BOUNDS ON MOMENTS OF WEIGHTED SUMS OF FINITE RIESZ
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ABSTRACT. Let n; be a lacunary sequence of integers, such that njyi1/n; > r. We
a1+
cos(n;t)). We prove that, whenever the Riesz products are normalized in L” norm (p > 1)
and when r is large enough, the L? norm of such a linear combination is equivalent to
the ¢ norm of the sequence of coefficients. In other words, one can describe many ways
of embedding ¢P into LP based on Fourier coefficients. This generalizes to vector valued

LP spaces.

are interested in linear combinations of the sequence of finite Riesz products []
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1. INTRODUCTION

Let T = R/27Z be the one dimensional torus and m be the normalized Haar measure on
T. Let (nj);>1 be an increasing sequence of positive integers. Riesz products are defined
on T by

N
(1) Ry=1 and Ry(t):=[](1+cos(njt)) for N=1,2,....
j=1
To simplify the notation we also put
Xo=1 and X;(t):=14cos(nst), j=1,2,....

It was Frigyes Riesz who first realized the usefulness of these objects treated as probability
measures. When nj+1/nj > 2 for 5 > 1, the numbers Zjvzl ejn; are all nonzero for

nonzero vectors (aj)ﬁv:l € {—1,0,1}", due to the fact that for every I, 2221 ng < Nyl
In particular, the zero mode of Ry has Fourier weight 1 and thus Ry are densities of
probability measures py. The weak-+ limit of (uy) is a singular measure which admits
a number of remarkable Fourier-analytic properties. The reader is referred for instance
to [12] for more information on properties of Riesz products and general trigonometric

This material is partially based upon work supported by the NSF grant DMS-1440140, while the authors
were in residence at the MSRI in Berkeley, California, during the fall semester of 2017. P.N. and T.T. were
also partially supported by the Simons Foundation. R.L. and P.N. were partially supported by the National
Science Centre Poland grant 2015/18/A/ST1/00553 and T.T. by NSF grant DMS-1955175. The research
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polynomials as well as to the short survey [6] of some applications of Riesz products. We
will always assume that n;1/n; > 3 for j > 1, so that every integer n can be written at
most once as Zjvzl gjn; for nonzero vectors (aj)év:l € {-1,0,1}".

In this article we shall study the sum Zszo v Ry, where v are vectors in a normed space
(E,|| - ). By the triangle inequality, we trivially have

) /

We are interested in the reverse inequality and in LP inequalities. Our interest in this
kind of inequalities comes back to a question of Wojciechowski, who asked for the validity
of the reverse bound up to some universal constant (personal communication). He first
studied this problem in the scalar case and in the following probabilistic context. Suppose
we replace the functions X1, Xo, ... appearing in the definition of the Riesz products with
a sequence of independent random variables X1, Xo, ... (defined on some probability space
(©,P)), each having the same distribution as 1 + cos(Y'), where Y is uniform on [0, 27].
We then take Ry = Hévzl X and of course Ry = 1. Note that the functions X defined
on the probability space (T, m) have the same distribution as the random variables X'j.
Even though the X; are not independent, we shall see that they behave, in many ways,
like independent random variables. Capturing this phenomenon in a quantitative way is
one of the main difficulties in our investigation.

In [11], Wojciechowski showed the existence of universal constants ¢ and C' as well as real
numbers aj, as, . .. such that for every n, | Zf:o ai| < C for all k <n and E| >0 a;R;| >
cn. This result was used in [4, 5] in the study of Fourier multipliers on the homogeneous
Sobolev space W} (R%).

The reverse of (2) for Ry, was proved by the second named author in [7] for general ran-
dom variables. More generally, for any sequence X1, Xs, ... of i.i.d. non-negative random
variables with mean one and such that P(X; = 1) < 1, we have

N N
D okRi| = ex, > Mol
k=0 k=0

for any vectors v; in an arbitrary normed space (E, || - ||), with a constant cg, depending
only on the distribution of X; (see Theorem 4 in [7]; see also Theorem 3 therein for non
identically distributed sequences (X;)). This clearly implies Wojciechowski’s result with
a; = (—1)% (here E = R). According to a theorem of Y. Meyer (see [8]), under a stronger
divergence of the sequence of modes, namely when ) 22, - < oo, for any real numbers

Nk+1
/Jl‘

N

Z v Ry,

k=0

N
dm <> [luel|.

k=0

(3) E

a;, we have

> cgE

N
D> kR
k=0

N
D> ik
k=0
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for a positive constant cg which depends only on the ng. In [7], this principle was combined
with (3) to show the reverse of (2) in the real case and under the above restrictive condition
on the modes n;.

Later the results of [7] have been generalized by Damek et al. in [2], where it was shown
that for any p > 0 and under the same assumptions on the i.i.d. sequence (X;), we have

p N
< Coxy Y lloklP ERY, N >1,
k=0

N

S u iy

k=0

N
1 _
(4) =Y |ulPER, < E

2, X1 f—0

with a constant C, g, depending only on p and the distribution of X;.
The aim of this article is to prove the following theorem.

Theorem 1. For every p > 1 there are positive constants dy, c,, Cp, depending only on p,
such that for any integers n; satisfying njy1/n; > dp, j = 1,2,... and for any vectors
V0, V1, - .. in a normed space (E, || - ), we have

N N
(5) cpZme/Rgdm < / SRy
k=0 T T{lk=0

for any N > 1, where Ry, are defined via (1).

p N
dm < Y lwlP [ Ridm,
k=0 T

In words, the normalized sequence (Ry/||Rk| z,(t)) is p-stable on its span. The lower
bound in the case p = 1 answers the original question of Wojciechowski. Let us also note
that for p > 1, both the upper and the lower bounds are non-trivial (as opposed to the
case p = 1 where the upper bound is easy — see (2)). The values of the constants d,, ¢,
and C), that can be obtained from our proofs are far from optimal. In particular, we have
lim,_,;+ d, = oo and lim,_,+ ¢, = 0, which is inconsistent with the case p = 1. Due to
these blow-ups as p — 17, our proof in the case p = 1 is different from the proof for p > 1.
It is based on transferring the independent case of [7] using Riesz products. We restate
the result for p = 1 with numerical values of the constants. (For explicit bounds on the
constants for p > 1, see Remark 25.)

Theorem 2. There exists a constant c¢; > 3.1-107% such that for any positive integers n;
satisfying nj41/n; > 3 and for any vectors vy, vi, ... in a normed space (E,| -|), we have

N N
LIS estfam = e 3 o
T =0 =0

for Ry defined in (1).

Theorem 1 was proved in [2] in the real case (E = R), with a constant depending on

p and the sequence (n;), under the condition > 77, n:i - < 0o mentioned earlier (again

by combining the independent case with the decoupling inequality of Meyer). It is easy
to see that the same proof implies that it is also valid for vector-valued coefficients under

2
the weaker condition > 77, (nﬁ 1) < 00, which is known as Schneider’condition [10]. We
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do it in the next section for completeness. When £ = R and p/2 is an integer, then the
condition ngy1/nk > p+ 1 is sufficient.

In general, Theorem 1 cannot be transferred from the independent case by using some
generalization of Schneider’s condition: LP norms of Ry and R}, are not equivalent, as we
see in the next section. So the core of the proof deals directly with Riesz products on
the torus. Many new difficulties appear when compared with the proof for independent
frequencies.

We conclude with questions: Is the best constant d,, in Theorem 1 an increasing function?
Can it be chosen so that it does not depend on p?

The article is organized as follows. First we present those results that may be obtained
as consequences of the i.i.d case. This concerns the case when Schneider’s Condition

2
ppay (nZi 1) < oo is fulfilled as well as Theorem 2 concerning L' norms. The rest of the

paper is devoted to the general case. In Section 4 we give preparatory results. The main
section is Section 5, which is devoted to the proof of the lower estimate for p > 1. Finally,
in Section 6 we give a proof of the upper bound for p > 1.

Acknowledgements. We would like to thank F. Nazarov for stimulating correspon-
dence which encouraged us to continue working on this project. We are also indebted
to P. Ohrysko for a helpful discussion, and to anonymous referees for very helpful reports
significantly improving the paper.

2. THE THEOREM UNDER SCHNEIDER’S CONDITION

The aim of this section is to prove Theorem 1 under Schneider’s Condition, that is, we
have the following result.

Proposition 3. Assume that for each j > 1 one has njy1/n; > 3 and that, moreover,

N2

> (%) < o0o. Then the conclusion of Theorem 1 holds: for every p > 1 there are

positive constants cp,Cp depending only on p and the sequence (nj), such that for any

vectors vg,v1,... in a normed space (E,| -||), the inequalities (5) hold. Moreover, if
N2

> ( =i ) < 4/(97%), then constants cp, Cp, do not depend on the sequence (n;).

Tj+1

To prove this, we proceed as in [7] making a use of Schneider’s condition. First introduce
some notation. For an arbitrarily large integer N, let us denote by Ay the set of integers
that may be written as Z;VZI gjnj, with e; € {—1,0,1}, for all j < N. The condition

N

njt1/n; > 3 ensures that the mapping 7' = Ty from Ay to ZN given by T(Z]-:1 gjnj) =

(z-:j);.vzl is injective. For a trigonometric polynomial P(z) =3, 5 a,e™ on T with values
in E, we define P(y) = D neAn aneTM¥ which is a trigonometric polynomial on TN with
values in E. The next proposition is a variant of results one can find in Meyer’s book [9],
Chapter VIII.



Proposition 4. Under the previous assumptions and notations, there exists a constant C
which depends only on the sequence (n;) such that for all E—valued trigonometric polyno-
mials P with frequencies in Ay and all p € [1,00],

(6) CHPl o 5) < P,y < CIPl oy 5y

N2
Moreover, if > <n?i1> < 4/(97?%), then one may take C = 2.
Proposition 4 together with (4) easily implies Proposition 3 (observe that Ry, has the
same distribution as Rjy). We present here its simple and complete proof that is inspired
by [9], Chapter VIII.
To establish (6), we first consider p = co and E = R and iterate the following simple
lemma.

Lemma 5. Let P, P> and P53 be trigonometric polynomials of degree at most d. For an
integer M > d, we let

P(z) = Pi(z) + Pa(z)e™ + Py(w)eM7, Q(z,y) = Py(x) + Pa(x)e™Y 4 Py(x)e ™MV,
Then

P@l = (1- %) sup (@)
sup |P(x 2(1— )Sup Qx,y)|.
zeT 2M? z,yeT ’

Proof. Let (xo,yo) be a point where |@Q| reaches its maximum, which we assume to be
nonzero. Without loss of generality we may assume that Q(zo,yp) = 1, so that it is also
the maximum of its real part. This implies in particular that the derivative in the x variable
of its real part vanishes at (xg,yo). To conclude it is sufficient to find z7 € T such that
the real part of Q(zo,y0) — P(x1) is smaller than g;j; We take z1 € T to be such that
|z1 — xo| < /M and exp(iMx1) = exp(iMyp). Then by Taylor’s expansion

2

§R(62('%0)1/0) - P(xl)) = %(Q(.ﬂ?o,yo) - Q($1,y0)) < 27]1\—42 sup |Q//($, y0)|7
zeT

where Q" stands for the second derivative in the x variable. By Bernstein’s inequality, this
supremum is bounded by d?, which allows to conclude. O

Corollary 6. There exists a constant C which depends only on the sequence (nj;) such
that for all trigonometric polynomials P with frequencies in Ay,

(7) C3' sup |P(y)| < sup|P(z)| < sup [P(y)].
yeTN z€T yeTN

2
Moreover one may take Coo =2 if > ( = ) < 4/(97%).

Tj+1
Proof. Let P(z) =, cry ane™®. Here, for convenience, instead of P, we shall consider
Qly) = Y neAy ane' 255"y € TN where ¢ = T(n). Clearly, sup |Q| = sup|P|. The

upper bound is obvious because Q(z, x, . .., z) = P(z).
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We use Lemma 5, with M =ny andd=n1+...+ny_1 <ny_1 (1+%+3i2+...) =
%nN,l. It implies that

sup|P(z)| > ex sup |Q(z, ...,z yn)l,

zeT z,yn €T
where
972 (nN1 ) 2
CN — 1 - —
8 ny

For every fixed yn, Q(x,...,z,yn) as a function of z is a trigonometric polynomial with
frequencies in Ay_1 and therefore we can iterate the above argument to obtain

sup |P(z)| > en ... eny sup \Q(m,...,m,yNo,...,yN)].

zeT x,yNO,...,yNE']T

Observe that Schneider’s condition implies the existence of Ny, depending only on the

sequence (n;), such that first, ¢, > 0 for every k > Ny (because necessarily nni - — 0 as
J

j — 00), and second, ¢ - ... cn, > % for N > Ny. Indeed,

N 2
972 _

H ck21—% <nk 1>
SNy N R

k=Ng

since for every real numbers ai,...,a; > —1 of the same sign, we have Hézl(l +a;) >

1+ 22:1 a;. Therefore there is Ny depending only on the sequence (n;) such that for every
polynomial P, we have

1 -
(8) sup |P(x)| > 3 sup Q(z, ..., 2, YNy, - -, YN)|-
z€T x7yN07“"yN€T

Now we handle the first M := Ny — 1 coordinates. Let Pjs be the space of trigonometric
polynomials on TM spanned by {ez(ZjSM £ )}56 {-1,01}M- Any two norms on a finite-
dimensional space Pj; are comparable, in particular there exists § > 0 such that

sup |Q(z,...,x)| > ¢ sup IQ(y1,.-.,ynm)| for Q € Pyy.
zeT (Y1, ynm)€TM

The above bound together with (8) implies the lower bound in (7) with Co, = 2571
N2
To get the last part of the assertion it suffices to observe that if > ( e ) < % then

j+1
¢ > 0 for all k£ and
[Moz1-20 5 () > ]
c - — —.
= 8 Nk -2

O
Proof of Proposition 4. Let p be a bounded measure on T and En be a set of all functions
of the form P = ZnEAN a,eT™Y and a, € R. We may treat En as a subset of the

space of continuous functions C(TV). On Ey we define a functional ¢ by the formula
6



@(P) = [ Pdu. The upper bound in (7) shows that [|¢] < l#llarery- By the Hahn-
Banach theorem we may extend ¢ to C(T?) and thus show that there exists a measure
fi € M(TV) such that il ar¢rvy < llllaz(ry> by the Riesz-Markov-Kakutani representation

theorem (||u1/|ar(y is the total variation of ). Moreover, (T (n)) = fi(n) for n € Ay
because

F(T(n) = / T i(y) = GemT) = p(e= TrIv) = / e dp(z) = fin).

In the same way we show that for any measure i € M(TY), there exists a measure
p € M(T) such that [|ullprr) < Coollfillarervy and the previously stated relation holds.
Using these observations for Dirac measures we find for z € T and y € TV measures
fi. € M(TY) and p, € M(T) such that ||,| < 1, |luy] < Co and ﬁ;(T(n)) = e T
fiy(n) = e T for n € Ay.

Fix now a trigonometric E—valued polynomial P = Y neAy ane™Y and p € [1,00).
Observe that for any x € T,

||15HLP(TN,E) = Z ane e MY s i,
neA N LI"(TN,E)

< |l ar () E e )y < Z apem®etT M)y
ey Lr(@N.E) - [[PEAN Lr(TV ,E)
Integrating over z € T and changing the order of integration we get
P

||F)||ip(’H‘N7E) < /]I‘N/]I‘ Z anei”weiT(n)'y dm(l‘)dmN(y)

7’L€AN

However for any y € TV

Z ape ey =P *pylr,r,e) < lylvem 1Pl r,e) < CoollPllL,r,B)-
ey Ly(T,E)

This way we show that HpHLp('H‘N7E) < Cool| Pl (T,)- The case p = oo follows by taking
the limit. The upper bound in (6) is shown in an analogous way. O

In the rest of this section we discuss the question of generalizing this method to sequences
that do not satisfy Schneider’s condition. It was observed in [1] Chapter I that, as a
consequence of Plancherel’s formula, the double inequality (6) is valid for p an even integer
and E' = R as soon as n;1 / n; > p+ 1. It means that the conclusions of Theorem 1 are
also valid in this case for scalar functions.

For p/2 an integer, condition n;11/n; > p+ 1 is a natural bound for being able to
transfer the result for the independent case to the context of the lacunary sequence n;.

7



This is given by the following lemma. Recall that Ry (y1, ..., yn) = H§:1(1 + cos(n;y;)) is

a polynomial on TV (with the same distribution as the random variable R}).
Lemma 7. Let p > 2 be an even integer and ny = p¥. Then limsup HRka/HEch = 00.

Proof. This comes from a combinatorial argument. We will use the following fact. For a
sequence of positive integers qi, ..., qr and a trigonometric polynomial g with nonnegative
Fourier coeflicients, we have

(9) /T 9(@z)g(@2z) - glga)Pdm(z) > ||g|2"

and the inequality is strict if and only if there exist two different sequences of integers
(mi,--- ,my) and (m},---,m}) such that gymi + --- 4+ ggmy = rmy + - - - + gmj, while
all Fourier coefficients g(m;), g(m}) are strictly positive. Indeed, by Plancherel’s formula,
the inequality (9) is equivalent to

2
Z( > §(m1)---§(mk)) > Y gm)P - [glme) .

m Mgt gimi+ttgeme=m Mg

This is a direct consequence of the inequality (3°; a;)* > >~ ajz, while the strict inequality
comes from the fact that this last inequality is strict whenever a;’s are positive and J has
more than one element. _

Let us come back to the proof of the lemma and prove that || Rax||p/|| R2k|lp tends to oo.
If we take ¢ = p/2 and

(10)  f(z) = (1 + cos(x))!(1 + cos(px))?,  g(z,y) = (1 + cos(x))?(1 + cos(y))?,
then Roy(x)P = [f(px)f(p?’m)-- : --f(p%_lx)} ’ and we can use the previous fact to prove that

| Rok b > (fo(m)Qdm(a;))k. Moreover, H]’%\g/ng = <foT g(a:,y)Qdm(x)dm(y))k. To prove

that || Rox |5/l Rax||b tends to oo, it is sufficient to prove that the L2 norm of f is strictly
larger than the norm of g, that is, to prove that, at least for one value of m, the Fourier
coefficient of f(m) is obtained through different writings of m as a sum of two frequencies
that belong respectively to the two factors. But, for instance, ¢ = ¢ + 0 = —q + 2¢q, which

allows to conclude. O
The previous lemma allows us to find such examples for other values of p. Namely

Lemma 8. Let ¢ > 4 be an even integer. Except possibly for a discrete set of values of
p € (1,00), there exists a sequence n; such that nji1/n; > q for all j > 1 and ||Rg||p/|| Rkllp
does not remain bounded below or above.

Proof. We consider the two quantities || P||4 and ||P||% , where P and P are the trigono-
metric polynomials of degree ¢ + 1 and 2, respectively on T and T2, defined by

P(x) = (1 + cos(x))(1 4 cos(qx)), P(x,y) = (1 4 cos(x))(1 + cos(y)).
8



We have seen in the proof of the previous lemma that ||P|% and ||P|} differ for p = q.
So they differ except on a discrete set of values (this is because ||P||) as a function of p
is analytic). Let p be such an exponent and let us construct a sequence n; that satisfies
the conclusions of the lemma. We let ny; = m; and ngjy1 = gm;j, where the sequence m;

2 ~
increases sufficiently rapidly so that ( M) < 00. The LP(T?*) norm of Ry, is easily

mi4+1
seen to be the k-th power of the norm of P. We use for P the analog of Proposition 3, but
with the set Ax defined with (Ej)é-vzl such that e; € {0,£1,---+ (¢ +1)}. We deduce that
the LP(T) norm of Ry is up to a multiplicative constant comparable with the k-th power

of the norm of P. The conclusion that || Rg]|,/ HEch does not remain bounded below or
above follows at once. O

The last lemma shows that in general Theorem 1 cannot be deduced from the indepen-
dent case. We will see that it is nevertheless the case for p = 1, which is not contradictory
since the L' norms of R;, and Ry, are all equal to 1.

3. LOWER BOUND FOR p =1

Proof of Theorem 2. We assume njy1/n; > 3. Then the Fourier expansion of a Riesz

product H;?:l(lJrcos(njx)) has 3* distinct terms. For a sequence ¢ = (11,2, ...), consider
the Riesz product

H + cos(njx +15)) .

Let .
Ry (¢, ) = (Py x Rg)(2),
where x denotes the convolution on T. Then
N

(11) / Zv] Y, x)||dm(z) < /11‘ Z’UJ'R]'(ZE) dm(z).
j=0
On the other hand,
k
Ruba) = [T (1+ peostnze + ).
j=1

which can be verified by comparing Fourier coefficients,
k . k k
9™ i leilei X sivigm X lel if g = Z?:l €515,

A

—

R, -)(n) = Py (n) Ra(n) = {

k
1
= H (1 + 5 cos(n;x + ¢j)> (n).
j=1
We integrate both sides of (11) against dm(v) and exchange integration. On the left hand

side we have an i.i.d. sequence (with respect to ¥) 1+ %COS(’/L]'IL‘ +1);) (observe also that
9



the distribution does not depend on z), which satisfies conditions of the main theorem of
[7]. So we get the desired lower bound. Specifically, we use Theorem 3 from [7] with the
i.id. sequence X; = 1+ 1 cos(2rU;) with U; being i.i.d. uniform [0,1] r.v.s for which we
can take therein \ = %, A= %, = %, k = 2000, hence the bound ¢; > 3.1-107% (to
obtain the bound on A, we use 1+ z <1+ z/2 —22/12, z € [-1,1]). O

Such techniques involving Riesz products P, have been already used in [1]. Unfortu-
nately the same argument based on transferring the i.i.d. case from [2] does not seem
to work for LP bounds with p > 1. Indeed, the lower bound involves the quantity

(Jp (1+ %Cos(t))pdm(t))k, which is off by an exponential factor (in k).
4. AUXILIARY GENERAL RESULTS

We give here elementary or standard results, which will be our tools in the main proofs.
The following simple result will lie in the heart of our induction procedure to obtain the
bound below. It is basically [2, Lemma 9].

Lemma 9. Let i be a measure on X and let f,g: X — E be measurable functions. Suppose
that for some p > 1 and v > 0, we have

/ lglP=H 1 £lldpe Sv/ [ F1IPdpe.
X X

/X I+ gllPdy > (—m) / I+ [ lolPd

Proof. For any real numbers a,b we have |a + bP > |aP — pla[P~L|b]. If, additionally,
la| < L[b], then |a + b > [b] — |a| > |a| + (| and thus |a + b|P > |a|P + 55|b|P. Taking
a = |lgll, b= —I||f|l and using the inequality ||f + g[| > [|[f[| — [|gl|, we obtain

/X If + gl dp = /X ||f+9”p]l{||g<§f||}df‘+/x 1 + gl Lgg> 1 sy i
1
p . p
2/X||9|| IL{||g|<;,||f||}d/”;),p/X”f” L gli< 171y
" /X 19172 g1 1y e _p/ 917~ LA gy 3y e

o T MR R ey W el Ve

Then,

Note that

1 1 1 -1
[ (G0 + ol 01 Lo gy < (5+) [ 1615100 < 20 [ ripa

Therefore,

1
[t alpdu= [ alraus g [ 1opdn -2y [ f17an
X X X X

10



The next lemma gives a comparison between explicit constants that we will need.

Lemma 10. For k,p > 1,

1
(12) /’COS(t)Qp’Sin(t)‘%pde /‘Cos(t)‘zpdm/‘Sin(t)’%pdm.
T kp+1 Jr T

Proof. We have

1 B+1
a+1 B—Fl) F(a F(T
2 72

/2
/ | cos(t)|] sin(t)|?dm = 2/ cos®(t) sin® (t)dt = 1B <
T T Jo T

so the ratio between the left and the right hand sides of (12) is equal to

Ip+l(kp+1) _ p(@)T(kp+1) p/l 11 — 2)7dy
0

Lkp+p+1)  T(kp+p+1)
1 1
1
< :L“p_ldx/ 1—2)fPde = ,
<nf -y =
where we have used the continuous version of Chebyshev’s sum inequality. O

Our next lemma concerns exact algebraic factorization for integrals of products of
trigonometric polynomials and is also standard. (As a side clarifying remark, since func-
tions on T may be treated as 2m-periodic functions on R, in the next 3 lemmas, when we
say “a function on T”, we implicitly mean, “a T-periodic function”)

Lemma 11. Suppose that g1,...,gn—1 are trigonometric polynomials of degree at most d,
gn is an arbitrary continuous function on T and nji1/n; > d+1 for j > 1. Then

N N
/le_[lgj(”jt)dWZjl_[l/ng(njt)dm-

Proof. Indeed the left hand side is the sum of products of Fourier coefficients g;(l;), with
Zévzl [in;j=0, |l;| < dfor j < N —1. This only occurs when all [; are zero, which allows to
conclude. g

Even if exact factorization does not hold, one can establish approximate factorization in
the presence of a highly oscillating factor. This idea is quantified in the following lemma.

Lemma 12. Suppose that f is a Lipschitz function on T and g is an integrable function
on T. Then for any integer n > 1, we have

‘/Tf(t)g(nt)dm—/dem/?rg(nt)dm’ < 2;r/ﬂ"f/(t)’dm/ﬂ*‘g(nt)‘dm'
11



Proof. Let I, = [£2m, B:Lox] for k = 0,1,...,n — 1. Observe that for any k, [, g(nt)dm =
\le\ flk g(nt)dt, hence

|/ 50)(otnt) - [ otnsym(s))ar] - al / U0~ Fs(natas|
< sw 1) = £ [ lotnolat < [ 17 ldu [ lgtnn)ar

t,s€l},
2
=27 [ 1 @ldu [ lgtnt) dm.
n J. T
Summing the above estimate over 0 < k < n — 1 yields the lemma. O

In the context of trigonometric polynomials, in the above lemma we can pass from the
bound in terms of f’ to the bound in terms of the original factor f. Namely, we have
the following lemma. Its first part is the classical Bernstein inequality for vector valued
trigonometric polynomials.

Lemma 13. Suppose that f is a vector-valued trigonometric polynomial of order at most

d. Then
(13) / 17/ Pdm < &P / | £[[Pdm.
T T

Moreover, for any integrable (complex valued) function h on T, we have

(14) \ Lus@nmoan— [ opan [ h(nt)dm\ <222 [ fram [ inguolam.

Proof. Formula (3.11) in [12, Chapter X] gives f/(t) = S22% by f(t+1), where 3220 |bg| =
d and ty = 3(k — 3)m. Thus || f'(t)] < Ziil |bi||| f(t + t)]|, so the triangle inequality for
the L, norm gives, || f'|l, < 322, [bgll| fllp = d|| f]lp and (13) follows.

To show (14), take g = ||f||?. Then |¢'| < p||f||P~1|f|| (g is in fact almost everywhere
differentiable) and

/ ) (»—1)/p - 1/p )
g'ldm < p ([ I1£IPdm IflPdm) < pd [ |flPdm,
T T T T

by Holder’s inequality and estimate (13). Thus Lemma 12 yields (14). O

Lemma 14. Let fi and fo be vector-valued trigonometric polynomials of degree at most d.
Then for n > 3d, we have

1
[+ pocostatyipdm = o [ [17lam.
T T

Proof. This is an easy consequence of the use of de la Vallée Poussin kernel Vj (see, e.g.

(3, 2.13, p. 16]). Vy_1 is a trigonometric polynomial of degree 2d — 1 with Fourier co-

efficients between —d and d equal to 1. The L' norm of V;_; is bounded by 3/2. If
12



g(t) = 2™V, | (t), then €™ fy coincides with the convolution of fi + f2cos(nt) with g
(this is where we need n > 3d). The result follows from

[ falpdm = [ 15+ facostut) « gliPam < [2Viealf i, [ 11+ Facostut Pm,
T T T

where the last estimate is justified by Young’s inequality. O

5. LOWER BOUND FOR p > 1

This section is devoted to the proof of the left hand side inequality in Theorem 1. Remark
first that Lemma 14 applied with f; = Zi\;—ol vpRr + vyRy_1 and fo = vyRy_1 and a
simple inequality ||Ry_1 cos(nyt)||, < [|[Ry-1]p yield

N
lonlll R llp = lonlll Ryt + Rav—1 cos(nat) I < 2onll| Ry-1@llp < 6| > oni
k=0

L?(T,E)

under the condition that ngy1 > 4ni. But we are far from having the possibility of an
induction from this. Our first step will concern this inequality, but for a family of weighted
measures on the torus.
Let oy (t) = (2=5=L)%. For k,1 > 1, we say that a function g on T belongs to family of
weights ]-",f ; if it has the form

l
1 1
g(t) = th(njt), where hj € {1, 5@2,1 - 2(,0%} forj=1,...,1L
j=1

We also set ]-'570 := {1}. With a slight abuse of notation we will say that a measure p on
T belongs to F,fJ if it has the form du = gdm for some g € F,fJ.

We will approximate these weights by trigonometric polynomials. We start with the
next lemma, which is a rather standard application of Bernstein polynomials. We prove it
for completeness.

Lemma 15. Let p > 1 and f,(t) = (1 — 5tP)/P, t € [0,1]. For any e > 0, there exists a
polynomial w.., of degree at most [4=%] such that

fp(t) Swep(t) < (1 +¢)fp(t) fortel0,1].

Proof. We have |f,(t)| = $tP71(1 — %tp)l/p_l < 271/P <1, s0 f, is 1-Lipschitz. Let S,
have the binomial distribution with parameters n and ¢ and define @y p(t) := Efy(2S,.¢).
Then w0, is a polynomial of degree at most n and

[t p () — fo(t)] <E 12

1 1 1
fp (TLS”’t) - fp(t)‘ S E ‘nSn,t - t‘ S E (E’Sn,t - nt|2)

I
‘H

S|

t(l—-1¢t) <
(=1 < 5

.3

3



Define we p, = Wy, p + ﬁ, where n = [4¢72]. Observe that

Fot) < wep(t) < Folt) + —— < fy(t) +

T < (L+2)fp(t).

<
2

Let us now approximate the weights by trigonometric polynomials.

Lemma 16. Suppose that njii/nj > 8 for all j > 1 and let k > 1,1 > 0. Then for any
g € ]-',fl, there exists a trigonometric polynomial h of degree at most Cy(p)nik such that
g < h? < 2g.

Proof. There exist disjoint 1, Io C {1,...,l} such that
_ 1
g =21l H oh (njt) H (1 — Q@i(njt)) .
Jj€el JEI>
Let ¢ := 1%223'*[*1 for j € Iy and

hi=2" 5 [T entngt) [T we, nlonngt).

jel JEl2

where we; j, are polynomials given by Lemma 15. Then h is a trigonometric polynomial of
degree at most

2 ! 2
deg(h) < Z n;k + 2[45_2]71']{ < S Z4l+1*jn-k < %n k
gln) = j i v =025 it = 2o
jeh jelz e= n
Moreover,
g<hP<g H (1+¢5)P < eF i€ty Sig < en2 X 2j_l_lg < 2g.
JEI2

The following lemma will comprise a first step in our main inductive argument.

Lemma 17. Suppose that k > 1, 1 > 0 and nji1/n; > Cs(p)k for j > 1. Then for any
p € Fy, and any vectors vy, ..., vi41 in a normed space (E, || - ||), we have

+1

p
LI wrsl aw = el [ Bian
T 5% T

Proof. We may assume that C3(p) > 8. Let g = S—T’; and h be a trigonometric polynomial
given by Lemma 16. We have

I+1 » 1 I+1 »
/ HZUJ'R]'H d,uZ / HZ’UjRjH hPdm.
et 2 )=
J J
14



Observe that
+1

Z viR;h = fh+ vy cos(ng1t) Rih,
=0

where f is a vector-valued trigonometric polynomial. Moreover,
!
max{deg(R;h), deg(fh)} < deg(h) + Y n; < (Ci(p) + 2)nik
j=1

and the assertion easily follows by Lemma 14. O
Lemma 18. For any p > 1, there exists a real polynomial w, such that P~ < wp(x) for
z € [0,2] and

wh(X1)dm
f’ﬂ‘ p( 1) <1

)\1(])) = .
(o Xpam)*D"

Proof. Let I, = ( (1 + cos t)pdm(t))l/p. By Jensen’s inequality, I, > I,_1, but 1 + cost
is non-constant, so this inequality is in fact strict. Let 6 > 0 be such that I, = (1+6)Ip—1.
Note that 6 depends only on p. Now choose £ > 0 (depending on §) such that

((xram) o) (omsey

(Jr XPdm) =7 I

By the Weierstrass approximation theorem, there exists a polynomial w,, such that z(P=D/p <
wy(x) < x®P~N/P 4 ¢ for x € [0,2]. To finish, it is enough to observe that

1/p 1/p
(/ng(xl)dm> < (/TXf_ldm> +e

and then A1(p) < 1 by the choice of €. O

Remark 19. We emphasize that it is clear from the proof that the polynomial w, depends
only on p (in particular it does not depend on n; which defines X ).

We are now in position to give the main ingredients for the induction procedure.

Lemma 20. For p > 1, there exist constants Cs(p), Cs(p), C7(p) and A2(p) < 1 with the
following property. If nji1/nj > Cs(p)k for j > 1, k> 1,1>0, then for any p € Fy,, any
N > 1+ 1 and any vector valued polynomial f of order at most 2n;, we have

1
(15) [Ptz 1 [1opan [ epan
T T T
5

1



and

/ IR ()

C 1/p (p—1)/p
w6 <o ([siean) ([ eam) ([rran)”

Moreover for any vi41,...,vN we have

N p—1
AL DR e T

oo (f Hfllpdu>1/p ([ etam) i R

j=l+1

(r=1)/p
(17)

Proof. Let g = d—“ and h be a trigonometric polynomial given by Lemma 16. Notice that

hf is a vector-valued trigonometric polynomial with degree at most (C1(p) 4+ 2)nik. Thus
by (14) we have for sufficiently large C5(p),

1 1
/ 1FIPE (miat)dp > / | FRIPEE (g t)dm > / | FhlPdm / Sdm
T 2 Jr 4 Jr T

1
> 4/ Hf!pdu/widm-
T T

To establish (16), let us define dfi = hP(t)¢} (ny41t)dm. By Holder’s inequality, we have

LIRS chmsatian < [ 1R 4

o\ N G
< (/THf”prH,NdM) (/ER?-&-lR;lD—i—Q,NdN) :

We have used the notation, for 1 <[ < N,

N
(18) Ry =[] X;.
=l

16



Let w), be given by Lemma 18 and € = ¢, be a small positive number to be chosen later.
By (14), if C5(p) is sufficiently large, we have

N
/ V£ R vdi < / 1P T wh(X)da
T T j=l+2
N—-1

<o) [P IT w6 [ whXnjam < ..

=142

N
< (14N /?r 111Paa I /T w?(X;)dm

=142

N
< (l—i—s)N_l/THthpdm/Tgoidm 11 /ng(xj)dm

j=l+2
(»—1)/p
</ dem) )
T

N
<21+ MY [ 7P [ e T]

=42

In the same way we show that
D p—1 ~
/TRHlRHz,NdN

N (»-1)/p
<2014 9% 06" [ mpau [ xpmanan T ([ xgam)”
T T . T
j=1+2

The above estimates together with Lemma 10 yield

(p—1)/p 1/p
) (14 )V 1 (pyN-1-1 ( / Hf”pdﬂ)
T

N
X gopdm> /de,u /Xpdm
(Letan) | [ TT [

j=l+1

RV OP (ngyqt)dp < 2
LIRS At <2 (2

(»—1)/p

Estimate (14) implies however that for sufficiently large C5(p),
1 1 N
/R?Vdu > 2(1—5)/R§V_1hpdm/X§,dm > .2 2(1—5)N1/ngdm H /dem.
T T T T j=t+1"T

To derive (16) we choose € = ¢, in such a way that

Xa(p) :i= (1 +&)(1 — )T P/Px (p) < 1.
17



To show (17) we consider two cases. First assume that 1 < p < 2. By (16), we have

N p-1
JAE DR e
E j=i+1
N
< 101 IRl sty
T j=l+1
Co(p) o NP al P Nl
S 2o/ </T|!fH du) (/ gok,dm> Z A2(p) o]l </T Rjdu> '
Jj=l+1
However

N | (-1)/p
S Anlpp oy P ( / Rﬁ-’du)
T

j=l+1
N v /N (r-1)/p
S R I B S P Y
j=I+1 j=l+1 T
v (b-1)/p
<=2 | 3 el sl [ R |
j=l+1 T
which concludes for this case.
Finally, if p > 2, we have by the triangle inequality in LP~! and (16)
N p-1
JAE DRL e
T j=l+1
N 3 Ve-0\"
<[ X 1ot (L1s1m mianian)
j=l+1
1/ N 1/ Pt
Cs(p) » P p (i—1-1)/(p—1) p :
<ot (Lrran) = ([ dham) |3 eslnato | R

j=1+1
18



To finish the proof of (17) in this case it is enough to observe that by Holder’s inequality

1/p
3 o=/ o0 ([ man)

j=l+1
(»=1)/p N 1/p
< [ £ nau-rno- > dalo sl [ R
J=l+1 j=l+1 T
(1-p)/ o
1—
< (1= (V1) S Aoyl Jan
j=l+1

g

Proposition 21. Ifk > 2, N > 1> 0, nj+1/nj > max{C3(p), C5(p), 8}tk for j > 1, then

for any p € F} | and any vectors vg,v1,...,vN in a normed space (E, | - ||) we have

/HZ%R I dW%/HZ%R [+ Z Dl [ R

where

c r
ap = /gaidm, Bp = Lp)@pa Yp = (16p3°Cr(p))r—T ?p and cpj = VPZ)‘Q@)

16 - 3P 2

Proof. We proceed by induction on N —[. If N —[ = 0 the assertion is obvious, since
ap < 1. To show the induction step we may assume that [ is fixed and we increased INV.
We consider two cases.

Case 1. ay [; H Z] 0 ViR H dp < Z] l+1 Aa(p)? 1w IP fTRng-
19



By the induction assumption (applied to N 4+ 1 and [ + 1), we have

N+1 P I+1 P N+1
/H > ok duz%/ (DIOLAK TR (ﬂp—cp,j-z-1>||vj||p/R§du
T =0 T=0 j=l+2 T

N+1

> Blloal” | Fadnt 3 B ensrollol” [ Rid
j*l+2 T
>ap/HZij H dp—p Z Ao (p)i = 1Hv]Hp/de,u
j=1+1
N+1
+Bpllocall? [ Badut 3 Gy —ensr0llol” [ Rid
j=l+2 T
—a, [ HZ%R [au+ Z = o leyl” [ R
=Il+1

where the second inequality follows by Lemma 17.

Case 2. ay fo || Shog s B[ i > 2 SIGL Ao~ s P f R
Let

1 1
dpn = <1 - zwi(nlﬂt)) dp and  dps = §¢£(nl+1t)dﬂ-

The induction assumption applied to [4+1 and N +1 with the measure pu; € .7:5 141 Yields

/ HZ%R [ 20 | HZ%R [ + Z TR Ty

=I+2

Since 1 — fcpk %, we get by Lemma 17

I+1 » 1 I+1 » 1
LI orilfam =3 [ | X or]anz sl [
T =0 T =0 !

hence
NA1 N+1
) [ 2 vl [am = Byllocall [ Badu+ 3 By = cornlisl? | Rt
j=l+2
Define
! N+1
f=2 vl and g= 3 vk
J=0 j=l+1

20



Estimate (15) and the assumptions of Case 2 yield

1
[ sirane = ¢ [ 1sipdn [ ham
T T T
. 1p N4l (»—1)/p
> 5 (L) (Lotam) (25 sap-ole [ ma
T T ] =l+1
On the other hand, by (17) we get
JAEI
T
1/p N4l | (»-1)/p
< el (Lusran) ™ ([ otam) [ 32 x| mia
T j=l+1 T
Thus

1
Pldp, < / Pd
A=y AR

and Lemma 9 gives

N+1

SIS o= [+ o= g5 [raws = [ oirae.

Inequality (15) gives

l
1 1
p p p _ .
2-3p/11*||f” dpz 2 16-3P/H,HfH d“/@kdm_ap/r ]‘E:(]:UJRJ

The induction assumption applied to [ 4+ 1, N + 1 and measure us € .7-",]: 141 Yields

p

N+1

L lolPae > 0 [ o BualPau+ 3 (3,

~ cpn)loslP [ Rde
Jj=l+2 T

Thus

N+1

N+1 I b
P
e[S vrfanza, [ S ur]| dt Y G- au0lul [ B,
T =0 T\lj=0 j=1+2 T
21



Adding (19) and (20), we obtain

/H ZwR H dp >ap/ HZUJR H du + Byl |Ul+1|p/ P d

N+1

+ 30 G o) llP [ R
j=1+2 T
N+1
>ap/ HZUJR H dp + Z cp7j_l)||vj||p/TR§’d,u.
j=l+1

g

Proof of Theorem 1 (lower bound). We now conclude the proof of Theorem 1. We recall
that kv, is uniformly bounded. Let k = k(p) be the smallest integer such that 1_77” < b,

A2(p) — 2
Then cpm < 1_}2 o) < %” and thus applying Proposition 21 with [ = 0 and g = m yields
the result with the constant ¢, = min(ay, 5,/2). O

6. PROOF OF THE UPPER BOUND

We first remark that, using the Minkowski inequality, we can replace the vector-valued
coefficients v; by their norms. So it is sufficient to prove the inequality v;’s are real positive
coeflicients.

All the integrals over the one dimensional torus T appearing in this section are with
respect to its (normalized) Haar measure m. We shall need three preparatory facts. The
first two are immediate corollaries to Lemma 13.

Corollary 22. For p > 1 and a nonzero integer n, we have
/Rk( Ye int 27rpdeng/R£7 k> 0.
T T

n
Corollary 23. Let p > 1, d > 2np + 1 and nji1/n; > d, j > 1. For positive integers
k <, we have

(21)

2mp Jr Zleerl 27p
(22) - <7 <1+
- Jr 1 i) Jr X7 I+1 -

In particular, for k >0,1>1,

2mp Jr X5 kL k+l 2mp \'!
(23) <1 — ) < 1+ .

d—1 fT k+1 - fT k+l d—1
Proof. Note that

deg(Rk71):nk+...+nl< 1 n +}< 1
N1 nii —dikL T g T d-1



hence applying Lemma 13 for f = Ry, h(t) = (1 + cost)? and n = n4 gives

27p
[t [ [ 2 e [

This is (22). Iterating (22) yields (23). O
Lemma 24. Letp>1,d>2p+1 and nj+1/nj >d, j > 1. Then for every k>0, m > 1
and non negative integers ly, ..., L, < p, we have

l lm l lm
(24) /TRQXI;—%-I X = (1+5)/TR§/X1<#1 X
where ¢ — 4nd p2p+1)

d—1d-2p—1

Proof. For any t,

Thus,

1 21 1 2lm
l Ilm 1
(25) f=X X, = Zj: [211 <j1 + l1> " 9lm <jm el ) e

where the sum is over all vectors j = (j1,...,Jm) € Xijoi{—ls,...,0,...,ls} and N; =

Ngy1J1 + -+ o+ Nepmm.
A standard computation shows that if d > 2p+1, then the mapping j — Nj is injective.

Let us write
f=bo+ Y bie™
jeComMB

where b; = 21%(3‘12-?11) . 2l1m (jjlf;”) and CoMB denotes the set X" {—1ls,...,ls}\{(0,...,0)}

of all nonzero vectors j. Since all the Fourier coefficients b; are positive, they are all upper-
bounded by the first one by = fT f- Applying Corollary 22 yields

2mp deg Ry,
P P D it N. D
/TkaI/Rbo—i— E b/R J</Rbo+ g b; \N] /TRk

jeComMB jeComB

1
< Rp/> 1+ 27pdeec R S
_(/ 1 pdesRe S

jeCoMB
23



To deal with the sum over j, we break COMB into the sets COMB,, r = 1,...,m, of the
vectors j for which the largest index of a nonzero coordinate is r. We thus get

1 “ 1
Z W = Z Z Ng+4r — p(”k-{—l +...+ nk—i—r—l)

jeComB r=1 jeCOMB,
m 1 m
<) |Cowms,| <> @p+1)
r=1 Npgtr (1 - d’ﬁ) r=1 ngd" (1 - %)

1 2p+1 2 2p+1

Plugging this back into the previous estimate and noticing that (deg Rg)/ng < (n1+ ...+
ng)/ng < 1/d* 14 ..+ 1< d/(d—1) yields (24). O

Proof of the upper bound of Theorem 1. We want to show that, for (ax), a sequence of
nonnegative real numbers, we have

N p N
(26) / (ZakRk> <G> d / Ry
T \k=0 k=0 /T

For N = 0 this is obvious. When 0 < p < 1 this instantly follows from the inequality
(x+y)P < aP+yP, z,y >0 (with C, = 1). Let N > 1. Suppose that for some integer
m > 1, (26) holds when m — 1 < p < m and we want to show it when m < p < m + 1.
Iterating the inequality (x + y)P < 2P + 2P(yxP~! + yP), 2,y > 0 (see [2], p. 1705), we find

N p N—1 N =1 N_q
T \k=0 T k=0 T i=k-+1 k=0 T
The challenge is to deal with the mixed term
N-1 N =1 N
o fm( 3 an) - X[ mm
k=0 T i=k—+1 k=0 T
where
N
Fy = Z a;i Ry 11, k>0.

1=k+1

We shall make several observations. Firstly, take o, 5 > 1 with 1/a+ 1/8 = 1 and use
Holder’s inequality,

1/a 1/
—1 « -1 —1
/RgF,f :/Rg/ (RPF) < (/ Ri) (/ RVF(” W)
T T T T

24



(which holds trivially when g = 1). Choosing 5 so that (p — 1) = [p] — 1 = m gives us
the natural power at Fj. Then brutally expanding yields

N m
—1
/T REPTY /T R ( > aiRk+l,i>

i=k+1

m N
- v ) [ IT wm,
mg+1,---,MN T

Mgy1+...+my=m i=k+1

The integral [ R} Hfikﬂ R}, ; is of the form [ RZX,?H . Xﬁ{,\’ with the nonnegative

integer powers lg41,...,INn not exceeding m < p. Therefore we can apply Lemma 24 to
factor R} out,

N N
LRI Rz<aso [RE[TT R
T =kt T Tizk+1

provided that d > 2p + 1, and then use the multinomial formula again to get back to FJ",

/RﬁF,TS(IJre)/Ri/F,T.
T T T

Recall that € = %2(35;—1%' We choose d,, large enough to assure that for d > d, we have

€ < 1. By the inductive assumption,

N
/TF,,Tng Z a;”/T Z:—Li

i=k+1

with Cy, > 1, provided that d > d,,,. We finally get

N-1 N-1 1/a N 1/6
z%ﬁwygz%gﬂ)(qm@%z@/m@
T T T T

k=0 k=0 i=k+1
N N ) 1/8
<20, Y 3wt [ m( [ )
k=0 i=k-+1 T T

Lastly, notice that we have Rj,1; to the power of m but we want the p-th power. Since
m < p, there is some room. Introduce the constant

_ (U xmym\
ve () <
25



By (23) we obtain

1/8
([ )
T

IN
Q.
|_|

(e 2) ™ [ome [ )
g((udzipl)l ()\m/pl </Xk+1 / )m/p>1/ﬂ
(o) ] (o fo)

ot ([t [r)"

where 7, = <1 + 27 ) Ap. Therefore,

Zak/RpFP L<o0, Z Z </ ) (/Xkﬂ / )(pn/p

k=0i=k+1

o (o) (et [t )

k=01i=k+1

Provided that 7, < 1, the first bit can be easily estimated as desired,

>3t (fm) St gty

k=0i=k+1

The second one requires some more work. With the aid of (22) with k =1 and (23),

p p p 27rp ~h D
R X X< g R?,
- T

so, provided that 7, <1 — 27”” , that is A, < 27rp) < ( - 27r—p), we obtain

d—1 d—1
S5t (fm) 2t e [ S [ | ]
k=0 i=k+1 T p T k=0 Pt

d—1

1 1 N
< p (1 27rp> z :af/Rf
d—1 i=1 T

Putting everything together,

N— N

1 N p—1
ak/Rk ( Z aiRZ> < C’Zai/ Rg,
k=0 7T i=k+1 k=0 T



where

Mp p—1 Mp
C =2C, o) Ll Ee P
Thus,
N p N
/ ZakRk < 2p(1—|—C)Zai/Rp’
T \k=0 k=0 /T
which completes the proof. O

Remark 25. Even though we have not kept track of the values of the constants dp, ¢, and
C) in our arguments, with some extra work it can be shown that for the upper bound in
Theorem 1 one can take

d](gupper) = 80p> and Cp = (16p)PH, p>1,

whereas for the lower bound it is enough to have

3
lower -
d; ) _ (ﬂ)ﬁ 1 JUower) _ o109

P < ’
— 10-8p
cp =10

p—1

1
— (p=l)r7!
o= (i)

, pe(L2] and p > 2.
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