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ABSTRACT2

In this paper, we develop asymptotic theories for a class of latent variable models for large-scale3
multi-relational networks. In particular, we establish consistency results and asymptotic error4
bounds for the (penalized) maximum likelihood estimators when the size of the network tends5
to infinity. The basic technique is to develop a non-asymptotic error bound for the maximum6
likelihood estimators through large deviations analysis of random fields. We also show that these7
estimators are nearly optimal in terms of minimax risk.8
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1 INTRODUCTION

A multi-relational network (MRN) describes multiple relations among a set of entities simultaneously.11
Our work on MRNs is mainly motivated by its applications to knowledge bases that are repositories of12
information. Examples of knowledge bases include WordNet [1], Unified Medical Language System13
[2], and Google Knowledge Graph (https://developers.google.com/knowledge-graph).14
They have been used as the information source in many natural language processing tasks such as word-15
sense disambiguation and machine translation [3, 4, 5]. A knowledge base often includes knowledge on a16
large number of real-world objects or concepts. When a knowledge base is characterized by MRN, the17
objects and concepts corresponds to nodes, and knowledge types are relations. Figure 1 provides an excerpt18
from an MRN in which “Earth”, “Sun” and “solar system” are three nodes. The knowledge about the19
orbiting patterns of celestial objects forms a relation “orbit”, and the knowledge on classification of the20
objects forms another relation “belong to” in the MRN.21

An important task of network analysis is to recover the unobserved network based on data. In this paper,22
we consider a latent variable model for MRNs. The presence of an edge from node i to node j of relation23
type k is a Bernoulli random variable Yijk with success probability Mijk. Each node is associated with24
a vector, θ, called the embedding of the node. The probability Mijk is modeled as a function f of the25
embeddings, θi and θj , and a relation-specific parameter vector wk. This is a natural generalization of26
the latent space model for single-relational networks [6]. Recently, it has been successfully applied to27
knowledge base analysis [7, 8, 9, 10, 11, 12, 13, 14]. Various forms of f are proposed such as distance28
models [7], bilinear models [12, 13, 14], and neural networks [15]. Computational algorithms are proposed29
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Figure 1. An example of the MRN representation of a knowledge base.

to improve link prediction for knowledge bases [16, 17]. The statistical properties of the embedding-based30
MRN models have not been rigorously studied. It remains unknown whether and to what extent the31
underlying distribution of MRN can be recovered, especially when there are a large number of nodes and32
relations.33

The results in this paper fill in the void by studying the error bounds and asymptotic behaviors of the34
estimators for Mijk’s for a general class of models. This is a challenging problem due to the following35
facts. Traditional statistical inference of latent variable models often requires a (proper or improper) prior36
distribution for θi. In such settings, one works with the marginalized likelihood with θi integrated out. For37
the analysis of MRN, the sample size and the latent dimensions are often so large that the above-mentioned38
inference approaches are computationally infeasible. For instance, a small-scale MRN could have a sample39
size as large as a few million, and the dimension of the embeddings is as large as several hundred. Therefore,40
in practice, the prior distribution is often dropped, and the latent variables θi’s are considered as additional41
parameters and estimated via maximizing the likelihood or penalized likelihood functions. The parameter42
space is thus substantially enlarged due to the addition of θi’s whose dimension is proportionate to the43
number of entities. As a result, in the asymptotic analysis, we face a double-asymptotic regime of both the44
sample size and the parameter dimension.45

In this paper, we develop results for the (penalized) maximum likelihood estimator of such models and46
show that under regularity conditions the estimator is consistent. In particular, we overcome the difficulty47
induced by the double-asymptotic regime via non-asymptotic bounds for the error probabilities. Then, we48
show that the distribution of MRN can be consistently estimated in terms of average Kullback-Leibler49
(KL) divergence even when the latent dimension increases slowly as the sample size tends to infinity. A50
probability error bound is also provided together with the upper bound for the risk (expected KL divergence).51
We further study the lower bound and show the near-optimality of the estimator in terms of minimax52
risk. Besides the average KL divergence, similar results can be established for other criteria such as link53
prediction accuracy.54

The outline of the remaining sections is as follows. In Section 2, we provide the model speicification and55
formulate the problem. Our main results are presented in Section 3. Finite sample performance is examined56
in Section 4 through simulated and real data examples. Concluding remarks are included in Section 5.57
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2 PROBLEM SETUP

2.1 Notation58

Let | · | be the cardinality of a set and × be the Cartesian product. Set {1, . . . , N} is denoted by [N ].59
The sign function sgn(x) is defined to be 1 for x ≥ 0 and 0 otherwise. The logistic function is denoted by60
σ(x) = ex/(1 + ex). Let 1A be the indicator function on event A. We use U [a, b] to denote the uniform61
distribution on [a, b] and Ber(p) to denote the Bernoulli distribution with probability p. The KL divergence62
between Ber(p) and Ber(q) is written as D(p||q) = p log p

q + (1− p) log 1−p
1−q . We use ‖ · ‖ to denote the63

Euclidean norm for vectors and the Frobenius norm for matrices.64

For two real positive sequences {an} and {bn}, we write an = O(bn) if lim supn→∞ an/bn < ∞.65
Similarly, we write an = Ω(bn) if lim supn→∞ bn/an < ∞ and an = o(bn) if limn→∞ an/bn = 0. We66
denote an . bn if lim supn→∞ an/bn ≤ 1. When {an} and {bn} are negative sequences, an . bn means67
lim infn→∞ an/bn ≥ 1. In some places, we use bn & an as an interchangeable notation of an . bn. Finally,68
if limn→∞ an/bn = 1, we write an ∼ bn.69

2.2 Model70

Consider an MRN with N entities and K relations. Given i, j ∈ [N ] and k ∈ [K], the triple λ = (i, j, k)71
corresponds to the edge from entity i to entity j of relation k. Let Λ = [N ] × [N ] × [K] denote the set72
of all edges. We assume in this paper that an edge can be either present or absent in a network and use73
Yλ ∈ {0, 1} to indicate the presence of edge λ. In some scenarios, the status of an edge may have more74
than two types. Our analysis can be generalized to accommodate these cases.75

We associate each entity i with a vector θi of dimension dE and each relation k with a vector wk of76
dimension dR. Let E ⊆ RdE be a compact domain where the embeddings θ1, . . . ,θN live. We call E the77
entity space. Similarly, we define a compact relation spaceR ⊆ RdR for the relation-specific parameters78
w1, . . . ,wK . Let x = (θ1, . . . ,θN ,w1, . . . ,wK) be a vector in the product space Θ = EN ×RK . The79
parameters associated with edge λ = (i, j, k) is then xλ = (θi,θj ,wk). We assume that given x, elements80
in {Yλ | λ ∈ Λ} are independent with each other and that the log odds of Yλ = 1 is81

log
P (Yλ = 1|x)

P (Yλ = 0|x)
= φ (xλ) , for λ ∈ Λ. (1)

Here φ is defined on E2 ×R, and φ (xλ) is often called the score of edge λ.82

We will use Y to represent the N ×N ×K tensor formed by {Yλ | λ ∈ Λ} and M(x) to represent the
corresponding probability tensor {P (Yλ = 1 | x) | λ ∈ Λ}. Our model is given by

Yλ ∼ Ber (Mλ (x∗)) , (2)

Mλ(x) = σ (φ (xλ)) , λ ∈ Λ, (3)

where x∗ stands for the true value of x and Yλ’s are independent. In the above model, the probability of83
the presence of an edge is entirely determined by the embeddings of the corresponding entities and the84
relation-specific parameters. This imposes a low-dimensional latent structure on the probability tensor85
M∗ = M(x∗).86

We specify our model using a generic function φ. It includes various existing models as special cases.87
Below are two examples of φ.88
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1.Distance model [7].89
φ (θi,θj ,wk) = bk − ‖θi + ak − θj‖2, (4)

where θi,θj ,ak ∈ Rd, bk ∈ R and wk = (ak, bk). In the distance model, relation k from node i to node90
j is more likely to exist if θi shifted by ak is closer to θj under the Euclidean norm.91

2.Bilinear model [9].92
φ (θi,θj ,wk) = θTi diag(wk)θj , (5)

where θi,θj ,wk ∈ Rd and diag(wk) is a diagonal matrix with wk as the diagonal elements. Model (5)93
is a special case of the more general model φ (θi,θj ,wk) = θTi Wkθj , where Wk ∈ Rd×d is a matrix94
parametrized by wk ∈ RdR . Trouillon et al. [12], Nickel et al. [13] and Liu et al. [14] explored different95
ways of constructing Wk.96

Very often, only a small portion of the network is observed [18]. We assume that each edge in the MRN97
is observed independently with probability γ and that the observation of an edge is independent of Y . Let98
S ⊂ Λ be the set of observed edges. Then the elements in S are independent draws from Λ. For convenience,99
we use n to represent the expected number of observed edges, namely, n = E [|S|] = γ|Λ| = γN2K. Our100
goal is to recover the underlying probability tensor M∗ based on the observed edges {Yλ | λ ∈ S}.101

REMARK 1. Ideally, if there exists x∗ such that Yλ = sgn
(
Mλ(x∗)− 1

2

)
for all λ ∈ Λ, then Y can be102

recovered with no error under x∗. This is, however, a rare case in practice, especially for large-scale MRN.103
A relaxed assumption is that Y can be recovered with some low dimensional x∗ and noise {ελ} such that104

Yλ = sgn
(
Mλ(x∗) + ελ −

1

2

)
, ελ

i.i.d∼ U

[
−1

2
,
1

2

]
, ∀λ ∈ Λ. (6)

By introducing the noise term, we formulate the deterministic MRN as a random graph. The model105
described in (2) is an equivalent but simpler form of (6).106

2.3 Estimation107

According to (2), the log-likelihood function of our model is108

l (x;YS) =
∑
λ∈S

Yλ logMλ(x) + (1− Yλ) log (1−Mλ(x)) . (7)

We omit the terms
∑

λ∈S log γ+
∑

λ/∈S log (1− γ) in (7) since γ is not the parameter of interest. To obtain109
an estimator of M∗, we take the following steps.110

1. Obtain the maximum likelihood estimator (MLE) of x∗,111

x̂ = argmax
x∈Θ

l (x;YS) . (8)

2. Use the plug-in estimator112
M̂ = M(x̂) (9)

as an estimator of M∗.113
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In (8), the estimator x̂ is a maximizer over the compact parameter space Θ = EN ×RK . The dimension
of Θ is

m = NdE +KdR,

which grows linearly in the number of entities N and the number of relations K.114

2.4 Evaluation criteria115

We consider the following criteria to measure the error of the above-mentioned estimator. They will be116
used in both the main results and numerical studies.117

(a) Average KL divergence of the predictive distribution from the true distribution118

L(M̂,M∗) =
1

|Λ|
∑
λ∈Λ

D(M∗λ||M̂λ). (10)

(b) Mean squared error of the predicted scores119

MSEφ =
1

|Λ|
∑
λ∈Λ

(φ(x̂λ)− φ(x∗λ))2 . (11)

(c) Link prediction error120

êrr =
1

|Λ|
∑
λ∈Λ

1Ŷλ 6=Y ∗λ
, (12)

where Ŷλ = sgn
(
M̂λ − 1

2

)
and Y ∗λ = sgn

(
M∗λ −

1
2

)
.121

REMARK 2. The latent attributes of entities and relations are often not identifiable, so the MLE x̂ is not122
unique. For instance, in (4), the values of φ and M(x) remain the same if we replace θi and ak respectively123
by Γθi + t and Γak, where t is an arbitrary vector in RdE and Γ is an orthonormal matrix. Therefore, we124
consider the mean squared error of scores, which are identifiable.125

3 MAIN RESULTS

We first provide results of the MLE in terms of KL divergence between the estimated and the true model.126
Specifically, we investigate the tail probability P (L(M̂,M∗) > t) and the expected loss E[L(M̂,M∗)]. In127
Section 3.1, we discuss upper bounds for the two quantities. The lower bounds are provided in Section 3.2.128
In Section 3.3, we extend the results to penalized maximum likelihood estimators (pMLE) and other loss129
functions. All proofs are deferred to the Appendix.130

3.1 Upper bounds131

We first present an upper bound for the tail probability P (L(M̂,M∗) > t) in Lemma 1. The result132
depends on the tensor size, the number of observed edges, the functional form of φ, and the geometry of133
parameter space Θ. The lemma explicitly quantifying the impact of these element on the error probability.134
It is key to the subsequent analyses. Lemma 2 gives a non-asymptotic upper bound for the expected loss135
(risk). We then establish the consistency of M̂ and the asymptotic error bounds in Theorem 1.136

We will make the following assumptions throughout this section.137
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ASSUMPTION 1. x∗ ∈ Θ = EN ×RK , where E andR are Euclidean balls of radius U .138

ASSUMPTION 2. The function φ is Lipschitz continuous under the Euclidean norm,139

|φ (u)− φ (v)| ≤ α‖u− v‖, ∀u,v ∈ E2 ×R, (13)

where α is a Lipschitz constant.140

Assumption 1 is imposed for technical convenience. The results can be easily extended to general compact141
parameter spaces. Let C = sup

u∈E2×R
|φ(u)|. Without loss of generality, we assume that C ≥ 2.142

LEMMA 1. Consider M̂ defined in (9) and the average KL divergence L in (10). Under Assumptions 1143
and 2, for every t > 0, β > 0 and 0 < s < nt,144

P
(
L(M̂,M∗) ≥ t

)
≤ exp

{
−nt− s

C
h

(
1

2
− s

2nt

)}(
1 +

2
√

3αUn(1 + β)

s

)m
+ exp {−nβh(β)} ,

(14)
where m = NdE +KdR is the dimension of Θ, n = γN2K is the expected number of observations, and145
h(u) = (1 + 1

u) log(1 + u)− 1.146

In the proof of Lemma 1, we use Bennett’s inequality to develop a uniform bound that does not depend147
on the true parameters. It is sufficient for the current analysis. If the readers need sharper bounds, they can148
read through the proof and replace the Bennett’s bound by the usual large deviation rate function which149
provides a sharp exponential bound that depends on the true parameters. We don’t pursue this direction in150
this paper.151

Lemma 2 below gives an upper bound of risk E[L(M̂,M∗)], which follows from Lemma 1.152

LEMMA 2. Consider M̂ defined in (9) and loss function L in (10). Let C1 = 18C, C2 = 8
√

3αU and153
C3 = 2 max {C1, C2}. If Assumptions 1 and 2 hold and n

m ≥ C2 + e, then154

E[L(M̂,M∗)] ≤ C3
m

n
log

n

m
+
C1

n
exp

{
−m log

n

m

}
+

3

n
exp

{
−1

3

(
n+ C3m log

n

m

)}
. (15)

We are interested in the asymptotic behavior of the tail probability in two scenarios: (i) t is a fixed155
constant and (ii) t decays to zero as the number of entities N tends to infinity. The following theorem gives156
an asymptotic upper bound for the tail probability and the risk.157

THEOREM 1. Consider M̂ defined in (9) and the loss function L in (10). Let the number of entities158
N → ∞ and C,K,U, dE , dR, α, and γ be fixed constants. If Assumptions 1 and 2 hold, we have the159
following asymptotic inequalities.160
When t is a fixed constant,161

logP (L(M̂,M∗) ≥ t) . − t

5C
n. (16)

When t = 10Cm
n log n

m ,162

logP (L(M̂,M∗) ≥ t) . −m log
n

m
. (17)
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Furthermore,163
E[L(M̂,M∗)] . 10C

m

n
log

n

m
. (18)

The consistency of M̂ is implied by (16) and the rate of convergence is | logP (L(M̂,M∗) ≥ t)| = Ω(N2)164
if t is a fixed constant. The rate decreases to Ω(N logN) for the choice of t producing (17). It is also165
implied by (17) that L(M̂,M∗) = O( 1

N logN) with high probability. We show in the next section that this166
upper bound is reasonably sharp.167

The condition that K,U, dE , dR, and α are fixed constants can be relaxed. For instance, we can let U ,168
dE , dR, and α go to infinity slowly at the rate O(logN) and K at the rate O(N). We can let γ go to zero169
provided that mn log n

m = o(1).170

3.2 Lower bounds171

We show in Theorem 2 that the order of the minimax risk is Ω(mn ), which implies the near optimality172

of M̂ in (9) and the upper bound O(mn log n
m) in Theorem 1. To begin with, we introduce the following173

definition and assumption.174

DEFINITION 1. For u = (θ,θ′,w) ∈ E2 ×R, the r-neighborhood of u is

Nr(u) =
{

(η,η′, ζ) ∈ E2 ×R | ‖η − θ‖ ≤ r, ‖η′ − θ′‖ ≤ r, ‖ζ −w‖ ≤ r
}
.

Similarly, for x = (θ1, . . . ,θN ,w1, . . . ,wK) ∈ EN ×RK , the r-neighborhood of x is

Nr(x) =
{

(η1, . . . ,ηN , ζ1, . . . , ζK) ∈ EN ×RK | ‖ηi − θi‖ ≤ r, ‖ζk −wk‖ ≤ r,∀i ∈ [N ], k ∈ [K]
}
.

ASSUMPTION 3. There exists u0 ∈ E2 ×R and r, κ > 0 such that Nr(u0) ⊂ E2 ×R and175

|σ (φ(u))− σ (φ(v))| ≥ κ‖u− v‖, ∀u,v ∈ Nr(u0). (19)

THEOREM 2. Let b = supu∈Nr(u0) σ (φ(u)). Under Assumptions 2 and 3, if r2 ≥ (m/16−1)b(1−b)
12α2n

, then176

for any estimator M̂ , there exists x∗ ∈ Θ such that177

P

(
L(M̂,M∗) > C̃

m/16− 1

n

)
≥ 1

2
, (20)

where C̃ = κ2b(1−b)
108α2 . Consequently, the minimax risk178

min
M̂

max
M∗

E[L(M̂,M∗)] ≥ C̃
m/16− 1

2n
. (21)

3.3 Extensions179

3.3.1 Reguralization180

In this section, we extend our asymptotic results in Theorem 1 to regularized estimators. In practice,181
regularization is often considered to prevent overfitting. We consider a regularization similar to elastic net182
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[19]183
lρ (x;YS) = l(x;YS)− ρ1‖x‖1 − ρ2‖x‖2, (22)

where ‖ · ‖1 stands for L1 norm and ρ1, ρ2 ≥ 0 are regularization parameters. The pMLE is184

x̂ = argmax
x∈Θ

lρ(x;YS). (23)

Note that the MLE in (8) is a special case of the pMLE above with ρ1 = ρ2 = 0. Since x̂ is shrunk towards185
0, without loss of generality, we assume that E andR are centered at 0. We generalize Theorem 1 to pMLE186
in the following theorem.187

THEOREM 3. Consider the estimator M̂ given by (23) and (9) and the loss function L in (10). Let the188
number of entities N →∞ and C,K,U, dE , dR, α, γ be absolute constants. If Assumptions 1 and 2 hold189
and ρ1 + ρ2 = o(logN), then asymptotic inequalities (16), (17), and (18) in Theorem 1 hold.190

3.3.2 Other loss functions191

We present some results for the mean squared error loss MSEφ defined in (11) and the link prediction192
error êrr defined in (12). Corollaries 1 and 2 give upper and lower bounds for MSEφ, and Corollary 3193
gives an upper bound for êrr under an additional assumption.194

COROLLARY 1. Under the setting of Theorem 3 with the loss function replaced by MSEφ, we have the195
following asymptotic results.196
If t is a fixed constant,197

logP
(
MSEφ ≥ t

)
. −5σ(C) (1− σ(C)) t

2C
n. (24)

If t = 20C
σ(C)(1−σ(C))

m
n log n

m ,198

logP
(
MSEφ ≥ t

)
. −m log

n

m
. (25)

Furthermore,199

E
[
MSEφ

]
.

20C

σ(C) (1− σ(C))

m

n
log

n

m
. (26)

COROLLARY 2. Under the setting of Theorem 2 with the loss function replaced by MSEφ, we have200

P

(
MSEφ > C̃

m/16− 1

8n

)
≥ 1

2
, (27)

and201

min
M̂

max
M∗

E
[
MSEφ

]
≥ C̃

m/16− 1

16n
. (28)

ASSUMPTION 4. There exists ε > 0 such that
∣∣M∗λ − 1

2

∣∣ ≥ ε for every λ ∈ Λ.202

COROLLARY 3. Under the setting of Theorem 3 with the loss function replaced by êrr and Assumption203
4 added, we have the following asymptotic results.204
If t is a fixed constant,205

logP (êrr ≥ t) . −2ε2t

5C
n. (29)
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If t = 5C
ε2

m
n log n

m ,206

logP (êrr ≥ t) . −m log
n

m
. (30)

Furthermore,207

E [êrr] .
5C

ε2

m

n
log

n

m
. (31)

3.3.3 Sparse representations208

We are interested in sparse entity embeddings and relation parameters. Let ‖ · ‖0 be the number of209
non-zero elements of a vector and τ be a prespecified sparsity level of x (i.e. the proportion of nonzero210
elements). Let mτ = mτ be the upper bound of non-zero parameters, that is, ‖x∗‖0 ≤ mτ . Consider the211
following estimator212

x̂ = argmax
x∈Θ

l (x;YS) subject to ‖x‖0 ≤ mτ . (32)

The estimator defined above maximizes the L0-penalized log-likelihood.213

THEOREM 4. Consider M̂ defined in (32) and (9) and the loss function L in (10). Let the number214
of entities N → ∞ and τ, C,K,U, dE , dR, α be absolute constants. Under Assumptions 1 and 2, the215
following asymptotic inequalities hold.216
If t is a fixed constant,217

logP (L(M̂,M∗) ≥ t) . − t

5C
n. (33)

If t = 10Cmτ
n log n

mτ
,218

logP (L(M̂,M∗) ≥ t) . −mτ log
n

mτ
. (34)

Furthermore,219
E[L(M̂,M∗)] . 10C

mτ

n
log

n

mτ
. (35)

We omit the results for other loss functions as well as the lower bounds since they can be analogously220
obtained.221

4 NUMERICAL EXAMPLES

In this section, we demonstrate the finite sample performance of M̂ through simulated and real data222
examples. Throughout the numerical experiments, AdaGrad algorithm [20] is used to compute x̂ in (8)223
or (23). It is a first-order optimization method that combines stochastic gradient descent (SGD) [21] with224
adaptive step sizes for finding the local optima. Since the objective function in (8) is non-convex, a global225
maximizer is not guaranteed. Our objective function usually has many global maximizers, but, empirically,226
we found the algorithm works well on MRN recovery and the recovery performance is insensitive to the227
choice of the starting point of SGD. Computationally, SGD is also more appealing to handle large-scale228
MRNs than those more expensive global optimization methods.229

4.1 Simulated Examples230

In the simulated examples, we fix K = 20, dE = 20 and consider various choices of N ranging from231
100 to 10,000 to investigate the estimation performance as N grows. The function φ we consider is a232
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combination of the distance model (4) and the bilinear model (5),233

φ (θi,θj ,wk) = (θi + ak − θj)T diag (bk) (θi + ak − θj) , (36)

where θi,θj ,ak, bk ∈ Rd and wk = (ak, bk). We independently generate the elements of θ∗i , a∗k, and234
b∗k from normal distributions N(0, 1), N(0, 1), and N(0, 0.25), respectively, where N(µ, σ2) denotes the235
normal distribution with mean µ and variance σ2. To guarantee that the parameters are from a compact236
set, the normal distributions are truncated to the interval [-20, 20]. Given the latent attributes, each Yijk237
is generated from the Bernoulli distribution with success probability M∗ijk = σ(φ(θ∗i ,θ

∗
j ,w

∗
k)). The238

observation probability γ takes value from {0.005, 0.01, 0.02}. For each combination of γ and N , 100239
independent datasets are generated. For each dataset, we compute x̂ and M̂ in (8) and (9) with AdaGrad240
algorithm and then calculate L(M̂,M∗) defined in (10) as well as the link prediction error êrr defined241
in (12). The two types of losses are averaged over the 100 datasets for each combination of N and γ to242
approximate the theoretical risks E[L(M̂,M∗)] and E[êrr]. These quantities are plotted against N in log243
scale in Figure 2. As the figure shows, in general, both risks decrease as N increases. When N is small,244
n/m is not large enough to satisfy the condition n/m ≥ C2 + e in Lemma 2 and the expected KL risk245
increases at the beginning. After N gets sufficiently large, the trend agrees with our asymptotic analysis.246
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Figure 2. Average Kullback-Leibler divergence (left) and average link prediction error (right) of M̂ for
different choices of N and γ.

4.2 Real data example: knowledge base completion247

WordNet [1] is a large lexical knowledge base for English. It has been used in word sense disambiguation,248
text classification, question answering, and many other tasks in natural language processing [3, 5]. The249
basic components of WordNet are groups of words. Each group, called a synset, describes a distinct concept.250
In WordNet, synsets are linked by conceptual-semantic and lexical relations such as super-subordinate251
relation and antonym. We model WordNet as an MRN with the synsets as entities and the links between252
synsets as relations.253
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Following Bordes et al. [7], we use a subset of WordNet for analysis. The dataset contains 40,943 synsets
and 18 types of relations. A triple (i, j, k) is called valid if relation k from entity i to entity j exists, i.e.,
Yijk = 1. All the other triples are called invalid triples. Among more than 3.0× 1010 possible triples in
WordNet, only 151,442 triples are valid. We assume that 141,442 valid triples and the same proportion of
invalid triples are observed. The goal of our analysis is to recover the unobserved part of the knowledge
base. We adopt the ranking procedure, which is commonly used in knowledge graph embedding literature,
to evaluate link predictions. Given a valid triple λ = (i, j, k), we rank estimated scores for all the invalid
triples inside Λ·jk = {(i′, j, k) | i′ ∈ [N ]} in descending order and call the rank of φ (x̂λ) as the head rank
of λ, denoted by Hλ. Similarly, we can define the tail rank Tλ and the relation rank Rλ by ranking φ (x̂λ)
among the estimated scores of invalid triples in Λij· and Λi·k, respectively. For a set V of valid triples, the
prediction performance can be evaluated by rank-based criteria, mean rank (MR), mean reciprocal rank
(MRR), and hits at q (Hits@q), which are defined as

MRE =
1

2|V |
∑
λ∈V

Hλ + Tλ, MRR =
1

|V |
∑
λ∈V

Rλ,

MRRE =
1

2|V |
∑
λ∈V

1

Hλ
+

1

Tλ
, MRRR =

1

|V |
∑
λ∈V

1

Rλ
,

and
HitsE@q =

1

2|V |
∑
λ∈V

1{Hλ≤q} + 1{Tλ≤q}, HitsR@q =
1

|V |
∑
λ∈V

1{Rλ≤q}.

The subscripts E and R represent the criteria for predicting entities and relations, respectively. Models with254
higher MRRs, Hits@q’s or lower MRs are more preferable. In addition, MRR is more robust to outliers255
than MR.256

The three models described in (4), (5), and (36) are considered in our data analysis and we refer257
to them as Model 1, 2 and 3, respectively. For each model, the latent dimension d takes value from258
{50, 100, 150, 200, 250}. Due to the high dimensionality of the parameter space, L2 penalized MLE is259
used to obtain the estimated latent attributes x̂, with tuning parameters ρ1 = 0 and ρ2 chosen from260
{0, 10−2, 10−3, 10−4, 10−5} in (22). Since information criteria based dimension and tuning parameter261
selection is computationally intensive for dataset of this scale, we set aside 5,000 of the unobserved valid262
triples as a validation set and select the d and ρ2 that produce the smallest MRRE on this validation set. The263
model with the selected d and ρ2 is then evaluated on the test set consisting of the rest 5,000 unobserved264
valid triples.265

The computed evaluation criteria on the test set are listed in Table 1. The table also includes the selected266
d and ρ2 for each of the three score models. Models 2 and 3 generate similar performance. The MRRs for267
the two models are very close to 1, and the Hits@q’s are higher than 90%, suggesting that the two models268
can identify the valid triples very well. Although Model 1 is inferior to the other two models in terms269
of most of the criteria, it outperforms them in MRE. The results imply that Model 2 and Model 3 could270
perform extremely bad for a few triples.271

In addition to Models 1–3, we also display the performance of the Canonical Polyadic (CP) decomposition272
[22] and a tensor factorization approach, RESCAL [23]. Their MRRE and HitsE@10 results on the WordNet273
dataset are extracted from [12] and [13], respectively. Both methods, especially CP, are outperformed by274
Model 3.275
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Table 1. Results for WordNet data analysis. The results for CP and RESCAL are extracted from [12] and
[13].

Method (d, ρ2) MRE MRRE HitsE@10 MRR MRRR HitsR@1
Model 1 (100, 10−5) 385 0.64 0.888 1.41 0.896 0.817
Model 2 (250, 10−4) 769 0.94 0.945 1.31 0.968 0.959
Model 3 (200, 10−4) 499 0.94 0.947 1.13 0.978 0.967

CP - - 0.075 0.125 - - -
RESCAL - - 0.890 0.928 - - -

5 CONCLUDING REMARKS

In this article, we focused on the recovery of large-scale MRNs with a small portion of observations. We276
studied a generalized latent space model where entities and relations are associated with latent attribute277
vectors and conducted statistical analysis on the error of recovery. MLEs and pMLEs over a compact space278
are considered to estimate the latent attributes and the edge probabilities. We established non-asymptotic279
upper bounds for estimation error in terms of tail probability and risk, based on which we then studied280
the asymptotic properties when the size of MRN and latent dimension go to infinity simultaneously. A281
matching lower bound up to a log factor is also provided.282

We kept φ generic for theoretical development. The choice of φ is usually problem-specific in practice.283
How to develop a data-driven method for selecting an appropriate φ is an interesting problem to investigate284
in future works.285

Besides the latent space models, sparsity [24] or clustering assumptions [25] have been used to impose286
low-dimensional structures in single-relational networks. An MRN can be seen as a combination of several287
heterogeneous single-relational networks. The distribution of edges may vary dramatically across relations.288
Therefore, it is challenging to impose appropriate sparsity or cluster structures on MRNs. More empirical289
and theoretical studies are needed to quantify the impact of heterogeneous relations and to incorporate the290
information for recovering MRNs.291

APPENDIX

PROOF OF LEMMA 1. Let Θt = {x ∈ Θ : L (M(x),M∗) ≥ t} and f(x) = l (x;YS) − l (x∗;YS) be292
the log likelihood ratio. Therefore, f is a random field living on Θ. By writing f(x), we omit the second293
argument. In explicit form, f(x) =

∑
λ∈Λ

Zλ, where294

Zλ = 1λ∈S

[
Yλ log

Mλ(x)

M∗λ
+ (1− Yλ) log

1−Mλ(x)

1−M∗λ

]
. (37)

We have E [Zλ] = −γD
(
M∗λ||Mλ(x)

)
and |Zλ| ≤ C. It follows that f has properties (i) f(x∗) = 0, (ii)295

f(x̂) ≥ 0, (iii) E [f(x)] = −nL (M(x),M∗). Based on the definition of Θt and property (ii), we have296

P
(
L(M̂,M∗) ≥ t

)
= P (x̂ ∈ Θt) ≤ P

(
sup
x∈Θt

f(x) ≥ 0

)
. (38)

From property (iii), we get that297
E [f(x)] ≤ −nt, ∀x ∈ Θt. (39)
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According to Lemma 3 in Appendix, when C ≥ 2, the variance of Zλ is bounded by

Var [Zλ] = γM∗λ(1−M∗λ)

(
log

Mλ

1−Mλ
− log

M∗λ
1−M∗λ

)2

≤ 2γCD (M∗λ||Mλ) .

It follows that298

Var [f(x)] =
∑
λ∈Λ

Var [Zλ] ≤ 2γC
∑
λ∈Λ

D (M∗λ||Mλ) = −2CE [f(x)] . (40)

By Bennett’s inequality,299

P (f(x) ≥ −s) ≤ exp

{
s+ E [f(x)]

C
h

(
−C [s+ E [f(x)]]

Var [f(x)]

)}
, (41)

where 0 < s < nt and h(u) =
(
1 + 1

u

)
log (1 + u)− 1 is an increasing function for u > 0.300

Hence by bounds in (39)(40),301

P (f(x) ≥ −s) ≤ exp

{
−nt− s

C
h

(
s+ E [f(x)]

2E [f(x)]

)}
≤ exp

{
−nt− s

C
h

(
1

2
− s

2nt

)}
. (42)

Let z = argmaxx∈Θt f(x) be the random vector on Θt where f(x) reaches its maximum. Let Nε,E302
and Nε,R be the ε-covering centers for E and R respectively. Since E and R are balls of radius303

U , we can find ε-coverings such that |Nε,E | ≤ (1 + 2U/ε)dE and |Nε,R| ≤ (1 + 2U/ε)dR . For304
z = (θ1, . . . ,θN ,w1, . . . ,wK), there exists some x =

(
θ′1, . . . ,θ

′
N ,w

′
1, . . . ,w

′
K

)
∈ NN

ε,E × NK
ε,R305

such that ‖θ′i − θi‖ ≤ ε,∀i ∈ [N ] and ‖w′k −wk‖ ≤ ε,∀k ∈ [K]. Therefore,306

f(z)− f(x) ≤
∑
λ∈S
|φ(zλ)− φ(xλ)| ≤ α

∑
λ∈S
‖zλ − xλ‖ ≤

√
3α|S|ε. (43)

By Bennett’s inequality, for every β > 0,307

p (|S| − n > nβ) ≤ exp

{
−nβh

(
β

1− γ

)}
≤ exp {−nβh(β)} . (44)

When |S| ≤ n(1 + β), set ε = s√
3αn(1+β)

, then f(z)− f(x) ≤ s. Combining (38) (42) and (44), we get308

that309

P
(
L(M̂,M∗) ≥ t

)
≤ P

(
sup
x∈Θt

f(x) ≥ 0, |S| ≤ n(1 + β)

)
+ P (|S| > n(1 + β))

≤ P

(
max

x∈NNε,E×N
K
ε,R

f(x) ≥ −s, |S| ≤ n(1 + β)

)
+ P (|S| > n(1 + β))

≤ |NN
ε,E ×NK

ε,R| max
x∈NNε,E×N

K
ε,R

P (f(x) ≥ −s) + exp {−nβh(β)}

≤ exp

{
−nt− s

C
h

(
1

2
− s

2nt

)}(
1 +

2
√

3αUn(1 + β)

s

)m
+ exp {−nβh(β)} ,

(45)
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where m = NdE +KdR is the degree of freedom.310

PROOF OF LEMMA 2. To bound E
[
L(M̂,M∗)

]
, set s = 1

2nt and β = 1 + t in (14) to get311

P
(
L(M̂,M∗) ≥ t

)
≤ exp

{
− nt
C1

}(
1 +

C2

2
+
C2

t

)m
+ exp

{
−1

3
n(1 + t)

}
. (46)

By Fubini’s Theorem,312

E
[
L(M̂,M∗)

]
=

∫ ∞
0

P
(
L(M̂,M∗) ≥ t

)
dt ≤ t0 +

∫ ∞
t0

P
(
L(M̂,M∗) ≥ t

)
dt. (47)

Let C3 = 2 max [{C1, C2}] and t0 = C3
m
n log n

m . When t ≥ t0 and n
m ≥ C2 + e,313

1 +
C2

2
+
C2

t
≤ 1 +

C2

2
+

C2n

C3m log n
m

≤ 1 +
C2

2
+

n

2m
≤ n

m
. (48)

Thus314

P
(
L(M̂,M∗) ≥ t

)
≤ exp

{
− nt
C1

+m log
n

m

}
+ exp

{
−1

3
n(1 + t)

}
, t ≥ t0. (49)

Hence by (47) and (49),315

E
[
L(M̂,M∗)

]
≤ t0 +

C1

n
exp

{
−nt0
C1

+m log
n

m

}
+

3

n
exp

{
−1

3
n(1 + t0)

}
≤ C3

m

n
log

n

m
+
C1

n
exp

{
−m log

n

m

}
+

3

n
exp

{
−1

3

(
n+ C3m log

n

m

)}
.

(50)

PROOF OF THEOREM 1. When t is a constant, let s be absolute constant and β = m→∞ in Lemma
1. We analyze the order of three exponential terms on the right side of (14),

−nt− s
C

h

(
1

2
− s

2nt

)
∼ −

h
(

1
2

)
C

nt,

m log

(
1 +

2
√

3αUn(1 + β)

s

)
∼ m log(mn),

−nβh(β) ∼ −nm logm.

Hence, both the second and the third term is asymptotically ignorable compared to the first term. It follows
that

logP
(
L(M̂,M∗) ≥ t

)
. −

h
(

1
2

)
C

nt.
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When t = 2C
h( 1

2)
m
n log n

m , let s = m and β be absolute constant. The exponential terms

−nt− s
C

h

(
1

2
− s

2nt

)
∼ −2m log

n

m
,

m log

(
1 +

2
√

3αUn(1 + β)

s

)
= m log

n

m
+O(m).

The third term exp {−nβh(β)} is negligible. Therefore,316

logP
(
L(M̂,M∗) ≥ t

)
. −m log

n

m
. (51)

To bound the risk, we use similar approach as proof of Lemma 2. Let s = m, β = 1 + t and t0 =
2C
h( 1

2)
m
n log n

m .

∫ ∞
t0

exp

{
−nt− s

C
h

(
1

2
− s

2nt

)}
dt ≤ C

nh
(

1
2 −

s
2nt0

) exp

{
−nt0 − s

C
h

(
1

2
− s

2nt0

)}

∼ C

nh
(

1
2

) exp
{
−2m log

n

m

}
,

m log

(
1 +

2
√

3αUn(1 + β)

s

)
≤ m log

(
1 +

2
√

3αUn(2 + t0)

m

)
∼ m log

n

m
,

and ∫ ∞
t0

exp {−n(1 + t)h (1 + t)} dt ≤ 3

n
exp

{
−1

3
n(1 + t0)

}
= o

(
exp

{
−m log

n

m

})
.

It follows that317

E
[
L(M̂,M∗)

]
≤ t0 +

∫ ∞
t0

P
(
L(M̂,M∗) ≥ t

)
dt

. t0 + o (t0) ∼ 2C

h
(

1
2

)m
n

log
n

m
.

(52)

Since h(1
2) ≥ 1

5 , we proof the results.318

LEMMA 3. ∀x, y ∈ [−C,C], we have319

σ(x) (1− σ(x)) (y − x)2 ≤ 2 max {C, 2}D (σ(x)||σ(y)) , (53)

PROOF. We only need to show the result for x ≥ 0 by symmetry. For any fixed x ∈ [0, C], define320
g(y) = 2CmD (σ(x)||σ(y))− σ(x) (1− σ(x)) (y − x)2, where Cm = max {C, 2}. Since321

g′(y) = 2Cm(σ(y)− σ(x))− 2σ(x)(1− σ(x))(y − x), (54)
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we have g′(x) = g(x) = 0. It remains to show that g
′(y)
y−x > 0 for all y ∈ [−C,C] \ {x}, then g(x) reaches

the minimum at x = 0 and g(y) ≥ 0 on [−C,C]. Equivalently, we want to show that

Cm(σ(y)− σ(x))/(y − x) > σ(x)(1− σ(x)).

Note that (σ(y)− σ(x))/(y− x) is the slope of secant line on logistic function and reaches its minimum at322
y = C. It suffices to show that323

(C − x)σ(x)(1− σ(x)) + Cmσ(x) ≤ Cmσ(C),∀x ∈ [0, C] (55)

Let h(x) be left side above. By taking the derivative, we get

h′(x) = [Cm − 1− (C − x) (2σ(x)− 1)]σ(x) (1− σ(x)) .

If 1 ≤ x ≤ C, then (C − x) (2σ(x)− 1) ≤ C − 1 ≤ Cm − 1. If 0 ≤ x ≤ 1, then (C − x) (2σ(x)− 1) ≤324
C (2σ(1)− 1) ≤ 1

2C ≤ Cm − 1. Therefore, h′(x) ≥ 0 on [0, C]. It follows that h(x) ≤ h(C) = Cmσ(C).325

To prove the lower bound in Theorem 2, we will use Lemma 4 – 6. Since Lemma 4 [26] and Lemma 5326
[27] are well established results in literature, we will skip the proofs.327

LEMMA 4 (Gilbert-Varshamov bound). There exists a subset V of the d-dimensional hypercube {−1, 1}d328
of size at least exp{d/8} such that the Hamming distance329

d∑
i=1

1ui 6=vi ≥
1

4
d (56)

for all u 6= v with u,v ∈ V .330

LEMMA 5 (Fano’s inequality). Let V be a uniform random variable taking values in a finite set V with331
cardinality |V| ≥ 2. For any Markov chain V → X → V̂ ,332

P
(
V̂ 6= V

)
≥ 1− I(V ;X) + log 2

log (|V|)
, (57)

where I(V ;X) is the mutual information between V and X .333

LEMMA 6. Suppose that p, q ∈ (0, 1). Then334

D(p||q) ≤ (p− q)2

q(1− q)
. (58)

PROOF. Since D(1−p||1− q) = D(p||q), it suffices to show for case p ≤ q. View D(p||q) as a function335
of q. By mean value theorem, there exists ξ ∈ [p, q] such that336

D(p||q)−D(p||p) =
ξ − p
ξ(1− ξ)

(q − p) (59)

Note that ξ−p
ξ(1−ξ) is increasing in ξ and D(p||p) = 0. Hence, D(p||q) ≤ (q−p)2

q(1−q) .337
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PROOF OF THEOREM 2. Let u0 = (θ0,θ
′
0,w0), x̃ = (θ0, . . . ,θ0︸ ︷︷ ︸

bN2 c

,θ′0, . . . ,θ
′
0︸ ︷︷ ︸

dN2 e

,w0, . . . ,w0)︸ ︷︷ ︸
K

and

Λ̃ =

{
(i, j, k) ∈ Λ | i ≤ bN

2
c, j > bN

2
c
}
⊂ Λ

with cardinality |Λ̃| = bN2 cd
N
2 eK. If x ∈ Nr(x̃), then xλ ∈ Nr(u0) for every λ ∈ Λ̃. Hence according to338

Assumption 3,339 ∣∣σ (φ(xλ))− σ
(
φ(x′λ)

)∣∣ ≥ κ‖xλ − x′λ‖, ∀x,x′ ∈ Nr(x̃), λ ∈ Λ̃. (60)

We will find x∗ in the vicinity of x̃ such that (20) holds.340

LetHE =
{
−δ/
√
dE , δ/

√
dE
}NdE andHR =

{
−δ/
√
dR, δ/

√
dR
}KdR be two hypercubes. According341

to Gilbert-Varshamov bound in Lemma 4, there exist VE ⊂ HE and VR ⊂ HR such that |VE | ≥342
exp {NdE/8}, |VR| ≥ exp {KdR/8} and343

NdE∑
i=1

1ui 6=vi ≥
1

4
NdE , ∀u,v ∈ VE ,u 6= v, (61)

344
KdR∑
i=1

1ui 6=vi ≥
1

4
KdR, ∀u,v ∈ VR,u 6= v. (62)

For u = (θ1, . . . ,θN ) ∈ VE , v = (θ′1, . . . ,θ
′
N ) ∈ VE and u 6= v, (61) suggests that345

N∑
i=1

‖θi − θ′i‖2 ≥
N∑
i=1

(
2δ/
√
dE

)2 1

4
NdE = Nδ2, (63)

Likewise, from (62) we can get that346

K∑
i=1

‖wk −w′k‖ ≥ Kδ2, (64)

with u = (w1, . . . ,wK) ∈ VR, v = (w′1, . . . ,w
′
K) ∈ VR and u 6= v.347

Let V = {x̃+ e | e ∈ VE × VR} = {x(1), . . . ,x(T )} where T = |VE ||VR| ≥ exp {m/8}. By the348
definition of δ-neighborhood and size of hypercubes, we have V ⊂ Nδ (x̃) and thus property in (60) holds349

for δ ≤ r. The corresponding tensors are denoted asM(V) =
{
M (1), . . . ,M (T )

}
whereM (i) = M

(
x(i)
)

350

for i ∈ [T ]. Let z = argmin
x∈V

‖M̂ −M(x)‖, thus M(z) is the closet tensor to M̂ in M(V) under Frobenius351

norm. By triangular inequality,352

‖M̂ −M (i)‖ ≥ 1

2

(
‖M̂ −M (i)‖+ ‖M̂ −M(z‖)

)
≥ 1

2
‖M (i) −M(z)‖, ∀i ∈ [T ]. (65)
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Note that z,x(i) ∈ V , according to Pinsker’s inequality and (60),

L
(
M̂,M (i)

)
≥ 2

|Λ|
‖M̂ −M (i)‖2 ≥ 1

2|Λ|
‖M (i) −M(z)‖2 ≥ κ2

2|Λ|
∑
λ∈Λ̃

‖x(i)
λ − zλ‖

2.

For all x 6= x′ with x,x′ ∈ V and N ≥ 2,353

1

|Λ|
∑
λ∈Λ̃

‖xλ − x′λ‖2 ≥
1

|Λ|

bN
2
cK

∑
i∈[N ]

‖θi − θ′i‖2 + bN
2
cdN

2
e
∑
k∈[K]

‖wk −w′k‖2


≥ min

1

3

1

N

∑
i∈[N ]

‖θi − θ′i‖2,
2

9

1

K

∑
k∈[K]

‖wk −w′k‖2
 =

2

9
δ2.

(66)

Hence when x(i) 6= z,354

L
(
M̂,M (i)

)
≥ 1

9
κ2δ2. (67)

Let Pi denote the probability measure under x(i). Results above show that355

Pi

(
L(M̂,M (i)) ≥ 1

9
κ2δ2

)
≥ Pi

(
x(i) 6= z

)
, ∀i ∈ [N ]. (68)

Assign a prior on x that is uniform on V and denote by PV the Bayes average probability with respect to356
the prior. By Fano’s inequality in Lemma 5,357

PV (z 6= x) ≥ 1− I(x;YS) + log 2

log |T |
, (69)

where I(x;XS) is the mutual information between x and YS . It can be bounded by the maximum pairwise358
KL divergence of YS under Pi and Pj as follows,359

I(x, YS) =
1

T

T∑
i=1

D (Pi(YS)||PV(YS)) ≤ max
i 6=j

D (Pi(YS)||Pj(YS)) =

max
i 6=j

∑
λ∈Λ

D (Pi(Yλ, λ ∈ S)||Pj(Yλ, λ ∈ S)) = max
i 6=j

nL
(
M (i),M (j)

)
.

(70)

Since σ(·) is logistic function, the derivative σ′(x) = σ(x) (1− σ(x)) < 1. By Assumption 2, φ(·) is360
Lipschitz continuous with coefficient α , we get that σ(φ(·)) is also Lipschitz continuous with coefficient361
α. Let b = sup

u∈Nr(u0)
σ (φ(u)), by Lemma 6 we get362

L(M (i),M (j)) ≤ ‖M
(i) −M (j)‖2

|Λ|b(1− b)
≤
α2
∑

λ∈Λ ‖x
(i)
λ − x

(j)
λ ‖

2

|Λ|b(1− b)
≤ 3(2δ)2α2

b(1− b)
=

12α2δ2

b(1− b)
(71)
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for all i, j ∈ [N ]. Hence, there exists x(i) ∈ V such that363

Pi

(
z 6= x(i)

)
≥ 1−

12α2δ2n
b(1−b) + log 2

log |T |
≥ 1−

12α2δ2n
b(1−b) + 1

m/8
. (72)

Let x∗ = x(i) , P = Pi and

δ2 =
(m/16− 1)b(1− b)

12α2n
≤ r2.

It follows from (68) that364

P

(
L(M̂,M (i)) ≥ κ2b(1− b)

108α2

m/16− 1

n

)
≥ 1

2
. (73)

PROOF OF THEOREM 3. We will show the result by continuing the proof of Lemma 1 and Theorem 1365
with some modifications. Let fρ(x) be the penalized log likelihood ratio, we have366

fρ(x) = lρ (x;YS)− lρ (x∗;YS)

= f(x)− ρ1 (‖x‖1 − ‖x∗‖1)− ρ2

(
‖x‖2 − ‖x∗‖2

)
≤ f(x) +

√
2ρ1(N +K)U + ρ2(N +K)U2

(74)

According to (43), there exists x among the ε-covering centers such that367

fρ(z)− fρ(x) = f(z)− f(x)− ρ1 (‖z‖1 − ‖x‖1)− ρ2

(
‖z‖2 − ‖x‖2

)
≤
√

3α|S|ε+
√

2ρ1(N +K)ε+ 2ρ2(N +K)Uε,
(75)

where z = argmaxx∈Θt fρ(x). It follow that when |S| ≤ n(1 + β) and fρ(z) ≥ 0,368

fρ(x) ≥ −
√

3α|S|ε−
√

2ρ1(N +K)ε− 2ρ2(N +K)Uε

≥ −s− (N +K)s

αn(1 + β)

(√
2

3
ρ1 +

2√
3
ρ2U

)
,

(76)

with ε = s√
3αn(1+β)

. Hence, we can rewrite (45) as369

P
(
L(M̂,M∗) ≥ t

)
≤ P

(
sup
x∈Θt

fρ(x) ≥ 0, |S| ≤ n(1 + β)

)
+ P (|S| > n(1 + β))

≤ |NN
ε,E ×NK

ε,R|P (f(x) ≥ −sρ) + exp {−nβh(β)}

≤ exp

{
−
nt− sρ
C

h

(
1

2
−

sρ
2nt

)}(
1 +

2
√

3αUn(1 + β)

s

)m
+ exp {−nβh(β)} ,

(77)

where

sρ = s+
(N +K)s

αn(1 + β)

(√
2

3
ρ1 +

2√
3
ρ2U

)
+
√

2ρ1(N +K)U + ρ2(N +K)U2.
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Therefore, sρ = s+ o(s) +O(N) = o(nt) when t and s are absolute constant or when t = 2C
h( 1

2)
m
n log n

m370

and s = m. Hence the proof of Theorem 1 applies and the asymptotic results hold.371

PROOF OF COROLLARY 1, 2 AND 3. To show these corollaries, we associate MSEφ and êrr with372

L(M̂,M∗). The first and second order derivatives of D (σ(x)||σ(y)) as a function of y are373

∂

∂y
D (σ(x)||σ(y)) = σ(y)− σ(x),

∂2

∂2y
D (σ(x)||σ(y)) = σ(y) (1− σ(y)) . (78)

By Taylor expansion, there exists ξ = ux + (1 − u)y with u ∈ (0, 1) such that D (σ(x)||σ(y)) =374
1
2σ(ξ) (1− σ(ξ)) (y − x)2. Hence, for x, y ∈ [−C,C],375

1

2
σ(C) (1− σ(C)) (y − x)2 ≤ D (σ(x)||σ(y)) ≤ 1

8
(y − x)2. (79)

It follows that376
1

2
σ(C) (1− σ(C))MSEφ ≤ L

(
M̂,M∗

)
≤ 1

8
MSEφ. (80)

where MSEφ = 1
|Λ|
∑

λ∈Λ

(
φ(x̂λ)− φ(x∗λ)

)2 is the mean squared error of edge scores. The upper bound377
of MSEφ follows from Theorem 3 and left half of (80). By Theorem 2 and right half of (80), we get the378
corresponding lower bound. Likewise, for êrr we can derive the upper bound by379

L
(
M̂,M∗

)
=

1

|Λ|
∑
λ∈Λ

D
(
M∗λ||M̂λ

)
≥ 1

|Λ|
∑
λ∈Λ

1Ŷλ 6=Y ∗λ
D

(
1

2
+ ε||1

2

)
≥ 2ε2êrr. (81)

PROOF OF THEOREM 4. Let Θτ =
{
x ∈ EN ×RK | ‖x‖0 ≤ mτ

}
be subspaces of Θ with at most380

mτ non-zeros and NΘτ be its ε-covering centers. There are
( m
mτ

)
combinations of support, and each381

subspace has a covering number of
(
1 + 2U

ε

)mτ . Hence, the overall ε-covering number of Θτ would be382

|NΘτ | =
(
m

mτ

)(
1 +

2U

ε

)mτ

. (82)

We can rewrite Lemma 1 as383

P
(
L(M̂,M∗) ≥ t

)
≤ exp {−I + II}+ exp {−III} , (83)

where

I =
nt− s
C

h

(
1

2
− s

2nt

)
,

II = log

(
m

mτ

)
+mτ log

(
1 +

2
√

3αUn(1 + β)

s

)
,

III = nβh(β).
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By Stirling’s approximation,384

log

(
m

mτ

)
∼ −mτ log τ − (m−mτ ) log(1− τ)− 1

2
logm

. mτ (− log τ + 1)− 1

2
logm = O(mτ ).

(84)

To get the results, when t is absolute constant, let s be absolute constant and β = m. When t =385
2C
h( 1

2)
mτ
n log n

mτ
, let s = mτ and β be absolute constant. For risk upper bound, select s = mτ , β = 1 + t386

and t0 = 2C
h( 1

2)
mτ
n log n

mτ
. At last, use h(1

2) ≥ 1
5 .387
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