spatial scene. We can also observe that the LSTM approach provides better classification

results than using the other technique based on a CNN. This case is true even for a simple classifier such as MD,

which improves between 3% and 6%, as well as a robust classifier such as cdSRC, with increases between 16%

and 24%.

5.2 Salinas Hyperspectral Dataset Results

Table 6 presents the Overall and Average Accuracy, for each classifier, for the Salinas reference dataset. These

values are used to compare how much the classification improves by using a model to improve spatial resolution.

Tables 7 and 8 present the Overall and Average Accuracy, respectively, of the generated HSEI using the Salinas

dataset reduced to 20 bands.

Overall Accuracy Average Acuracy
Train / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 75.56% 91.71% 48.55% 99.21% 80.51% 95.38% 47.17% 98.77%
30 / 70 75.45% 91.98% 54.01% 99.65% 80.66% 95.90% 55.53% 99.40%
50 / 50 75.46% 92.07% 60.35% 99.90% 80.73% 96.00% 63.90% 99.83%
75 /25 75.79% 92.08% 64.41% 99.89% 80.95% 96.07% 60.62% 99.85%

Table 6: Classification results for Salinas reference data, reduced to 20 bands. Each row represents an amount
of training data, i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD,
SVM, cdSRC and CNN classifiers, respectively.

We can observe that both image enhancement methods provide an HSEI capable of producing better classi-

fication results than the original dataset. Given the spectral characteristics of the Salinas set, a CNN classifier

with only 10% of training data obtains an OA of 99.21%, and for the same samples in the HSEI an OA of 99.37%,

indicating that the enhancement techniques improve specific details that help classifiers better separate between

classes. For this case in particular both methods provide similar results execpt for the cdSRC classifier in which



Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 70.06% 93.17% 79.18% 99.22% 75.94% 93.77% 78.46% 99.35%
30 / 70 70.44% 93.52% 91.95% 99.69% 75.96% 93.81% 67.95% 99.83%
50 / 50 70.65% 93.67% 92.17% 99.93% 76.01% 94.07% 74.99% 99.88%
75 /25 70.69% 93.79% 90.01% 99.97% 75.97% 94.12% 80.74% 99.97%

Table 7: Experiment with Salinas dataset, reduced to 20 bands. The overall accuracy is shown for each method
of spatial enhancement resolution: CNN and LSTM, each row represents an amount of training data, i.e., 10,
30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD, SVM, cdSRC and CNN
classifiers, respectively.

Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 73.74% 95.84% 83.12% 98.66% 79.08% 96.69% 80.54% 98.96%
30 / 70 74.21% 96.49% 87.43% 99.32% 79.29% 97.19% 81.46% 99.62%
50 / 50 74.29% 96.66% 93.74% 99.88% 79.29% 97.35% 82.99% 99.81%
75 /25 74.34% 96.81% 93.61% 99.95% 79.33% 97.41% 83.84% 99.94%

Table 8: Experiment with Salinas dataset, reduced to 20 bands. The average accuracy is shown for each method
of spatial enhancement resolution: CNN and LSTM, each row represents an amount of training data, i.e., 10,
30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD, SVM, cdSRC and CNN
classifiers, respectively.

the CNN method yielded higher accuracy. In the case of the cdSRC classifier in particular, the original data

has an OA of 48%, which becomes 79%, due to the positive impact that the enhanced spatial details has on the

classification using only 10% of training data. The behavior is consistent using more data for training in the

presented cases, as can be seen in tables 6,7,8. The case of the generated data with full bands shows similar

behavior as the one presented, the tables are not included because of space limitations in the manuscript.

Overall Accuracy Average Acuracy
Train / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 56.61% 79.79% 84.35% 88.76% 65.20% 65.62% 77.15% 71.92%
30 / 70 56.37% 79.97% 88.50% 88.61% 65.11% 68.78% 84.14% 72.34%
50 / 50 56.67% 79.94% 91.48% 89.49% 65.21% 66.44% 87.34% 73.52%
75 /25 56.41% 79.75% 94.72% 89.62% 65.98% 65.74% 91.53% 73.56%

Table 9: Classification results for Enrique reference data, reduced to 20 bands. Each row represents an amount
of training data, i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD,
SVM, cdSRC and CNN classifiers, respectively.

5.3 Enrique Reef Hyperspectral Dataset Results

Table 9 presents the Overall and Average Accuracy, for each classifier, for the Enrique reference dataset. Tables 10

and 11 present the Overall and Average Accuracy, respectively, of enhanced Enrique Reef dataset with simulated

8m HSI reduced to 20 bands. The classification results are similar when the classifiers take a significative amount

of data training, obtaining the better result by LSTM in order of 2%, when the data training is reduced (like



Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 65.55% 65.07% 80.79% 63.65% 65.91% 75.85% 82.86% 72.97%
30 / 70 65.52% 71.97% 85.97% 73.05% 65.86% 74.48% 88.55% 73.19%
50 / 50 65.59% 72.05% 89.23% 74.01% 65.94% 75.67% 91.19% 74.52%
75 /25 65.62% 71.14% 92.56% 74.27% 66.04% 66.20% 93.98% 74.91%

Table 10: Experiment with Enrique Reef dataset with simulated 8m HSI, reduced to 20 bands. The overall
accuracy is shown for each method of spatial enhancement resolution: CNN and LSTM, each row represents an
amount of training data, i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier,
i.e., MD, SVM, cdSRC and CNN classifiers, respectively.

Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 57.09% 80.91% 85.66% 77.39% 57.36% 81.99% 87.16% 89.53%
30 / 70 56.86% 81.11% 89.96% 89.31% 57.14% 82.17% 91.40% 89.45%
50 / 50 57.04% 81.07% 92.89% 89.76% 57.34% 82.14% 93.91% 90.44%
75 /25 56.81% 81.09% 95.78% 89.95% 57.13% 81.95% 96.24% 90.73%

Table 11: Experiment with Enrique Reef dataset with simulated 8m HSI, reduced to 20 bands. The average
accuracy is shown for each method of spatial enhancement resolution: CNN and LSTM, each row represents an
amount of training data, i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier,
i.e., MD, SVM, cdSRC and CNN classifiers, respectively.

10/90 case), the accuracy increases up to 12%.

Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 52.05% 73.26% 86.61% 77.39% 57.25% 82.35% 87.06% 89.72%
30 / 70 52.06% 73.35% 91.95% 78.37% 57.04% 82.45% 91.48% 89.04%
50 / 50 52.19% 73.37% 94.50% 79.03% 57.27% 82.42% 93.95% 90.27%
75 /25 52.21% 73.33% 96.79% 79.66% 57.01% 82.23% 96.31% 90.64%

Table 12: Experiment with Enrique Reef dataset, reduced to 20 bands. The overall accuracy is shown for each
method of spatial enhancement resolution: CNN and LSTM, each row represents an amount of training data,
i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD, SVM, cdSRC and
CNN classifiers, respectively.

Enhancement Method CNN 8-1 LSTM
Training / Testing ED SVM cdSRC CNN ED SVM cdSRC CNN

10 / 90 61.23% 59.02% 78.20% 63.65% 65.94% 76.32% 82.62% 72.99%
30 / 70 61.55% 59.18% 88.76% 64.20% 65.90% 74.99% 88.64% 72.71%
50 / 50 61.40% 59.24% 92.35% 66.60% 65.97% 75.82% 91.00% 74.48%
75 /25 61.73% 59.21% 95.19% 65.89% 66.10% 66.69% 93.86% 74.75%

Table 13: Experiment with Enrique Reef dataset, reduced to 20 bands. The average accuracy is shown for each
method of spatial enhancement resolution: CNN and LSTM, each row represents an amount of training data,
i.e., 10, 30, 50, and 75 percent, respectively, and each column represents a classifier, i.e., MD, SVM, cdSRC and
CNN classifiers, respectively.



5.4 Enrique Reef Hyperspectral Dataset using Real Data

As was mentioned in Section 3, the Enrique Reef dataset includes several images of the same spatial scene with

different spatial resolutions. In this last experiment we take advantage of the existence of this real dataset to

produced real HSEI using both techniques (CNN and LSTM). The data fusion techniques use the 8m data as the

low spatial resolution and the high spatial resolution multispectral image from the 1m spatial resolution dataset,

using the same reference data mentioned in subsection 5.3.

Table 9 presents the Overall and Average Accuracy, for each classifier, for the Enrique reference dataset.

These values are used to compare how much the classification improves by using a model to improve spatial

resolution. Tables 12 and 13 present the Overall and Average Accuracy, respectively, of the generated HSEI

using the Enrique Reef dataset reduced to 20 bands.

By comparing the results in Tables 9-13, the classification accuracy improvement is not as dramatic as the

previous datasets. The CNN generated HSEI in particular does not provide an HSEI capable of improving

classification accuracy. At the same time, the LSTM method allows for a better classification than the original

dataset but with moderate improvements. One possible explanation to this behavior may be related with the fact

that the spatial resolution of this dataset (1m, 8m) is considerably higher than the previous two datasets and is

capable of providing sufficient level of detail to accurately identify the spatial scene. In this sense, both methods

were not capable of identifying further spatial enhancements that provide a higher classification accuracy, with

the CNN technique actually providing results that reduce classification accuracy.

6. CONCLUSIONS AND FUTURE WORK

This paper presents the impact on supervised classification performance of two deep learning based data fusion

methods. We have numerically proven that the LSTM is a useful architecture to generate HSEI, compared with

other architectures in literature, showing better results in classification accuracy. We also show that the LSTM

cubes are better to classify than the reference HS images. These results are shows a promising use of the LSTM

architecture to integrate multi sensor data to improve classification. In a sequence paper, we show a decision

fusion technique that further improves overall classification by combining the multiple classifier results, obtaining



a higher accuracy per class. In future work, we propose a deep learning technique that performs image fusion to

enhance spatial-spectral resolution that integrates classification results in the network training.
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