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Abstract—A smart grid is a widely distributed engineering
system with overhead transmission lines. Physical damage to
these power lines, from natural calamities or technical failures,
will disrupt the functional integrity of the grid. To ensure the
continuation of the grid’s operational flow when those phenomena
happen, the grid operator must immediately take steps to
nullify the impacts and repair the problems, even if those occur
in hardly-reachable remote areas. Emerging unmanned aerial
vehicles (UAVs) show great potential to replace traditional human
patrols for regularly monitoring critical situations involving the
safety of the grid. The critical lines can be monitored by a fleet
of UAVs, ensuring resilient surveillance. The proposed approach
considers the n-1 contingency analysis to find the criticality of a
transmission line. We propose a formal framework that verifies
whether a given set of UAVs can perform continuous surveillance
of the grid satisfying various requirements, particularly the
monitoring and resiliency specifications. The verification process
ultimately provides a trajectory plan for the UAVs, including the
refueling schedules. The resiliency requirement of inspecting a
point on a line is expressed in terms of a k—property specifying
that if k£ UAVs fail or are compromised, there is still a UAV to
collect the data on time. We evaluate the proposed framework
on synthetic data based on various IEEE test bus systems.

Index Terms—Unmanned aerial vehicles; resilient surveillance;
trajectory; formal synthesis; smart grid.

I. INTRODUCTION

Overhead power lines provide the primary engineering
infrastructure within a smart grid, connecting the substations
and the generation facilities, to transmit electrical energy along
long distances. These transmission lines are distributed from
busy cities to remote country areas, often running through
coastal ranges, deep forests, long rivers, and mountains. Nat-
ural calamities or technical errors can incur physical damages
to the overhead power lines, which can hamper the necessary
energy transmission, leading the system into an unstable or
outage state. The situation worsens when the damage repair
is delayed. Moreover, spatial properties, such as temperature,
elongation, and wind induced conductor motion of the trans-
mission lines are important to be regularly taken care of for
the optimal infrastructure health [1]. An unanticipated natural
catastrophe (e.g., wildfire) or extreme weather can deteriorate
the condition of one or more weak power lines, which can

ultimately cause these lines to break. Frequently monitoring
the health of the system can minimize this possibility .
Power line surveillance is traditionally event-based, i.e.,
when the control center detects an outage, technicians perform
damage assessment by vehicles. An alternative, and recently
widely used, approach is sending trained inspectors by he-
licopters to assess the lines for damage using binoculars or
cameras [2]. However, these approaches are unsafe, especially
during disastrous situations or in the case of remote areas that
are hard to reach. Apart from these drawbacks, the event-based
surveillance delays the response time during hazardous situa-
tions. For power-line health maintenance, spatial parameters
and electrical properties must be frequently monitored [3].
Hence, continuous monitoring of the critical transmission lines
is advantageous, and often a necessity. However, continuous
human patrol-based monitoring, even using helicopters, are
infeasible due to its high operating cost and potential safety
factors. Unmanned aerial vehicles (UAVs) can feasibly replace
the human-based patrols [4], [5], [6]. UAVs are flying internet
of things (IoT) with network connectivity capabilities. The
emergence of UAVs, and particularly the rapid advancement
of their corresponding technology and their increasing cost-
efficiency and availability, makes UAV-based surveillance the
perfect solution for continuously inspecting overhead trans-
mission lines, even in the event-based scenarios.
Transmission lines can be put in a critical overload when a
line trips or a generation outage happens. The overloaded lines
can cause cascading subsequent trips if necessary recovery
steps are not taken in time. Hence, it is important to analyze
the impact of line trips on the system’s stability. The contin-
gency analysis, a core component of the energy management
system (EMS) in a smart grid, performs this task and selects
the operating points (e.g., generation dispatches at different
generators) that keep the system in a stable situation even in
contingencies, including transmission line or generation source
failures. Because of the connectivity between the buses and
various loads and generations at the buses different transmis-
sion lines often impact the system differently. Hence, some
transmission lines can be highly critical while a few others
may not be critical at all. However, the criticality of these lines
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Fig. 1. Overhead power transmission lines in a smart grid.

often changes over time as the load, generation, or topology
of the grid system is not fixed. Continuous monitoring of the
transmission lines should consider their respective criticality.

Continuous surveillance includes various requirements.
While surveillance essentially covers the critical points, the
main goal of continuous inspection is maintaining the data
freshness (i.e., the subsequent data/image collected at a point
on the transmission lines should be within a threshold time
frame). The surveillance coverage requirement may include all
the critical points or some of them that together cover at least a
certain portion of the system’s overall criticality. While a UAV
can fail or malfunction due to technical errors, it is vulnerable
to cyber attacks, especially in an adversarial environment.
Therefore, the surveillance resiliency is important. If one or
more UAVs fail or are compromised, the properly functioning
and uncompromised UAVs may not be able to collect and
report data to satisfy a minimal data freshness level.

Appropriate deployment of UAVs depends on the feasibility
of a trajectory plan for the UAVs that satisfies the surveillance
requirement, k—resiliency property, and cost-effective fuel
usage and refueling making the scenario a hard combinatorial
problem. This research solves this problem by providing
the trajectory plan, along with the refueling schedule, for
each UAV, assuming that each UAV is connected to a base
control center and deliver captured monitoring data to the base
while flying over critical power lines. In summary, the major
contributions of our work are as follows:

e We propose a formal model to synthesize a plan for
continuous surveillance of overhead transmission lines
using UAVs to satisfy the surveillance requirements.

o We define the criticality of a transmission line leveraging
the contingency analysis. We define the resiliency prop-
erty specifying that a data point is under resilient surveil-
lance even if kK UAVs are unavailable or compromised.

o We implement the proposed formal model using SMT [7]
and evaluate it on different synthetic cases, adapted from
IEEE test bus systems [8].

The rest of the paper is organized as follows: In Section II,
we discuss background of this research and related work. We
present the proposed formal model for surveillance planning in
Section III. We illustrate an example execution of this model
in Section IV and present the evaluation results in Section V.
Finally, Section VI concludes the paper.

II. BACKGROUND

This section includes necessary background of this research.

A. Power Transmission Line Surveillance

The transmission line trips can occur for several reasons,
including equipment aging and natural disasters. Due to aging,
70% of the transmission lines have an average age of 25 to
30 years [9]. Hence, these components need to be inspected
regularly in order to maintain uninterrupted power transmis-
sion to consumers. Severe weather conditions like hurricanes,
tornadoes, and wildfires can cause severe destruction of the
transmission lines, including leaning poles, broken wires, tree
encroachment over lines, etc. These damages affect the electric
supply, and the longer the recovery stage, the larger the
financial loss. Although natural calamities cannot be controlled
in spite of forecasts, damage assessment needs to be addressed
as far out and as quickly as possible. Incidents like animal
attacks, strong winds, and construction work can also trip a
power line. A regular, continuous monitoring process will help
quickly gather information about such incidents.

In addition to the above scenarios, adversaries can attack
the control center by making injurious operating decisions,
which can overload the transmission lines, ultimately leading
to the destruction of equipment. A frequent or continuous
surveillance may detect the potential failure and save the line
from being tripped, and thereby the system from an outage.

B. Transmission Line’s Criticality Analysis

EMS is the core component of the bulk energy management
in a smart grid and consists of several interdependent com-
putational modules [10], [11]. EMS executes these modules
based on the measurement data received from the field devices
and accordingly control the grid (e.g., generation set-points)
for operational security and economic efficiency. Contingency
analysis (CA) is one of the core EMS modules. The goal of
CA is to operate the power system securely by analyzing the
system subject to a contingency (e.g., transmission line outage)
and determine the set-points that will allow system operation
without violation of constraints. Typically, » — 1 contingency
analysis is performed where n is the total number of nodes
(either transmission lines or generation sources) and one node
failure is considered [10], [11]. The analysis considers the
failure of each transmission line and checks its impact on the
system, e.g., whether the rest of the transmission lines become
overloaded. In this respect, some lines are more critical than
the rest as one of failures often have more negative impacts on
the system than some others. Most importantly, the criticality
of a line changes over time due to the change in the load,
generation, or topology of the grid system.

We usually compute the criticality of a transmission line
using line outage distribution factors (LODFs) [10], [11],
[12]. However, these factors depend on the topology, electrical
properties of the lines, and loads and generation dispatches at
the buses. A change in the load or the generation dispatch
impacts the criticality of the system. All the outage cases are
ranked according to a performance index (P) calculation. Let



L be the set of all lines in the system, P, be the power flow
through line /, and P, be the flow capacity of the line. If L, ;

defines the LODF for line [ after an outage of line [, the change
in the power flow (AP)) on line [ due to this failure can be

found as: APl i = L, ; x P. If the ultimate power flow, P, ;,
will be 151 =P+ APl ;- Now, if n is a suitable index, for a
contingency, €.g., the outage of line I’, the simplest form of the

index, i.e., Py, will be as follows [11]: P; = Z (]3”/151)27;
lEL
A larger P for a line shows that it has a heigher criticality
than that of a line with a smaller P. In this way, P values help
rank the transmission lines per their critical sensitivities. There
are improved ways of calculating P for better understanding
of the critical contingencies [13].

C. Related Work

We discuss the existing literature related to this research.

UAV-Based Surveillance Technique. Srinivasan et al. pre-
sented the idea of video surveillance using cameras and
sensors leveraging UAVs in a project with the Florida Depart-
ment of Transportation [4]. The video images contain traffic
information on the roads and are transmitted by UAVs using
the microwave IP network. Latchman et al. proposed that
UAVs, equipped with a GPS location set and surveillance
capabilities, can take direction from the ground control station
and determine necessary altitude calculations for surveillance
using airborne sensors [14]. Jaimes et al. provided some
aspects of the real-time image recognition task based on the
videos sent from the preassigned GPS coordinate-programmed
UAVs [15]. UAVs were used in a project by Moreno et al. to
monitor marine environments in the Mexican seashore using
cheap sensors and less power-consuming buoys [5].

Power Line Surveillance. Traditionally, electric utilities send
technicians by vehicles to the potential damaged areas for
inspecting the towers. Ma et al. discussed an alternative
approach, in which trained inspectors are sent by helicopters
to inspect lines using binoculars or cameras and record
data to a log book for further analysis [2]. However, this
approach still unsafe in extreme weather conditions and
can be still inefficient for remote, unpassable areas. Sev-
eral latter works discussed the use of UAV-based monitor-
ing instead of traditional human patrol methods. A project
named Hydro-Quebec LineScout Technologyapplied remotely-
controlled mobile robots/UAVs to perform basic power line
inspection and maintenance tasks [16], [17]. Li et al. presented
a knowledge-based power line detection method from the
captured images so that UAVs can be utilized for surveillance
and inspection systems [18], [19]. Pagnano et al. proposed an
automated surveillance mechanism for the transmission lines,
leveraging UAVs/robots that rolled on the wires [20]. This real-
time inspection methodology uses the image and signal data
processing, allowing the detection of faults or abnormalities
on the lines. A similar UAV-based system for high voltage
power line inspection is presented in [21].
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Fig. 2. The solution approach for resilient surveillance planning and analysis.

Optimal Surveillance Design. Semsch et al. proposed a two-
stage mechanism: (i) constructing a covering point set and (ii)
exploring trajectory based on UAV motion through the points,
which can control flights for autonomous multi-UAVs to allow
maximum surveillance [22]. The mechanism looks for a set
of paths so that, in case of obstacles, a minimum area will
be uncovered, giving the adversaries fewer opportunities for
exploitation. Lim et al. targeted the challenges associated with
using UAVs to scan power lines from a distance and send the
damage data to the control center [23]. The authors presented
a solution to minimize overall inspection time and cost by
prepositioning the UAVs optimally. However, the approach is
event-based, allowing for monitoring disaster situations with
the prepositioned UAVs. Deng et al. proposed a multi-platform
cooperative UAV system as well as a multi-model communi-
cation system for power line inspections in China [24]. The
authors considered several design challenges, particularly the
delay between image capturing.

UAV’s Surveillance Security. The UAV monitoring system
can succumb to cyber attacks that allows sensitive data to be
collected by the adversaries. Birnbaum et al. presented a real-
time behavioral monitoring procedure that can convert a flight
plan to behavioral profiling [25]. Abbaspour et al. demon-
strated the safety-critical issues and corresponding detection
mechanisms for the UAV-based surveillance with respect to
several faults and sensor-spoofing attacks [26].

D. Contributions

While the existing literature presented techniques for UAV-
based surveillance of power transmission lines, an automated
and efficient trajectory planning mechanism for continuous
surveillance is important, especially when different lines can
have different criticality levels, and these levels frequently
change with the change in the topology, loads, or generation
dispatches. Since some UAVs can fail or be compromised,
resiliency of the surveillance against such events is crucial.
However, automated synthesis of a resilient surveillance plan,
i.e., trajectories of a fleet of UAVs, including their refueling
schedules, under a resource limitation is a combinatorially hard
problem. This research provides a solution to this complex
problem by formally modeling the continuous and resilient
surveillance properties as a constraint satisfaction problem



(CSP). Fig. 2 shows the proposed resilient surveillance plan-
ning framework. A formal model is developed and solved to
provide a routing strategy, along with a refueling plan, for the
UAV fleet satisfying the continuous and resilient surveillance
requirements and corresponding constraints.

ITII. RESILIENT SURVEILLANCE MODEL

In this section, we present the formal model corresponding
to the CSP that finds the resilient surveillance plan.

A. CSP in General and its Solution

We formalize the surveillance (trajectory) planning as a
CSP, a decision problem. A CSP is generally defined using
three components, i.e., X, D, and C [27], where:

o X is a set of variables {X7, Xs,... X, }.
o Dis a set of domains {y,Ds, ... D,}, corresponding to
the variables (X).
o Cis a set of constraints {C1,Ca,... Cp}.
Domain D; represents a set of values {x; 1,;2,...,%;} that
are allowed for X;. Hence, X; € ;. Constraint C; is a pair
(Xj,R;), where X, is the set of variables (X; C X) that
participate in this constraint, and R ; is a relation among them.
We solve a CSP by defining a state space. A state in a
CSP represents an assignment of values to some or all of the
variables, {X; = x;;,X; = x;;,...}. An assignment is
consistent if it satisfies all the constraints. When every variable
gets an assigned value, the assignment is complete. A solution
to a CSP is a consistent and complete assignment. Here, we
apply SMT logic formulas to encode and solve our proposed
trajectory planning CSP. SMT provides different first order
logic-based background theories to solve decision problems
efficiently [7]. Indeed, we use Z3, an efficient SMT solver, to
solve our CSP [28].

B. System Model

The UAVs do the continuous surveillance of the transmis-
sion system by flying over (within a safe distance) the power
lines [29]. We assume that each UAV’s surveillance trajectory
follows the bus topology. A line is divided into several
segments, with each segment (link) connecting two points.
We assume a fixed segment length, and hence, the number
of segments or points on a transmission line represents its
physical length. The surveillance is modeled through visiting
these points. Each UAYV, identified using an ID, possesses a set
of properties like its average speed, fuel capacity, initial fuel,
and starting position on the line topology. In this modeling,
we also assume that all UAVs maintain the same speed on
an average throughout the surveillance period irrespective of
the altitude differences or necessary turns between the points.
However, different UAVs may need different fuel consumption
to maintain the speed.

Let P denote the set of points on the network and U be
the set of UAVs to perform the surveillance. Moreover, P;
(P; C P) is the set of points on line [ and Segp’p, denotes if
points p and p’ are connected. Since the UAVs have the same
speed, the same amount of time will be taken to cover each

segment. We consider this required time as one time unit. The
surveillance will be modeled for a period of (analysis) time,
say S time units, where s (1 < s < .5) will identify a particular
time step. Each UAV « has a fuel capacity (FuelCap,,) and
it starts surveillance with an initial fuel (InitFuel,) from a
specific point (InitPoint,). Let Fuel, s be the remaining fuel
of UAV wu at step s, FFuel, be the fuel required to fly a
segment (i.e., fuel consumption at each time unit), and HFuel,,
be the fuel required for hovering during a time step. We use
TB, to denote the time steps to go to the base or the (closest)
refueling station from point p for refueling.

C. UAV Trajectory Model

Let Visit, , s denote whether UAV w is visiting point p at
time s (s > 1). Hence, the planned trajectory for UAV u
is a set of true Visit, , s, ordered according to s. UAV
w can visit point p at s (> 1) in two cases. In the first case,
the UAV is already there (i.e., if it is hovering/loitering), and
it has sufficient fuel for hovering during the time step. In the
second case, the UAV is at point p’ that is connected to point p
(Seg, ,, is true), and it has sufficient fuel to fly there. In both
of the cases, the fuel requirement considers the fuel needed
to fly to the refueling station from the visited point (p). This
constraint ensures that no UAV will be out of fuel and be
stranded. We formalize the first case (Hover,, p ;) as follows:

Hovery, p s — Visityps—1/\
(Fuel, s = Fuel, s—1 — HFuel,)A (D
(Fuel, s > FFuel x TB))

In the second case (Fly,, ), the fuel consumption cost
depends on the climbing angle of the segment (Seg,, ). This
impact of climbing angle (upward or downward) on the fuel
consumption is abstracted using a ratio (CRatio, ;) of the
required cost to fly that segment over that of flying the
same length of a horizontal segment. The following equation
presents the corresponding formalization:

Fly, s — \/ Seg,y p N\ Visity prs—1 A
p’'€P.p’'#p
(Fuel, s = Fuel, s—1 — FFuel x CRatioy ,) N
(Fuely s > FFuel x TB))

Therefore, visiting a point p at time s by UAV u (Visity )
is defined as follows:

2

Visity p,s — Hoveryps V Flyu,p}S 3)

We assume that if no UAV partially covers a segment partially,
i.e., if the UAV starts flying from a point over a segment, it
reaches the end point of the segment. The same is true about
hovering at a point during a time step. The initial location (at
s = 1) of each UAV w is identified at some point p on the
topology according to its initial (current/given) placement.

A point is connected with two or multiple points. At a
particular time step, one UAV can only choose one segment.
The constraint is formalized as follows:

/\ Visitu 4)
p’'€P, pF#p’

Vup,s Visityps —



Visited,, s denotes whether point p has been visited by any
UAV at step s. Hence:

Visitedy, s — \/ Visityp.s )
uel

D. Refueling Model

The refueling of a UAV is modeled by abstracting its path
from a point p to the base or a refueling station and sub-
sequently returning to a point p’. For simplicity of presenting
the refueling model, we assume only one refueling station. The
path distance from a point to the refueling center is often more
than one time step (TB,). We define ToRefuel,, , , to denote
that UAV w is moving to the station from point p at time s
for refueling, RefuelTo,, , ; to represent the return of UAV u
after the refueling to point p at time s, and Refuel,, ; to specify
UAV w is refueling at the station at time s. Hence, the refueling
plan for UAV w is identified with the help of subsequent true
ToRefuel,, , s, Refuel,, , and RefuelTo,, ,, ..

If ToRefuel,, , ; is true, then the following equation holds:

ToRefuel,, ;, ; — Visitup,s N Refuel, .\ rp,

AN N Visitup,s (©)

pEP s<s'<s4+TB,

We also need to ensure that Refuel, ; is true only if there
is a valid ToRefuel, , ;_pp, for some point p. Similarly, if

Refuel,, ; is true, then the following equation must hold:

Refuel,,  — \/ Visityp,s+ 1, N\ RefuelTo, , o rp,
peP

MAA

pEP s<s'<s+TB,

)

2 Visity p,s

It is also ensured that RefuelTo,, ,, ¢ is true only if there is a
valid Refuel, ,_pp . and this p is the only return point for
this particular refueling.

We assume that a UAV refuels to its capacity. The remaining
fuel after refueling, more appropriately after returning to point
p for resuming the surveillance task, is computed as follows:

RefuelTo — Fuel, s = FuelCap,, — FFuel, x TB, (8)

u,p,s

E. Continuous Surveillance

The continuous surveillance for a point requires that it is
always visited at least once within a (given) threshold period
of time (7'C'). In other words, each pair of two consecutive
visits to this point is done within 7'C. Let Surveilled,, denote
whether point p is continuously surveilled in S. In this case,
if point p is visited at time s, the next visit to this point needs
to be at some time s’ within 7'C":

Surveilled, — /\
1<s<(S—TC)

Visited, s

-V

s<s'<(s+TC)

i, ®)
Visited, s

To make the continuous surveillance true from the beginning
(to initiate the above equation to act for all points), Surveilled,,
must also ensure that starting from the beginning within the
threshold time there is at least one visit to point p:

\/ Visitedp,s
1<s<TC

Surveilled, — (10)

F. Resilient Surveillance

A point is under k—resilient surveillance if it is visited by
k + 1 (different) UAVs within a (given) threshold time (7TR)
throughout the surveillance period. We define that point p is
under resilient surveillance (ResVisited,, s) at time s (for the
time period T'R) if the following equation holds:

ResVisited, s — Visitedp s/
(> VisitDuring,, ,, . 7z > (k+1))V ((s + TR) < S))

u€elU
(11)

Here, VisitDuring, , s rr denotes that whether point p is
visited by u during the period from s to TR. That is:

VisitDuring,, ,, s 7p —((s + TR) < S) A
\/  Visityp,o

s<s’<s+TR

12)

Then, the continuous monitoring requirement is ensured for
resilient surveillance by the following constraint:

ResSurveilled, — Surveilled, N

/\ ResVisitedp s —

1<s<(S—TR) (13)

\/ ResVisited, o
s<s'<(s+TR)

G. Criticality Coverage Requirements

The objective of the surveillance is to continuously monitor
the transmission system (e.g., power lines, generators, or other
physical components) such that the surveilled points cover at
least a threshold part of the overall criticality. We define the
criticality coverage score as the criticality of the points under
continuous surveillance over the total criticality of the system.
Let LC) be the criticality score/weight of line , which can be
considered equal to P; (i.e., LC; = P;) (refer to Section II-B).

However, loads at the buses frequently changes and so the
criticality values. If the changes are minor, it is not worthwhile
to modify the surveillance plan. Therefore, it is advantageous
to assign qualitative criticality weights ignoring the small
variances. In that case, if K qualitative criticality levels are
assumed, one weight assignment approach can divide the
criticality scale into K number of equally sized ranges. While
the first range includes the smallest PI values, the K’th range
has the highest ones. However, other approaches are possible
where the number of levels (K) can be realized according
to the distribution of the PI values. For example, the weight
assignment can be done based on a clustering method. In
particular, a set of clusters can be formed from the PIs



following the K -means clustering method [30]. The lines with
the PI values falling within the same cluster receive the same
criticality score, derived from the cluster mean. Criticality
weight assignment is out of the scope of this paper.

We consider that a point on a line will have the same
criticality weight, PC)), as that of the line, LC';, which can be
equal to P; (Section II-B) or a scaled value: V,ep, PCp, = LC|.
However, for a point at which two or more lines connected
(i.e., at a substation), the criticality weight will be the maxi-
mum of the corresponding lines’ weights.

If CS denotes the minimum requirement of the criticality
coverage score for the continuous surveillance, then the fol-
lowing should be satisfied:

> pep Surveilled, x PC,
ZpeIP’ PCp

For an arithmetic operation on boolean parameters, we assume
boolean “true” and “false” as integer 1 and 0, respectively.
The resilient (continuous) surveillance requirement is often
different than that of the continuous surveillance because
the former considers a contingency or attack scenario. If
RCS denotes the required criticality score under the resilient
surveillance, then we have the following constraint:
> pep ResSurveilled, x PC),

ZpGP PCP
H. Repetition of Surveillance Plan

> CS

(14)

> RCS (15)

Since the surveillance is continuous and the model considers
a particular surveillance period, the operator may repeatedly
follow the same trajectory plan or execute the model for
continuous surveillance periods considering the last execution
result as the input for the next run. This is because the model
cannot be solved efficiently for a long surveillance period as
the number of clauses grows rapidly with the time steps.

In the first case, when the same trajectory plan will be exe-
cuted constantly, we can achieve this requirement by ensuring
a couple of constraints at the end of the surveillance period
(i.e., at time step S). First, each UAV v must return to its
starting position (InitPoint, ). Second, the remaining fuel of
the UAV at time .S needs to be equal to or greater than its initial
stored fuel. The equation below formalizes these constraints:

Visity, mitPoint,,s N (Fuelys > InitFuel,) (16)

Lastly, to ensure the continuous surveillance between the
last visit to a point in one cycle and the first visit to the point
in the next cycle, we redefine Equation (9) as follows:

Surveilled, — [\ Visited,
1<s<$

-V

s<s'<(s+TC)

a7
Vz’sitedp}(s/%s)

Similarly, Equation (13) will be updated.

IV. IMPLEMENTATION AND A CASE STUDY

We briefly discuss the implementation of the model and
present a synthetic case study.

Fig. 3. The example overhead transmission line infrastructure.

A. Implementation

We use the SMT logic [7] to encode the formalization
presented in the previous section. The encoded model is solved
using Z3, an efficient SMT solver [28]. The solution to the
model gives a result primarily as sat or unsat. In the case
of sat, we receive the detailed trajectory planning that can
successfully perform the surveillance task, satisfying the con-
straints. More specifically, the terms Visity p s, ToRefuel%p"g,
Refuel,, ;, RefuelTo,, , ;, and Fuel, s provide the trajectory
paths and refueling plans, including remaining fuels. The
developed program reads necessary inputs from a text file.
The required outputs are printed on different text files.

B. Case Study

We consider a synthetic overhead power line infrastructure
based on the IEEE 14-bus test system [8]. There are 14 buses
and 20 lines in this test system. The power line infrastructure
is shown in Figure 3, where each transmission line is divided
into multiple segments according to its assumed length. There
are 65 equal-length (1 mile) segments, each connecting two
points on the transmission lines. The points are numbered from
1 to 59. There is a fleet of 5 UAVs to perform the surveillance.
The surveillance period is 91 time units/steps. As we assumed
in the modeling, each segment is covered in a time step,
although the fuel consumption/cost of covering a particular
segment depends on the type (mileage property) of the UAV
and the climbing angle for this segment. The partial input
file corresponding to this case study is presented in Table I.
According to the load and generation information of the buses,
there are 5 generation buses (i.e., buses 1, 2, 3, 6, and §8). The
transmission line information includes the end buses and the
impedance (reactance) for each line.

Overhead transmission line infrastructure information in-
cludes the set of points that constitutes each line. For instance,
line 1 is constituted of points 1, 15, 16, 17, and 2. The segment
or link information more specifically provides information
about the segment: the end points and the fuel cost ratio to
fly from the first point to the second point in one time step.



Table 1
CASE STUDY INPUT (PARTIAL)

# Number of Buses, Lines, Points, and Segments, Segment Length in Time Units,
Number of UAVs, Surveillance Period
1420596515091

# Load Information (Bus No, Load)

1 121.0

# Transmission Line Info (From-Bus, To-Bus, Reactance)
12 0.05917
15 0.22304
2 30.19797
240.17632

# Maximum Criticality (PI Score) Distance
15 %

# Line Point Set
11516172
11819205
22223244
2213

# Segments/Links (End Points, Fuel Cost Ratio)
1151.0

15 16 0.95

16 17 1.0

172 1.12

# UAV Properties (Initial Point, Stored Fuel, Fuel Capacity (Watt), Mileage
(Fuel/Step), Hovering Cost (Fuel/Step))

10 1200 1500 15 3

5600 1200 12 3

14 300 1500 15 6

30 1050 1500 12 3

# Threshold Time between Two Consecutive Visits to a Point
25

# Resiliency Requirements (k, Threshold Time)
245

# Minimum Criticality Scores under Continuous Surveillance and Resilient Surveil-
lance
80 50

The ratio is taken over the cost of flying the same distance
horizontally (climbing angle is zero). For example, the fuel
cost required to fly the segment from point 1 to point 15 is
normal, while the flying cost from point 15 to point 16 is 5%
less. The cost ratio is inverted if the flying direction is the
opposite. The UAV information consists of a set of properties
for each UAV, which includes its starting position, initial
stored fuel, fuel capacity, and fuel costs per step for flying
(when the climbing angle is zero) and hovering/loitering. It
is worth mentioning that these property values are synthetic
and driven from practical sources, particularly considering
HyDrone UAVs [31], [32], [33].

As the surveillance requirements, we consider (i) contin-
uous surveillance threshold as 25 time steps, (ii) 2-resilient

surveillance and corresponding threshold as 45 time steps
(i.e., a point under resilient surveillance must be visited by
k + 1 (3) different UAVs in 45 units), and (iii) the minimum
scores under continuous surveillance and resilient surveillance
respectively as 80% and 50%.

The solution to the corresponding formal model provides
a sat result and provides the trajectory plan, including the
refueling schedule. The result shows three criticality levels.
According to the trajectory plan, 45 points are under contin-
uous surveillance, covering around 81% of criticality, while
28 points are under resilient surveillance, covering over 50%
of criticality. During the continuous surveillance, all the high
(level 3) criticality points (13 points), three-quarters of the
medium (level 2) critical points (17 points), and 65% of
the low critical points are under coverage. The 2-resilient
surveillance covers around 62% of the high critical points (8
points), 48% of the medium critical points (11 points), and
40% of the low critical points. Due to the distribution of the
higher critical lines in the topology and a limited number of
UAVs, many less-critical points are also covered compared
to high-critical points. If we consider the UAV visits to a
particular point, e.g., point 3, the result shows that the point
is visited at time step 7 by UAV 1 and so on as follows ([at,
byl): [7, 1], [14, 4], [38, 2], [50, 3], [64, 1], and [74, 1]. These
visits satisfy not only the continuous surveillance requirement
but also the resilient surveillance condition, ensuring the visits
of three (k = 2) UAVs followed (and including) from each visit
within the threshold time. If we consider point 2, we find that
it is only continuously surveilled ([5, 1], [8, 2], [25, 2], [27,
2], [37, 31, [48, 3], [56, 5], [81, 1], and [88, 2]). The point
is visited quite a few times but not by a required number
of different UAVs within the threshold time. The output also
includes the refueling schedule for the UAVs. According to
this schedule, for example, UAV 2 goes for refuels at point
9 between times 46 and 54 while UAV 3 refuels at point 58
between times 16 and 24.

V. EVALUATION

We evaluate the proposed surveillance plan synthesis model
to analyze surveillance characteristics as well as its scalability.

A. Methodology

We analyze the characteristics of surveillance by evaluat-
ing the minimum number of UAVs to perform surveillance
satisfying the criticality coverage requirement and the vice
versa. The evaluation is performed on different synthetic grid
infrastructures, driven from various IEEE test bus systems [8].
We consider the system size as the number of buses. The
scalability of solving the proposed model is evaluated in
terms of the execution time by varying different surveillance
requirements. We run our experiments on an Intel Core i7
machine with 16 GB memory.

B. Evaluation Results: Characteristic Analysis

Impact of the Criticality Coverage Requirement on the
Number of UAVs for Surveillance. The synthesis of the
surveillance plan, i.e., the trajectory of the UAVs and their
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refueling schedules, depends on the surveillance requirements,
i.e., the continuous surveillance (data freshness) time thresh-
old, resiliency specification and corresponding surveillance
time threshold, and the criticality coverage requirements, along
with the problem size. The number of UAVs required to
perform the surveillance depends on satisfying all these prop-
erties. The tighter the constraints, the more UAVs are required
to synthesize the surveillance plan. We analyze the impact of
the criticality coverage requirement by the surveilling UAVs
in this respect. The analysis result is shown in Fig. 4(a). The
graph shows that the number of minimally required UAVs
increases with the increase in the coverage requirement. This
is because to cover higher criticality, a larger area (i.e., a larger
set of points) typically needs to be under surveillance. With the
problem size (e.g., the number of buses), this number increases
further. As the figure shows, the minimum number of UAVs
required for surveillance in the case of the 30-bus system is
larger than that of the 14-bus system.

Impact of the Criticality Distribution over Lines. The
required number of UAVs to perform the surveillance oper-
ation depends on the scenario about how the critical weights
are distributed over the transmission lines. Fig. 4(b) shows
this impact. In this evaluation, we consider two scenarios as
follows. We order the transmission lines according to their
criticality weights and take two sets of lines, top 30% and 50%

lines, as the two cases. We consider the same total criticality
for these cases. The criticality coverage requirement for the
continuous surveillance is 70%. As the graph for the top 30%
critical lines shows, the more criticality this set of lines hold in
total, the lesser number of UAVs the surveillance job requires.
It is because the UAVs need to consider a smaller set of lines
to meet the criticality coverage requirement for the overall
transmission line topology. We see the same behavior for the
case of the top 50% lines.

Impact of the Grid Size on the Criticality Surveillance.
We analyze the impact of the grid size (i.e., the number of
UAV5s) on the maximum criticality coverage by the surveilling
UAVs. The analysis result for two different numbers of UAVs
is presented in Fig. 5(a). The result demonstrates that, for a
specific number of UAVs, the criticality coverage is limited
and with the increased size of the transmission system (i.e.,
the number of buses) the criticality coverage reduces. The
is because a larger system has a larger set of surveillance
points, often more critical points, and these points are widely
distributed in the broader infrastructure. Therefore, for an
increased system size, a particular set of UAVs cannot but
surveilled a reduced part of the system’s criticality while, with
the number of UAVs, the criticality coverage increases (e.g.,
4 UAVs vs. 5 UAVs in the figure).

Impact of the Grid Size on the Number of UAVs. We
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analyze the impact of the grid size (i.e., the number of buses)
on the number of UAVs required to cover a particular criti-
cality coverage. We consider 60% and 30% as the criticality
score coverage requirements for continuous surveillance and
resilient (k = 1) surveillance, respectively. The analysis result
for two different resilient surveillance intervals is presented in
Fig. 5(b). In both cases, the continuous surveillance interval
is 25 time steps. The graphs in the figure specify that a larger
grid requires a higher number of UAVs to cover the required
criticality score because the surveillance points in a larger
system are often more widely distributed. We can also observe
in the figure the impact of resiliency surveillance interval on
the number of UAVs. As the figure shows, a larger interval
requirement (i.e., 45 steps) often needs a smaller number of
UAVs than a smaller one (i.e., 40 steps). This is because a
larger interval allows a longer time frame to visit a point k£ + 1
(2) times, which often reduces the number of UAVs required
to achieve the criticality surveillance score.

C. Evaluation Results: Scalability Analysis

Impact of the Criticality Coverage Requirement. Fig. 6(a)
shows the execution/solving time of the proposed formal
model with respect to the criticality coverage requirement for
14-bus and 30-bus transmission systems. As shown by the
graphs, with the increase in the coverage requirement, the time
to solve the model grows. The higher is the requirement, the
larger the area that needs to be covered, which increases the
execution time. When the requirement is close to the maximum
possible coverage for a set of UAVs, the search space increases

rapidly, which increases the execution time. If a larger set of
UAVs is used for the surveillance, the size of the model (i.e.,
the number of variables and assertions/clauses) also expands.
A larger model requires an increased, often exponentially high,
solving time. A large grid is usually divided into multiple sub-
grids (regional grids) to manage the system in a decentralized
fashion. For a smaller grid, our proposed formal model can
efficiently, even with our limited computing capability, syn-
thesize the trajectory plan for required surveillance.

Impact of the number of UAVs. We evaluate the impact
of the number of UAVs on the solving time for a particular
problem size and a surveillance requirement. Fig. 6(b) presents
the result. We can observe that initially with the increase
in the number of UAVs the execution time reduces. After
a point, the execution time grows rapidly. This is because,
initially an increased number of UAVs eases the searching for
a solution providing more options. However, as the number
of UAVs grows, the number of clauses in the model increases
superlinearly, which ultimately increases the execution time.
Impact of the Resiliency Requirement (k). We analyze the
impact of the k, the resilient surveillance requirement on the
14-bus system. We consider two fleets of UAVs on various k
values for a particular set of surveillance interval and score
requirements. The evaluation result is presented in Fig. 6(c).
As the result shows with the k, the model execution time
increases. Since a point under resilient surveillance needs to be
visited by k£ + 1 UAVs within a specific time frame, a larger &
tightens the solution space, thus increasing the searching time.

Impact of the Surveillance Interval. The solving time of



the proposed formal model depends on the surveillance time
interval (between two consecutive visits) threshold (maxi-
mum). We perform the evaluation varying continuous surveil-
lance and resilient surveillance thresholds. The rest of the
input, including continuous and resiliency surveillance score
requirements, remains the same. The corresponding results are
shown in Fig. 6(d) and Fig. 6(e). We can observe that when
the surveillance interval requirement is relaxed (i.e., with the
increase in the threshold), the time to solve the model reduces.
Impact of the Surveillance Period. The impact of surveil-
lance period (in time steps/units) on the execution time is
presented in Fig. 6(f) and, as the graph shows, the execution
time grows rapidly with the period. Each time step is asso-
ciated with a number of clauses. Hence, if the surveillance
time expands, the number of clauses grows, which ultimately
increases the model solving time.

VI. CONCLUSION

Overhead power transmission lines in a smart grid require
regular assessment for reliable and uninterrupted operation,
especially considering physical (potential) damages due to
natural calamities, aging factors, technical errors, or physical
attacks. The emergence of UAV technology provides the
opportunity to keep this critical infrastructure under contin-
uous surveillance. In this work, we have proposed a formal
framework that synthesizes the trajectory plan as well as the
refueling schedules for a given set of UAVs, performing a
continuous surveillance of the lines to satisfy various critical
line monitoring and resiliency requirements. The resiliency
surveillance requirement for a point ensures that if £ UAVs fail
or are compromised, there is still a UAV to collect the data at
the point no later than a threshold time. We have implemented
the proposed model and evaluated the tool’s ability to analyze
surveillance characteristics as well as its scalability.
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