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Sharp moment-entropy inequalities and capacity
bounds for symmetric log-concave distributions

Mokshay Madiman, Senior Member, IEEE, Piotr Nayar, and Tomasz Tkocz

Abstract—We show that the uniform distribution minimizes
entropy among all one-dimensional symmetric log-concave dis-
tributions with fixed variance, as well as various generalizations
of this fact to Rényi entropies of orders less than 1 and with
moment constraints involving p-th absolute moments with p < 2.
As consequences, we give new capacity bounds for additive noise
channels with symmetric log-concave noises, as well as for timing
channels involving positive signal and noise where the noise has
a decreasing log-concave density. In particular, we show that
the capacity of an additive noise channel with symmetric, log-
concave noise under an average power constraint is at most 0.254
bits per channel use greater than the capacity of an additive
Gaussian noise channel with the same noise power. Consequences
for reverse entropy power inequalities and connections to the
slicing problem in convex geometry are also discussed.

I. INTRODUCTION

It is a classical fact going back to Boltzmann [12] that
when the variance of a real-valued random variable X is kept
fixed, the differential entropy is maximized by taking X to
be Gaussian. As is standard in information theory, we use
the definition of Shannon [61]: the differential entropy (or
simply entropy, henceforth, since we have no need to deal
with discrete entropy in this note) of a random vector X with
density f is defined as

EntX =Entf = — flog f,
R’V‘L

provided that this integral exists, this definition having a minus
sign relative to Boltzmann’s H-functional. It is easy to see that
if one tried to minimize the entropy instead of maximizing it,
there is no minimum among random variables with densities—
indeed, appropriately approximating a discrete random vari-
able with variance 1 with continuous random variables yields a
sequence of probability densities with bounded variance which
would have differential entropies converging to —oo (say,
fe(l}) = 4%51(_1_67_1_’_6) (I)+4L51(1—6,1+e)($)a x € R, € — 0)
Nonetheless, it is of significant interest to identify minimizers
of entropy within structured subclasses of probability mea-
sures. For instance, it was observed independently by Keith
Ball (unpublished) and in [8] that the question of minimizing
entropy under a covariance matrix constraint within the class
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of log-concave measures on R" is intimately tied to the well
known hyperplane or slicing conjecture in convex geometry.

More generally, log-concave distributions emerge naturally
from the interplay between information theory and convex
geometry, and have recently been a very fruitful and active
topic of research (see the recent survey [47]). A probability
density f on R is said to be log-concave if it is of the form
f =e7V for a convex function V : R — R U {oo}. It is said
to be symmetric (or even) if f(—x) = f(x) for each = € R.
We note that these are very natural assumptions to place on the
noise distribution for an additive noise channel; the ubiquitous
centered Gaussian noise is clearly symmetric and log-concave,
and expanding our focus to the infinite-dimensional class of
symmetric, log-concave distributions allows for much more
flexibility in modeling the noise while preserving the broad
qualitative features (such as unimodality and symmetry) of
the standard Gaussian noise.

Our primary goal in this note is to establish some sharp
inequalities relating the entropy (and in fact, a more general
class of Rényi entropies) to moments for symmetric, log-
concave distributions. For the sake of simplicity, we present
in this introduction only the result for Shannon differential
entropy. Our main result shows that among all symmetric log-
concave probability distributions on R with fixed variance, the
uniform distribution has minimal entropy. In fact, we obtain
a slightly more general result involving the p-th moments for
p < 2. Let us use 0,,(X) to denote (E[|X|P])1/?.

Theorem 1. Let X be a symmetric log-concave random
variable and p € (0,2]. Then,

EntX > logo,(X) + log [Q(p—f— 1)1/1)} ’
with equality if and only if X is a uniform random variable.

It is instructive to write this inequality using the entropy
power of X, defined by

in which case it becomes

N(X) = Z(p+1)2P0 (X2

2 -

me

In the special case p = 2 corresponding to the variance, we
have the sandwich inequality

6

e

Var(X) < N(X) < Var(X),

with both inequalities being sharp in the class of symmetric
log-concave random variables (the one on the left, coming
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from Theorem 1, giving equality uniquely for the uniform
distribution, while the one on the right, coming from the
maximum entropy property of the Gaussian, giving equality
uniquely for the Gaussian distribution.) Note that 6(me) ™! ~
0.7026, so the range of entropy power given variance is quite
constrained for symmetric log-concave random variables.

Theorem 1 can be viewed as a sharp version in the symmet-
ric case of some of the estimates from [8], [52] (see also [16]
for upper bounds on the variance in terms of the entropy for
mixtures of densities of the form e“”a). However, finding the
sharp version is quite delicate and one needs significantly more
sophisticated methods. Our argument comprises two main
steps: first, we reduce the problem to simple random variables
(compactly supported, piecewise exponential density), using
ideas and techniques developed by Fradelizi and Guedon [26]
in order to elucidate the sophisticated localization technique of
Lovasz and Simonovits [39], and second, we prove a nontrivial
two-point inequality in order to verify the inequality for such
random variables.

This note is organized as follows. In Section II, we discuss
the implications of Theorem | for bounds on the capacity
of two classes of additive noise channels. First, for chan-
nels with average-power-constrained, real-valued signals and
symmetric, log-concave noise, we show that the capacity is
at most %logQ (%) ~ 0.254 bits per channel use greater
than the capacity of an additive Gaussian noise channel
with the same noise power. Second, for channels with pos-
itive, average-amplitude-constrained signals and decreasing
log-concave (positive) noise, we show that the capacity is at
most log,(e/2) =~ 0.443 bits per channel use greater than
the capacity of an additive exponential noise channel with
the same mean. In Section III, we explain the connection
of Theorem 1 to the famous “slicing problem” in asymptotic
convex geometry, and also remark on an entropy interpretation
of a classical lemma (which also plays a role in our proof of
Theorem 1). Section IV contains a full proof of Theorem 1,
while Section V develops an extension of Theorem 1 to a
class of Rényi entropies as well as various consequences of
this extension, including to reverse entropy power inequalities.
In Section VI, we make a very general observation about the
capacity of additive noise channels (not just for real signals
and noise, but applying to a very general class of groups)—
namely, that the capacity is convex as a function of the
noise distribution, and discuss its implications. We conclude
in Section VII with remarks that yield some additional insight
into our results and a discussion of some open questions,
including why the question of finding the best additive noise
channel among symmetric log-concave noises is non-trivial.

II. CHANNEL CAPACITY BOUNDS

A. Additive noise channels with real signals

Let X,Y be random vectors taking values in R™, with
probability density functions f and w respectively. The relative
entropy between f and w is, as usual, defined by

DOXIY) = D) = [ fa)og T .

and is always nonnegative (though possibly +oc0). For a
random vector X with density f on R that has finite second
moment (or covariance matrix), the relative entropy from
Gaussianity is defined by

D(X) = D(f) = inf D(flu) = D(fll9),

where the infimum is taken over all Gaussian densities u on
R, and is achieved by the Gaussian density g with the same
mean and covariance matrix as X. If Z has density g, then it
is a classical and easy observation (see, e.g., [19]) that

D(X) = h(Z) = h(X),

or equivalently, D(f) = D(f|lg) = h(g) — h(f). In particular,
this implies that the Gaussian is the unique maximizer of
entropy when the mean and covariance matrix are fixed.

Consider the memoryless channel additive noise N that
takes in real signals and has a power budget P, i.e., the channel
can transmit in blocks any codeword (z1,...,2,) € R™ that
satisfies the average power constraint

1 n
fof <P.
e

The output produced by the channel at the receiver when
X is the input is ¥ = X + N, where the noise N is
independent of X. Let Cp(N) be the capacity of this channel,
i.e., the supremum of achievable rates (measured in bits per
channel use) that can be transmitted across the channel with
the receiver being able to decode the transmitted message with
vanishing error probability as block length grows. From the
classical channel coding theorem of Shannon [61], we know
that

Cp(N)= sup I(X;Y)= h(X+N)—h(N),

X:E|X|2=P

sup
X:E|X|2=P
where I(X;Y) as usual denotes the mutual information be-
tween X and Y. In fact, in his original paper, Shannon [01]
not only determined the capacity of the AWGN (additive white
Gaussian noise) channel, but also formulated bounds on the
capacity when the additive noise is not Gaussian. Specifically,
[61, Theorem 18] asserts that

%log <1+Niv>) <Cp(N) < ;log<

with A'(N) being the entropy power of the noise. The upper
bound just uses the fact that the Gaussian maximizes entropy
under a second moment constraint, while the lower bound
is a simple application of the Shannon-Stam entropy power
inequality [61], [62], which asserts that

N(X+Y)>N(X)+N(Y), 2

P+Var(N)>
N(N) ’

for any two independent random vectors X and Y in R"™ for
which the three entropies in the inequality are defined (see [10]
for a discussion of why just existence of N(X) and N(Y) is
insufficient).

A consequence of the lower bound in (1) is that the “worst”
additive noise is Gaussian, in the sense that for fixed noise



TO APPEAR, IEEE TRANSACTIONS ON INFORMATION THEORY, 2020

power, Gaussian noise minimizes capacity. Indeed, if Z is
Gaussian noise with Var(Z) = Var(N) = Py, then

%log (1+£V> = %log <1+N](DZ)>
%log (1 + j\/f]\f)) < Cp(N).

On the other hand, a consequence of the upper bound in (1)
is that

Cr(N) < Cp(Z) + S log <P+PN> - %log <1 + P)

Cp(Z)

IN

2 N(N) Py
B 1. Py

= Cp(2) + (Z) — h(N)

where D(N) is the relative entropy of N from Gaussianity.
We summarize these observations, of which Ihara [32] devel-
oped multidimensional and continuous-time extensions, in the
proposition below.

Proposition 1. [6/], [32] Let Cp(N) be the capacity of the
additive noise channel with a noise N of finite variance and
input signal power budget of P. If Z is a Gaussian random
variable with mean 0 and variance equal to that of N, then

Cp(Z) < Cp(N) < Cp(Z) + D(N).

Let us note that we may interpret Theorem 1 as a bound on
relative entropy. Specifically, we can rewrite Theorem 1 (for
p = 2) as follows.

Corollary 1. If the random variable N has a symmetric, log-
concave distribution, then

1 e
< Z -
D(N) < 210g<6>,

with equality if and only if N is uniformly distributed on an
interval.

Combining Corollary 1 and Proposition 1, we obtain the
following corollary.

Corollary 2. If the random variable N has a symmetric, log-
concave distribution, then

Cr(N) < Co(2) + 5105 ()
Corollary 2 implies that an additive noise channel with
symmetric, log-concave noise has capacity that is at most
3 log, (%£) =~ 0.254 bits per channel use greater than the
capacity of an AWGN channel with the same noise power. (We
remark that for most inequalities in this paper, the logarithms
may be taken to an arbitrary base, as long as entropies,
capacities, and other information functionals also use the same
base in their definitions. Therefore to get numbers in units of
bits rather than nats, all we need to do is to take the logarithm
to base 2.)

We can, in fact, say more. Let us define the restricted
capacity of an additive noise channel with noise N and input
power constraint P by

CEC(N) :=supI(X;X + N),
X

where the supremum is taken over all symmetric and log-
concave distributions for X such that EX? < P.

If N is a symmetric and log-concave noise, using the fact
that /(X; X + N) = h(X + N) — h(N) and that X + N
is symmetric and log-concave when both X and NN are, and
applying Theorem 1, we have

v

CLE(N) % log[12(P + Py)] — h(N)

lo [12(;;?)] + D(N)

log (i) +Cp(Z) + D(N)

1
2
1
2

1
Cp(N) - 5108 <7;€>,

where we used Proposition 1 for the last inequality. Thus we
obtain:

Y

Corollary 3. If N is a symmetric and log-concave noise,

0< Cp(N) - CLO(NV) < %log (”;)

Corollary 3 says that the loss in capacity from “restricting”
the input distribution to symmetric log-concave distributions
is at most %log2 (%) ~ (.254 bits per channel use. We note
the curious appearance of the same constant as in Corollary 2,
which may suggest that an inequality holds between C5¢ ()
and Cp(Z), but this remains unknown.

B. Additive noise channels with nonnegative signal and noise

Motivated by applications involving timing, such as tele-
phone signalling or trying to send bits through queues [!],
it is of interest to consider additive noise channels where
both signal and noise are nonnegative. Other aspects of such
channels have been considered in [65], [58], [63].

The typical setup is as follows. Messages can be encoded in
blocks using any codeword (z1,...,x,) € R} that satisfies

the constraint "
1
n

i=1

The output produced by the channel at the receiver when X
is the input is ¥ = X + N, where the nonnegative noise
N is independent of X. We call this channel the “positive
additive noise channel” (PANC) with noise /N and budget P,
and denote its capacity by C}(N).

Verdu [64] considers such channels and proves the following
pleasing result reminiscent of Proposition 1.

Theorem 2. [64] Let N be a positive random variable with
mean a. If E denotes an exponential random variable with
mean a, then

CH(E) < CH(N) < CH(B) + D(N| ).
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The first inequality says that exponential noise is the worst
noise for fixed budget P. Note that C};(E) = log(1+ £) has
an explicit formula.

Our main theorem implies the following for densities on the
positive real line.

Theorem 3. If f is a non-increasing, log-concave density on
(0,00), and p € (0,2], then

h(f) =

Proof. Suppose f is a non-increasing, log-concave density on

(0, 00). Then
foym(x) = F(2) a0 +2f(_

is a symmetric, log-concave density on R. We have

h(fsym) = */ fsym(x) logfsym(x)d‘r

()

) +log 2

%[logmxp) T log(p+ 1))

$)1w<0

and

Up(fsym)p:/R|x|pfsym(x)dx

s [ corsenans ) [T aesa
_ /OOO 2 f(x)de = B(XP).

Since from Theorem 1, Entfs,,, >
log [2(p 4+ 1)'/?], we conclude that

h(f) >

log op(fsym) +

1
—log E(X?) + log [Z(er 1)1/”} —log 2

[log E(X?) + log(p + 1)]

’BM—"B

for p € (0,2

, yielding the desired inequality. ]

Since entropy is maximized at the exponential distribution
under a mean constraint, we may rewrite the conclusion of
Theorem 3 as

D(X|E) = h(E) — h(X)
< log(ea) — %[log E(X?) +log(p + 1)],

when F is an exponential random variable with the same mean
a as X. When specialized to p = 1, this reads

D(X||E) <log(ea) — loga — log2 = log (g)

Combining the preceding inequality with Theorem 2 gives
the following.

Corollary 4. If N is a distribution on the positive real line
with non-increasing, log-concave density, then C;(N) <

CH(E) +1log (%).

Corollary 4 tells us that a PANC with any decreasing, log-
concave noise has a capacity that is at most log,(e/2) ~ 0.443
bits per channel use more than the PANC with exponential
noise of the same mean.

III. RELATION TO THE SLICING PROBLEM IN CONVEX
GEOMETRY

For any probability density function f on R™ with covari-
ance matrix R, define its isotropic constant L; by

L3 = || f12"(det(R))~

The isotropic constant has a nice interpretation for uniform
distributions on convex sets K. If one rescales K (by a linear
transformation) so that the volume of the convex set is 1 and
the covariance matrix is a multiple of the identity, then L% :=
Lfc is the value of the multiple.

Observe that both D(f) and Ly are affine invariants. Their
relationship was made explicit in [8, Theorem V.1].

Theorem 4. [S] For any density f on R",
—D(f) < log[V2meLy],

with equality if and only if f is the uniform density on some
set of positive, finite Lebesgue measure. If f is a log-concave

density on R", then

with equality if f is a product of one-dimensional exponential
densities.

Since D(f) > 0, Theorem 4 immediately yields V2meL § >
1, which is the optimal dimension-free lower bound on
isotropic constants. On the other hand, the problem of whether
the isotropic constant is bounded from above by a universal
constant for the class of uniform distributions on symmetric
convex bodies, which was first raised by Bourgain [13] in 1986
(see also [3], [57]), remains open.

Conjecture 1. [/3]J[SLICING PROBLEM OR HYPERPLANE
CONIJECTURE] There exists a universal, positive constant c
(not depending on n) such that for any symmetric convex set
K of unit volume in R"™, there exists a hyperplane H such
that the (n — 1)-dimensional volume of the section K N H is
bounded below by c.

The slicing problem has spurred a large literature, a synthe-
sis of which may be found in the book [15]. For our purposes,
we note that there are several equivalent formulations of the
conjecture, all of a geometric or functional analytic flavor.
Motivated by a seminal result of Hensley [31] (cf. [57]) that
¢1 < LgVol,_1(K N H) < cs, for any isotropic convex body
K in R™ and any hyperplane H passing through its barycenter
(with ¢3 > ¢; > 0 being universal constants), it can be shown
that the hyperplane conjecture is equivalent to the statement
that the isotropic constant of a symmetric convex body in R"
is bounded from above by a universal constant (independent
of n). Furthermore, it turns out that the conjecture is also
equivalent to the statement that the isotropic constant of a
symmetric log-concave density in R™ is bounded from above
by a universal constant independent of dimension. Moreover,
the assumption of central symmetry may be removed from the
conjecture if it is true [55], but we focus on symmetric bodies
and densities in this note.



TO APPEAR, IEEE TRANSACTIONS ON INFORMATION THEORY, 2020

Using this formulation in terms of isotropic constants and
Theorem 4, [8] proposed the following “entropic form of
the hyperplane conjecture”: For any symmetric log-concave
density f on R™ and some universal constant c, % <ec
Thus the conjecture is a statement about the (dimension-free)
closeness of an arbitrary symmetric log-concave measure to a
Gaussian measure.

Existing partial results on the slicing problem already give
insight into the closeness of log-concave measures to Gaussian
measures. While there are a string of earlier results (see, e.g.,
[14], [21], [59]), the current best bound, obtained by Klartag
[34] (cf., [36]), asserts that Ly < ent/4, Using a transference
result of Ball [3] from convex bodies to log-concave functions,
the same bound is seen to also apply to Ly, for a general
log-concave density f. Combining this with Theorem 4 leads
immediately to the conclusion that for any log-concave density
fonR™, D(f) < inlog n + cn, for some universal constant
c>0.

The original motivation for our exploration of Theorem 1
actually arose from the hyperplane conjecture: our hope was
to understand the extremizers (for the formulations in terms of
relative entropy and the isotropic constant) in low dimensions
as a source of intuition. Corollary 1 speaks to this question in
dimension 1 for the class of symmetric log-concave densities
(of course, in dimension 1, the geometric question for convex
sets is trivial since there is only one convex set up to scaling
in R). Indeed, Corollary 1 implies for any symmetric, log-
concave density f on R, Ly < \/% Since the uniform is
not an extremizer for the upper bound on Ly in terms of
D(f) (though the symmetrized exponential is), this bound
is not sharp. Nonetheless, let us observe that a sharp bound
on the isotropic constant in dimension 1 is actually implied
by Lemma 1 below. Indeed, Lemma 1 (or the equivalent
Proposition 2) implies that in the class of symmetric, log-
concave densities on R, Ly < @ = %, with equality if
and only if f is a symmetrized exponential density. It is
interesting to note that, already in dimension 1, the extremizers
for the isotropic constant formulation of the slicing problem
are different from those for the relative entropy formulation
of it.

As briefly mentioned earlier, the questions discussed in
this section are of interest both with and without the central
symmetry assumption. Our main result does, in fact, provide
a bound even in the non-symmetric case, thanks to the obser-
vation of [11] that (X —Y) < e2N(X) if X,Y are i.i.d.
with a log-concave distribution on R". (The constant, which
is not sharp, is conjectured in [46] to be 4 and to be achieved
by the product distribution whose 1-dimensional marginals are
the exponential distribution.) This immediately implies, from
the fact that X —Y has a symmetric, log-concave distribution,
that

N(X —Y)
62

12

—= Var(X) ~ 0.19Var(X).

mesd

N(X) > %Var(X _v)

However, this bound is significantly inferior to [52, Theorem
3], which shows that N(X) > 4Var(X). When translated to

bounds on D(Y"), this bound of Marsiglietti and Kostina [52]
reads as D(Y) < 3 log (%) for any log-concave density on R
(not necessarily symmetric). While this bound improves on an
earlier bound of % log(me) obtained by [8], it remains subopti-
mal for the class of log-concave distributions. We believe that
the optimal bound on D(Y) for log-concave random variables
Y that are not necessarily symmetric should be 3 log (2%),
which is achieved for the exponential distribution with density
e~ supported on the positive real line, but we have been
unable to prove this so far.

We have the following sharp relation between moments and
the maximum value of a symmetric, log-concave function on
the real line.

Lemma 1. For every even log-concave function f : R —
[0, +00), we have

507 [ lel sz < 2770+ 1) ( / f(x)dx)pﬂ .

Equality holds if and only if f(x) = ce=C1*| for some positive
constants c,C.

Proof. By homogeneity we can assume that f(0) = 1. Con-
sider g(x) = e~?l such that [ g = [ f. By log-concavity,
there is exactly one sign change point xg for f — g. We have

[1alr18@) = g(a) = [ [l = a0l )l5(z) - gle) < 0

since the integrand is nonpositive. It remains to verify the
lemma for g, which holds with equality. |

The inequality in the lemma is not new; indeed, it follows
from classical and more general reverse Holder inequalities
independently discovered by Ball [3, Lemma 4] and Milman-
Pajor [57, Lemma 2.6] (see also [5]). Moreover the idea of
the proof involving sign changes has also found use in recent
investigation of moment sequences of symmetric, log-concave
densities [24].

Observe that since f(0) = max, f(z) = ||f]lw for a
symmetric, log-concave density f, Lemma 1 may be rewritten
using the language of Rényi entropy.

Proposition 2. If X has a symmetric, log-concave density f
on R, we have
op
} ; 3)

1
hoo(X) > log o, (X) + glog {r(qu)

with equality if and only if X has a symmetrized exponential
distribution, i.e., f(x) = %e*‘:m for some ¢ > 0.

If we tried to use Proposition 2 to get a bound on entropy
using the fact that A(X) > ho(X), it would not be sharp
since the former inequality is sharp only for symmetrized
exponentials, and the latter is sharp only for uniforms. Con-
sequently we need a different technique to prove Theorem 1.
The approach we use in the next section utilizes the concavity
property of the Shannon entropy h, which does not hold for
hoo-
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IV. PROOF OF THEOREM 1

Let F be the set of all even log-concave probability density
functions on R. Define for f € F the following functionals:
entropy,

Butf = - [ flog .

and p-th moment,

)= ([ prf(f@daf)l/p-

Our goal is to show that

in {Entf — log [0, (f)] } — log [2(p + 1)1/13} .

Reduction

Bounded support: First we argue that it only suffices to
consider compactly supported densities. Let F, be the set
of all densities from JF which are supported in the interval
[-L, L]. Given f € F, by considering f, = A-r.Ll which

JEf

is in Fr,, and checking that Entf;, and o, (f1) tend to Entf
and o,(f), we get

igf {Entf —log [0, (f)] } = inf inf {Entf —log [0, (f)] }

L>0 Fr,

This last infimum can be further rewritten as

inf (inf {Entf, f € Fu,op(f) = a} ~ loga).

a7

Consequently, to prove Theorem 1, it suffices to show that for
every o, L > 0, we have

inf {Entf, f € Fr,o,(f) = a} >loga+log [2(]9"‘ 1)1/17} .

Degrees of freedom: We shall argue that the last infimum is
attained at densities f which on [0, c0) are first constant and
then decrease exponentially. Fix positive numbers « and L and
consider the set of densities A = {f € Fr,0,(f) = a}.

Step I. We show that M = sup;c4 —Entf is finite and
attained at a point from the set A. To see the finiteness we
observe that by Lemma 1 for every f € A we get

h(f) = / flog f < 1og([fllao) = log £(0)
< llog (mp“)) ,

p ap

In order to show that the supremum is attained on A, we need
the following lemma.

Lemma 2. Let (f,,)n>1 be a sequence of functions in A. Then
there exists a subsequence (fy, )r>1 converging pointwise to
a function f in A.

Proof. As noted above, the functions from A are uniformly
bounded (by Lemma 1) and thus, using a standard diagonal
argument, by passing to a subsequence, we can assume that
fn(q) converges for every rational ¢ (in [—L, L)), say to f(q).
Notice that f is log-concave on the rationals, that is f(\g; +
(1—X)g2) > f(q1)*f(g2)', for all rationals g1, g2 and A €

[0, 1] such that Ag1 + (1 — A)gz is also a rational. Moreover,
f is even and nonincreasing on [0, L]. Let Ly = inf{g >
0, q is rational, f(¢) = 0}. If = > Lo, then pick any rational
Ly < ¢ < x and observe that f,,(z) < fn(q) — f(q) =0,
so fn(x) — 0. The function f is continuous on [0, Lg). If
0 < x < Ly, consider rationals g1, g2, such that ¢ < z <
g2 < r < Lg. Then, by monotonicity and log-concavity,

< fw)  Tf)] = g o el o

= flae) ~ L f(0) f(r) f(r)

thus limg, .~ f(q1) = limg, o+ f(g2) (these limits exist by
the monotonicity of f). Now for any € > 0, take rationals ¢;
and g2 such that ¢; < & < ¢ and f(q1) — f(g2) < e. Since,
fu(a2) < fu(®) < fulqr), we get

f(g2) <lim inf f(z) <lim sup fn(z) < f(q1)-

therefore lim sup f,,(x) — lim inf f,,(z) < e. Thus, f,(x) is
convergent, to say f(xz). We also set, say f(Lg) = 0. Then f,
converges to f at all but two points +L, the function f is
even and log-concave. By Lebesgue’s dominated convergence
theorem, f € A. O

Suppose that (f,),>1 is a sequence of elements of A such
that —h(f,) — M. By the lemma, f, — f for some
subsequence (ny) and f € A. By the Lebesgue dominated
convergence theorem, [ f,, log fn, — [ flog f,so —h(f) =
M.

Step II. We shall show that M is attained at some extremal
point of A. Recall that f € A is called extremal if it is not
possible to write f as a combination f = Af; + (1 — A) fo,
where A € (0,1) and distinct fi, fo € A.

Indeed, suppose f is not an extremal point of A. Then
there exist A € (0,1) and fi, fo € A with f; # fo such
that f = Afi + (1 — M) f2. Since the entropy functional
—h(f) = [ flog f is strictly convex, we get

—h(f) = —h(Afi + (1 = A)f2)
< M=h(f1)) + (1 =X (=h(f2)) < M.

Thus, —h(f) # M. Since M is attained on A, it has to be
attained at some extremal point of A.

Step III. Every extremal point in A has at most 2 degrees of
freedom.

Recall the notion of degrees of freedom of log-concave
functions introduced in [26], adapted here to even functions.
The degree of freedom of a log-concave even function g :
R — [0,00) is the largest integer k such that there exist
0 > 0 and linearly independent continuous even functions
hi,...,hy defined on {x € R, g(z) > 0} such that for
every (e1,...,6r) € [=6,6]F, the function g + Zle gih;
is log-concave. Let us also notice that an even function is
log-concave if and only if its restriction to [0,00) is log-
concave and non-increasing. Thus in the above definition we
could alternatively demand that g + Ele €ih; is log-concave
and non-increasing on [0, co). Therefore in Step IV below we
only consider the restrictions of our functions g to [0, 00) and
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consider h; defined only on this set. Then h; can be defined
on (—00,0) via h;(z) = h;(—x).

Suppose f € A has more than two degrees of freedom.
Then there are continuous functions hq, hy, hs (supported in
[-L,L]) and & > 0 such that for all £1,e9,e3 € [—4, ] the
function f 4 e1h; + e2ho + e3hg is log-concave (note that
these function are not necessarily contained in A). The space
of solutions €1, 2,3 to the system of equations

61/h1+52/h2+€3/h3=0
61/‘I|ph1 +€2/|I‘ph2+€3/|l‘|ph3:0

is of dimension at least 1. Therefore this space intersected
with the cube [—6,8]® contains a symmetric interval and, in
particular, two antipodal points (11, 72,73) and —(91,m2,13).
Take fy = f+ mhi + m2he +n3hs and fo = f—mh —
n2ha — n3hs, which are both in A. Then, f = 3(fy + f-)
and therefore f is not an extremal point.

Step IV. Densities with at most 2 degrees of freedom are
simple.

We want to determine all nonincreasing log-concave func-
tions f on [0, 00) with degree of freedom at most 2. Suppose

1 < 22 < ... < =z, are points of differentiability of the
potential V' = —log f, such that 0 < V'(z1) < V'(z2) <
... < V'(x,). Define
| V(x), r < x;
Vi(z) = { V(z:) + (x — )V (x;), = > x;.

We claim that e~V (1480 + Y-, &;V;) is a log-concave non-
increasing function for |§;| < e, with ¢ sufficiently small.
To prove log-concavity, we observe that on each interval the
function is of the form e~V (®) (1 4+ 7 + T2 + 3V (x)). On
the interval [0, z1] it is of the form e~V (1 + 7 + V). Log-
concavity follows from Lemma 1 in [26]. We also have to
ensure that the density is nonincreasing. On [0, x;] it follows
from the fact that

" _ (log(1 S v >
V' — (log(1 + 7V)) V( 1+TV)_O

for small 7. On the other intervals, we have similar expressions
T2 + 13V (2)
1+ 71+ o+ sV (x)

V'(z) >0,

which follows from the fact that V'(z) > « for some « > 0.
From this it follows that if there are points 1 < x2 <

.. < Zp, such that 0 < V'(z1) < V'(z2) < ... < V'(zy),

then e~V has degree of freedom n+ 1. It follows that the only

function with degree of freedom at most 2 is of the form

o 67
V@ ={ 3160

r<a
x € la,a+b].

A two-point inequality

It remains to show that for every density f of the form

f(ZE) = CI[O,a](‘xD + cei’\/(lx‘ia)l[a,a-l-b](|$|)7

where c is a positive normalising constant and a, b and y are
nonnegative, we have

Entf —logo,(f) > log [2(]9_,_ 1)1/17}

with equality if and only if f is uniform. If either b or ~
are zero, then f is a uniform density and we directly check
that there is equality. Therefore let us from now on assume
that both b and  are positive and we shall prove the strict
inequality. Since the left-hand side does not change when f is
replaced by x — A\f(A\z) for any positive A, we shall assume
that v = 1. Then the condition | f = 1 is equivalent to 2¢(a+
1 —e%) = 1. We have

b
Entf = —2aclogc — 2/ ce " log(ce™)dx
0

=—2(a+1-e?)logc+2¢(l — (1+b)e )

1—(1+b)e?
=-1 _—
oget a+1—e?
Moreover,
aP Tt b
ob(f)=2c +/ x+a)fe”*dx | .
=2 2g+ [ @ra)

Putting these together yields

Entf —logo,(f) — log [2(19 + 1)1“7}

1—(1+b)€7b p+1 —b
R g log(a+1—e7")
1 b
— —log [a?™ + (p+ 1)/ (z+a)Pe"dx| .
p 0

Therefore, the proof of Theorem 1 is complete once we show
the following two-point inequality.

Lemma 3. For nonnegative s, positive t and p € (0,2] we
have

t
log {SPH +(p+ 1)/ (s + x)Pe *dx
0

1—(1+t)e
s+1—et’
Proof. Integrating by parts, we can rewrite the left hand side
as log[fot(s + x)PTdu(x)] for a Borel measure p on [0, ]
(which is absolutely continuous on (0,t) with density e~ *
and has the atom p({t}) = e~*). With s and ¢ fixed, this is
a strictly convex function of p (by Holder’s inequality). The
right hand side is linear as a function of p. Therefore, it suffices
to check the inequality for p = 0 and p = 2. For p = 0 the
inequality becomes equality. For p = 2, after computing the
integral and exponentiating both sides, the inequality becomes

3431 —e s +6(1—(1+t)e s
+3e7H(2e! — 12 — 2t — 2) < dPe?e,
where we puta =s+1—e tand b =1— (1 +¢)e”?, which

are positive. We lower-bound the right hand side using the
estimate e > 1+ + 12% + 22%, 2 > 0, by

b b2 483 4
a® (1 +2-+25+ > = a® + 2a°b + 2ab* + - b°.
a a a 3

<(p+1logls+1—e"+p
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Therefore it suffices to show that
2431 —e s +6(1—(1+t)e s
4
+3e7H(2e’ — 12 — 2t — 2) < a® + 2ba® + 2b%a + gbg.
After moving everything on one side, plugging in a, b,
expanding and simplifying, it becomes
1

2etu(t) - 82 + e 2tu(t) - s + gef‘%w(t) >0,

et —1—t,

v(t) = 32 — 2te’ — 12¢" 4 212 + 8t + 9,

e+ 3e*! (3t — 4t — 13) + 3e'(6t% + 20t + 19)

— 4t% — 18> — 30t — 19.

It suffices to prove that these functions are nonnegative for

t > 0. This is clear for u. For v, we check that v(0) = v'(0) =
v"”(0) =0 and

1

¢ (1) =12 —t—9 > 12(t+ 1) —t =9 = 11t 3 > 3,

For w, we check that w'(0) =
w®(0) = 18 and

1
ge_tw(m(t)

= 81e* + 32¢"(3t% 4 11t — 8) 4 80t + 61% + 239
> 8le? — 8- 32¢" + 239

w”(0) = w”(0) = 0,

2
128\ 2975
=81 (et = == 270
8 (e 81 ) TR
2075
> —.
=81

It follows that v(t) and w(t) are nonnegative for ¢ > 0. [

Remark 1. If we put s = 0 and t — oo in the inequality from
Lemma 3, we get logI'(p + 2) < p (in particular p < 2.615).
We suspect that this necessary condition is also sufficient for
the inequality to hold for all positive s and t.

V. RENYI ENTROPY MINIMIZERS
A. A Rényi extension of Theorem I

For ¢ € (0,1) U (1, 00), the Rényi entropy of order q of a
probability density f on R is defined as:

1iqmg<4f%@¢0.

For ¢ = 0,1, 0o, the entropies h,(f) are defined in a limiting
sense. Thus

ha(f) = h(f) = - /R f(z) log f(z)dx

hq(f) =

is the Shannon differential entropy; the Rényi entropy of order
0is
ho(f) = log [supp(f)],

where supp(f) is the support of f, defined as the closure of the
set {x : f(x) > 0} and |A| represents the Lebesgue measure
of the subset A of R; and the Rényi entropy of order oo is

where || f||~ is the essential supremum of f with respect to
Lebesgue measure on R. It is an easy consequence of Holder’s
inequality that the Rényi entropies of a fixed density f are
monotonically decreasing in the order: hy(f) > h,(f) if 0 <
g < r < oo. Moreover, if the density f is log-concave, || f]| s
is just the maximum value of f by continuity properties of
convex functions; also, the Rényi entropies of f of all orders
are necessarily finite, and can be bounded in terms of each
other [29], [27].

We have the following extension of Theorem 1 to Rényi
entropies of orders between 0 and 1.

Theorem 5. Let X be a symmetric log-concave random
variable and p € (0,2]. Then, for any q € [0, 1],

ha(X) > log 0,(X) + log [2(p +1)'7]

with equality if and only if X is uniformly distributed on a
symmetric interval. Moreover, by taking the limit as p | 0,

hq(X) = E(log |X[) + log(2e).

Proof. The strict inequality holds for non-uniform measures
by monotonicity of Rényi entropies in the order, and it is easily
checked that equality holds for the uniform. ]

Thus, in Theorem 1, one can replace Shannon entropy by
Rényi entropy of any order ¢ in [0, 1] and the same statement
holds true. In fact, one can also use Theorem 5 to get bounds
on Rényi entropies of order greater than 1. In order to do this,
we use the sharp Rényi entropy comparison result implicit in
[29] and explicitly discussed in [51] (see also [27, Corollary
7.1]), which states that if f is a log-concave density in R,

then for p > ¢ > 0,
log q logp
— < —
() = (1) < B8 — 2,

with equality achieved for the product density whose one-
dimensional marginals are the symmetrized exponential dis-
tribution. Consequently we may write, for ¢ > 1,p € (0, 2],
and in our setting of a random variable X with a symmetric,
log-concave distribution on R,

n

log q
q—1
While this does provide a bound on arbitrary Rényi entropies
in terms of moments (which is new to the best of our
knowledge), we emphasize that it is not sharp when ¢ > 1.
It is instructive to compare Theorem 5 with results of
Lutwak, Yang and Zhang [4 1] on maximizing Rényi entropies
subject to moment constraints (the p = 2 case was indepen-
dently discovered by [17] and the ¢ = 1 case is classical, see,
e.g., [19]). They showed that if p and E| X | are fixed positive
numbers, and if

he(X) > logo,(X) + log {Q(p + 1)1/p} _

1
9> T

1
or equivalently p > — — 1), 4
1+p( q ypr>o ) )



TO APPEAR, IEEE TRANSACTIONS ON INFORMATION THEORY, 2020

then h,(X) is maximized by a scaling of a “generalized
standard Gaussian density” of the form

1

Gpa(z) = Ané(1+§|x|p ‘q’ ifg<1
A;& exp{—%}7 if g=1.
Here,
p=zL -2
q D

is well defined when ¢ < 1 (and always negative because
of the assumed relationship (4)), and A, , is a normalizing
constant given by

P — )

L(:5;)

1—q

Ap,l

Apa = pi/p '

®)

when ¢ < 1, and A,; = 2p"/PT(1 + 1), with T'(z) :=

Jo< t*te~tdt as usual denoting the Gamma function.
Define the Rényi entropy power of order q of X by

_— e2ha(X)
2,9

This normalization has not been used in the literature before,
but we use it since it simplifies our expressions while being
consistent with the usual entropy power in the sense that
Ni(X) = N(X). For a random variable Z, , drawn from
the density g, 4, it turns out (see, e.g., [40] for a sketch of the
computation) that 0,,(Z, ,) = E|Z, 4| = 1 and the maximum
entropy power for random variables with p-th moment equal
to 1 is given by

ifg<1
if ¢ = 1.

PN
s NS

== a e
4]
S|

Nq(Zp,q) =

[N e
—

—~
by

]

-

[l= =
S—
V)

Thus one has the following upper bound for the Rényi en-
tropy power of a random variable X when p € (0,2] and
q € (155, 1)

Ny(X) < Nq(Zp,q)Up(X)2-

Note that the maximizers of Rényi entropy (which are scaled
versions of Z, ;) are not always log-concave; for example,
when ¢ = 1, it is easy to see from the formula above that they
are log-concave precisely when p > 1.

This may be compared to Theorem 5, which may be written
in the form

< o

Ny(X) 2 [0+ DF (%)%,

2,q
when p € (0,2],q € (0,1], and X is symmetric and log-
concave. In particular, for p = 2, we obtain that for any q €

(1/3,1), we have the following sandwich bound when X is

symmetric and log-concave:
2
12 Ny(X 1 T-a
< al )<<1+5> . (6)
e

A3 e = Var(X)

2

B. Implication for relative q-entropy

As we did in Section III for the case of ¢ = 1, it is
possible to express Theorem 5 as a bound on a kind of
distance between a symmetric, log-concave distribution and
the generalized Gaussian with the same p-th moment. In order
to do this, we need to define the notion of relative g-entropy,
whose properties were first systematically studied by Ashok
Kumar and Sundaresan [2]. The relative g-entropy between
densities f and u is defined as

-1
I =11 f<u>q’
MW>1_q%/quwq

when ¢ € (0,1) U (1,00); as pointed out in [2], the relative
g-entropy is genuinely a notion of distance between densities
rather than between probability measures since it may depend
on the reference measure being used. There is a way to write
the relative g-entropy in terms of more familiar notions of
distance. Define the Rényi divergence of order o between
densities f and g by

Da(fllu) = 10g/fau1w

for a € (0,1) U (1,00); by taking limits, it is clear that
D1(f|lg) should be defined as the usual relative entropy
D(f]|g). Also define the a-escort density of a density f by

/2 (a)
Then I,(f[|u) = D1/4(fqllug) (see [2, Lemma 2]), which also
makes clear that I1 (f||u) = D1(f||u) = D(f||u).

The following proposition is a particular example of general
facts about relative g-entropy projections onto linear families
of probability measures that were proved in [2].

Proposition 3. [2, Corollary 13] Suppose q € (0,1], and let
‘P be the family of probability measures such that the mean of
the function T : R — R under them is fixed at a particular
value t. Let the random variable X have a distribution from
P, and let Z be a random variable that maximizes the Rényi
entropy of order q over P. Then

Iq(XHZ) = hq(Z) - hq(X)~

There continues to be a relation between the two sides
of the identity when ¢ > 1 but the equality is replaced by
an inequality in this case [2]; we do not, however, use that
observation in this note since we only consider ¢ < 1.

Clearly, combining Proposition 3 with Theorem 5 allows us
to write the latter as a bound on the relative g-entropy from a
generalized Gaussian density.

Corollary 5. Let X be a random variable with a sym-
metric, log-concave distribution. Then, for p € (0,2] and
q € (ﬁ7 1), and Z being the multiple of Z, , that has the
same p-th moment as X, we have

(Hf.f)liq]
2(p+ 1)% ’

with equality if and only if X is uniformly distributed on a
symmetric interval.

mwm<mpm
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C. Reverse entropy power inequalities

The entropy power inequality (see (2)) has spawned a
large literature, both in mathematics due to its fundamen-
tal connections to geometric functional inequalities, and in
engineering due to its many applications in quantifying the
fundamental limits of various communication systems. Some
recent refinements of the entropy power inequality may be
found, e.g., in [42], [43], [44], [50].

One may formally strengthen it by using the invariance of
entropy under affine transformations of determinant +1, i.e.,
N(AX) = N(X) whenever |det(A)| = 1. Specifically,

Ailn£2 N(A1X + AY) > N(X) + N(Y), (7)
where the matrices A; and As range over SL(n,R), i.e., over
entropy-preserving linear transformations. It was shown by [7]
that inequality (7) can be reversed with a constant independent
of dimension if we restrict to log-concave distributions. More
precisely, there exists a universal constant C' such that if X
and Y are independent random vectors in R™ with log-concave
densities,

Jnf N4 X+ 4Y) < C N(X) +N(Y)],

where A; and As range over SL(n,R). This reverse entropy
power inequality is analogous to Milman’s [56] reverse Brunn-
Minkowski inequality, which is a celebrated result in convex
geometry. Thus the reverse entropy power inequality of [7]
(and its extension to larger classes of “s-concave measures”
in [9]) can be seen as an extension of the analogies between
geometry and information theory (discussed, for example, in
18], 221, [301, [471, [28D.

The universal constant in the reverse entropy power inequal-
ity of [7] is not explicit. However, explicit constants are known
when further assumptions of symmetry are made. For example,
Cover and Zhang [20] (cf., [46]) showed that if X and Y are
(possibly dependent) random vectors in R”™, with the same
log-concave marginal density, then A(X +Y) < h(2X). In
particular, for i.i.d. random vectors X, X’ with a log-concave
distribution, the reverse entropy power inequality holds with
both linear transformations being the identity, and with a
universal constant of 2: N(X + X') < N(2X) =4N(X) =
2N (X) + N (X))

There has been much recent interest in developing lower
bounds for the Rényi entropies of convolutions, which may
be thought of as “Rényi entropy power inequalities”. While
the growing literature on the subject is surveyed in [47],
the only orders for which sharp inequalities are known are
q = 0 (which corresponds to the Brunn-Minkowski inequal-
ity), ¢ = 1 (which corresponds to the original Shannon-Stam
entropy power inequality), and ¢ = oo (which corresponds
to generalizations of Rogozin’s inequality for convolution that
were only developed recently [48]).

While suboptimal forms of Rényi entropy power inequalities
that hold for general densities are known for ¢ € (1, 00) (see,
e.g., [37]), the only known inequalities for ¢ € (0,1) were
recently obtained in [53], [38] under the assumption that the
densities being convolved are log-concave (or more generally,
s-concave).

Our results imply a reverse Rényi entropy power inequality
for orders ¢ € (3, 1].

Corollary 6. Let XY be uncorrelated random variables with
symmetric, log-concave distributions. Then

N(X +Y) < TIN(X) + N ()],

Furthermore, if q € (%, 1), then
A3, 8\ e
No(X +Y) < T2 \1t3 Vo (X) + Ng(Y)],

where the constant Aj 4 is defined in (5).

Proof. We now observe that Theorem 1 easily gives us an
explicit reverse entropy power inequality for one-dimensional
symmetric log-concave random variables. Indeed,

NX+Y)<Var(X +Y)
= Var(X) + Var(Y)
< GO+ N (V)]

as long as X and Y are uncorrelated.
Using the inequality (6), we write
1 B

Ny(X+Y) < e(l + 2>HVar(X +Y)

_ é (1 + g) o [Var(X) + Var(Y)]

IN

1 B\ T A3 e
(145) T A M0 AL

as long as X and Y are uncorrelated. (]

Under the additional assumption of central symmetry, the
first inequality of Corollary 6 improves a result of [52], who
showed that V(X +Y) < Z5[N(X)4+N (Y)] for uncorrelated,
log-concave random variables X, Y. Other reverse entropy
power inequalities for centrally symmetric, log-concave ran-
dom vectors, motivated by analogies to Busemann’s theorem
in convex geometry, are discussed in [4].

VI. AN ASIDE ON THE CAPACITIES OF ADDITIVE NOISE
CHANNELS

We now make a general observation (we will comment
in Section VII on its connection to the rest of this paper).
Consider the mutual information I(X;Y") as a function of an
input distribution (the distribution of X, which we assume to
have a density p(z) with respect to some reference measure
on the input space) and a channel or Markov kernel K (z, dy)
that represents the behavior of Y conditioned on X (which we
assume to have a density with respect to a reference measure
on the output space, so that we may write it as W (x, y)dy).
It is well known that I(p, W) = I(X;Y) is concave in p for
fixed W, and convex in W for fixed p.

Suppose the input and output spaces are the same set G, and
G has a group structure induced by a binary operation +. We
will also require the group to have a locally compact, Polish
topology on it compatible with the group operation (i.e., z+y
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is a continuous function of (x,y)), so that the group has a
translation-invariant Haar measure and there are no measure-
theoretic complications with conditional densities. Choose the
channel W given by W, (z,y) = u(y — =) with u being
a probability density function (all densities are taken with
respect to the Haar measure of ). Then the joint distribution
of (X,Y) has a density given by p(x)u(y — x), and Y
represents the output of an additive noise channel with input X
and noise N ~ wu. If we restrict to the world of additive noise
channels and write the mutual information between input and
output as I(p, u) = I(p, W,,), then the convexity of I(p, W) in
W translates to the convexity of I(p,u) in u. By Shannon’s
channel coding theorem, the capacity of the additive noise
channel with noise density u is given by

C(u) = sup I(p, u),
pEP

where P is the class of permissible input distributions. Since C
is a supremum of convex functions (of «), and a supremum of
a class of convex functions is always convex (as easily verified
by looking, for example, at sublevel sets), we deduce the
following basic fact. (Although very simple, to our surprise,
this fact does not seem to have been observed before as far as
we could tell.)

Theorem 6. The functional uw — C(u), assigning to the noise
density of an additive noise channel the capacity under any
fixed set of input constraints, is convex.

This is a very general statement— we emphasize that the
input/output space is an arbitrary locally compact Polish group,
and the class P of permissible input distributions is also
arbitrary.

Specializing to the case where the input and output spaces
are just R? with usual addition, we note that this immediately
gives us a bound on the capacity of channels where the additive
noise can be represented as a mixture.

Corollary 7. Suppose the noise N has a density u on R? that
is a scale mixture of Gaussians, i.e.,

M
u(z) = Z aigs, (z),

where we use gx, to denote a centered Gaussian density with
covariance matrix 3. Then the capacity Cp(N) of the additive
noise channel with noise N and input power constraint P
satisfies

M
Cp(N) < ZaicP(Zi)7 (®)
i=1

where Z; ~ gs,.

Recall that the capacity C(Zyx) of an additive noise channel
with Gaussian noise Z of covariance X has an explicit formula
given by

Cp(Zy) =

1 {det(i-l—/\)} ©

max = lo

[r(j)gp 2 & det(A)
where A is the diagonal matrix of eigenvalues that appears in
the decomposition ¥ = UAU” with U being an orthogonal

matrix. Moreover, the maximum in the expression for the
capacity is achieved when Y s diagonal with eigenvalues
determined by spectral water-filling.

Note that the expression that is being maximized in (9) may
be rewritten as

3 log det(I + XA™Y),

by using the fact that the determinant of a product of matrices
is the product of the determinants. It is well known that for
any fixed positive-semidefinite ¥, this is a convex function
of A (see, e.g., [33] and references therein). Therefore, if we
restrict to diagonal matrices 3, then C'p(Zy) is the pointwise
maximum of a collection of convex functions, and hence itself
convex in .

Let us compare the bound from Corollary 7 with the one
that follows from Proposition 1 in the special case where all
the covariance matrices >; are diagonal. The latter is given by

Cp(N) < Cp(Zs) 4+ D(N|| Zy), (10)
where X = Ef‘ilaizi is the covariance matrix of NN.

The convexity of C'p(Zx) in X observed in the preceding
paragraph implies that the first term of (10) is better than the
bound obtained in (8); on the other hand, the second term is
(10) is making it worse. Thus, in general, the capacity bounds
obtained from Corollary 7 and Proposition 1 seem to not be
comparable!'.

It would be interesting to explore if there are also inequali-
ties that go in the other direction to the convexity of capacity.
Specifically, in the case of entropy, it is well known that
although entropy is concave, one also has h(Zf:1 pifi) <
Zle pih(f;) + H(p), where p = (p1,...,px) is a discrete
probability distribution and H is the discrete Shannon entropy.
Indeed various refinements of this elementary inequality are
known (see, e.g., [54], where mixtures of log-concave distri-
butions are a particular focus). One wonders if it is possible
to obtain, in a similar spirit, constraints on how convex (as a
function of the noise distribution) the channel capacity is.

VII. DISCUSSION

A significant consequence (Corollary 2) of our main the-
orem in this paper is that any additive noise channel with
symmetric, log-concave noise has a capacity that is at most
0.254 bits per channel use greater than the capacity of an
additive Gaussian noise channel with the same noise power.
This begs the following question:

Question 1: Among all symmetric, log-concave noise distri-
butions with fixed variance, which are the distributions that
maximize the capacity of an additive noise channel? identify
the maximizers of Cp(IN) as one varies N over all noise
distributions with fixed variance. In short, which is the “best”
symmetric, log-concave noise?

We now make various remarks, several of which shed light
on why Question 1 is a non-trivial question:

"Note that if we further estimate D(N||Z) using the convexity of relative
entropy, we can get an upper bound with an explicit expression in (10) since
the relative entropy between two Gaussian distributions has a closed form.
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1) Even for very simple and special noise distributions
such as the uniform distribution, the capacity of the
corresponding additive noise channel remains unknown!
As well known and explained for example in [60], a
closed-form formula exists when A/A is an integer if
we consider a system where input amplitude (rather than
power) is constrained by A and the noise is uniform on
[—A, A], but this says nothing about the case when one
constrains variance rather than peak amplitude.

2) There is a stream of research in information theory
studying capacity-achieving distributions and especially
conditions under which these are discrete (see, e.g.,
[25]), and also some studying dependence on system
parameters [23]. However, none of these appear to help
with the problem at hand. Indeed, they do not say much
even for specific channels such as the uniform noise
channel that are clearly candidates for the extremizer,
since they typically make global assumptions such as
positivity of the noise density on the entire real line
(this is necessary for much of the complex analytic
machinery that is typically used in the subject because
analytic extensions to a strip are obviously impossible
for something like the uniform density).

3) By Theorem 6, the capacity of an additive noise channel
is a convex function of the noise distribution. Thus,
modulo analytical details, the problem of maximizing
the capacity over a class of permissible distributions
(in our case, symmetric, log-concave noise distributions
with fixed variance) is related to the determination of
the extreme points of the convex hull of this class.

4) Using the localization technique as outlined in Sec-
tion IV, it should be possible to show that the best
log-concave noise under a power budget is of the form
e~V where V is two-piece affine. Unfortunately, given
the difficulty of computing the capacity even for uniform
noise, computing capacities corresponding to this family
of noises is out of reach, and thus the observation does
not seem to be of much help with Question 1.

5) We have considered three optimization problems over
the class of symmetric, log-concave noise distributions
with fixed variance in this paper: minimizing entropy
(or maximizing relative entropy), maximizing capacity,
and maximizing the isotropic constant. Whereas the first
two optimization problems both involve maximizing a
convex function, we note that the third does not. Indeed,
consider the family of densities on R given by f; =
te;m +(1— t)ll%;](z) for t € (0,1), i.e., mixtures
of a symmetric exponential distribution and the uniform
distribution on [—a,a]. For a symmetric density f on
R, the isotropic constant is just f(0)y/Var(X) (with
X ~ f), which gives

2t+a2(1—t)[t+(1_t)].

Lt) =Ly, = 3 5 %

For example, when a = 1.4, the second derivative ¢ (t)
changes sign, and so the isotropic constant is not a
convex functional.

6) It is interesting to note that, already in dimension 1, the
extremizers for the isotropic constant formulation of the
slicing problem are different from those for the relative
entropy formulation of it. This discrepancy is explained
by the form of Theorem 4: if L had been maximized at
the uniform distribution, then clearly D(f) would have
been as well, or if D(f) had been maximized at the
symmetrized exponential, then L(f) would have been
as well. But both of these are one-directional statements
and both premises are false.

7) The upper bound in Proposition 1 is sharp if and only
if Y is Gaussian, in which case D(Y) = 0 and clearly
not maximized. So our identification of the extremizer
for the relative entropy cannot possibly identify the
extremizer for Question 1.

There are other interesting questions related to those we
have explored that also remain open. First, we expect that if
the symmetry assumption in our Theorem 1 is replaced by the
assumption that X has zero mean, the extremal distribution
should be the exponential distribution on a half-line (at least
for p = 2). This is strongly suggested by analytical calcula-
tions and computational experiments done by Liyao Wang and
the first-named author, but we have been unable to prove it.

Second, we mention the question of maximizing h(X —
X') — h(X), where X’ is an independent and identically
distributed copy of X, over all log-concave distributions on
R". Note that the objective function here is invariant with
respect to scaling of X, so no power constraint is needed.
This question is the entropy analogue of the Rogers-Shepherd
inequality in convex geometry, and the best known bound,
proved in [I11], is A(X — X') — h(X) < n. However, a
sharp bound has not been proved even in dimension 1. It
is conjectured in [46] that the extremal distribution for this
problem is also the exponential distribution.

Third, it would be interesting to find the extremal distribu-
tions that minimize and maximize

WX — X') — h(X)
WX + X') — h(X)

over all log-concave distributions on R™. This objective func-
tion (which, once again, is invariant to scaling of X') measures
the asymmetry of the distribution of X— note that it must
equal 1 if the density of X is symmetric. The answer is
unknown even in dimension 1. It was proved in [45], [35]
that the ratio above must lie in the interval [%, 2], for arbitrary
(not necessarily log-concave) distributions on R™. (In fact,
this result turns out to hold in remarkable generality— on any
locally compact abelian group with entropies defined with
respect to the Haar measure— as shown in [46].) One expects
even tighter bounds for log-concave distributions.

Finally, there are many open questions about capacity-
achieving distributions. For example, if the noise Z is symmet-
ric and log-concave, must the capacity-achieving distribution
(i.e., the maximizer of h(X+Z) under a variance constraint on
X) be log-concave? If the answer is yes, then combining with
results on the concentration of information [6], [29], [27], one
should be able to obtain finite-blocklength bounds for channels
with symmetric log-concave noise. While we are unable to




TO APPEAR, IEEE TRANSACTIONS ON INFORMATION THEORY, 2020

answer the question about capacity-achieving distributions, we
note that Corollary 3 does tell us that using a symmetric log-
concave input distribution can only cause a very limited loss; if
the answer to the question at the beginning of this paragraph is
affirmative, then Corollary 3 would be replaced by the identity
CEC(N) = Cp(N):.
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