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Random Volumes in d-dimensional
Polytopes
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Abstract: Suppose we choose N points uniformly randomly from a convex body in d

dimensions. How large must N be, asymptotically with respect to d, so that the convex hull
of the points is nearly as large as the convex body itself? It was shown by Dyer-Füredi-
McDiarmid that exponentially many samples suffice when the convex body is the hypercube,
and by Pivovarov that the Euclidean ball demands roughly d

d/2 samples. We show that when
the convex body is the simplex, exponentially many samples suffice; this then implies the
same result for any convex simplicial polytope with at most exponentially many faces.

Key words and phrases: random polytope, high dimensional convex body, simplex, simplicial polytope,
volume threshold

1 Introduction

Suppose that points q1,q2, . . . are sampled uniformly and independently from a convex body X ✓ ¬d .
We are interested in the asymptotics of the random variable VX ,N given by the volume of the convex
hull of q1, . . . ,qN . In particular, we would like to know how large N has to be to ensure that w.h.p.1 the
volume of the convex hull of q1, . . . ,qN is a significant fraction of the volume of X .

This problem is well understood when X is a product space (i.e., a hypercube) or a Euclidean ball.
In the case where X is the hypercube [0,1]d , the coordinates of the qi are independent uniform random
variables in [0,1], and Dyer, Füredi, and McDiarmid [5] proved the following theorem.
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Theorem 1.1 (Dyer, Füredi, McDiarmid, 1992). If X is the hypercube [0,1]d, l = e

R •
0 ( 1

u
� 1

eu�1)
2
du ⇡ 2.14,

and e > 0, then as d ! • we have that

EVX ,N !
(

0 if N = N(d) (l � e)d ,

1 if N = N(d)> (l + e)d .

In particular, an exponential number of sample points suffice to capture the volume of the hypercube
with the convex hull of the sample (and they even determine the correct base of the exponent). This was
generalized in 2009 by Gatzouras and Giannopoulos in [6] to the case of random points with i.i.d. coordi-
nates which instead of being uniform are drawn from any even, compactly supported distribution that
satisfies certain mild conditions.

On the other hand, if X is the Euclidean ball, Pivovarov proved in [9] that the threshold is super-
exponential.

Theorem 1.2 (Pivovarov, 2007). If X is the unit Eulidean ball in ¬d
, X = {x 2 ¬d , Âd

i=1 x
2
i
 1}, and

e > 0, then as d ! • we have that

EVX ,N

Vol(X)
!
(

0 if N = N(d) d
d

2 (1�e),

1 if N = N(d)> d
d

2 (1+e).

For results concerning a more general rotationally symmetric model of the so-called b -polytopes
(also exhibiting super-exponential thresholds), see the recent papers [1, 2]. For general bounds on N

concerning arbitrary log-concave and k-concave distributions see [3].
We analyze the case where X is a convex simplicial polytope: that is, a polytope whose facets are all

simplices. In particular, we prove the following result.

Theorem 1.3. Let X ✓ ¬d
be a convex simplicial polytope with m facets, let q1,q2, . . . be a sequence

of points chosen independently and uniformly from X, and let Q j = Q j,d ✓ W be the convex hull of

{q1, . . . ,q j}. There are positive universal constants c0,C0 such that if d is sufficiently large and N >C
d

0 m,

then Vol(QN)� (1� e
�c0

p
d)Vol(X).

Since any convex simplicial polytope with m faces can be partitioned into at most m simplices, which
are all affine equivalent, it suffices to prove Theorem 1.3 in the case where X is a simplex. In particular,
we let Wd denote the standard embedding of the (d �1)-dimensional simplex in d-dimensional space:

Wd = {x � 0 : x1 + x2 + · · ·+ xd = 1} .

The heart of our results is thus the following statement.

Theorem 1.4. Let q1,q2, . . . be a sequence of points chosen independently and uniformly from W = Wd,

and let Q j = Q j,d ✓ W be the convex hull of {q1, . . . ,q j}. There are positive constants c0,C0 such that if

d is sufficiently large and N >C
d

0 , then EVol(QN)� (1� e
�c0

p
d)Vol(W).

Remark 1.5. By the Borel-Cantelli lemma, it follows that if we take a sequence of instances W1,W2, . . . ,
then Vol(QN,d)/Vol(Wd)! 1 as d ! • with probability 1.
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Remark 1.6. For clarity, we do not try to optimize any constants in our proofs. We get the theorem with
c0 =

1
4 and C0 = 300.

The following lower bound shows that an exponential dependence is necessary.

Theorem 1.7. Under the assumptions of Theorem 1.4, for every e > 0, if N < e
(g�e)d

, then we have

1
Vol(Wd)

EVol(QN)! 0 as d ! •, where g = 0.577 . . . is the Euler-Mascheroni constant.

A similar lower bound with a worse constant follows from Theorem 1 in [3]. To prove Theorem 1.7,
we use the approach from [5]. We conjecture that the value of the constant e

g is sharp. (The method from
[5] yields sharp results in the independent case as well as rotationally symmetric ones – see [1, 2, 5, 9] –
where the dependence between components is mild, as in the case of a simplex.) For the upper bound, we
follow a different strategy, which is summarized at the beginning of the next section.

The rest of the paper comprises two sections, which are devoted to the proofs of Theorems 1.4 and 1.7.

2 Proof of the upper bound: Theorem 1.4

We begin by sketching the structure of the whole proof. For i = 1, . . . ,d we define the a-caps Ci(a) of
the simplex to be the sets

Ci(a) := W\{x | xi � 1�a} . (1)

Note that they are disjoint as long as a < 1
2 , and the volume Vol(Ci(a)) of Ci(a) is precisely ad�1 ·Vol(W).

In particular, when examining the sequence {q j}, we expect to see a point in Ci(a) every ( 1
a )

d�1 steps.
And for a a constant, after exponentially many steps, we can collect points from each cap Ci(a). A
routine calculation shows that the expected measure of the convex hull of a random set of d points with
one from each Ci(a) is exponentially small compared with W, though it is not a priori clear how much
overlap to expect from multiple such random simplices. The basic strategy of the proof is to define a large
set W(eee,g)✓ W, and then show that for any fixed x 2 W(eee,g), the point x is very likely to lie in the convex
hull of some simplex with one point px

i
in each in cap Ci(a), where all the the points px

1,px
1, . . . ,px

d
occur

among the first C
d

0 terms of the sequence q1,q2, . . . . We do this by showing (in Lemma 2.5) that every
exponentially many steps, one obtains not only a point px

i
which lies in the cap Ci(a), but one which is

similar to x with respect to its proximity to a lower dimensional face close to x – this provides points
which give a good chance of containing x in the convex hull reasonably quickly. (The fact that the points
p

x
i

are large in coordinate i lets us view them as a diagonally dominant matrix, which we exploit to show
that x is likely to lie in their convex hull.) Linearity of expectation will then show that the measure of the
uncovered part of W(eee,g) is very small, and Markov’s inequality can then give a w.h.p statement as in the
theorem. In particular, although x lying in the convex hull of {q1, . . . ,qN} is of course equivalent to x
lying in some simplex Sx with vertices in {q1, . . . ,qN}, it is perhaps surprising that we prove the theorem
by actually identifying Sx, rather than, say, considering whether x is separated from the convex hull by a
hyperplane.

2.1 The exponential model

A basic tool we use is the standard fact that the coordinate vector of a uniformly random point in the
simplex W can be simply described using independent exponentials, as encapsulated in the first part of
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the following lemma.

Lemma 2.1. If we generate a random point q 2 W by generating the coordinates q j as

q j =
E j

E1 + · · ·+Ed

, (2)

where the Ei’s are independent, mean 1 exponentials, then q is uniform in W. Moreover, if we generate

points pi (i = 1, . . . ,d) by generating the coordinates as

pi, j =
aEi, j

Âk 6=i Ei,k +aEi,i
for i 6= j (3)

pi,i = (1�a)+
a2

Ei,i

Âk 6=i Ei,k +aEi,i
, (4)

where the Ei, js are independent mean-1 exponentials, then each pi is uniform in the cap Ci(a).

Proof. The statement about q is well-known and follows from the fact that the coordinate vector of a
random point in W has the same distribution as the vector of d gaps among d �1 independent uniforms
in [0,1], and that these gaps are distributed as exponentials with a conditioned sum (see e.g., [4], Ch 5,
Theorems 2.1 and 2.2).

Consider now a point pi 2 W which is uniform except that we condition it to lie in Ci(a). Then for
any Borel subset B of Ci(a), we have

P(pi 2 B) =
Vol(B\Ci(a))

Vol(Ci(a))
=

Vol(B)
Vol(Ci(a))

,

so pi is uniform on Ci(a). Thus, in view of (1) and (2), the coordinates pi, j of pi are distributed as

pi, j ⇠
Ei, j

Ei,1 + · · ·+Ei,d
conditioned on Ei,i � (1�a)

d

Â
j=1

Ei,d . (5)

for independent mean-1 exponentials Ei, j. After solving for Ei,i, this conditioning is equivalent to
conditioning on

Ei,i �
(1�a)Â j 6=i Ei, j

a
.

Note that for an exponential random variable X , the memoryless property implies that X conditioned on
X > a has the same distribution as X +a. Thus, rather than the condition in (5), thanks to the independence
of Ei,i and {Ei, j} j: j 6=i, we could have instead replaced Ei,i in that expression with a random variable bEi

generated as

bEi =
(1�a)Â j 6=i Ei, j

a
+Ei,i,

and (3) and (4) follow by substitution.

We will also use the following result of Janson, which gives concentration for sums of exponentials.

Lemma 2.2 (Janson [7]). Let W1,W2, . . . ,Wm be independent exponentials with means
1
ai

, i = 1,2, . . . ,m.

Let a⇤ = minm

i=1 ai and let W =W1 +W2 + · · ·+Wm and µ = E(W ) = Âm

i=1
1
ai

. Then, for any l  1,

P(W  l µ) e
�a⇤µ(l�1�logl ). (6)
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2.2 The large typical set

Recall that our proof works by defining a large set of “typical” points in W, and then showing that any
such point is very unlikely to be still uncovered after exponentially many steps.

To define and work with the appropriate typical set, we will be interested in the magnitudes of the
smallest coordinates of points x in the set. (Roughly speaking, the typical set W(eee,g) defined below is
one where none of smallest coordinates are much too small.) For this purpose, we make the following
definitions:

Definition 1. Given a point x 2 W, rx(i) is the integer giving the ranking of xi among the coordinates
x1, . . . ,xd of x, where ties are broken arbitrarily. More precisely, rx : {1, . . . ,d}! {1, . . . ,d} is any fixed
bijection such that rx(i) rx( j) implies xi  x j.

Definition 2. Given a point x 2 W, ix is the integer j 2 {1, . . . ,d} such that i = rx( j).

In other words, if (x⇤1, . . . ,x
⇤
d
) is the nondecreasing rearrangement of x = (x1, . . . ,xd), that is x

⇤
1 

. . . x
⇤
d
, then (xix)

d

i=1 = (x⇤
i
)d

i=1.
We now define our typical set as follows:

W(eee,g) =
⇢

x 2 W : xix �
eii

d2 ,1  i  gd and xix �
g

2d
, i > gd

�
, (7)

where the coordinates of the vector eee are defined in terms of a constant e > 0 and by

ei =

(
e
�
p

d , 1  i 
p

d,

e, i >
p

d.

Lemma 2.3. For every g < 1, there is a positive constant cg such that for every 0 < e  1
8 and d large

enough, we have

vol(W(eee,g))
vol(W)

� 1� e
�cg

p
d . (8)

Proof. Let x be a random vector uniform on W. In view of Lemma 2.1 and (2), the vector (xix)
d

i=1 =(x⇤
i
)d

i=1
of the order statistics of x has the same distribution as the vector of the order statistics of i.i.d. mean one
exponentials normalised by their sum. We recall the following classical result.

Theorem 2.4 (Theorem 2.3, Chapter 5, [4]). Let E1, . . . ,En be independent mean one exponential random

variables and let E(1)  E(2)  . . . E(n) be their order statistics, that is a nondecreasing rearrangement

of the sequence E1, . . . ,En. Then the vector (E(1), . . . ,E(n)) has the same distribution as the vector

✓
E1

n
,
E1

n
+

E2

n�2
, . . . ,

E1

n
+ · · ·+ En

1

◆
.

This gives that (xix)
d

i=1 has the same distribution as the vector
 

E(d)+E(d �1)+ · · ·+E(d � i+1)
Âd

j=1 jE( j)

!
d

i=1

, (9)
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where the E( j)’s are independent exponentials with rate j, that is the jE( j) are independent mean one
exponentials. Thus,

vol(W(eee,g))
vol(W)

= P
✓✓

xix
� eii

d2 , 81  i  gd

◆
^
⇣

xix
� g

2d
, 8gd < i  d

⌘◆

= P
✓✓

xix
� eii

d2 , 81  i  gd

◆
^
⇣

x(bgdc+1)x
� g

2d

⌘◆

� 1� Â
igd

P
✓

xix
 eii

d2

◆
�P

⇣
x(bgdc+1)x

 g
2d

⌘
.

We estimate these probabilities using Janson’s inequality (6). First define the event

U =

(
d

Â
j=1

jE( j)>
8d

5

)
.

By (6), applied with Wj = jE( j), a1 = . . .= ad = 1, µ = d, a⇤ = 1, l = 8
5 ,

P(U) e
�d( 8

5�1�log 8
5 ) < e

�d/10.

Now consider the events

Ui =

⇢
E(d)+E(d �1)+ · · ·+E(d � i+1) 8eii

5d

�
.

Set

µi = E(E(d)+E(d �1)+ · · ·E(d � i+1)) =
d

Â
j=d�i+1

1
j
.

Lower-bounding all the terms by the last one 1
d

, we have

µi �
i

d
.

By (6),

P(Ui) exp
⇢
�(d � i+1)i(1.6ei �1� log(1.6ei))

d

�
.

Since u�1� logu >� 1
2 logu for u  0.2, we get for i  gd, as long as 1.6e  0.2,

P(Ui) (1.6ei)
(1�g)i/2.

Thus,

P
✓

xix
 eii

d2

◆
 P(Ui)+P(U) (1.6ei)

(1�g)i/2 + e
�0.1d
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and

Â
igd

P
✓

xix
 eii

d2

◆
 Â

i
p

d

(1.6e
�
p

d)(1�g)i/2 + Âp
d<igd

(1.6e)(1�g)i/2 + gde
�0.1d = e

�W(
p

d).

Similarly, for i = bgdc+1, we get µi � i

d
� g , so

P
⇣

x(bgdc+1)x
 g

2d

⌘
 P(E(d)+ . . .+E(d � i+1) 0.8g)+P(U)

 e
�(d�i+1)g(0.8�1�log0.8) + e

�0.1d

 e
�0.02d(1�g)g + e

�d/10.

Putting these bounds together finishes the proof.

2.3 A lightly conditioned candidate simplex

We now fix an arbitrary x 2 W(e,g), and consider choosing a pi randomly from Ci(a), for some i 2
{1, . . . ,d}, using Lemma 2.1. To use pi as the vertex of a candidate simplex to contain x, we hope to find
that

pi, jx 
e j j

2d2  x jx/2, where j = 1,2, . . . ,gd (10)

runs over the smallest gd coordinates of x; recall that jx denotes the coordinate of the jth smallest
component of x. Indeed, we will later argue that conditioning on this event for every i, the random points
p1, . . . ,pd would have a reasonable chance of containing x in their convex hull. The following lemma
shows that we can ensure that (10) is not too unlikely to be satisfied, without much conditioning on the
random variables Ei, jx for j > gd.

Lemma 2.5. Let g  1
6 and 2eg  5a . Let x 2 W(eee,g) and let pi be chosen randomly from Ci(a) for

some fixed i 2 {1, . . . ,d}, as in Lemma 2.1. Then for the event

Bi,x =

⇢
Â
k 6=i

rx(k)>gd

Ei,k �
4d

5

�
(11)

and an event Ai,x depending only on the Ei, j for which rx( j) gd (and so independent of Bi,x), we have

P(Ai,x)�
1
d

⇣ eg
5ea

⌘gd

e
�d , P(Bi,x)� 1� e

�10�4
d , (12)

and

Ci,x ◆Bi,x \Ai,x,

where Ci,x is the event that

8(1  j  gd, jx 6= i) pi, jx 
e j j

2d2 .
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Proof. We have

Ci,x =

⇢
aEi, jx

aEi,i +Âk 6=i Ei,k


e j j

2d2 , 8 1  j  gd, jx 6= i

�

◆
(

aEi, jx 
e j j

2d2 Â
k 6=i, jx

Ei,k, 8 1  j  gd, jx 6= i

)

◆
⇢

aEi, jx 
2e j j

5d
, 8 1  j  gd, jx 6= i

�
\

8
><

>:
Â

j>gd

jx 6=i

Ei, jx �
4d

5

9
>=

>;
,

The second event in the last line is Bi,x, and we define Ai,x to be the first event in the last line. We have
the claimed probability bound on Bi,x from Lemma 2.2. Indeed, for the mean µ = EÂ j>gd

jx 6=i

Ei, jx , we have

µ � (1� g)d, so (6) gives

P

0

B@ Â
j>gd

jx 6=i

Ei, jx 
4d

5

1

CA P

0

B@ Â
j>gd

jx 6=i

Ei, jx 
4

5(1� g)
µ

1

CA

 exp
⇢
�µ
✓

4
5(1� g)

�1� log
4

5(1� g)

◆�

 exp
⇢
�d(1� g)

✓
4

5(1� g)
�1� log

4
5(1� g)

◆�

and for g  1
6 , we have (1� g)

⇣
4

5(1�g) �1� log 4
5(1�g)

⌘
> 10�4.

For Ax,i, we compute

P(Ai,x) =P
✓

aEi, jx 
2e j j

5d
, 8 1  j  d, jx 6= i

◆

= ’
1 jgd

jx 6=i

P
✓

Ei, jx 
2e j j

5ad

◆

= ’
1 jgd

jx 6=i

✓
1� exp

✓
�

2e j j

5ad

◆◆

� ’
1 jgd

jx 6=i

e j j

5ad

for 2eg  5a , since 1� e
�b � b� b

2

2 � b

2 for b  1. Thus we have

P(Ai,x)�
bgdc!

(5ad)gd ’
1 jgd

jx 6=i

e j �
(gd/e)gd�1

(5ad)gd
·
⇣

e
�
p

d

⌘p
d

· egd � 1
d

⇣ eg
5ea

⌘gd

e
�d .
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As a consequence of Lemma 2.5, we will have that if we sample exponentially many points in Ci(a),
we will with probability at least 1� e

�d have at least one one point pi for which the corresponding event
Ai,x occurs. In particular, we will with probability at least 1� de

�d have one such point pi for each
i = 1, . . . ,d. Furthermore, with probability 1�de

�10�4
d , we have that all the corresponding events Bi,x

occur. These points p1, . . . ,pd form the vertices of a candidate simplex; note that the Lemma gives us that
these points pi satisfy pi, jx 

e jx jx
2d2 for all 1  jx  gd, j 6= i. In the next section, we show that they are

not too unlikely to contain the fixed vertex x 2 W(eee,g). In particular, this will mean that after collecting
exponentially many such simplices (in time exponential(d) ·N = exponential(d)), the probability that x
is not covered by any such simplex will be exponentially small.

2.4 Enclosing a fixed x 2 W(e,g)

In this section we show that for any fixed x 2 W(e,g), it is only exponentially unlikely to be contained in
a simplex whose vertices pi, i = 1,2, . . . ,d are each chosen randomly from the corresponding set Ci(a).

In particular, our goal in this section is to prove:

Lemma 2.6. Let g  1
6 and 2eg  5a . Fix x 2 W(e,g) and suppose that for each i = 1, . . . ,d, the point

pi is chosen randomly from Ci(a). Let Ai,x be the events from Lemma 2.5 and let Ax =
T

n

i=d
Ai,x. Then

P
�
x 2 conv{p1, . . . ,pd}

�� Ax
�
� dd ,

where

dd =

✓
1� 5a

g

◆(1�g)d
�de

�10�4
d .

We define the matrix P= p j,i whose rows are the random points pi, and write P=D+R where D is
the diagonal of P, and M=D�1R.

We will apply Gershgorin’s Circle Theorem to this matrix M.

Theorem 2.7 (Gershgorin). Suppose M = [mi j] is a real or complex d ⇥ d matrix where for each

i = 1, . . . ,d, Ri = Â j 6=i |mi j| is the sum of the absolute values of the non-diagonal entries of the ith row,

and the ith Gershgorin disc Di is the disc of radius Ri centered at mii. Then every eigenvalue of M lies in

one of the Gershgorin discs (and, applying this to MT
, the same applies where we define the Gershgorin

discs with respect to the columns).

In particular, we use it to prove the following statement.

Lemma 2.8. We have that

P�1 =

 
•

Â
k=0

(�1)kMk

!
D�1. (13)

Proof. Observe that if the sum in (13) converges, then we can write

P�1 = (I+D�1R)�1D�1 =

 
•

Â
k=0

(�1)k(D�1R)k

!
D�1 =

 
•

Â
k=0

(�1)kMk

!
D�1. (14)
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Thus it remains just to prove that the sum converges. Recall first from the definition of Ci(a) in (1) that
diagonal entries of P are all at least 1�a , while the sum of each row is 1. In particular, Gershgorin’s
Circle Theorem implies the eigenvalues of M have absolute value at most a

1�a , which is less than 1
assuming a < 1

2 .
Next we argue that M is a.s. diagonalizeable. This is the case if the discriminant of the characteristic

polynomial of M is nonzero. This discriminant is a polynomial expression involving only products of the
off-diagonal entries of M; in particular, it is nonzero with probability 1.

Thus finally we write M=QLQ
�1 and Mk =QLk

Q
�1. This converges exponentially fast, confirming

convergence of the sum and thus the lemma.

We are now ready to prove Lemma 2.6.

Proof of Lemma 2.6. As the pi lie in general position, we can always write the given x (uniquely) as a
linear combination

x = l1p1 + · · ·+ldpd ;

our goal is to show that given
T

iAi,x, there is probability at least c
d for some c > 0 that the li are all

nonnegative. Observe that these coefficients are determined as

lll = xP�1.

From (13), we can write

xP�1 = x

 
•

Â
k=0

(�1)kMk

!
D�1 = x

�
I �M

�
 

•

Â
k=0

M2k

!
D�1, (15)

which is nonnegative so long as x(I �M) is, since M has only nonnegative entries.
Note that the jth coordinate y j of the product y = x(I �M) is given by

y j = x j � Â
i:i6= j

D
�1
i,i pi, jxi. (16)

Thus
P
�
x 2 conv{p1, . . . ,pd}

�� Ax
�
� P

�
y j � 0 : 8 j  d

�� Ax
�
.

Recall from Lemma 2.5 the events Bi,x which are all independent of the events Ai,x. Let Bx =T
d

i=1Bi,x. Each of the values of j corresponding to small coordinates of x—that is the j for which
rx( j) gd—must satisfy y j � 0 if Ax \Bx occurs. Indeed, from Lemma 2.5, we know that for all i 6= j

we have pi, j  x j/2 in this case, and so in particular we have that

y j = x j �Â
i6= j

D
�1
i,i pi, jxi � x j �

x j

2(1�a) Â
i 6= j

xi � x j �
x j

2(1�a)
> 0 (17)

(by (4), we have Di,i � 1�a). This shows that

P
�
y j � 0 : 8 j  d

�� Ax
�
� P

�
(y j � 0 : 8 j  d)\Bx

�� Ax
�

= P
�
(y j � 0 : 8 j  d s.t. rx( j)> gd)\Bx

�� Ax
�
.
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It therefore remains to handle the case of rx( j)> gd. On the event Bx, for i 6= j, we have pi, j  5a
4d

Ei, j

(recall (3)), thus, bounding D
�1
i,i  1

1�a  2 (see (22)) and using that x j � g
2d

for j such that rx( j)> gd,
we obtain (by using the first equality in (17)) that

P
�
(y j � 0 : 8 j  d,rx( j)> gd)\Bx

�� Ax
�

� P
  

Â
i:i 6= j

Ei, jxi 
g

5a
: 8 j  d s.t. rx( j)> gd

!
\Bx

�� Ax

!
.

By a simple inequality P(A\B)� P(A)�P(Bc),

P
�
y j � 0 : 8 j  d

�� Ax
�
� P

 

Â
i:i6= j

Ei, jxi 
g

5a
: 8 j  d s.t. rx( j)> gd

�� Ax

!
�P

�
Bc

x
�� Ax

�

The fact that the Ei, j for j with rx( j)> gd are not conditioned by Ax, Markov’s inequality and indepen-
dence yields

P
 

Â
i:i6= j

Ei, jxi 
g

5a
: 8 j  d s.t. rx( j)> gd

�� Ax

!

= P
 

Â
i:i 6= j

Ei, jxi 
g

5a
: 8 j  d s.t. rx( j)> gd

!
�
✓

1� 5a
g

◆(1�g)d
.

The independence of Bx and Ax, a simple union bound and (12) yields

P
�
Bc

x
�� Ax

�
= P(Bc

x) de
�10�4

d .

Altogether,

P
�
x 2 conv{p1, . . . ,pd}

�� Ax
�
�
✓

1� 5a
g

◆(1�g)d
�de

�10�4
d . (18)

2.5 Covering most of the simplex in exponentially many steps

We are now ready to combine the ingredients to prove the main theorem.

Proof of Theorem 1.4. Recall that we draw N random points q1,q2, . . . ,qN independently and uniformly
from the simplex W and QN denotes their convex hull. First, note that by Fubini’s theorem, we have

EVol(QN) = E
Z

W
1{x2QN}dx =

Z

W
P(x 2 QN)dx �

Z

W(eee,g)
P(x 2 QN)dx, (19)

where W(eee,g) is the typical set defined in (7). Fix x 2 W(eee,g). By Lemma 2.6, we will have a good lower
bound on P(x 2 QN) provided we know that among the qi there are d points, one from each cap Ci(a)
which moreover fulfill the events Ax. To use that, we condition on all possibilities for the qi and then
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argue that the majority of the possibilities are good, provided N is large enough. Formally, given two
sequences l = (l1, . . . , lN) 2 {0,1, . . . ,d}N and q = (q1, . . . ,qN) 2 {0,1}N , we define the event

El,q =
\

jN

(
if l j = 0, then q j /2

d[

i=1
Ci(a); if l j > 0, then q j 2Cl j

(a)

and q j satisfies Al j,x if and only if q j = 1

)

which tells us which among the points q j fall in the caps and among those which satisfy Ai,x. Let
Good be the set of those pairs of sequences (l,q) for which there are 1  j1 < .. . < jd  N such that
{l j1 , . . . , l jN

}= {1, . . . ,d} and q j1 = . . .= q jd
= 1. Then,

P(x 2 QN) = Â
l,q

P(x 2 QN | El,q )P(El,q )� Â
(l,q)2Good

P(x 2 QN | El,q )P(El,q ) .

For (l,q) 2 Good, by Lemma 2.6, we have P(x 2 QN | El,q ) � dd , so it remains to estimate the sum
Â(l,q)2GoodP(El,q ). Fix i 2 {1, . . . ,d} and let Si be the number of points among the q j which are in Ci(a)
and satisfy Ai,x. We have,

Â
(l,q)2Good

P(El,q ) = P(Si > 0 : 8i  d)

By independence,

P(Si = 0) =
⇣

1�P(Ai,x)P(q1 2Ci(a))
⌘

N

,

where P(Ai,x) is taken with respect to the uniform probability on Ci(a). Therefore, by (12) and a union
bound,

Â
(l,q)2Good

P(El,q )� 1�d ·
 

1� 1
d

⇣ eg
5ea

⌘gd

e
�dad�1

!
N

.

Thus,

P(x 2 QN)� dd ·
✓

1�d · exp
⇢
�N · 1

d

⇣ eg
5ea

⌘gd

e
�dad�1

�◆
. (20)

Set g = 1
6 and then choose a to be a small enough constant such that

dd =

✓
1� 5a

g

◆(1�g)d
�de

�10�4
d > e

�10�4
d . (21)

Choose e  1
8 (allowing the use of Lemma 2.3 later) such that 2eg  5a (allowing the use of Lemma

2.5). Then we take N =C
d

1 with C1 large enough so that the exponential term in (20) satisfies

d · exp
⇢
�N · 1

d

⇣ eg
5ea

⌘gd

e
�dad�1

�
 1

2
.

We then have
P(x 2 QN)�

1
2

e
�10�4

d .
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Then, by independence, we get

P(x 2 Q2dN
)� 1�P(x /2 QN)

C
d

2 � 1�
✓

1� 1
2

e
�10�4

d

◆2d

� 1� exp
⇢
�1

2
e
�10�4

d ·2d

�
> 1� e

�d .

Finally, thanks to (19) and Lemma 2.3,

EVol(Q
C

d

1 N
)� Vol(W(eee,g))(1� e

�d)� 1� e
�c0

p
d ,

for a positive universal constant c0.

Remark 2.9. All of these inequalities hold with

g =
1
6
, a =

3
100

, e =
1
8
, C1 = 150 (22)

(provided d is large enough). Moreover, for the constant cg in Lemma 2.3, we can take cg =
3
8 . These

justify Remark 1.6.

3 Proof of the lower bound: Theorem 1.7

Since the quantity 1
Vol(Wd)

Vol(QN) is affine invariant, we can work with the standard orthogonal simplex
Sd in ¬d instead of Wd ,

Sd = {x 2 ¬d , x1, . . . ,xd � 0,
d

Â
i=1

xi  1},

which will be more convenient here. The following fundamental lemma from [5] is a starting point.

Lemma 3.1 ([5]). Suppose q1,q2, . . . are i.i.d. copies of a continuous random vector q in ¬d
. Define a

random polytope QN = conv{q1, . . . ,qN} and consider the function x = xq defined by

x (x) = inf{P(q 2 H) , H half-space containing x}, x 2 ¬d . (23)

Then for every subset A of ¬d
, we have

EVol(QN) Vol(A)+N ·
✓

sup
Ac

x
◆
·Vol(Ac \{x 2 ¬d , x (x)> 0}) (24)

and

EVol(QN)� vol(A)

 
1�2

✓
N

d

◆✓
1� inf

A

x
◆

N�d
!
. (25)

We will only need the first part of Lemma 3.1, that is (24), which will be applied to sets of the form
A = {x 2 ¬d , x (x)> l}, the (convex) level sets of the function x . To get an upper bound on the volume
of such sets, we shall use a standard lemma concerning the Legendre transform L?

q of the log-moment
generating function Lq of q,

Lq(x) = logEe
hq,xi and L?

q(x) = sup
q2¬d

{hq ,xi�Lq(q)} .
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Lemma 3.2. For every a > 0, we have

{x 2 ¬d , xq(x)> e
�a}⇢ {x 2 ¬d , L?

q(x)< a}. (26)

Proof. Plainly, for the infimum in the definition (23) of xq(x), it is enough to take half-spaces for which
x is on the boundary, that is

xq(x) = inf
q2¬d

P(hq� x,qi � 0) , (27)

where hu,vi= Âi uivi is the standard scalar product in ¬d . By Chebyshev’s inequality for the exponential
function,

P(hq� x,qi � 0) e
�hq ,xiEe

hq ,qi.

Consequently, xq(x) e
�L⇤

q(x).

The next lemma is a crucial bound on the moment generating function Lq for q uniform on the
simplex Sd .

Lemma 3.3. Let q be a random vector uniform on Sd. For every q 2 (�•,d)d
and d � 7, we have

Ee
hq ,qi  d

d

’
i=1

1
1�qi/d

.

Proof. We have,

Ee
hq ,qi =

1
Vol(Sd)

Z

Sd

e
Âqixidx = d!

Z

{x2(0,•)d , Âxi1}
e

Âqixidx.

A change of variables xi = yi/d and a simple pointwise estimate 1  e
d�Âyi valid on the domain of the

integration yield

Ee
hq ,qi  d!d�d

Z

{y2(0,•)d , Âyid}
e

Âqiyi/d
e

d�Âyidy

 d!d�d
e

d

Z

(0,•)d

e
Â�(1�qi/d)yidy

= (d!d�d
e

d)
d

’
i=1

1
1�qi/d

.

Finally, d! <
p

2pdd
d
e
�d

e
1

12d . For d � 7, we have
p

2pde
1

12d  d.

Proof of Theorem 1.7. Fix e > 0. Let N  e
(g�e)d and a = g � e/2. Let x be the function from (23)

defined for a random vector q uniformly distributed on Sd . Setting QN = conv{q1, . . . ,qN}, where
q1,q2, . . . are i.i.d. copies of q and using (24) with A = {x 2 Sd , q(x)> e

�ad}, we get

Evol(QN)

vol(Sd)
 vol(A)

vol(Sd)
+ e

�ed/2
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By (26),
vol(A)
vol(Sd)

= P
⇣

x (q)> e
�ad

⌘
 P(L?(q)< ad) .

By Lemma 3.3, we obtain

L?(x)� sup
q2(�•,d)d

(
hq ,xi� log

d

’
i=1

1
1�qi/d

� logd

)
=� logd +

d

Â
i=1

sup
qi<d

⇢
qixi + log

✓
1� qi

d

◆�

=� logd +
d

Â
i=1

y(xid),

where
y(t) = t �1� log t, t > 0.

As a result, for d large enough,

P(L?(q)< ad) P
 

1
d

d

Â
i=1

y(qid)< a +
logd

d

!
 P

 
1
d

d

Â
i=1

y(qid)< g � e
4

!

(here the q = (q1, . . . ,qd), so the qi are the components of q). To finish the proof, it remains to argue
that the right hand side is o(1). We use the fact that q has the same distribution as the vector (Y1

Z
, . . . , Yd

Z
),

where Z = Y1 + · · ·+Yd +W and Y1, . . . ,Yd ,W are i.i.d. exponential random variables with parameter 1
(which can be deduced e.g. from (2) of Lemma 2.1). For d 2 (0,1) (to be chosen later), we write

P
 

1
d

d

Â
i=1

y(qid)< g � e
4

!
= P

 
1
d

d

Â
i=1

y
✓

d
Yi

Z

◆
< g � e

4

!

 P
 

1
d

d

Â
i=1

y
✓

d
Yi

Z

◆
< g � e

4
, Z 2 ((1�d )d,(1+d )d)

!

+P(Z < (1�d )d)+P(Z > (1+d )d) .

The last two probabilities are exponentially small (which can be argued in a number of ways, e.g. using
Lemma 2.2, Bernstein’s inequality, or estimates for the incomplete gamma function). To handle the first
probability, we decompose y as follows

y(t) = y1(t)+y2(t),

where y1(t) = y(t)1(0,1](t) is nonincreasing and y2(t) = y(t)1(1,•)(t) is nondecreasing. Having this
monotonicity, if Z 2 ((1�d )d,(1+d )d), we get y

�
d

Yi

Z

�
� y1

�
Yi

1�d
�
+y2

�
Yi

1+d
�
. Thus, setting

f (t) = y1

✓
t

1�d

◆
+y2

✓
t

1+d

◆
,

we obtain

P
 

1
d

d

Â
i=1

y
✓

d
Yi

Z

◆
< g � e

4
, Z 2 ((1�d )d,(1+d )d)

!
 P

 
1
d

d

Â
i=1

f (Yi)< g � e
4

!
.
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It remains to find the mean of f (Y1) and use the law of large numbers. We have,

E f (Y1) =
Z •

0
f (t)e�t

dt =
Z 1�d

0
y
✓

t

1�d

◆
e
�t

dt +
Z •

1+d
y
✓

t

1+d

◆
e
�t

dt

= (1�d )
Z 1

0
y(t)e�t

e
d t

dt +(1+d )
Z •

1
y(t)e�t

e
�d t

dt

� (1�d )
Z 1

0
y(t)e�t

dt +
Z •

1
y(t)e�t(1�d t)dt

=
Z •

0
y(t)e�t

dt �d
✓Z 1

0
y(t)e�t

dt +
Z •

1
y(t)te�t

dt

◆
.

Since Z •

0
y(t)e�t

dt =�
Z •

0
e
�t log tdt = g

(which was derived by Euler – see (2.2.8) in the survey [8]) and
Z 1

0
y(t)e�t

dt +
Z •

1
y(t)te�t

dt < 1,

we can conclude that
E f (Y1)> g �d .

Choosing, say d = e
8 , we thus get

P
 

1
d

d

Â
i=1

f (Yi)< g � e
4

!
 P

 
1
d

d

Â
i=1

f (Yi)< E f (Y1)�
e
8

!

and by the (weak) law of large numbers, the right hand side converges to 0 as d ! •.
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