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Abstract—Cyber-physical systems (CPSs) and the Internet of
Things (IoT) are converging towards a hybrid platform that is
becoming ubiquitous in all modern infrastructures. The massive
deployment of CPS requires comprehensive, secure, and reliable
communication. The integration of complex and heterogeneous
systems makes enormous space for the adversaries to get into
the network and inject malicious data. To obfuscate and mislead
the attackers, we propose DDAF, a deception defense-based data
acquisition framework for a hierarchical communication network
of CPSs. Each switch in the hierarchical network generates a
random pattern of address/ID by shuffling the original sensor
IDs reported through it. Later, while sending the measurement
data from remotely located sensors to the central controller, the
switches craft the network packets by replacing the sensors’
original IDs with pre-generated deceptive IDs. Due to the
deception, any stealthy attack turns into a random data injection
and ends up as an outlier during the bad data detection process.
By analyzing the outlier data, DDAF detects and localizes the
attack points and the targeted sensors. DDAF is generic and
highly scalable to be implemented in any size of networked
control systems. Experimental results on the standard IEEE 14,
57, and 300 bus power systems show that DDAF can detect,
mitigate, and localize almost 100% of the stealthy cyber-attacks.
To the best of our knowledge, this is the first framework that
implements complete randomization in the data acquisition of a
networked control system.

Index Terms—Deception defense, cyber-physical systems,
stealthy attacks

I. INTRODUCTION

Cyber-physical systems (CPSs) are omnipresent in critical
infrastructure, which consolidate sensing, communication, pro-
cessing, and control of both cyber and physical domains [1].
The Internet of things (IoT) has opened up a new dimension
to the CPSs through phenomenal unification enabling real-
time monitoring and data exchange. As CPSs are getting larger
with heterogeneous sensor interaction due to widespread ac-
ceptance, they are also creating a massive attack space for the
adversaries. The contemporary cyber-attacks are sophisticated
enough to overcome legacy defense tactics like intrusion or
anomaly detection systems. Utilizing the targeted system’s
knowledge and states, adversaries can launch stealthy false
data injection (FDI) attacks, which are specially designed for
exploiting CPSs control loops [2].

Cyber-attacks in CPSs are performed in several ways. By
eavesdropping on the communication channels, a powerful
intruder gain access to the sensor data. Depending on the
attack goal, he/she injects some malicious stealthy data into the
sensor reading, misleading the SE of CPSs to his/her aspired
direction. Cyber-attacks not only hamper the services’ relia-
bility but also introduce substantial financial losses. Stuxnet, a

500-kilobyte computer worm attacked over fifteen Iranian fa-
cilities in 2010, destroying over a thousand uranium enriching
centrifuges [3]. A recent report states that the US government
could lose $1 trillion if a Stuxnet-like attack would carried
out in the US smart grid [4]. Again, BlackEnergy Malware,
a denial-of-service (DoS) attack on supervisory control and
data acquisition (SCADA) system, is responsible for a massive
power outage in Ukraine [5]. More recently, some utility
companies in Utah, Wyoming, and California power grids also
suffered from cyber-attacks that caused power outage in those
areas [6].

The attacks can be classified into two categories- active
attacks, and passive attacks [7]. Passive attacks are the process
of reconnaissance of the system states. The goal such attack
is to study the parameters of the physical states and determine
the optimal attack tactics without creating any attention of
the defender. The active attacks are the injections of the
malicious data into the sensor measurements to achieve the
attacker’s goal. Active attack exploits the integrity as well as
the availability of sensor data.

The effectiveness of the active attacks depends on the
success of the passive attacks. In most of the CPSs, the devices
in the SCADA networks have limited computational power to
perform high-end encryption on the sensor data streams [8].
Besides, some critical infrastructures (e.g., power systems)
have time constraint on the data acquisition process. For
example, IEC 61850 standard enforces a maximum end-to-end
time delay of 4 ms for generic object-oriented substation event
(GOOSE) messages within a substation [9]. Thus, in some
cases, despite having sufficient computational capability, high-
end security may not be applied due to the time-restriction.
Hence, several study showed, once a sophisticated attacker
gains sufficient knowledge about the targeted system’s topol-
ogy and states, he/she can easily evade the existing defense
mechanisms by utilizing the resources in generation of the
attack data [10], [11].

“All warfare is based on deception. Hence, when we are
able to attack, we must seem unable; when using our forces,
we must appear inactive; when we are near, we must make the
enemy believe we are far away; when far away, we must make
him believe we are near.— Sun tzu, The Art of War [12]”.

Like the author said, in cyber war deception also plays a
vital role in misleading the attackers, failing them in accom-
plishment of their intent. For securing the CPSs from both
of the active and passive attacks, we develop a deceptive
defense-based data acquisition framework (DDAF) for any
hierarchical SCADA network. In the framework, we secure the



data acquisition steps by shuffling the sensor IP addresses/IDs
at each node in the hierarchy.

Our contribution to the paper can be summarized in the
following points:
• We model a deceptive data acquisition framework to mis-

lead an attacker while reporting the sensor data through a
hierarchical communication network.

• We develop a tree-based randomization algorithm to max-
imize the randomness in deceptive ID generation, that is
utilized to obfuscate the passive attacks and mitigate the
stealthy active attacks. Due to the deception, any attempt
of stealthy FDI attack turns into a random data injection,
which is easily removed by bad data detection techniques,
keeping the attack impact within 2%.

• While most of the related works focus only on attack
mitigation technique, we develop algorithms also to detect
and localize stealthy FDI attacks. As deception makes com-
promised sensors outliers, analyzing their position and the
residuals reveals the injected attack vector, targeted sensors,
and also the position of the attacker into the network.

• We analyze the performance and scalability of the frame-
work on different sizes of standard IEEE bus systems that
indicates the frameworks effectiveness. We will make codes
and data publicly available (currently, resided at [13]).

Organization: The rest of the paper is organized as follows:
We add sufficient background information in Section II. We
introduce our proposed DDAF in Section III. Section IV
discusses the technical details of the framework. In Section V,
we explain an example case study. The evaluation setup and
result analysis are formulated in Section VI. The related works
are discussed in Section VII. At last, we conclude the paper
in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section we discuss the terminologies that are used
throughout the paper to facilitate readers’ comprehension.

A. State Estimation and Bad Data Detector

State estimation (SE) is defined as the process of know-
ing the states of the network from the redundant telemetry
measurements. Let us assume that a CPS has n number
of states variables, x = (x1, x2, · · · , xn)T , and m sensor
measurements, z = (z1, z2, · · · , zm)T , with sufficient redun-
dancy (m >> n). Thus, the relationship between the states
vector x and the measurement set z can be represented as
z = h(x) + e, where h(x) is the measurement function
mapping measurement set to the state vector, and e is the set of
normally distribution measurement errors [14]. For example,
in a power system, the state variables are the bus voltages
(magnitude and phase angle) and the sensor measures are the
line power flows, bus power injections, phasor measurement
units (PMU) data, etc.

Due to the simplicity, robustness, and high speed of compu-
tation, DC power flow is vastly used for the real-time analysis
of power systems in the industry. In the DC approximation
of the power system, voltage magnitude is considered unity.

Thus, only the phase angles of the bus voltages are regarded as
the state variables. Besides, h(x) is the linear transformation
using the Jacobian matrix, H, calculated using line admittance.

As the measurement functions h(x) are considered linear
and the most probable system states vector x̂ can be estimated
directly by solving: x̂ = (HTWH)−1HTWz. Here, W is
a diagonal weighting matrix. Thus, the measurement vector
zest can be estimated by zest = h(x̂) and the measurement
residuals set r = ||z − zest||. Bad data detection (BDD)
technique is mostly used along with the SE procedure, that
considers a threshold on the residual data to find the outliers.
Considering a maximum threshold as τ , any measurement zi
is regarded as a bad data and removed from the SE procedure
if |ri| > τ . The estimation process is repeated until there is
no bad data into the considered measurement vector. At the
end, an SE−BDD procedure returns the estimated states x̂,
estimated measurements zest, residual vector r, and the list of
outlier sensors.

B. Stealthy False Data Injection Attack

Attack vector is defined as a set of malicious data to be
injected into a set of sensor measurements. Whereas random
attack vectors create anomaly, intelligently calculated ones
generated considering the targeted system’s topology can by-
pass the BDD [15]. Let us assume that, the attacker’s goal is to
change state variables set x̂ by the malicious amount c. Thus,
to remain stealthy, he/she needs to inject false data a to the
measurement set z, where a = h(c). Since z+a = h(x̂+ c),
the residual r = ||(z+a)−h(x̂+c)|| = ||z−h(x̂)+a−h(c)||
= ||z − h(x̂)||. Thus, the data injection disappears from the
residual vector, and the attack remains stealthy. This attack
requires full knowledge of the targeted system’s topology,
parameters, and measurement configuration. For the rest of
the paper, we use the term FDI to refer to the stealthy FDI
attacks.

C. System Model

Future CPS networks are supposed to maintain a hierarchi-
cal communication structure as it lessens the communication
overhead and assures the system’s stability, reliability, and
efficiency [16]. As smart grid is a perfect example of modern
CPSs, we consider a smart grid hierarchical communication
network as our testbed. Fig. 1 shows our considered hierar-
chical communication network in a smart grid. The sensors in
the substations can be remote terminal units (RTUs), intelligent
electronic devices (IEDs), phasor measurement units (PMUs),
etc. The sensors are located within the substations, and directly
report the measurement data to their substation switches. A
level 1 (L-1) substation only receives measurement data from
its own sensors, whereas a level 2 (L-2) substation receives
data both from its sensors and the underneath L-1 substations,
and so on. After collecting remote sensor data from the
nearest substations, the EMS runs the SE−BDD algorithm
to estimate the states take appropriate control decisions. As
Fig. 2 shows, such hierarchy forms a tree structure, where Sli
indicates the i-th substation at level l and EMS is the root.
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Fig. 1: Hierarchical networks of smart grids.

Fig. 2: Tree diagram of the hierarchical communication net-
work of smart grids.

We model all the substation switches in the network as node
objects. Based on the connectivity, each node receives the data
packets from its child nodes and forwards to its parent node.
Moreover, we define the communication channels between L-
1 and L-2 switches as L-1 channels and the ones between L-2
and L-3 switches as L-2 channel, and so on. For the rest of
the paper, layer and level are used interchangeably.

D. Attack Model

In this subsection, we define the attack model according
to the attacker’s capabilities and goals. During the data ac-
quisition process, there remains multiple vulnerable points
which an adversary can compromise. Firstly, the attacker
can compromise the individual targeted sensors but they are
located within the substations, which are highly secure to
break in. However, as the network communication channels
span the overall SCADA network, physical security is fragile
at some points and we consider them as the attack surface
to inject the false data. Thus, when the attacker compromises
the L-1 communication channels, we consider them as L-1
attacks, in case of attacking L-2 channels, we define them as
L-2 attacks, and so on. We consider the man in the middle FDI
attacks as the threats, where the attacker injects malicious data
into the network packets to deviate the state estimation.

III. DDAF

DDAF applies to any hierarchical networked control system.
The primary features of DDAF are shown in Fig. 3. As
the nodes need to analyze and modify the network packets,
the ”deceiving” nodes are equipped with software-defined
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Fig. 3: Basic flow chart of DDAF.

networking (SDN) controllers [17]. An SDN controller can
read, edit, and assemble packets in run-time. In modern
communication networks, SDN is widely implemented. In case
of the unavailability of SDN switches, similar capabilities can
also be implemented on the conventional switches by VMware
and Nicira [18].

The deception mechanism is implemented at the SDN
controller of the nodes. EMS assigns each sensors in any
of the two categories: randomized and fixed, and share the
information with the nodes. Nodes keep track of the assigned
sensor types and utilize them during the deception process.
As a part of the deception, each node does two routine tasks:
i) recID-randID pair generation, and ii) packet crafting. A
received ID - random ID or recID-randID pair contains
two sets of IDs. The received IDs are the set of sensor IDs
whose data packets are reported to the node by its child nodes.
At a specific interval, the received IDs are shuffled using a
randomization algorithm to generate a set random IDs. Such
a pair of IDs are used to craft the packets during the data
acquisition process.

On the other hand, another routine task that a node executes
is forwarding the packets. Whereas the conventional nodes
forward the packets to the next devices, in DDAF, the SDN
controller crafts the packets before forwarding. The packet
crafting is done by replacing the received IDs of the random-
ized sensors with the random IDs using the node’s recID-
randID pair. The process continues through all the levels
until the packets reach EMS. Whereas packet crafting is almost
a continuous process, recID-randID generation is carried
out whenever the deception patterns need to be updated. To
maintain the defense’s dynamicity, EMS asks the nodes to
update their recID-randID pairs at a regular interval by
sending the updated list of fixed and randomized sensors.

The randomization algorithm uses a seed value, which
is generated using the hardware/software token-based RSA
SecurID authentication mechanism. This technique generates
a secure authentication code (used as seed) for each node
using the built-in clock, and the node’s factory encoded secret
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Fig. 4: Deception mechanism.

TABLE I: Attributes of a node in the hierarchical network

Attributes Type Description Example
nodeID object ID of the node, Sl

i S2
1

childs list Address of child nodes [S1
1 , S1

2 , ..]
sensors set Sensors under the node {1, 2, ..., m}
randomized set Sensors for ID randomization {3, 4, ..., m-1}

key [19]. Thus, each node generates different seed at different
time and uses it while running the randomization algorithm.
As all the nodes are interconnected through physical lines,
they can maintain the clock synchronization with EMS. Thus,
whenever the nodes generate the seeds, EMS follows the same
steps to generate the same seeds using the nodes’ secret keys,
which are already shared with the EMS during the installation
stage. Using the seed values, EMS runs the same random-
ization algorithm for all the nodes to generate the recID-
randID pairs and build a stack, called ID-Stack. Using the
ID-Stack containing all the randomization information, EMS
recovers the original IDs from the collected crafted packets
by running a remapping algorithm. Finally, EMS executes
the necessary routine tasks (i.e. SE-BDD) on the remapped
original data and takes control decisions for optimal operation
of the system. As the sensor data packets are sent with random
IDs, if an attacker injects stealthy false data into some targeted
sensors, the injections happen to the wrong measurements.
Later, SE-BDD removes them as bad data and makes the
system robust from stealthy FDI attacks.

DDAF further analyzes the residual data and the list of the
outlier sensors to detect and localize the existence of stealthy
FDI attacks. If there is an attack, the framework provides the
attacker’s location in the communication network and his/her
targeted sensors. In detecting and localizing the attack, the
residual vector and the outliers are reshuffled again using
the ID-Stack’s recID-randID pair of each level to observe
them from an attacker’s perspective. As the FDI attack vectors
follow the system topology (a = h(c)), if there is an attack
at any network level, the shuffling finds a topological pattern
into the residual data and the outlier senors’ locations. The
following section provides a detailed overview of different
parts of the framework.

IV. TECHNICAL DETAILS

In this section, we discuss the details of each part of
DDAF. We model the nodes with some common attributes,
as explained in Table I. We divide the overall process into
four steps: i) deception mechanism ii) remapping mechanism,
iii) attack mitigation, and iv) attack detection and localization.

A. Deception Mechanism

Firstly, EMS sends the deception instructions to the sensors,
and the nodes keep track of the instructions. The instruction
contains a type flag where 0 and 1 to indicate the fixed and
randomized sensors, respectively. Thus, each node constrains
an m dimensional array T to store the sensor-wise deception
instructions.As shown in Fig. 4, the deceptive mechanism is
divided into two steps:

1) recIDs-randIDs Pair Generation: recIDs-randIDs
pair generation is the first step of the deception process.
The received IDs of randomized sensors recIDs are shuffled
among themselves to generate the deceptive random IDs
randIDs. The set randIDs is generated following procedure
randIDGen, as shown in Algorithm 1 using recIDs, and the
seed. We propose a tree-based approach for the randomization.
Each node generates a seed value and utilizes it to generate
the random IDs. The recIDs-randIDs pairs of the nodes
are updated at a regular interval with EMS’s request. The

Algorithm 1: randIDGen(nodeX)

1 initialization recIDs, randIDs = [] ;
2 recIDs← nodeX.sensors− nodeX.randomized;
3 randIDs← nodeX.sensors− nodeX.randomized;
4 recIDs.append(nodeX.randomized);
5 for for each child nodeC ∈ nodeX.childs do
6 randIDs.append(Rand-

Child(nodeX, nodeC.randomized));

7 end
8 Return recIDs, randIDs

sub-task of random ID generation for a particular node is
done by a recursive algorithm, Rand-Child, which ensures
the uniform distribution of the deceptive sensors. The same
process is performed for all the nodes in the network other
than EMS to generate and store their recIDs-randIDs pair.

The primary goal of random ID generation is to shuffle
the sensors of one child node as the sensors coming from all
the child nodes. Hence, if an adversary attacks the sensors
coming from that child node or a critical part of the system,
the injected malicious data will be distributed to the sensors
coming from different child nodes, which makes the stealthy
attacks invalid also keeps the system observable.

2) Packet Crafting: Packet crafting is the core part of the
deception process that utilizes the recIDs-randIDs pair.
Once the data packets are received, SDN controller at the
node decodes the packets and replaces the randomized sensors’
received IDs Irec with deceptive random IDs, Irand, following
Algorithm 2. The probability that Irec and Irand are the same
is 1

nsen!
, where nsen is the number of sensors in that node

and the deception is a random process. For nsen = 5 the
probability is 0.008 and for 10 it is 2.75 × 10−7. Thus, for
a higher randomization level with more sensors, the probabil-
ity converges towards zero. Furthermore, our randomization
algorithm is based on a tree, which ensures the randomness.
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Algorithm 2: RanID(Irec, recIDs, randIDs, T )

1 initialize Irand = Irec;
2 for i = 1 to len(Irec) do
3 for j = 1 to len(recID) do
4 if Irec[i] = recID[j] and T [i] == 1 then
5 Irand[i] = randIDs[j];
6 break;
7 end
8 end
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Fig. 5: An example ID-Stack

Thus, each level of shuffling makes the IDs more random-
ized, and therefore, unpredictable for the attacker to remap to
the actual ones. Once shuffling is done, the packets are updated
with randomized IDs and assembled with a proper header.
Finally, they are forwarded into the network, directed towards
the next node in the hierarchy for further randomization until
they reach EMS.

B. Remapping Mechanism

As the reported sensor data contain randomized IDs, EMS
needs to remap the shuffled measurement data to the original
sequence before utilizing them control decisions. Remapping
is exactly the opposite of the deception process. Like the
deception process, it has two parts. Firstly, it generates the
ID-Stack and then remaps the crafted data.

1) Building ID-Stack: During the recIDs-randIDs pair
generation process as discussed in Section IV-A1, EMS also
generates the seeds using the nodes’ secret keys. Using the
seed values, EMS regenerates the same recIDs-randIDs
pairs that each node has generated and builds an ID-Stack
with all the randomization patterns for different levels and
nodes. EMS can use the ID-Stack to trace back to the original
sensor IDs from the reported deceptive IDs. During the ID-
Stack formation, the recIDs-randIDs pairs of same level
nodes are concatenated vertically, which gives the total view
of the deception at that level. Each level adds additional
randomization into the system. recIDs-randIDs pairs of
different levels (i.e., levels 1, 2, 3, etc.) are stacked sequentially
so that the height of the ID-Stack is same as the height of the
network hierarchy. Fig. 5 shows a sample ID-Stack for a two-
layer hierarchical network. Here, the yellow and green boxes
represent the randIDGen pairs for different nodes at level 1
and 2, respectively.

2) Remapping IDs: The second and core part of the remap-
ping process is ID remapping that recovers original IDs from
the deceived IDs. First, the crafted packets are collected and
decoded at the EMS switch. The data packets contain the
shuffled sensor IDs after multiple randomization. As the exact
recIDs-randIDs are generated in ID-Stack, multiple remaps

of the reported IDs in reverse order of the levels provide
the original IDs associated with the measurement values. We
use the same randID algorithm (Algorithm. 2), but now the
shuffling direction is changed. Thus, randIDs are swapped
with the recIDs. In this case, EMS calls the algorithm all
the layers in downwards direction, and the last call for level
1 returns the original ID sequence of the measurement data.

C. Attack Mitigation

This subsection explains how SE−BDD algorithm miti-
gate FDI attacks from a system executing DDAF. EMS runs
the SE−BDD procedure on the remapped data, where
the topology matrix H and measurement vector zmsr are
generated using the remapped sensors IDs and measurement
values. Now, let us assume, there is an attacker trying to
inject stealthy data aorg into the set of sensors Icorg of that
node, where aorg = [ao1 , ao2 , ..., aom−1

, aom ]. The attack
will be successful (stealthy) if aorg = Hc, where c is
the targeted malicious state. Due to the randomization, the
injection ends up as a randomized attack data, arand into the
sensors Icrand where, arand = [ar1 , ar2 , ..., arm−1

, arm ]. We
already show that with sufficient randomization, Icorg 6= Icrand,
thus, aorg 6= arand and arand 6= Hc. Therefore, the attack
loses it stealthiness and with proper randomization, the BDD
process at EMS will find all the compromised sensors as
outliers. The process is explained in the next subsection.

Let us assume, and the original measurement vector is
zorg, which is randomized as zrand at the compromised node.
Thus, the attacker injects aorg to the randomized measurement
vector zrand. The compromised measurement vector that EMS
receives is zarand, where zarand = zrand + aorg. However, EMS
remaps the deceptive IDs Irand to original IDs Iorg (also
Icrand to Icorg) using the ID-Stack. Thus, the compromised
measurement data zarand also changes to the original sequence
as zaorg. As remapping and shuffling are two exact opposite
tasks, during this remapping process, the original injected
attack vector gets shuffled from aorg to arand, where, zaorg =
zorg+arand. Finally, EMS runs the SE−BDD algorithm on
the zaorg data that makes the remapped compromised sensors
in the set Icorg outliers, as the attack vector arand 6= Hc.

Moreover, in the case of a ideal noiseless system with
sufficient redundancy, as the compromised sensors in Icorg
become outliers and get excluded from the estimation process,
the rest of the clean measurement data give an estimated
measurement vector, zaest which is the same as zorg. The
residual vector, rorg = zaorg − zaest = zaorg − zorg = arand.
Thus, the residual vector is actually the randomized version
of the original attack vector aorg. The set of outlier sensors,
outorg = Icorg , is the randomized version of the compromised
sensors Icrand.

D. Attack Detection and Localization

Here we explain how the residual/outlier data are used to
detect and localize the attacks. The residual and outlier data are
leveraged to detect attacks and reveal the attacker’s target and
location. As discussed in the attack mitigation process, proper
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Fig. 6: Attack detection and localization.

randomization makes all the compromised sensors outlier. The
process is shown in Fig. 6. If we again randomize the residual
vector and the outliers with the nodes’ recIDs-randIDs
pairs, the randomized residual vector, rrand goes back to the
actual attack vector aorg and the randomized outliers outrand
becomes Icrand. Now, as rrand = aorg = Hc, if we run
the SE−BDD algorithm on rrand data, we get the same
estimated attack vector and no outlier. This condition proves
that the deceived residual is not just random system noises but
a precisely calculated FDI attack vector.

However, along with the attacked sensors, if there are some
other outliers outnoise due to random system noise vector
n (n 6= Hc), SE−BDD on the residual data considers
outnoise as outliers due to their noncompliance values. Hence,
in that case, the set outsus = outrand - outnoise contains the
list of suspected/targeted sensors in the attack. Similarly, there
is a perfect pattern in the sensors’ location in the sensors in the
outsus as an FDI attack vector selects the sensors following
a topological pattern in their locations. DDAF considers all
the layers one by one and checks if any layer provides a
pattern in the randomized residual/outlier data to detect the
attacker’s position in the network. If random system noises
cause the residuals/outliers, none of the layers will have a
high likelihood.

V. EXAMPLE CASE STUDY

In this section, we present an example case study explaining
the overall process of DDAF for the IEEE 5 bus system.
Fig. 7 shows the electrical and communication network of the
considered system. Generally, each transmission line contains
two sensors reporting forward and backward line power flows,
and each bus has one sensor reporting the power consumption.
Thus, IEEE 5 bus system consists of 5 substations (buses), 7
lines and (2 × lines + buses) = 19 measurement sensors in
total.

1) recIDs− randIDs pairs and ID-Stack generation:
Fig. 8 demonstrates the recIDs-randIDs pair at each node
generated by the randIDGen. Here, substation 1 has three
sensors with IDs {1, 2, 15}. Thus, switch S11 generates a seed
and runs Algorithm 1 to generate the set of random IDs
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Fig. 7: SCADA network of IEEE 5 bus system.

{15, 2, 1}, as shown with the vivid color boxes. Similarly, the
rest of the nodes follow the same procedure to generate the
deceptive IDs. Thus, the set of all the received and randomized
IDs at level 1 are presented by recIDs1 and randIDs1,
respectively.

As shown in the figure, the set of received IDs at level
2 switch, S12 are 1, 2, 15, 3, 4, 5, 8, 16, 6, 9, 10, 17. The
randomized pattern of this received IDs is 1, 3, 17, 2, 4,
8, 9, 10, 15, 5, 16, 6. According to Fig. 8, the sensors 1,
2, and 15 are reported by S11 . However, S21 randomizes the
pattern as 1, 3, and 17. The colors imply that these three IDs
come from three different substations. Similarly, the rest of
the sensors received from a single child node are distributed
to multiple child nodes. Thus, the randomization at level 2 is
more effective than level 1, and so on. Simultaneously, EMS
generates the same seed and runs the randomization algorithm
for each of the nodes to build the complete ID-Stack, as shown
in Fig. 8.

2) Packet crafting and remapping: As the system executes
DDAF, the deceptive sensors’ packets are crafted at the nodes
that belong to its path to the EMS. With the generated recIDs-
randIDs pairs, the received packets are crafted with the
deceptive IDs. That means, all the level 1 switches send the
original measurement data of sensor {1, 2, 15, 3,...., 18, 12,
14, 19} with deceptive IDs {15, 2, 1, 16, ...., 11, 19, 12,
14}. Similarly, the level 2 switches send the received data
with sensor IDs {1, 2, 15, 3, ...., 18, 12, 14, 19} with the
deceptive IDs {1, 3, 17, 2,...., 14, 7, 13, 19} and report to
EMS. After collecting the crafted packets, EMS performs the
remapping for all the layers in a backward direction to get
back to the original IDs. The remapping starts with the highest

1 3 17 2 4 8 9 10 15 5 16 6
1 2 15 3 4 5 8 16 6 9 10 17

15 2 1
1 2 15

16 8 3 5 4
3 4 5 8 16

17 6 10 9
6 9 10 17

18 7 13 11
7 11 13 18

Central EMS

Le
ve

l 2
Le

ve
l 1

Substation 1 Substation 2 Substation 3

Switch 1

recIDs : Received Set of IDs randIDs : Randomized Set of IDs

11 18 12 14 7 13 19
7 11 13 18 12 14 19

19 12 14
12 14 19

Substation 4 Substation 5

Switch 2

randIDs1

recIDs1

randIDs2

recIDs2

Fig. 8: ID-Stack of IEEE 5 bus system.
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TABLE II: Attack Scenario for IEEE 5 Bus System

Original IDs, Iorg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Original Sensor Data, zorg 83 41 19 29 54 15 5 -83 -41 -19 -29 -54 -15 -5 125 20 -45 -40 -60
Randomized IDs, Irand 17 3 10 9 2 6 14 8 15 16 11 19 12 7 1 4 5 18 13

Actual Attack Vector, aorg 17 4 0 0 0 0 0 -17 -4 0 0 0 0 0 21 -17 -4 0 0
Randomized Attack Vector, arand -4 0 0 -4 4 0 0 -17 21 -17 0 0 0 0 17 0 0 0 0

Remapped Sensor Data, zcorg 79 41 19 25 58 15 5 -100 -20 -36 -29 -54 -15 -5 142 20 -45 -40 -60
Estimated Sensor Data, zest 83 41 19 29 54 15 5 -83 -41 -19 -29 -54 -15 -5 124 20 -44 -39 -59
Residual Vector, rorg -4 0 0 -4 4 0 0 -17 21 -17 0 0 0 0 17 0 0 0 0

layer, which is layer 2 in this case, propagates to the first layer,
and recovers the original IDs.

3) Impact of an FDI attack: Let us assume that an intruder
launches an FDI attack on the communication path between
layer 2 and EMS of the IEEE 5 bus system. Table II demon-
strates an attack, where the original and deceived IDs are
shown as Iorg and Irand. The attacker plans to launch the
attack by injecting 17, 4, -17, -4, 21, -17, and -4 MW to the
measurement data of sensors in set Icrand which are 1, 2, 8, 9,
15, 16, and 17, respectively. However, due to deception at node
S21 , IDs in Icrand are used to send the original measurement
data of sensors in Icorg = {15, 5, 8, 4, 9, 10, 1}. Thus, whenever
the attacker injects into the sensors in Icrand, the injections take
place at the measurement data of sensors in Icorg .

As shown in Table II, zcorg represents the remapped ver-
sion of the compromised measurement vector. The estimation
process on zcorg makes the compromised sensors outliers,
and only the good measurements prevail. Thus, the estimated
measurement vector zest remains almost the same as the
original measurement vector zorg, leaving no deviation in the
state estimation due to the attack. Similarly, the residual vector
rorg follows the pattern of the attack vector arand, revealing
the intent of the attack.

The following part shows the detection of the stealthy
attack, analyzing the residual vector and outlier sensors.
• Analyzing the Residual Vector: EMS inspects rorg and
outorg from an attacker’s point of view at each level,
starting from level 1. The shuffled residual vector rrand
and its estimated version for each of the layers are shown
in Fig. 9. For level 1, the shuffled residual vector does not
follow any topological pattern. Thus the estimated residual
becomes almost zero, indicating a high deviation. On the
other hand, for level 2, the estimation perfectly follows the
provided residual vector, and the deviation is almost zero.
A low deviation proves that the shuffled residual vector is
not random noises rather a perfectly synthesized FDI attack
vector injected at the communication medium between level
2 and EMS switches.

• Analyzing the Outliers: Similar to analyzing the residual
vector task shown in the previous subsection, the actual
outliers in outorg are shuffled back to different levels. The
shuffled outliers, outrand for level 1 is {1, 3, 5, 6, 8, 10, 15}
and the noisy outlier during the residual estimation,outnoise
is also {1, 3, 5, 6, 8, 10, 15}. Thus, the ultimate suspected
outliers, outsus is outrand - outnoise = {}. All the shuffled

1 2 3 4 5 6 7 8 9 10111213141516171819
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Fig. 9: Residual estimation under an FDI attack.
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Fig. 10: Distribution of the suspected sensors for level 2.

outliers are random, and there is no suspected outliers.
On the other hand, for level 2, outrand is {1, 2, 8, 9, 15,
16, 17}. As SE-BDD finds a perfect pattern in the shuffled
residual data, noisy outlier outnoise is {}. In this case,
outsus is {1, 2, 8, 9, 15, 16, 17}, which is the same
as outrand. The location of these suspected outliers in
the electrical network is shown in Fig. 10. Whereas for
level 1, there is no suspected sensor, for level 2, we find
all the initial outliers as suspects, and they follow a clear
topological pattern in their location. Analyzing the suspected
sensors’ locations and connectedness, we assign a similarity
score/probability for each level, which is not discussed in
detail due to space limitation.
Thus, the detection algorithm finds a high probability that
there is an FDI attack at level 2 (after node S21 ), and the
attacker intended to compromise sensors 1, 2, 8, 9, 15, 16,
and 17.

VI. EVALUATION

We evaluate the performance of DDAF on IEEE 14, 57, and
300 bus systems [20]. For each test system, we implement 250
FDI attack vectors at every five seconds.

A. Evaluation Metrics

To assess effectiveness of deception, we consider six eval-
uation metrics.
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Fig. 11: Performance evaluation of DDAF for different levels with respect to a) PSA, b) PEA, c) CSER, and d) EDR.
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Fig. 12: Attack detection and localization for different levels: a-b) attack detection, c) level detection, and d) sensor localization.

Percentage of Stealthy Attacks (PSA): We consider an
attack to be stealthy if all the compromised sensors remain
undetected during the state estimation process. PSA is defined
as:

PSA =
# of stealthy attacks

# of total attacks
× 100

Percentage of Exposed Attacks (PEA): We consider an
attack vector to be exposed if any of the compromised sensors
becomes outlier and creates alarm at BDD. PEA is defined as:

PEA =
# of exposed attacks

# of total attacks
× 100

Compromised Sensor Elimination Rate (CSER): Even
though an attack is exposed, it’s impact on state estimation
depends on the number of eliminated compromised sensors.
CSER of each attack is expressed as:

CSER =
# of eliminated compromised sensors

# of compromised sensors
× 100

Estimation Deviation Rate (EDR): It represents the amount
of the deviation in the measurement estimation due to an
attack. EDR is defined as:

EDR =
|zoest − zaest|
|zoest|

× 100

where, zoest and zaest are the estimated measurement sets
without and under the attack, respectively.
Precision is the percentage of correctly predicted positive
event to the total predicted positive events [21].
Receiver Operating Characteristic (ROC) Curve is a way
of measuring the performance of classification problems for
different thresholds. The area under the ROC curve (AUC)
determines separability measures for distinguishing among
classes [22].

B. Evaluation on Attack at Different Levels

In this part, we evaluate the performance of our proposed
DDAF based on the attack mitigation capability.

First, we evaluate DDAF’s performance for the 57 bus
system, considering attacks at different levels. Fig. 11(a)
shows, irrespective of attack location, PSA decreases as the
percentage of deception increases. Usually, PSA is higher
for level 1 attacks as there are fewer sensors to randomize
in each substation. Fig. 11(b) shows how the attacks get
exposed, and thus, PEA increases with higher levels and more
randomization. Fig. 11(c) shows the average CSER for each
levels of injection. As figure illustrates, for attacks of level
2 and 3, almost all the compromised sensors are eliminated
from the state estimation process with 80-100% deception.
However, for level 1, a maximum of 83% of compromised
sensors can be detected and eliminated from the system due to
limited randomization. With 50% randomization, even though
all the attacks get exposed (Fig. 11(a-b)), only half of the
compromised sensors are eliminated (Fig. 11(c)), allowing
the attacks to create some deviations in the state estima-
tion.Fig. 11(d) shows the EDR of the attacks at different
levels. Although the EDR for level 1 attacks decreases slowly
with more randomized sensors, it decreases drastically for
levels 2 and 3 once the randomization is more than 50%.
Even though there remains a few attacks that create a little
deviations in the estimation, in most cases, the EDR gets
shifted toward zero and making the attacks ineffective with
sufficient randomization. Moreover, although EDR for level 1
is still high, the later evaluation shows they can be detected
and localized, allowing the system operator to take defensive
steps.

In this step, along with the attack vectors, we inject another
250 random noise vectors, and analyze the attack detection and
localization performance of the framework. Fig. 12(b) shows
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Fig. 13: Scalability analysis of DDAF for different models. a) PSA, b) CSER c) attack detection, and d) running time.
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the ROC curve for attack detection at different levels. With
100% sensor deception, the AUC for levels 1, 2, and 3 are
0.861, 1.00, and 0.996, respectively. Fig. 12(a) shows the ROC
curve for different randomization and random level (average
scenario) attacks. The figures show that, the framework can
detect attacks accurately (AUC: 0.88) even only with 25%
sensor randomization. Fig. 12(c) shows the confusion matrix
of detected levels of the attacks. Among 250 attacks at level
1, 203 are localized correctly as level 1 attacks. Moreover,
the detection accuracy is 99% and 100% for attacks at level 2
and 3, respectively. Fig. 12(d) shows a high precision (around
80-98%) in the localization of the compromised sensors for
different levels.

Lastly, we evaluate the framework’s effectiveness against
the number of nodes equipped with SDN controllers at dif-
ferent levels. Fig. 14 shows EDR decreases almost linearly
with increasing SDN-enabled nodes into the system. 50-75%
percent upgrades provide an effective defense, but a 100%
percent upgrade is necessary for total resiliency.

C. Evaluation of Scalability

In this part, we analyze the scalability of the framework for
different sizes of systems from two perspectives.

1) Effectiveness of the defense: We analyze the frame-
work’s performance on IEEE 14, 57, and 300 bus systems.
Fig. 13 (a-c) show the PSA, CSER, and ROC curve for attack
detection for the three cases systems under 100% deception
and random level attack. Similarly, from figures, it is evident
that irrespective of the network size, the framework shows
similar performance in the attack detection/mitigation.

2) Time Complexity: We analyze the time needed for the
deception process, as well as the reallocation process for
each of the networks. Fig. 13(d) shows the framework’s

time complexity for those two tasks. The figure demonstrates
almost a linear relationship among the time complexity and
number of buses, proving that the framework is highly scalable
and generic enough to be implemented for any size of the
hierarchical network.

VII. RELATED WORK

Moving target defence (MTD) techniques are extensively
being proposed to defend different cyber-attacks for mitigating
FDI attacks on the sensory channels.

There are several works introducing uncertainty/randomness
in the CPS control loop. Griffioen et al. proposed an MTD
introducing stochastic and time-varying parameters in the
control loop of the CPS [23]. Giraldo presented MTD by
randomly changing the availability of the telemetry sensor data
for detecting and minimizing impacts of FDI attacks [24].
Rahman et al. reduced the window of the attack by adding
uncertainty in the sensor being considered in the state estima-
tion process [25]. Hu et al. proposed a stealthy attack detection
strategy leveraging skewness coefficients can distinguish the
forged residuals from the attack-free residuals [26]. In some
works, authors examined to perturb the physical properties
of the considered systems to make the attack vectors invalid.
Lakshminarayana et al. proposed a formal model for reactance
perturbation based MTD using D-FACTS [27]. Tian et al.
proposed a hidden MTD using D-FACTs in smart grids to
defend structured FDI attacks [28].

Some researches focused on deceiving the attacker in the
MTD with crafty network packets. Li et al. used CPSMorph
creating several fake network sessions along with the actual
ones to hide them from attackers [29]. Pappa et al. proposed
a seed-based end-to-end IP hopping among trusted peers
of a SCADA system [30]. They used the seed to generate
random IP and share them through a pre-installed public-
private encryption channel. Groat et al. introduced MT6D as
a secured IPv6 based smart grid communication system [31].

Some other research works are also performed for deceptive
defense in CPS. Lin et al. proposed a randomized data acquisi-
tion into multiple rounds [32]. The software-defined network-
based framework controls the network flows and collects
real measurements from randomly selected online sensors,
and spoof measurements for the rest. However, as only a
few sensors send original data at each session, an intelligent
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attacker may inject false data into the online devices. Even
analyzing the pattern of the sensor measurements may give
the attacker the insight about the correct measurement. In
another work, they proposed a physical function virtualization
technique along with randomizing and crafting the decoy
data to disrupt the reconnaissance attack in power grids [33].
However, an attacker can inject FDI attacks into a part of
the system, ignoring the rest of the system information. Thus,
their proposed approach only secures the system where virtual
nodes are placed, leaving some part unsecured. However,
these works consider the partial randomization of the data
acquisition process and primarily focus on only the attack
mitigation part. On one other hand, our proposed framework
can be implemented on the overall system with complete
randomization. Besides, DDAF allows the system to detect,
mitigate, and localize FDI attacks in a single framework.

VIII. CONCLUSION

In this paper, we propose DDAF, a generic deceptive
defense-based secure data acquisition framework for CPS
hierarchical communication networks. Using SDN controllers
at the network nodes, DDAF can deceive an attacker by
replacing the original sensors IDs with the deceptive IDs.
Such deception allows the system to detect, mitigate, and
localize any stealthy cyber-attack. Experimental results on
standard IEEE bus systems show that the framework can
detect/locate most of the stealthy cyber-attacks with high
accuracy. Besides, the framework is highly scalable, which can
easily be implemented for large network sizes. In the future,
we will explore for a data-driven intelligent technique to share
the randomization pattern among the nodes. Besides, we plan
to add decoy data to support the randomization.
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