DISCRETE ANALYSIS, 2020:15, 17 pp.
www.discreteanalysisjournal.com

Random Volumes in d-dimensional
Polytopes
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Abstract: Suppose we choose N points uniformly randomly from a convex body in d
dimensions. How large must NV be, asymptotically with respect to d, so that the convex hull
of the points is nearly as large as the convex body itself? It was shown by Dyer-Fiiredi-
McDiarmid that exponentially many samples suffice when the convex body is the hypercube,
and by Pivovarov that the Euclidean ball demands roughly d%/2 samples. We show that when
the convex body is the simplex, exponentially many samples suffice; this then implies the
same result for any convex simplicial polytope with at most exponentially many faces.

Key words and phrases: random polytope, high dimensional convex body, simplex, simplicial polytope,
volume threshold

1 Introduction

Suppose that points q,qp, ... are sampled uniformly and independently from a convex body X C R?.
We are interested in the asymptotics of the random variable Vx y given by the volume of the convex
hull of qq,...,qy. In particular, we would like to know how large N has to be to ensure that w.h.p.! the
volume of the convex hull of qi,...,qy is a significant fraction of the volume of X.

This problem is well understood when X is a product space (i.e., a hypercube) or a Euclidean ball.
In the case where X is the hypercube [0, 1]¢, the coordinates of the q; are independent uniform random
variables in [0, 1], and Dyer, Fiiredi, and McDiarmid [5] proved the following theorem.
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o0 2
Theorem 1.1 (Dyer, Fiiredi, McDiarmid, 1992). If X is the hypercube [0,1]9, A = ¢l (i=a1) du 152 14,
and € > 0, then as d — o« we have that

0 ifN=N(d)<(A—¢g),

EWWH{I#N:M®>&+@4

In particular, an exponential number of sample points suffice to capture the volume of the hypercube
with the convex hull of the sample (and they even determine the correct base of the exponent). This was
generalized in 2009 by Gatzouras and Giannopoulos in [6] to the case of random points with i.i.d. coordi-
nates which instead of being uniform are drawn from any even, compactly supported distribution that
satisfies certain mild conditions.

On the other hand, if X is the Euclidean ball, Pivovarov proved in [9] that the threshold is super-
exponential.

Theorem 1.2 (Pivovarov, 2007). If X is the unit Eulidean ball in R¢, X = {x € R4, Y4 ,x? <1}, and
€ >0, then as d — o we have that

d:(1-%),
ds(+e).

[N EN

EVx § . 0 ifN=N()<
Vol(X) |1 ifN=N(d)>

For results concerning a more general rotationally symmetric model of the so-called -polytopes
(also exhibiting super-exponential thresholds), see the recent papers [1, 2]. For general bounds on N
concerning arbitrary log-concave and k-concave distributions see [3].

We analyze the case where X is a convex simplicial polytope: that is, a polytope whose facets are all
simplices. In particular, we prove the following result.

Theorem 1.3. Let X C R be a convex simplicial polytope with m facets, let q1,qq, ... be a sequence
of points chosen independently and uniformly from X, and let Q; = Q; 4 C £ be the convex hull of
{q1,...,4q;}. There are positive universal constants cy,Co such that if d is sufficiently large and N > Cgm,

then Vol (Qy) > (1 — e=%0V4)Vol(X).

Since any convex simplicial polytope with m faces can be partitioned into at most m simplices, which
are all affine equivalent, it suffices to prove Theorem 1.3 in the case where X is a simplex. In particular,
we let Q, denote the standard embedding of the (d — 1)-dimensional simplex in d-dimensional space:

Qi={x>0:x1+x+ - +x4=1}.
The heart of our results is thus the following statement.

Theorem 1.4. Let q;,qz2,... be a sequence of points chosen independently and uniformly from Q = Q,
and let Q;j = Qja C Q be the convex hull of {qi, . ..,q;}. There are positive constants co,Cy such that if

d is sufficiently large and N > C¢, then ENol(Qy) > (1 —e~0V4)Vol(Q).

Remark 1.5. By the Borel-Cantelli lemma, it follows that if we take a sequence of instances Q1,<Q»,...,
then Vol(Qu 4)/Vol(,) — 1 as d — oo with probability 1.
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Remark 1.6. For clarity, we do not try to optimize any constants in our proofs. We get the theorem with
co = § and Co = 300.

The following lower bound shows that an exponential dependence is necessary.

Theorem 1.7. Under the assumptions of Theorem 1.4, for every € > 0, if N < Y9 then we have

WEVOI(QN) — 0 as d — oo, where y=0.577... is the Euler-Mascheroni constant.

A similar lower bound with a worse constant follows from Theorem 1 in [3]. To prove Theorem 1.7,
we use the approach from [5]. We conjecture that the value of the constant e” is sharp. (The method from
[5] yields sharp results in the independent case as well as rotationally symmetric ones — see [1, 2, 5, 9] —
where the dependence between components is mild, as in the case of a simplex.) For the upper bound, we
follow a different strategy, which is summarized at the beginning of the next section.

The rest of the paper comprises two sections, which are devoted to the proofs of Theorems 1.4 and 1.7.

2 Proof of the upper bound: Theorem 1.4

We begin by sketching the structure of the whole proof. For i = 1,...,d we define the a-caps C;(a) of
the simplex to be the sets
Cla):=Qn{x|x;>1—a}. (D)

Note that they are disjoint as long as & < 1, and the volume Vol(C;(t)) of C;(ct) is precisely o/~ - Vol(Q).
In particular, when examining the sequence {q;}, we expect to see a point in C;(¢t) every (é)d*1 steps.
And for o a constant, after exponentially many steps, we can collect points from each cap Ci(a). A
routine calculation shows that the expected measure of the convex hull of a random set of d points with
one from each C;() is exponentially small compared with Q, though it is not a priori clear how much
overlap to expect from multiple such random simplices. The basic strategy of the proof is to define a large
set Q(€,7) C Q, and then show that for any fixed x € Q(€,7), the point X is very likely to lie in the convex
hull of some simplex with one point p} in each in cap C;(a), where all the the points p},p},...,p} occur
among the first Cg terms of the sequence q;,qz,.... We do this by showing (in Lemma 2.5) that every
exponentially many steps, one obtains not only a point p} which lies in the cap C;(¢), but one which is
similar to x with respect to its proximity to a lower dimensional face close to x — this provides points
which give a good chance of containing x in the convex hull reasonably quickly. (The fact that the points
pr are large in coordinate i lets us view them as a diagonally dominant matrix, which we exploit to show
that x is likely to lie in their convex hull.) Linearity of expectation will then show that the measure of the
uncovered part of Q(€,7) is very small, and Markov’s inequality can then give a w.h.p statement as in the
theorem. In particular, although x lying in the convex hull of {qy,...,qy} is of course equivalent to x
lying in some simplex S, with vertices in {qy,...,qy}, it is perhaps surprising that we prove the theorem
by actually identifying S, rather than, say, considering whether x is separated from the convex hull by a
hyperplane.

2.1 The exponential model

A basic tool we use is the standard fact that the coordinate vector of a uniformly random point in the
simplex € can be simply described using independent exponentials, as encapsulated in the first part of
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the following lemma.

Lemma 2.1. If we generate a random point q € & by generating the coordinates q; as

E;
=7 2
Ei+-+Ey,
where the E;’s are independent, mean 1 exponentials, then q is uniform in Q. Moreover, if we generate
points p; (i=1,...,d) by generating the coordinates as

4j

aE; ; .,
== for i 3)
Pij YirtiEig+ QE;; f 7
2
o°E;;
i=(l-0)+c—F———, 4)
Pii = ) YistiEix+ OE;;

where the E; js are independent mean-1 exponentials, then each p; is uniform in the cap Ci(ot).

Proof. The statement about q is well-known and follows from the fact that the coordinate vector of a
random point in Q has the same distribution as the vector of d gaps among d — 1 independent uniforms
in [0, 1], and that these gaps are distributed as exponentials with a conditioned sum (see e.g., [4], Ch 5,
Theorems 2.1 and 2.2).

Consider now a point p; € Q which is uniform except that we condition it to lie in C;(¢t). Then for
any Borel subset B of C;(¢t), we have

_ Vol(BNCj(a))  Vol(B)
PP €B)= @)~ Vol(Gia))’

so p; is uniform on C;j(ct). Thus, in view of (1) and (2), the coordinates p; ; of p; are distributed as

Ei;

A —

d

conditionedon E;; > (1 —«) Z Eig. 5)

j=1
for independent mean-1 exponentials E; ;. After solving for E;;, this conditioning is equivalent to
conditioning on
(1-a)Y;4Ei;
— g
Note that for an exponential random variable X, the memoryless property implies that X conditioned on
X > a has the same distribution as X 4 a. Thus, rather than the condition in (5), thanks to the independence
of E;; and {E; ;} j:j#i» we could have instead replaced E;; in that expression with a random variable E
generated as

Ei;>

| =) Y s Ey
: )(Eﬁél  VEy,

and (3) and (4) follow by substitution. ]

E—

We will also use the following result of Janson, which gives concentration for sums of exponentials.

Lemma 2.2 (Janson [7]). Let W, W>, ..., W,, be independent exponentials with means i, i=1,2,....m

Let a, = min?" ; a; and let W =W, +Wo+ -+ Wy, and u =E(W) =Y 7" L Then, forany A <1,

i=1 4

]P)(W < 7L,u) < efa*,u()lflflogl). (6)
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2.2 The large typical set

Recall that our proof works by defining a large set of “typical” points in Q, and then showing that any
such point is very unlikely to be still uncovered after exponentially many steps.

To define and work with the appropriate typical set, we will be interested in the magnitudes of the
smallest coordinates of points x in the set. (Roughly speaking, the typical set Q(€,y) defined below is
one where none of smallest coordinates are much too small.) For this purpose, we make the following
definitions:

Definition 1. Given a point x € Q, (i) is the integer giving the ranking of x; among the coordinates
X1,...,Xq of X, where ties are broken arbitrarily. More precisely, rx : {1,...,d} — {1,...,d} is any fixed
bijection such that ry (i) < rx(j) implies x; < x;.

Definition 2. Given a point x € Q, iy is the integer j € {1,...,d} such that i = r(j).

In other words, if (x},...,x}) is the nondecreasing rearrangement of X = (xi,...,x4), that is x] <

. <, then (v )L = ()L

We now define our typical set as follows:

ei
Q(e,}/)—{xeﬂ:xixzdlzl,lgig}/dandx,-xz2};,1'>}/d}, 7
where the coordinates of the vector € are defined in terms of a constant € > 0 and by

o JeVd 1sisva,
e, i>d.

Lemma 2.3. For every y < 1, there is a positive constant cy such that for every 0 < € < é and d large
enough, we have

VOI('Q(Ev Y)) —cyV/d
— 2 > —e Ve, 8
vol(Q) — ¢ ®)
Proof. Letx be arandom vector uniform on Q. In view of Lemma 2.1 and (2), the vector (x; )%, = (x})%,

of the order statistics of x has the same distribution as the vector of the order statistics of i.i.d. mean one
exponentials normalised by their sum. We recall the following classical result.

Theorem 2.4 (Theorem 2.3, Chapter 5, [4]). Let E1,. .., E, be independent mean one exponential random
variables and let E(1y < E5) < ... < E(y) be their order statistics, that is a nondecreasing rearrangement

of the sequence E\, ... E,. Then the vector (E(l), . ,E(n)) has the same distribution as the vector
E| E E E E,
71771_‘_ 2 7“.’71_}_...4_7” .
n'n n—2 n 1

This gives that (x,-x)?zl has the same distribution as the vector

(E(d)+E(d1)+~-+E(di+l)>d ©
i=1

Y1 JE())
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where the E(j)’s are independent exponentials with rate j, that is the jE(j) are independent mean one
exponentials. Thus,

vol(Q(&,7)) &l . v
—_— = e <i< <
vol(Q) P x,x_dZ,Vl_l_}/d /\(x,A 2d’ ,Vyd <i< d)

:IP((X,X_ V1<i<yd ( (Lde+l)X22,');)>
&il Y
=1 —l_gz;.dﬁ” <x,-x < dz> -P (xwm)x < g) :

We estimate these probabilities using Janson’s inequality (6). First define the event

fg-2)

By (6), applied with W; = jE(j),a1 =...=aq =1, p=d,a. = 1,1 =&,
P(U) < e—d(%—l—log%) < ¢ 4/10,

Now consider the events

0= {B@ B 1)+ s B@- i < S

5d
Set
|
i =E(Ed)+E(d—1)+---E(d—i+1)= ) -.
j=d—i+1J
Lower-bounding all the terms by the last one 5, we have
>
Hi= d

By (6),

P(U;) < exp{—(d_l+ Di(1.6e —1—log(1.6¢:)) }

d
Since u — 1 —logu > —%logu for u < 0.2, we get for i < yd, as long as 1.6 < 0.2,
P(U;) < (1.68)17172,
Thus,
P (xix < Zﬁ) <P(U)+P(U) < (1.68)17Vi2 4 701
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and

ZIP’(x,»X_ >< Y (16e VOIMi2 4 Y (1.6e)1 V12 4 yge 01 = o~ OV,
i<yd i<vd Vd<i<yd

Similarly, for i = |yd |+ 1, we get jt; > £ > 7, s0

P( SUECIERINE 2751) <P(E()+...+E(d—i+1) <0.8y)+P(U)
ef(d7i+1)y(0.871710g0.8)_‘_efo.ld

IN

¢ 0:02d(1-7)y | ,=d/10,

IN

Putting these bounds together finishes the proof. O

2.3 A lightly conditioned candidate simplex

We now fix an arbitrary x € Q(€,7), and consider choosing a p; randomly from C;(«), for some i €

{1,...,d}, using Lemma 2.1. To use p; as the vertex of a candidate simplex to contain X, we hope to find
that
p,,x_zéljz <x;./2, where j=12,.. yd (10)

runs over the smallest yd coordinates of x; recall that jy denotes the coordinate of the jth smallest
component of x. Indeed, we will later argue that conditioning on this event for every i, the random points
Pi,---,Ps Would have a reasonable chance of containing x in their convex hull. The following lemma
shows that we can ensure that (10) is not too unlikely to be satisfied, without much conditioning on the
random variables E; ; for j > yd.

Lemma 2.5. Let y < { and 2ey < 5. Let x € Q(€,7) and let p; be chosen randomly from C;(ct) for
some fixed i € {1,...,d}, as in Lemma 2.1. Then for the event

4d
Bi,x:{ I; E1k>5} (11D
rx(k)>vd

and an event A;x depending only on the E; j for which r(j) < vd (and so independent of B x), we have

gy —d —10~%d
S > V> 1—
P(A,7X)_d(sea> el P(Biy)>1—e , (12)
and
ei.x 2 Bi,x m-Az',)(a

where C;x is the event that

. . &jj
VA<j<wy,jx#i )p,,x_ﬁ-
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Proof. We have

C..— _ CGEi < &iJ
1,X aEi.i+Zk7éiEi7k - 2d23

Eij . . .
Q{aEi,jxézél]z Y Eix VISJSW,JX#Z}

v1§j§7d,jx#i}

ki, jx
2¢;j 4d
Q{OlEi,jXSSZZJ, Vlﬁjﬁi’dajx#l}ﬁ Y Ei,sz? ;
j>vd
JxFi

The second event in the last line is B; x, and we define A, x to be the first event in the last line. We have

the claimed probability bound on B, x from Lemma 2.2. Indeed, for the mean u =EY ;-4 E; j,, we have
Ix#Fi

u > (1—1y)d, so (6) gives

4d 4
P Eij<— | <P Eijy < oM
j;’d 5 j;yd 5(1-7v)
JxFi JxFi

gexp{—u (5(14t_?,)_1_10g5(f—}')>}
gexp{—d(l—y) (5(14_7/)_1_105;5(14_7/)»

and for y < é, we have (1—7) <ﬁ -1 —logﬁ) > 1074,

For Ay ;, we compute

2€:7
P(A;x) =P <aE,~,,-X <2 yi<j<d,j# i>

— 5d
2¢;
=1 r (E i < JJ)
1<j<pd Sad
i
2€ij
(oo 20)
1<)j<yd Sod
JxFi
Sjj
- 1<j<yd Sad
i

for 2ey < 5a, since 1 —et>p— b—; > % for b < 1. Thus we have

RCIL o S P R B R AL
P(A,.) > s \yaje)T g > (20 .
Mix) 2 (5(xd)1’d1<j<yd8]_ (5ad)r <e > £ _d(58a> ¢ -
s
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As a consequence of Lemma 2.5, we will have that if we sample exponentially many points in C;(a),
we will with probability at least 1 — e~ have at least one one point p; for which the corresponding event
A;x occurs. In particular, we will with probability at least 1 —de~? have one such point p; for each
i=1,...,d. Furthermore, with probability 1 — de=197"? we have that all the corresponding events B, x
occur. These points py,...,p, form the vertices of a candidate simplex; note that the Lemma gives us that
these points p; satisty p; j < 2’;’2" forall 1 < jx < vd, j # i. In the next section, we show that they are
not too unlikely to contain the fixed vertex x € Q(€, 7). In particular, this will mean that after collecting
exponentially many such simplices (in time exponential(d) - N = exponential(d)), the probability that x
is not covered by any such simplex will be exponentially small.

2.4 Enclosing a fixed x € Q(¢,7)

In this section we show that for any fixed x € Q(€,7), it is only exponentially unlikely to be contained in
a simplex whose vertices p;, i = 1,2,...,d are each chosen randomly from the corresponding set C;(a).
In particular, our goal in this section is to prove:

Lemma 2.6. Let v < % and 2ey < 5a. Fix x € Q(€,7y) and suppose that for each i =1,...,d, the point
pi is chosen randomly from C;(). Let A;x be the events from Lemma 2.5 and let Ay = (\\_;Aix. Then

P (x € conv{py,...,pa} | Ax) > &,
where

(1-y)d
oo (1-39) " g

We define the matrix P = p;; whose rows are the random points p;, and write P = D + R where D is
the diagonal of P, and M = D~ R,
We will apply Gershgorin’s Circle Theorem to this matrix M.

Theorem 2.7 (Gershgorin). Suppose M = [m;;] is a real or complex d x d matrix where for each
i=1,...,d, Ry =Y ;;|mjj| is the sum of the absolute values of the non-diagonal entries of the ith row,
and the ith Gershgorin disc D; is the disc of radius R; centered at m;;. Then every eigenvalue of M lies in
one of the Gershgorin discs (and, applying this to MT, the same applies where we define the Gershgorin
discs with respect to the columns). U

In particular, we use it to prove the following statement.

Lemma 2.8. We have that
Pl = (Z(—l)"M") DL (13)

Proof. Observe that if the sum in (13) converges, then we can write

Pl=@+D'R)"'D = (i(—mkwlm)k) D' = (i(—l)kw> D' (14)

k=0
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Thus it remains just to prove that the sum converges. Recall first from the definition of C;(¢) in (1) that
diagonal entries of P are all at least 1 — &, while the sum of each row is 1. In particular, Gershgorin’s
Circle Theorem implies the eigenvalues of M have absolute value at most 1%, which is less than 1
assuming o < %

Next we argue that M is a.s. diagonalizeable. This is the case if the discriminant of the characteristic
polynomial of M is nonzero. This discriminant is a polynomial expression involving only products of the
oft-diagonal entries of M; in particular, it is nonzero with probability 1.

Thus finally we write M = QAQ ™! and M* = QA*Q~". This converges exponentially fast, confirming

convergence of the sum and thus the lemma. 0
We are now ready to prove Lemma 2.6.

Proof of Lemma 2.6. As the p; lie in general position, we can always write the given x (uniquely) as a
linear combination
x=Mp1+- -+ APa;

our goal is to show that given (); A, x, there is probability at least ¢? for some ¢ > 0 that the A; are all
nonnegative. Observe that these coefficients are determined as

A=xPL

From (13), we can write

xP!=x (i(—l)kj\/[k> D! =x(1-M) (i MZk) D, (15)
k=0 k=0

which is nonnegative so long as x(I — M) is, since M has only nonnegative entries.
Note that the jth coordinate y; of the product y = x(I — M) is given by

yj=Xj— ZDZi]Pi,szu (16)
it
Thus
IP’(xeconV{ph...,pd} ‘ AX) ZIP’(yj >0: ngd‘ AX).

Recall from Lemma 2.5 the events B,y which are all independent of the events A;x. Let By =
?:1 Bix. Each of the values of j corresponding to small coordinates of x—that is the j for which
rx(j) < yd—must satisfy y ;> 01if AxN By occurs. Indeed, from Lemma 2.5, we know that for all i # j
we have p; j < x; /2 in this case, and so in particular we have that

Xj Xj
=Y Dy > — J P S | 17
yj =X ,;} ii PijXi = Xj 2 —a) ;jxl > X 2 —a) (7

(by (4), we have D;; > 1 — o). This shows that

v
v

P(y;>0:¥j<d| Ac) >P((y

d)NBy | Ax)
=P((y d

j20:Vj<
;> 0:Vj<ds.trg(j) > yd)NBy | Ax).
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It therefore remains to handle the case of rx(j) > yd. On the event BX, for i # j, wehave p; ; < < E
(recall (3)), thus, bounding D; < 7 < 2 (see (22)) and using that x; > 2 5 for j such that rx(J ) > }/d,
we obtain (by using the first equahty 1n (17)) that

P((y;>0:Vj<d,rx(j) > yd)NBy | Ax)

>P ((ZEUX,SY V) <ds.t rg(j )>Yd>ﬂBX|Ax>.

i j
By a simple inequality P (AN B) P(B°),
( i >0:Vj<d ‘A (ZEJx,g V) <ds.t rg(j )>Yd’f[x>]P’(B§‘.AX)
L ]

The fact that the E; ; for j with r¢(j) > yd are not conditioned by Ay, Markov’s inequality and indepen-
dence yields

<ZEUX’— :Vj<ds.t. rx()>}/d‘ftx>
i j

y . . 5a (1-yd
=P ZEiﬂjxigg:ngds.t.rx(j)>yd 2<1_}/> .

it
The independence of By and Ay, a simple union bound and (12) yields
P (B | Ay) =P(BS) <de 'O,
Altogether,

5a (1-y)d )
P (x € conv{pi,...,pa} | Ax) > (1-) —de 1074, (18)

2.5 Covering most of the simplex in exponentially many steps
We are now ready to combine the ingredients to prove the main theorem.

Proof of Theorem 1.4. Recall that we draw N random points qq, 2, . . .,qy independently and uniformly
from the simplex Q and Qy denotes their convex hull. First, note that by Fubini’s theorem, we have

EVol(Qy) = IE/QI{XGQN}dx = /QIP’(x € 0y)dx > / P (x € Qy)dx, (19)

Q(e,y)

where Q(€,7) is the typical set defined in (7). Fix x € Q(€, 7). By Lemma 2.6, we will have a good lower
bound on P (x € Qy) provided we know that among the q; there are d points, one from each cap C;()
which moreover fulfill the events Ay. To use that, we condition on all possibilities for the q; and then
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argue that the majority of the possibilities are good, provided N is large enough. Formally, given two
sequences [ = (I1,...,Iy) € {0,1,...,d}" and 8 = (6y,...,6y) € {0,1}", we define the event

d
&o=1[) {iflj:O, then g; ¢ | JCi(@); if I; > 0, then g, € C;, ()
J<N i=1

and ¢; satisfies .A;j,x if and only if 6; = 1}

which tells us which among the points q; fall in the caps and among those which satisfy A;y. Let
Good be the set of those pairs of sequences (/,0) for which there are 1 < j; < ... < j; < N such that

{ljl,...,le}:{l,...,d} andel :...:Q,dzl.Then,
]P(X € QN) = ZP(X € QN | 8179)}?(8179) > Z P(X € QN | 8179)}?(8179) .
1,0 (1,6)eGood

For (1,0) € Good, by Lemma 2.6, we have P (x € Qn | £;,9) > 8,4, so it remains to estimate the sum
Y (1,0)cGood P (€1,6). Fixi € {1,...,d} and let S; be the number of points among the q; which are in C;()
and satisfy A; x. We have,
Y P(&e)=P(5i>0:Vi<d)
(1,6)eGood

By independence,

P(5;=0) = (1-B(Aw)E(a ec,-(a)))N7

where P (A, x) is taken with respect to the uniform probability on C;(¢t). Therefore, by (12) and a union

bound, )
1 vd
Z ]P)((?L@)Zl—d- <1_<8Y> e—dad—1> )

(1,6)eGood d \Sexa

1 d
IP(xEQN)>5d-<1—d-exp{—N—d(5?(;)y e—dad—‘}>. (20)

Thus,

Set y = é and then choose & to be a small enough constant such that
50\ 1=0d B B
8 = (1 —y) —dem 107 5 107, Q1)

Choose € < % (allowing the use of Lemma 2.3 later) such that 2y < 5o (allowing the use of Lemma
2.5). Then we take N = Cf with C; large enough so that the exponential term in (20) satisfies

1 €} rd —d ,,d—1 1
d exp{ N <5e ) e ‘a >

—107%d

We then have

| =
Q

P(XG QN) >
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Then, by independence, we get

d
1 0\ 1
P(x€ Quy) >1-Plxd Q) >1— (1 — Ee*lo “d> >1 —exp{—2e1° 4d-2d} >1—e
Finally, thanks to (19) and Lemma 2.3,
EVol(Qcy) > Vol(Q(g,7))(1—e™0) > 1 —e 0V,
for a positive universal constant cg. g

Remark 2.9. All of these inequalities hold with

1 3 1
Y 67 104 100’ € 87 1 ( )

(provided d is large enough). Moreover, for the constant ¢y in Lemma 2.3, we can take ¢y, = % These
justify Remark 1.6.

3 Proof of the lower bound: Theorem 1.7

Since the quantity WVOI(QN) is affine invariant, we can work with the standard orthogonal simplex

Sy in R4 instead of Qy,

d
Sd:{xemda xla"'axdzoazxig 1}7
i=1

which will be more convenient here. The following fundamental lemma from [5] is a starting point.

Lemma 3.1 ([5]). Suppose q1,qQy, ... are i.i.d. copies of a continuous random vector q in R¢. Define a
random polytope Qn = conv{qu,...,qy} and consider the function & = &4 defined by

&(x) =inf{P(q € H), H half-space containing x}, xe R4 (23)

Then for every subset A of R¢, we have

EVol(Qxn) < Vol(A)+N - (supé) “Vol(A°N{x e R4, &(x) > 0}) (24)
Ac

EVol(Qx) > vol(A) (1 2 <Z> <1 - igf&)Nd> . (25)

We will only need the first part of Lemma 3.1, that is (24), which will be applied to sets of the form
A={xecRY, &(x) > A}, the (convex) level sets of the function &. To get an upper bound on the volume
of such sets, we shall use a standard lemma concerning the Legendre transform Ag of the log-moment
generating function Aq of q,

and

Aq(x) = log Ee!9 and  Ag(x) = Gsuglé)d {(6,x) —Aq(0)}.
S
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Lemma 3.2. For every o > 0, we have
{xeRY, Eg(x) > e ¥} C {xeRY, A (x) < ). (26)

Proof. Plainly, for the infimum in the definition (23) of &q(x), it is enough to take half-spaces for which
x is on the boundary, that is

éq(x) = inf P(<q_x76> Z 0)7 (27)
0eR

where (u,v) = ¥, u;v; is the standard scalar product in R¢. By Chebyshev’s inequality for the exponential
function,
P((q—x,0)>0) < e (0 E(0.9)

Consequently, &q(x) < e Na¥) -

The next lemma is a crucial bound on the moment generating function Aq for q uniform on the
simplex S,.

Lemma 3.3. Let q be a random vector uniform on S,. For every 0 € (—oo,d)? and d > 7, we have

d
1

Eel®9 <a]]——nr.

lIJl 1—6;/d
Proof. We have,
1
Felf) — _ © / X%y = d! / eXO%idyx.
Vol(S4) Js, {x€(0.00)¢, Lxi<1}

A change of variables x; = y;/d and a simple pointwise estimate 1 < =X valid on the domain of the
integration yield

Fe'f-@ < d'd—¢ . e):eiyi/ded_zyidy
{ye(ovm)da ):nyd}

gd!d’ded/ E-(1=8i/d)yi g

(0,02)¢
d d d 1
= (d\d™ :
(did e )IIJI 1-6,/d
Finally, d! < v/2rdd?e~4ema. For d > 7, we have v2rde™ < d. O

Proof of Theorem 1.7. Fix € > 0. Let N < (V"9 and o = y— €/2. Let & be the function from (23)
defined for a random vector q uniformly distributed on S;. Setting Qy = conv{qy,...,qy}, Where
q1,q2,... are i.i.d. copies of q and using (24) with A = {x € S, q(x) > e~ %}, we get

EVOI(QN) VOI(A) —&d/2
vol(Sq) = vol(Sy) T ©
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By (26), )
VO
vol(Sy)

—P (g (q) > e*“d) <P(A*(q) < ad).

By Lemma 3.3, we obtain

A*(x) Z sup { 9 x IOgnl_e/d logd} :logd+zsup{exl+10g (1 3)}

0 (—oo0,d)d i=16;<d
= —logd + Z v (xid)
i=1

where
y(t) =t—1—logt, t>0.

As aresult, for d large enough,

. logd 1 £
< —= 1< — . — —
P(A*(q) < ad) IP( 2 v(gid) < o+ J )_P(diz_ly/(q,d)<y 4>

(here the q = (g1,...,44), so the ¢; are the components of q). To finish the proof, it remains to argue
that the right hand side is o(1). We use the fact that q has the same distribution as the vector (%, ..., 2—"),
where Z=Y;+---+Y;+W and Yy,...,Y;,W are i.i.d. exponential random variables with parameter 1
(which can be deduced e.g. from (2) of Lemma 2.1). For § € (0, 1) (to be chosen later), we write

d d
P(;;w(qid)<yi> (Z ( ) Y8>
_]P’(il;y/(d§> <y—§7 Ze ((1—6)d,(1+6)d)>

YP(Z<(1-8)d)+P(Z> (1+5)d).

The last two probabilities are exponentially small (which can be argued in a number of ways, e.g. using
Lemma 2.2, Bernstein’s inequality, or estimates for the incomplete gamma function). To handle the first
probability, we decompose Y as follows

w(t) = yi(1) + wa(0),

where v (2) = y()1( 1(t) is nonincreasing and Y () = y(#)1(; .)(?) is nondecreasing. Having this
monotonicity, if Z € ((1 —8)d, (1+ 8)d), we get y (d%) >y ( ) +v (11’5). Thus, setting

f@t) = t//1< t5>+w2(
we obtain

d j d
P(éZW(d?) <y—j,26((1—5)d,(1+5)d)> gp(ézf(mq_j)
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It remains to find the mean of f(Y¥;) and use the law of large numbers. We have,
= [ ea= [ (e [ () e
2 Yii=s)¢ sV 135 )¢
1 {e o)
—(1-6) / w(t)e ' eddr+ (1+6) / w(i)e eVt
0
1
2(1—5)/1// ’dt—i—/ w(t)e " (1 - 81)dt
0
:/ y(t)e 'dt— 6 </ w(t)e*’dtJr/ l[/(t)tetdt) :
0 0 1

/ y(t)e 'dt = / e 'logtdt =y

(which was derived by Euler — see (2.2.8) in the survey [8]) and

Since

l (oo}
/ w(t)e ' dt + / w(iye 'di < 1,
0 1

we can conclude that

Ef(Y)) >y—3.

Choosing, say 6 = &, we thus get

P lif(Y')< & Zf Y) <Ef(r) -
d &=/ STTy V3

and by the (weak) law of large numbers, the right hand side converges to 0 as d — oo. 0
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