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ABSTRACT

In this paper, we develop asymptotic theories for a class of latent variable models for large-scale
multi-relational networks. In particular, we establish consistency results and asymptotic error
bounds for the (penalized) maximum likelihood estimators when the size of the network tends
to infinity. The basic technique is to develop a non-asymptotic error bound for the maximum
likelihood estimators through large deviations analysis of random fields. We also show that these
estimators are nearly optimal in terms of minimax risk.

Keywords: multi-relational network, knowledge graph completion, tail probability, risk, asymptotic analysis, non-asymptotic analysis,

maximum likelihood estimation

1 INTRODUCTION

A multi-relational network (MRN) describes multiple relations among a set of entities simultaneously.
Our work on MRNSs is mainly motivated by its applications to knowledge bases that are repositories of
information. Examples of knowledge bases include WordNet [1], Unified Medical Language System
[2], and Google Knowledge Graph (https://developers.google.com/knowledge—graph).
They have been used as the information source in many natural language processing tasks such as word-
sense disambiguation and machine translation [3}, 4, 5]. A knowledge base often includes knowledge on a
large number of real-world objects or concepts. When a knowledge base is characterized by MRN, the
objects and concepts corresponds to nodes, and knowledge types are relations. Figure[I| provides an excerpt
from an MRN in which “Earth”, “Sun” and “solar system” are three nodes. The knowledge about the
orbiting patterns of celestial objects forms a relation “orbit”, and the knowledge on classification of the
objects forms another relation “belong to” in the MRN.

An important task of network analysis is to recover the unobserved network based on data. In this paper,
we consider a latent variable model for MRNs. The presence of an edge from node 7 to node j of relation
type k is a Bernoulli random variable Y;;, with success probability M;;;. Each node is associated with
a vector, 6, called the embedding of the node. The probability M;;; is modeled as a function f of the
embeddings, 6; and 6;, and a relation-specific parameter vector wjy,. This is a natural generalization of
the latent space model for single-relational networks [6]]. Recently, it has been successfully applied to
knowledge base analysis [7, 18,9, 110, [11, 12, 13} [14]. Various forms of f are proposed such as distance
models [7], bilinear models [12} 13, 14], and neural networks [[15)]. Computational algorithms are proposed
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Belong to Belong to

Figure 1. An example of the MRN representation of a knowledge base.

to improve link prediction for knowledge bases [[16, [17]. The statistical properties of the embedding-based
MRN models have not been rigorously studied. It remains unknown whether and to what extent the
underlying distribution of MRN can be recovered, especially when there are a large number of nodes and
relations.

The results in this paper fill in the void by studying the error bounds and asymptotic behaviors of the
estimators for M;;;’s for a general class of models. This is a challenging problem due to the following
facts. Traditional statistical inference of latent variable models often requires a (proper or improper) prior
distribution for ;. In such settings, one works with the marginalized likelihood with 6; integrated out. For
the analysis of MRN, the sample size and the latent dimensions are often so large that the above-mentioned
inference approaches are computationally infeasible. For instance, a small-scale MRN could have a sample
size as large as a few million, and the dimension of the embeddings is as large as several hundred. Therefore,
in practice, the prior distribution is often dropped, and the latent variables 6;’s are considered as additional
parameters and estimated via maximizing the likelihood or penalized likelihood functions. The parameter
space is thus substantially enlarged due to the addition of 8;’s whose dimension is proportionate to the
number of entities. As a result, in the asymptotic analysis, we face a double-asymptotic regime of both the
sample size and the parameter dimension.

In this paper, we develop results for the (penalized) maximum likelihood estimator of such models and
show that under regularity conditions the estimator is consistent. In particular, we overcome the difficulty
induced by the double-asymptotic regime via non-asymptotic bounds for the error probabilities. Then, we
show that the distribution of MRN can be consistently estimated in terms of average Kullback-Leibler
(KL) divergence even when the latent dimension increases slowly as the sample size tends to infinity. A
probability error bound is also provided together with the upper bound for the risk (expected KL divergence).
We further study the lower bound and show the near-optimality of the estimator in terms of minimax
risk. Besides the average KL divergence, similar results can be established for other criteria such as link
prediction accuracy.

The outline of the remaining sections is as follows. In Section [2, we provide the model speicification and
formulate the problem. Our main results are presented in Section [3] Finite sample performance is examined
in Section 4] through simulated and real data examples. Concluding remarks are included in Section [5

This is a provisional file, not the final typeset article 2
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2 PROBLEM SETUP

2.1 Notation
Let | - | be the cardinality of a set and x be the Cartesian product. Set {1,..., N} is denoted by [N].
The sign function sgn(z) is defined to be 1 for > 0 and 0 otherwise. The logistic function is denoted by

o(x) =e"/(1+ e”). Let 14 be the indicator function on event A. We use U [a, b] to denote the uniform
distribution on [a, b] and Ber(p) to denote the Bernoulli distribution with probability p. The KL divergence
between Ber(p) and Ber(q) is written as D(pl||q) = plogg + (1 —p)log %;. We use || - || to denote the
Euclidean norm for vectors and the Frobenius norm for matrices.

For two real positive sequences {a,} and {b,}, we write a,, = O(by,) if limsup,,_,~. an/bp < 0.
Similarly, we write a,, = Q(by,) if limsup,,_,. bn/a, < oo and a,, = o(by) if limy, 0 ap /b, = 0. We
denote a,, < by, if limsup,,_, an /by < 1. When {a,,} and {b, } are negative sequences, a,, < b, means

lim inf,, o0 @y /by, > 1. In some places, we use b, = a,, as an interchangeable notation of a,, < b,,. Finally,
if lim, o0 an /by, = 1, we write a,, ~ by,.

2.2 Model

Consider an MRN with NV entities and K relations. Given ¢, j € [N] and k € [K], the triple A = (i, j, k)
corresponds to the edge from entity i to entity j of relation k. Let A = [N] x [N] x [K] denote the set
of all edges. We assume in this paper that an edge can be either present or absent in a network and use
Y\ € {0, 1} to indicate the presence of edge \. In some scenarios, the status of an edge may have more
than two types. Our analysis can be generalized to accommodate these cases.

We associate each entity ¢ with a vector 8; of dimension dy and each relation k£ with a vector wy, of
dimension dp. Let £ C R%E be a compact domain where the embeddings 01, . . ., Oy live. We call £ the
entity space. Similarly, we define a compact relation space R C R?% for the relation-specific parameters
wi,...,wg.Letx = (601,...,0N,w1,...,wg) be a vector in the product space © = EN x RE . The
parameters associated with edge A = (3, j, k) is then &) = (6;, 8, wy). We assume that given x, elements
in {Y) | A € A} are independent with each other and that the log odds of Y = 1 is

P (YA = 1|ZB)

mqu(wk), for A € A. (1)

log

Here ¢ is defined on £2 x R, and ¢ (x,) is often called the score of edge \.

We will use Y to represent the N x N x K tensor formed by {Y), | A € A} and M (x) to represent the
corresponding probability tensor { P(Y) =1 | ) | A € A}. Our model is given by

Y, ~ Ber (M) (z¥)), (2)
My(z) =0 (¢ (x2)), A € A, 3)

where * stands for the true value of « and Y),’s are independent. In the above model, the probability of
the presence of an edge is entirely determined by the embeddings of the corresponding entities and the

relation-specific parameters. This imposes a low-dimensional latent structure on the probability tensor
M* = M(z*).

We specify our model using a generic function ¢. It includes various existing models as special cases.
Below are two examples of ¢.

Frontiers 3
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1.Distance model [7]].
¢ (0:,0;,wy) = b, — ||0; + ay, — 0}, “4)

where 0;,0;, a;, € R% b € R and wy, = (ag, br). In the distance model, relation & from node 7 to node
J is more likely to exist if ; shifted by ay, is closer to 8; under the Euclidean norm.

2.Bilinear model [9]].
¢ (0,05, wy) = 6] diag(wy)8;, )

where 0;,0;, w;, € R? and diag(wy,) is a diagonal matrix with wy, as the diagonal elements. Model (3]
is a special case of the more general model ¢ (6;,0;, wy) = OiTWkOj, where W}, € R%*4 is a matrix
parametrized by wy € R?E . Trouillon et al. [12], Nickel et al. [13] and Liu et al. [14] explored different
ways of constructing Wj.

Very often, only a small portion of the network is observed [[18]]. We assume that each edge in the MRN
is observed independently with probability + and that the observation of an edge is independent of Y. Let
S C A be the set of observed edges. Then the elements in S are independent draws from A. For convenience,
we use n to represent the expected number of observed edges, namely, n = E [|S|] = v|A| = yN?K. Our
goal is to recover the underlying probability tensor M * based on the observed edges {Y) | A € S}.

REMARK 1. Ideally, if there exists x* such that Y, = sgn (M)\(w*) — %) forall \ € A, then'Y can be
recovered with no error under x*. This is, however, a rare case in practice, especially for large-scale MRN.
A relaxed assumption is that Y can be recovered with some low dimensional x* and noise {€} such that

1 ;i 11
Y\ = sgn (M)\(CC*)+€A—§) . € Ay {—5,5} ., VieA (6)

By introducing the noise term, we formulate the deterministic MRN as a random graph. The model
described in (2)) is an equivalent but simpler form of (6).

2.3 Estimation

According to (2), the log-likelihood function of our model is

H(w; Ys) = ) Yalog My(m) + (1= Yy)log (1 — My()). (7
AES

We omit the terms ¢ s log v+ 45 10g (1 — ) in (7) since 7 is not the parameter of interest. To obtain
an estimator of M ™, we take the following steps.

1. Obtain the maximum likelihood estimator (MLE) of x*,

& = argmax ! (x; Ys) . (8)
€O
2. Use the plug-in estimator
M = M(x) C))

as an estimator of M*.

This is a provisional file, not the final typeset article 4
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In (8)), the estimator & is a maximizer over the compact parameter space © = £ N x RE. The dimension
of O is
m = Ndg + Kdp,

which grows linearly in the number of entities NV and the number of relations K.
2.4 Evaluation criteria

We consider the following criteria to measure the error of the above-mentioned estimator. They will be
used in both the main results and numerical studies.

(a) Average KL divergence of the predictive distribution from the true distribution

L(M, M*) )=l S DO, (10)
AeA
(b) Mean squared error of the predicted scores
1 . A2
MSEy = 157> (6(@5) — 9(@3))". (11)
A€A
(c) Link prediction error
err = |A| Z PV (12)
AEA

where Y, = sgn (M)\ ) and Yy = sgn (MA 5).

REMARK 2. The latent attributes of entities and relations are often not identifiable, so the MLE & is not
unique. For instance, in (@), the values of ¢ and M (x) remain the same if we replace 0; and ay, respectively
by T'0; + t and Tay, where t is an arbitrary vector in RYE and T is an orthonormal matrix. Therefore, we
consider the mean squared error of scores, which are identifiable.

3 MAIN RESULTS

We first provide results of the MLE in terms of KL divergence between the estimated and the true model.
Specifically, we investigate the tail probability P(L(M , M*) > t) and the expected loss E[L(M , M*)]. In
Section [3.1] we discuss upper bounds for the two quantities. The lower bounds are provided in Section [3.2]
In Section we extend the results to penalized maximum likelihood estimators (pMLE) and other loss
functions. All proofs are deferred to the Appendix.

3.1 Upper bounds

We first present an upper bound for the tail probability P(L(M, M*) > t) in Lemma |1, The result
depends on the tensor size, the number of observed edges, the functional form of ¢, and the geometry of
parameter space ©. The lemma explicitly quantifying the impact of these element on the error probability.
It is key to the subsequent analyses. Lemma@ gives a non-asymptotic upper bound for the expected loss
(risk). We then establish the consistency of M and the asymptotic error bounds in Theorem |1 I

We will make the following assumptions throughout this section.

Frontiers 5
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ASSUMPTION 1. &* € © = EN x RE, where £ and R are Euclidean balls of radius U.

ASSUMPTION 2. The function ¢ is Lipschitz continuous under the Euclidean norm,
¢ (w) — ¢ ()] <allu—wv], Vuves xR, (13)
where « is a Lipschitz constant.

Assumption I]is imposed for technical convenience. The results can be easily extended to general compact

parameter spaces. Let C' = sup |¢(w)|. Without loss of generality, we assume that C' > 2.
uEEZXR

LEMMA 1. Consider M defined in (9)) and the average KL divergence L in (10). Under Assumptions
and[2] for everyt > 0, f > 0and 0 < s < nt,

P (LOT M) > 1) < exp {—”’f — (% _ ﬁ)} (1 | 2V3aU " ”))m +exp {-nBh(A)}
(14)

where m = Ndg + Kdp is the dimension of ©, n = YN2K is the expected number of observations, and
h(u) = (1+ 1)log(1 4+ u) — L

In the proof of Lemma|l} we use Bennett’s inequality to develop a uniform bound that does not depend
on the true parameters. It is sufficient for the current analysis. If the readers need sharper bounds, they can
read through the proof and replace the Bennett’s bound by the usual large deviation rate function which
provides a sharp exponential bound that depends on the true parameters. We don’t pursue this direction in
this paper.

Lemma 2| below gives an upper bound of risk E[L(M, M*)], which follows from Lemma

LEMMA 2. Consider M defined in () and loss function L in (T0). Let C; = 18C, Cy = 8/3alU and
C3 =2max {C1,Cy}. IfAssumptionsandhold and % > (9 + e, then

- 1
E[L(M,M")] < C’g,@log2 + ﬁexp {—mlogﬁ} + §exp {—— (n—i— Cymlog 2) } . (15
n m n m n 3 m

We are interested in the asymptotic behavior of the tail probability in two scenarios: (i) ¢ is a fixed
constant and (i1) ¢ decays to zero as the number of entities /V tends to infinity. The following theorem gives
an asymptotic upper bound for the tail probability and the risk.

THEOREM 1. Consider M defined in (9) and the loss function L in (T0). Let the number of entities
N — oo and C,K,U,dg,dr, o, and v be fixed constants. If Assumptions [I| and [2| hold, we have the
following asymptotic inequalities.

When t is a fixed constant,
A t
log P(L(M,M*) > 1) < —@n. (16)
When t = 100% log %

log P(L(M,M*) > t) < —mlog % (17)

This is a provisional file, not the final typeset article 6
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Furthermore, m n
E[L(M,M")] < 10C—log —. (18)

n m
The consistency of M is implied by and the rate of convergence is | log P(L(M, M*) > t)| = Q(N?)
if ¢ is a fixed constant. The rate decreases to Q(N log N) for the choice of ¢ producing (I7). It is also

implied by that L(]\7[ , M*) = O(% log V) with high probability. We show in the next section that this
upper bound is reasonably sharp.

The condition that K, U, dg, dr, and « are fixed constants can be relaxed. For instance, we can let U,
dg, dg, and « go to infinity slowly at the rate O(log V) and K at the rate O(N). We can let 7y go to zero
provided that " log .+ = o(1).

3.2 Lower bounds

We show in Theorem [2| that the order of the minimax risk is €(”*), which implies the near optimality

of M in (9) and the upper bound O("*log 1+) in Theorem 1| To begin with, we introduce the following
definition and assumption.

DEFINITION 1. Foru = (0,0, w) € £? x R, the r-neighborhood of w is
Ne(u)={(n,n'.¢) € E xR ||n -0l <nlln— 6| <r ¢ —w|<r}.
Similarly, forx = (01, ...,0N,w1,..., wWk) € EN x RE, the r-neighborhood of x is
N (z) = {(nl, NGl C) € EN X RE | s — 03] < 1, ||Ch — wi]| < 7,Vi € [N],k € [K]} .
ASSUMPTION 3. There exists ug € £2 x R and r, x > 0 such that Ny (ug) C £? x R and
o (¢(w)) — 0 (¢(v))] = kllu —v|, Yu,v € Np(ug). (19)

THEOREM 2. Let b = SUpye; (ug) @ (¢(w)). Under Assumptionsand ifr? > (mAGZ10AZ0)  tpep

12a2n
or any estimator M, there exists 33* (- @ Sl/tCl’l that

~ ~-m/16 — 1 1
P (L(M,M*) > Cm) = (20)
n
~ 2
where C' = Kllz)(;o;b). Consequently, the minimax risk
. -m/16 — 1
min max E[L(M, M*)] > a6 =1 Q1)

N M* 2n

3.3 Extensions
3.3.1 Reguralization

In this section, we extend our asymptotic results in Theorem |1| to regularized estimators. In practice,
regularization is often considered to prevent overfitting. We consider a regularization similar to elastic net

Frontiers 7
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(19]
lp (;Ys) = (2 Ys) — pilla]1 — pal|z?, (22)
where || - ||1 stands for L1 norm and p1, p2 > 0 are regularization parameters. The pMLE is
& = argmax [,(x; Ys). (23)
€l

Note that the MLE in (8)) is a special case of the pMLE above with p; = p2 = 0. Since & is shrunk towards
0, without loss of generality, we assume that £ and R are centered at 0. We generalize Theorem[I|to pMLE
in the following theorem.

THEOREM 3. Consider the estimator M given by 23)) and (9) and the loss function L in (T0). Let the
number of entities N — oo and C, K, U, dg, dg, «,~y be absolute constants. If Assumptions I)and 2| hold
and p1 + p2 = o(log N), then asymptotic inequalities (16), (I7), and (I8) in Theorem || hold.

3.3.2 Other loss functions

We present some results for the mean squared error loss M SEy defined in (T1)) and the link prediction
error err defined in (I2)). Corollaries 1| and [2| give upper and lower bounds for M SE,, and Corollary
gives an upper bound for €77 under an additional assumption.

COROLLARY 1. Under the setting of Theorem E with the loss function replaced by M S Ey, we have the
following asymptotic results.

If t is a fixed constant,
50(C) (1 —o(O))t

logP (MSEy >1t) < — 50 n. (24)
Ift = Sorietoy o 108 1t
log P (MSE, > t) < —mlog % (25)
Furthermore,
EMSE] S e (210f0 @) Zlog . (26)
COROLLARY 2. Under the setting of Theorem Qwith the loss function replaced by M SEy, we have
P <MSE¢ > C%) > % 27)
and
min max B [MSE,] > é%. (28)
ASSUMPTION 4. There exists ¢ > 0 such that |M/’\“ — %‘ > e for every \ € A.
COROLLARY 3. Under the setting of Theorem 3| with the loss function replaced by érr and Assumption

added, we have the following asymptotic results.

If t is a fixed constant,
1 (A > t) < j352t ( )
og P (err ——nN. 29
& - ~ 5C

This is a provisional file, not the final typeset article 8
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_ 5C
Ift = 25" log .+,

€2 n
log P (err > t) < —mlog = (30)
m
Furthermore, c
. _ 9
Eerr] S Tmlogﬁ. (31)
s mn m
3.3.3 Sparse representations

We are interested in sparse entity embeddings and relation parameters. Let || - ||o be the number of

non-zero elements of a vector and 7 be a prespecified sparsity level of x (i.e. the proportion of nonzero
elements). Let m, = m7 be the upper bound of non-zero parameters, that is, ||x*||o < m,. Consider the
following estimator
& = argmax/ (x;Ys) subjectto |x|o < m;. (32)
rcO

The estimator defined above maximizes the Lg-penalized log-likelihood.

THEOREM 4. Consider M defined in (32) and ©) and the loss function L in (I0). Let the number
of entities N — oo and 7,C, K,U,dg,dr, o be absolute constants. Under Assumptions |I| and |2} the
following asymptotic inequalities hold.

If t is a fixed constant,
t

log P(L(M,M*) > t) < —=a" (33)
Ift =10C%F log .-,
log P(L(N, M*) > t) < —m, log ——. (34)
Furthermore, X m n
E[L(M, M*)] < 10C——log —. (35)
n mr

We omit the results for other loss functions as well as the lower bounds since they can be analogously
obtained.

4 NUMERICAL EXAMPLES

In this section, we demonstrate the finite sample performance of M through simulated and real data
examples. Throughout the numerical experiments, AdaGrad algorithm [20] is used to compute & in (8]
or (23)). It is a first-order optimization method that combines stochastic gradient descent (SGD) [21]] with
adaptive step sizes for finding the local optima. Since the objective function in (8)) is non-convex, a global
maximizer is not guaranteed. Our objective function usually has many global maximizers, but, empirically,
we found the algorithm works well on MRN recovery and the recovery performance is insensitive to the
choice of the starting point of SGD. Computationally, SGD is also more appealing to handle large-scale
MRNs than those more expensive global optimization methods.

4.1 Simulated Examples

In the simulated examples, we fix K = 20, dg = 20 and consider various choices of N ranging from
100 to 10,000 to investigate the estimation performance as /N grows. The function ¢ we consider is a

Frontiers 9
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combination of the distance model (4] and the bilinear model (3)),
¢ (0,05, wy) = (0; + a — 0;)" diag (by) (6; + ay, — 6;), (36)

where 6;,0;,a;,b;, € R? and wy, = (ay, by,). We independently generate the elements of 07, a;,, and
b} from normal distributions N (0,1), N(0,1), and N(0,0.25), respectively, where N (1, 0?) denotes the
normal distribution with mean y and variance 0. To guarantee that the parameters are from a compact
set, the normal distributions are truncated to the interval [-20, 20]. Given the latent attributes, each Y
is generated from the Bernoulli distribution with success probability M = o(4(6;, 67, wy)). The
observation probability ~y takes value from {0.005,0.01,0.02}. For each combination of v and N, 100
independent datasets are generated. For each dataset, we compute @ and M in (8) and (9) with AdaGrad
algorithm and then calculate L(M , M*) defined in (10) as well as the link prediction error err defined
in (12)). The two types of losses are averaged over the 100 datasets for each combination of N and ~ to
approximate the theoretical risks E[L(M, M*)] and E[érr]. These quantities are plotted against N in log
scale in Figure@ As the figure shows, in general, both risks decrease as /N increases. When /N is small,
n/m is not large enough to satisfy the condition n/m > C5 + e in Lemma [2| and the expected KL risk

increases at the beginning. After /V gets sufficiently large, the trend agrees with our asymptotic analysis.

«2 ;
= &
= ww
— o
w o)
=1 o
> =
o
I [ [ [ I I [ [ [ I
2.0 25 3.0 3.5 4.0 2.0 25 3.0 3.5 4.0
|Og1o N |Og1o N

Figure 2. Average Kullback-Leibler divergence (left) and average link prediction error (right) of M for
different choices of NV and .

4.2 Real data example: knowledge base completion

WordNet [[1] is a large lexical knowledge base for English. It has been used in word sense disambiguation,
text classification, question answering, and many other tasks in natural language processing [3, 5]. The
basic components of WordNet are groups of words. Each group, called a synset, describes a distinct concept.
In WordNet, synsets are linked by conceptual-semantic and lexical relations such as super-subordinate
relation and antonym. We model WordNet as an MRN with the synsets as entities and the links between
synsets as relations.

This is a provisional file, not the final typeset article 10
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Following Bordes et al. [7], we use a subset of WordNet for analysis. The dataset contains 40,943 synsets
and 18 types of relations. A triple (7, j, k) is called valid if relation k from entity i to entity j exists, i.e.,
Yijr = 1. All the other triples are called invalid triples. Among more than 3.0 x 1019 possible triples in
WordNet, only 151,442 triples are valid. We assume that 141,442 valid triples and the same proportion of
invalid triples are observed. The goal of our analysis is to recover the unobserved part of the knowledge
base. We adopt the ranking procedure, which is commonly used in knowledge graph embedding literature,
to evaluate link predictions. Given a valid triple A = (4, j, k), we rank estimated scores for all the invalid
triples inside A.;;, = {(¢,j, k) | i’ € [N]} in descending order and call the rank of ¢ () as the head rank
of A\, denoted by H,. Similarly, we can define the tail rank 7, and the relation rank R) by ranking ¢ () )
among the estimated scores of invalid triples in A;;. and A;.;, respectively. For a set V' of valid triples, the
prediction performance can be evaluated by rank-based criteria, mean rank (MR), mean reciprocal rank
(MRR), and hits at ¢ (Hits@q), which are defined as

MRg = Q‘V‘ ZH)\+T)\, MR = | ZR)\,
\eV AeV
1
MRRg = MRRR =
PO P
and
Hitsg@q = 2|V| Z L, <qy + 11\<q), Hitsr@Qq = Z Lir\<q}-
A€V AeV

The subscripts E and R represent the criteria for predicting entities and relations, respectively. Models with
higher MRRs, Hits@gq’s or lower MRs are more preferable. In addition, MRR is more robust to outliers
than MR.

The three models described in @), (§)), and (36) are considered in our data analysis and we refer
to them as Model 1, 2 and 3, respectively. For each model, the latent dimension d takes value from
{50, 100, 150, 200, 250}. Due to the high dimensionality of the parameter space, Ly penalized MLE is
used to obtain the estimated latent attributes &, with tuning parameters p; = 0 and py chosen from
{0,1072,1073,107%,107°} in (22). Since information criteria based dimension and tuning parameter
selection is computationally intensive for dataset of this scale, we set aside 5,000 of the unobserved valid
triples as a validation set and select the d and p9 that produce the smallest MRRE on this validation set. The
model with the selected d and p» is then evaluated on the test set consisting of the rest 5,000 unobserved
valid triples.

The computed evaluation criteria on the test set are listed in Table[I] The table also includes the selected
d and p9 for each of the three score models. Models 2 and 3 generate similar performance. The MRRs for
the two models are very close to 1, and the Hits@q’s are higher than 90%, suggesting that the two models
can identify the valid triples very well. Although Model 1 is inferior to the other two models in terms
of most of the criteria, it outperforms them in MRg. The results imply that Model 2 and Model 3 could
perform extremely bad for a few triples.

In addition to Models 1-3, we also display the performance of the Canonical Polyadic (CP) decomposition
[22] and a tensor factorization approach, RESCAL [23]]. Their MRRg and Hitsg@10 results on the WordNet
dataset are extracted from [12] and [[13], respectively. Both methods, especially CP, are outperformed by
Model 3.

Frontiers 11
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Table 1. Results for WordNet data analysis. The results for CP and RESCAL are extracted from [12] and
[13]].

Method (d, pQ) MRg MRRg Hitsg@10 MRr MRRgr Hitsg@1
Model 1~ (100,107°) 385 0.64 0.888 1.41 0.896 0.817
Model 2 (250, 10_4) 769 0.94 0.945 1.31  0.968 0.959

Model 3 (200,107%) 499  0.94 0.947 1.13  0.978 0.967
CP - - 0.075 0.125 - - -
RESCAL - - 0.890 0.928 - - -

5 CONCLUDING REMARKS

In this article, we focused on the recovery of large-scale MRNs with a small portion of observations. We
studied a generalized latent space model where entities and relations are associated with latent attribute
vectors and conducted statistical analysis on the error of recovery. MLEs and pMLEs over a compact space
are considered to estimate the latent attributes and the edge probabilities. We established non-asymptotic
upper bounds for estimation error in terms of tail probability and risk, based on which we then studied
the asymptotic properties when the size of MRN and latent dimension go to infinity simultaneously. A
matching lower bound up to a log factor is also provided.

We kept ¢ generic for theoretical development. The choice of ¢ is usually problem-specific in practice.
How to develop a data-driven method for selecting an appropriate ¢ is an interesting problem to investigate
in future works.

Besides the latent space models, sparsity [24] or clustering assumptions [25] have been used to impose
low-dimensional structures in single-relational networks. An MRN can be seen as a combination of several
heterogeneous single-relational networks. The distribution of edges may vary dramatically across relations.
Therefore, it is challenging to impose appropriate sparsity or cluster structures on MRNs. More empirical
and theoretical studies are needed to quantify the impact of heterogeneous relations and to incorporate the
information for recovering MRNs.

APPENDIX

PROOF OF LEMMAI[Il Let©; = {x € ©: L (M(x), M*) >t} and f(x) = [ (x;Ys) — [ (x*;Ys) be
the log likelihood ratio. Therefore, f is a random field living on ©. By writing f (), we omit the second
argument. In explicit form, f(x) = > Z,, where

AEA
M) (x) 1 — My(x)

Zy=1 Yilog————=+ (1 -Y))1 7
A AeS{AOg M; + (1 =Y))log T (37)
We have E [Z)] = —yD (M;||M(x)) and | Z,| < C. It follows that f has properties (i) f(x*) = 0, (ii)

f(x) >0, (i) E[f(x)] = —nL (M(x), M*). Based on the definition of ©; and property (ii), we have
P (L(M,M*) > t) —P(zeO)<P (sup f(z) > 0) . (38)

rcOy

From property (iii), we get that
Elf(x)] < —nt, Vax € 6. (39)
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According to Lemma [3]in Appendix, when C' > 2, the variance of Z) is bounded by

*

M), M 2
—1 < 2vC'D (M;||My) .
s o) < 20D O]

Ve 23] = 131~ 357 (o

It follows that

Var [f(z)] = Y Var[Z,] < 2yC Y D (Mj||M,) = —2CE [f(=)]. (40)
AEA AEA

By Bennett’s inequality,

Ptta)2 o <o { ZHEUIEI (_Cle+ B | "

where 0 < s < nt and h(u) = (1 + 1)log (1 +u) — 1 is an increasing function for u > 0.
Hence by bounds in (39){0),

- son o0 (G s (5]

Let z = argmax,.g, f() be the random vector on ©; where f(x) reaches its maximum. Let N ¢
and N, R be the e-covering centers for £ and R respectively. Since £ and R are balls of radius
U, we can find e-coverings such that [N.g| < (1 +20U/¢) and Ner| < (1+2U/€)R. For
z = (61,...,0N,w1,...,wg), there exists some x = (0),...,0y, wi,... wy) € J\fej\é X j\/eKR
such that |0 — ;]| < €,Vi € [N] and ||lw) — wy| < €,Vk € [K]. Therefore,

f(z) = f(@) <Y 1o(z) —d(@n)| < @) [lzn — 2l < V3alSle. (43)

AES AES

By Bennett’s inequality, for every 5 > 0,

p (S| —n > nf) < exp {—nﬂh (%)} < exp {—nph(B)} . (44)

When |S| < n(l+ ), sete = m, then f(z) — f(x) < s. Combining (38)) (42) and (44)), we get
that

P (L M) > ) < P (sgg f(@) > 0,|S| < n(1+ B)) +P(IS| > n(1+ 8)

§P< max - f(x) > —s,[S| Sn(1+ﬁ)> + P (|S[ > n(1+5))

mGNENg XJ\/'CKR

< VB x NIl max  P(f(z) > —s) + exp {—nph(B)}

mGAﬁ&XAﬁ%
_ U "
< exp {_nto “h (% — ﬁ)} (1 + 2V3a Z(l * /B)) + exp {—nph(B)},

(45)
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310 where m = Ndg + Kdp is the degree of freedom.

311 PROOF OF LEMMA[2l To bound E [L(M, M*)} ,set s = snt and 8 = 1+ ¢ in (T4) to get

P(L(M,M*) > t> < exp{—g—i} (1+ %+%> +exp{—%n(1+t)}. (46)

312 By Fubini’s Theorem,

E [L(M, M*)} - /oo P <L(M, M*) > t) dt < to+ /OO P (L(M, M*) > t> dt. (47
0 t

0

313 Let C3 = 2max [{C1,C2}] and tg = C37 log --. When t > tg and > > Cs + e,

Cy Co Can

Cy Cy n n
1+ 2 2y 20 22 o2 o 48
+2+t_+2+03m10g%_+2+2m_m (48)
314 Thus
. . nt n 1
P(L(M,M ) 2t> <exps —— +mlog—p+exps—=n(l+t)p, t>t. (49)
& m 3
315 Hence by @7) and (@9),
9 * Cl nt() n 3 1
E [L(M,M )} <tg+—expq—— +mlog— ¢+ —exp< —=n(l+tg)
n @] m n 3 (50)

C 3 1
< C’gmlogﬁ + —1€Xp {—mlogﬁ} + —exp {—— (n+ Csmlog ﬁ) } .
n m n m n 3 m

PROOF OF THEOREM Il When ¢ is a constant, let s be absolute constant and 3 = m — oo in Lemma
[I} We analyze the order of three exponential terms on the right side of (14),

1
_nt—sh (1_ s ) N—h(Z)nt,

C 2 2nt C
mlog (1 N 2v/3aUn(1 + B)

S

) ~ mlog(mn),
—nBh(B) ~ —mnmlogm.

Hence, both the second and the third term is asymptotically ignorable compared to the first term. It follows
that

log P <L(M, M*) > t) < —%nt.
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When t = hz(c) 2 log 2, let s = m and [ be absolute constant. The exponential terms

n m
nt—s 1 S n
— h|l=—— ) ~—2mlog —
C (2 Qnt) s

mlog (1 N 2v/3aUn(1 + B)

S

[N

) = mlogﬁ + O(m).
m
316 The third term exp {—nSh(/5)} is negligible. Therefore,
log P (L(M, M) > t) < —mlog . 51)
m

To bound the risk, we use similar approach as proof of Lemma 2l Let s = m, § = 1+t and ty =
20 m oo 1
TOERED

o nt—s, (1 s C ntop—s., (1 s
_ -2 < _ -2
Fonl (oo )

l_ s
2 2ntg

exp {—Qm log 2} ,
m

2 1 2 2
mlog (1 + VaaUn(l + ﬁ)) < mlog (1 + V3aUn(2 + to)) ~ mlog ﬁ)
m

S m

and

/OO exp{—n(1+t)h(1+1t)}dt < %exp {—%n(l + to)} =0 (exp {—mlog %}) :

to
317 It follows that

E [L(M, M*)] <to+ /OO P (L(M, M) > t) dt

to

2C m n (52)
Sj t() +O(t0) ~ —1—10g—
hz)n “m
318 Since h(%) > %, we proof the results.
319  LEMMA 3. Va,y € [-C, (], we have
o() (1 - o(2)) (y - 2)° < 2max{C,2} D (o(x)||o(y)) (53)

320 PROOF. We only need to show the result for z > 0 by symmetry. For any fixed z € [0, C], define
321 g(y) = 2CnD (o(z)]|o(y)) — o(z) (1 — o(z)) (y — z)*, where Cy, = max {C, 2}. Since

9'(y) =2Cn(o(y) — o(x)) = 20(2)(1 — o(2))(y — @), (54)

Frontiers 15



322
323

324
325

326
327

328
329

330

331
332

333

334

335
336

337

Wang et al. Multi-Relational Network Recovery

we have ¢'(z) = g(x) = 0. It remains to show that 9W . ( for all y € [-C,C]\ {z}, then g(z) reaches

—X

the minimum at z = 0 and ¢g(y) > 0 on [—C, C]. Equivalently, we want to show that

Cm(o(y) —o(@))/(y —x) > o(x)(1 — o(x)).

Note that (o(y) — o(x))/(y — x) is the slope of secant line on logistic function and reaches its minimum at
y = C. It suffices to show that

(C—z)o(x)(1—o0(x)) + Cpo(x) < Cpo(C),Vz € [0,C] (55)
Let h(x) be left side above. By taking the derivative, we get

W(x) =[Cn—1—=(C—2)20(z) = ]o(x) (1 - o(z)).
If1 <z <C,then (C —z)(20(x)—1)<C—-1<Cp—1.10<z <1 then (C—2x)(20(z)—1) <

C (20(1) — 1) < 3C < Cyy, — 1. Therefore, 1 (z) > 0 on [0, C]. It follows that h(z) < h(C) = Cpo(C).

To prove the lower bound in Theorem 2] we will use Lemma]—[6] Since Lemma [][26] and Lemma 5]
[27] are well established results in literature, we will skip the proofs.

LEMMA 4 (Gilbert-Varshamov bound). There exists a subset V of the d-dimensional hypercube {—1, 1}d
of size at least exp{d/8} such that the Hamming distance

1
Z Ly, = Zd (56)

forall u # v withu,v € V.

LEMMA 5 (Fano’s inequality). Let V' be a uniform random variable taking values in a finite set V with
cardinality |V| > 2. For any Markov chain V. — X — V,

. I(V;X) +log2
P(v;év)zl— ! , (57)
log ([VI)
where [(V'; X) is the mutual information between V and X.
LEMMA 6. Suppose that p,q € (0,1). Then
)2
Dipllg) < L0 (58)

q(1—q)

PROOF. Since D(1—pl||1—¢q) = D(p||q), it suffices to show for case p < ¢. View D(p||q) as a function
of ¢. By mean value theorem, there exists £ € [p, g] such that

2 _(q-p) (59)

Do) = Do) = g

i)

Note that =5=2— is increasing in £ and D(p||p) = 0. Hence, D(p||q) < E;%l_fz).

£(1-¢)
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PROOF OF THEOREM 2L Let ug = (6o, 6, wo), = (6o, - .- ,Bq,ﬁg, . ,0@, wy, ..., wp) and

-

1Y) e K

SRR

- N N
A={aamentisiFi=15i}ca
338 with cardinality |A| = | § |[S]K. If & € N, (&), then z) € N, (uy) for every \ € A. Hence according to
339 Assumption[3]
| (¢(x))) — 0 (d(x)))] = Kllzr —2)|, Va2’ € No(),) € A (60)

340 We will find * in the vicinity of @ such that holds.

341 LetHp = {-6/Vdg, 5/«/dE}NdE and Hp = {—6/Vdpg, 6/\/dR}KdR be two hypercubes. According
342 to Gilbert-Varshamov bound in Lemma {4} there exist Vg C Hp and Vg C Hp such that |[Vg| >
343 exp{Ndg/8}, |Vr| > exp{Kdgr/8} and

w

Ndg

D Ly, > NdE, Vu,v € Vg, u # v, (61)
=1

344
Kdp

1
Z Loyo; = ZleR’ Yu,v € Vp,u # v. (62)
=1

345 Foru = (01,...,0y) € Vg, v=(0],...,0y) € Vgand u # v, suggests that

Z 16; — 6% > Z (25/\/@) “Ndp = Né2, (63)

346 Likewise, from (62]) we can get that

K
D lwi —wil| > K62, (64)
i=1

347 withu = (w1,...,wk) € Vg, v = (w},...,wy) € Vg and u # v.

348 LetV = {&+e|ecVpxVg} = {z x(1)} where T = |Vg||[Vg| > exp {m/8}. By the

349 definition of d-neighborhood and size of hypercubes we have V C N (€) and thus property in (60) holds
350 ford < r.The corresponding tensors are denoted as M (V) = {M(l), L MT )} where M) = M <zc(i)>

351 fori € [T]. Let z = argmin || M — M (z)||, thus M (z) is the closet tensor to M in M (V) under Frobenius
%

352 norm. By triangular inequality,

1 ; .
187~ MO > 2 (157~ MO+ 87— M(z])) > SIMO M), Vie[T]  ©)
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Note that z, () € V, according to Pinsker’s inequality and (&0),

(0 — MO 2 -z
L (3, M) > | |HM @) _2|A||| M(z)]| _2|A|Z||% 2\

AEA

353 Forall x # =’ withz, '’ € Vand N > 2,

1 1 N N
e el = o | L5 S 16— 6P + 15151 Y e~ wP
AeA

1€[N] kelK]
(66)
)1 12 2 29
> min ——Z|lz—9ll ZHwk—wkH =50
3N | 9
i€[N] ke K]
354 Hence when () # z,
N . 1
L (M,M(’)> > r (67)
355 Let P; denote the probability measure under x(), Results above show that
(Lo ) > L262) > P (20 -
P L(M,M )29/{5 > Pz #£2z), Vie][N]. (68)

356 Assign a prior on x that is uniform on V and denote by P, the Bayes average probability with respect to
357 the prior. By Fano’s inequality in Lemma[5]

I(x;Ys) +log 2

P >1-—

(69)

358 where I(x; Xs) is the mutual information between x and Y. It can be bounded by the maximum pairwise
359 KL divergence of Ys under /; and P; as follows,

I(z,Ys) = ZD i(Ys)l|Pv(Ys)) < max D (Bi(Ys)||Pj(Ys)) =
7 (70)

max » D (F(Yy\,A € S)||Pj(Y\,A €S)) = maxnL <M(i), M(j)> .
ied A€A i

(z) (1 — o(x)) < 1. By Assumption 2} ¢(-) is

360 Since o(-) is logistic function, the derivative o’(z) = o
(+)) is also Lipschitz continuous with coefficient

361 Lipschitz continuous with coefficient « , we get that o (¢

362 a.Letb= sup o (¢(u)), by Lemmal6|we get
ueEN;(up)

7 1) 112 2 2 2.2 252
LMD, 1)y < 1M — M@ < a? Y heq 2l — 2| _3(20%7  12a%

- (A =b) T |A[b(1 —b) =B(1—0b)  b(1—b) (71)
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for all i, j € [N]. Hence, there exists () € V such that

12026%n 12026%n
. + log 2 cip. 11
P-< #* (Z)>>1— bI-b) >1——(_) . 72
\EFTET) = log |T| - m/8 (72)

Letz* = () , P = P, and

52 — (m/16 — 1)b(1 —b) <2
12a2n

It follows from (68) that

~ i o K2D(1—=b)m/16 — 1 1
P<L(M,M())Z 1(()8a2) /n )z . (73)

O |

PROOF OF THEOREM 3] We will show the result by continuing the proof of Lemma [T and Theorem I
with some modifications. Let f,(x) be the penalized log likelihood ratio, we have

fo(®) =1, (2;Ys) — 1, (x";Ys)
= f(z) — p1 (&)1 — l*]l1) — p2 (||| — [|=*|?) (74)
< f(®) +V2p1(N + K)U + pa(N + K)U?

According to (43), there exists  among the e-covering centers such that

fo(2) = fo(x) = f(2) = f(z) = pr (12]l1 = ll2ll) = p2 (2] = [l]?)

(75)
< V3a|Sle + V2p1(N + K)e + 2p2(N + K)Ue,

where z = argmax g, fy(x). It follow that when |S| < n(1 + ) and f,(2) > 0,
fo(@) = —v3alSle — Vapi (N + K)e — 200(N + K)Ue

(N+ K)s 2 (76)
Z—S—m< P1+\/—P2U)

with e = ——=——. Hence, we can rewrite (43) as

V3an(1+p)

P (L) 2 1) < P (s fy(e) 2 0,15 < all +5)) + P(S| > n(1+ 9)

rcOy

< INDE X NER P (F(m) > —s)) + exp {—nBh(B)}
< oxp {—"t(;sph (1 _ _p)} (1 4 mwzu - 5)) 1 exp {—nBh(B)},

2 2nt

(77)

where
sp:s—l—%( 2p1+\/—p2U>+\/_p1(N—|—K)U+p2(N—|—K)U
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Therefore, s, = s + o(s) + O(IN) = o(nt) when ¢ and s are absolute constant or when ¢ = R(1y log
2

and s = m. Hence the proof of Theorem [T| applies and the asymptotic results hold.

PROOF OF COROLLARY [T} 2JAND[3] To show these corollaries, we associate M SE, and éri with
L(M, M*). The first and second order derivatives of D (o(x)||o(y)) as a function of y are

0 0?

a—yD (0(@)[lo(y) = o(y) —o(x), 5D (a(z)llo(y)) =oly) (1 —0a(y))- (78)

By Taylor expansion, there exists { = ux + (1 — u)y with u € (0,1) such that D (o(x)||o(y)) =
$0(&) (1 = a(€)) (y — x)2. Hence, for z,y € [-C, ],

20(0) (1= 0(C)) (v~ 2)° < D (o) lolu)) < 5(y— )" 79
It follows that
%U(C) (1—0(C) MSE, < L <M M*) < %MSE¢. (80)

where MSE, = A > sen (0(&)) — o(x3)) ? is the mean squared error of edge scores. The upper bound
of MSE, follows rom Theorem [3| and left half of (80). By Theorem [2]and right half of (80), we get the
corresponding lower bound. Likewise, for err we can derlve the upper bound by

L <M M*) P ZD (MAHMA) P Z - (——i—e||l) > 262677 1)

PROOF OF THEOREMME] Let O, = {z € EV x RY | |z|o < m,} be subspaces of © with at most
m, non-zeros and Ng_ be its e-covering centers. There are (W’Z) combinations of support, and each

subspace has a covering number of (1 + %)mT. Hence, the overall e-covering number of ©, would be
m 20\
o = () (1+25) 52)
mr €

P (L(M, M*) > t) <exp{—I+1I} + exp {11}, (83)

We can rewrite Lemmal/l] as

where

nt —s 1 S
I = -
C h(2 2nt>’

2 1
1 log (m) g <1+ V3aUn( +6)> |
mr

S

101 = nBh(B).
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By Stirling’s approximation,

1
log (g) ~ —mslogT — (m —m;)log(l — 1) — 5 logm
T
(84)

~Y

1
S<Smy(—logT+1) — §logm = 0(m;).

To get the results, when ¢ is absolute constant, let s be absolute constant and § = m. When t =

h2((f) % log ml let s = m;, and 3 be absolute constant. For risk upper bound, select s = m,, 3 =1+1
j T

and tg = hﬁ)%log miT At last, use h(%) > %
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