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ABSTRACT

We define variants of PEL type of the Shimura varieties that appear in the context of
the arithmetic Gan-Gross—Prasad (AGGP) conjecture. We formulate for them a version
of the AGGP conjecture. We also construct (global and semi-global) integral models of
these Shimura varieties and formulate for them conjectures on arithmetic intersection
numbers. We prove some of these conjectures in low dimension.
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1. Introduction

The theorem of Gross and Zagier [GZ86] relates the Néron—Tate heights of Heegner points on
modular curves to special values of derivatives of certain L-functions. Ever since the appearance
of [GZ86], the problem of generalizing this fundamental result to higher dimension has attracted
considerable attention. The generalization that is most relevant to the present paper is the
arithmetic Gan—Gross—Prasad conjecture (AGGP conjecture) [GGP12, §27]. This conjectural
generalization concerns Shimura varieties attached to orthogonal groups of signature (2,n — 2),
and to unitary groups of signature (1,n — 1) (note that modular curves are closely related to
Shimura varieties associated to orthogonal groups of signature (2,1) and to unitary groups of
signature (1,1)). In [GGP12, §27], algebraic cycles of codimension one on such Shimura varieties
are defined by exploiting embeddings of Shimura varieties attached to orthogonal groups of
signature (2,n — 3) (respectively, to unitary groups of signature (1,n — 2)). By taking the graphs
of these embeddings, one obtains cycles in codimension just above half the (odd) dimension of
the ambient variety.

For any algebraic variety X smooth and proper of odd dimension over a number field,
Beilinson and Bloch have defined a height pairing on the rational Chow group Ch(X)g,o of
cohomologically trivial cycles of codimension just above half the dimension. Their definition
makes use of some wide open unsolved conjectures on algebraic cycles and the existence of reg-
ular proper integral models of X. By suitably replacing the graph cycle in the case at hand by
a cohomologically trivial avatar, one obtains a linear form on Ch(X)g,0, where now X is the
product of the two Shimura varieties in question. The AGGP conjecture relates a special value
of the derivative of an L-function to the non-triviality of the restriction of this linear form to
a Hecke eigenspace in Ch(X)g. It is stated in a very succinct way in [GGP12], for orthogonal
groups and for unitary groups. In the present paper we restrict ourselves to unitary groups, and
one of our aims is to give more details on (a variant of) this conjecture in this case. Our version
here is also an improvement of the version of the conjecture in [Zhal2a, Zhal2b]. One new fea-
ture of our version is that we use the standard sign conjecture for unitary Shimura varieties (a
theorem of Morel and Suh [MS19, Theorem 1.2], cf. Section 6.2) to construct ‘Hecke-Kiinneth’
projectors that project the total cohomology of our Shimura variety to the odd-degree
part.

As indicated above, the AGGP conjecture is based on conjectures of Beilinson and Bloch
which seem out of reach at present. As a consequence, the conjecture in [GGP12] has not been
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proved in a single case of higher dimension.! A variant of the AGGP conjecture, inspired by
the relative trace formula of Jacquet and Rallis [JR11], has been proposed by the third author
[Zhal2a]. This variant relates the Beilinson—Bloch height pairing with distributions that appear
in the relative trace formula. The variant leads to local conjectures (on intersection numbers on
Rapoport—Zink spaces), namely the arithmetic fundamental lemma (AFL) conjecture and the
arithmetic transfer (AT) conjecture (cf. [Zhal2a, RSZ18]), and these have been proved in various
cases [Zhal2a, RTZ13, Mih16, RSZ17, Mih17, RSZ18]. The second aim of the present paper is
to formulate a global conjecture whose proof in various cases is a realistic goal. In the present
paper, basing ourselves on our local papers [Zhal2a, RSZ18], we prove this conjecture for unitary
groups of size n < 3.

To formulate this conjecture, we define variants of the Shimura varieties appearing in
[GGP12] and [Zhal2a] which are of PEL type, that is, are related to moduli problems of abelian
varieties with polarizations, endomorphisms, and level structures. In fact, we even define integral
models of these Shimura varieties, in a global version and a semi-global version. The construction
of such models is the third aim of the present paper. Once these models are defined, we replace the
Beilinson—Bloch pairing on the cohomologically trivial Chow group by the Gillet—Soulé pairing
on the arithmetic Chow group of the (global or semi-global) integral model.

Now that we have formulated the three main goals of this paper, let us be more specific.

Let F be a CM number field, with maximal totally real subfield Fy. We fix a CM type ® of F
and a distinguished element ¢ € ®. Let n > 2 and let 7: Hom(F,C) — {0,1,n —1,n}, p—ry,
be the function defined by

1, © = o,
T =140, 0 €@~ {po},
n—rg ¢ ¢e.

Associated to these data, there is the field E C Q which is the composite of the reflex field of r
and the reflex field of ®. Then F contains F via . We denote by Z@ the torus

7%= {z ¢ Resp/g(Gm) | Nmp/g (2) € G }-
We also fix an F'/Fy-hermitian vector space W of dimension n with signature

sig(Wy) = (r4,735), ¢ € ®.

Let G be the unitary group of W, considered as an algebraic group over Q.? Associated to (G, )
is the Shimura variety of [GGP12]. In the present paper we instead consider the Shimura variety
associated to G := Z2 x G. We are able to formulate a PEL moduli problem M Kg (C:’) of abelian
varieties with additional structure (endomorphisms and polarization) which defines a model over
E of the Shimura variety

Shk,(G) = Mk_(G) @5 C. (1.1)
(In fact, we require that Kz = Ko x K¢, where K 4o is the unique maximal compact subgroup
of ZU(Ay) and where K¢ is an open compact subgroup of G(Ay).) The group differs from the
group of unitary similitudes GU(W) by a central isogeny. The Shimura variety corresponding to

! However, we point out that the work of X. Yuan, S. Zhang and W. Zhang (in preparation) proves certain variants
of this conjecture in a higher-dimensional case for orthogonal groups of type SO(3) x SO(4).
2 This notation differs from the main body of the paper, where G denotes the unitary group of W over Fp.
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the latter group is considered by Kottwitz [Kot92], and he formulates a PEL moduli problem
over the reflex field of r which almost defines a model for it, but not quite, because of the
possible failure of the Hasse principle for GU(W). This Shimura variety is also considered by
Harris and Taylor [HT01]. In the setup of [HT01], we have £ = F' and both their Shimura variety
and ours are defined over F'; however, ours offers a number of technical advantages over theirs.?
The definition of our moduli problem is based on a sign invariant inv},(Ag, A) € {£1} for every
non-archimedean place v of Fy which is non-split in F'. Here (Ag, tp, \g) is a polarized abelian
variety of dimension d = [Fp : Q] with complex multiplication of CM type ® of F, and (4, , \)
is a polarized abelian variety of dimension nd with complex multiplication of generalized CM
type r of F. This sign invariant is similar to the one in [KR15, KRZ20], but much simpler. This
simplicity is another reflection of the advantage of our Shimura varieties over those considered
by Kottwitz [Kot92].

This sign invariant also allows us to define global integral models of M, (G) over Spec OF (at

least when F'/Fj is not everywhere unramified) and semi-global integral models over Spec O E,(v)
where v is a fixed non-archimedean place of E, of residue characteristic p. These integral models
generalize those in [BHKR'20] when Fy = Q and when K¢ is the stabilizer of a self-dual lattice
in W. Here we allow K¢ to be the stabilizer of more general vertex lattices, in the sense of [KR11].
To achieve flatness, we sometimes have to impose conditions on the Lie algebras of the abelian
varieties in play that are known in a similar context from our earlier local papers [RSZ17, RSZ18]
(the Pappas wedge condition, the spin condition and its refinement, the Fisenstein conditions).
However, in contrast to Kottwitz, we do not need any unramifiedness conditions.

Once the model M, (é) and its global or semi-global model are defined, we can also create
a restriction situation in analogy with [GGP12]. Namely, fixing a totally negative vector u € W
(satisfying additional integrality conditions for the global (respectively, semi-global) integral
situation), we define W to be the orthogonal complement of w. Then WP satisfies the same
conditions as W, with n replaced by n — 1. We obtain a finite unramified morphism

My (H) — Mg _(G) (1.2)

(respectively, their global or semi-global integral versions). Here H=27%xH , where H =
U(Wb), considered as an algebraic group over Q. Using the graph of the above morphism, we
obtain an element in the rational Chow group,
2k, € Ch" (M (HG))g.

Here Mg .. (PTG) is the model defined as above for the Shimura variety for the group
Z2 x H x G. Using the Hecke-Kiunneth projector, we construct a cohomologically trivial variant
ZK 0 € Chnfl(MKﬁ,G(HG))QC of this element, which, via the Beilinson-Bloch pairing, in turn
defines a linear form

lk,: Ch" (Mg, (HG))cy — C.

H
Our variant of the AGGP conjecture is expressed in terms of this linear form.
We similarly define, under certain hypotheses, elements in the rational Chow group (reﬂ\)/ec-
tively, rational arithmetic Chow group) of the (global or semi-global) integral model M Ky (HG).
Let us consider the Gillet—Soulé intersection product pairing on the rational arithmetic Chow

3 Kottwitz [Kot92] does not need any assumptions on the signature of W; neither do we (cf. [RSZ19)]).
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group of Mg . (H\é) We have a conjecture on the value of the intersection product of zx .
and its image under a Hecke correspondence. Let us state the semi-global version, since this is
the one for which we can produce concrete evidence. We also have a global version.

CONJECTURE 1.1 (Semi-global conjecture). Fix a non-split place vy of Fy over the place p < oo
of Q. Let f =&, fr € %”[?\,G (‘%ﬂKH‘G if p is archimedean) be a completely decomposed element
H

of the finite Hecke algebra of HG, and let f' = X, fi € H(G'(AFR,)) be a Gaussian test function
in the Hecke algebra of G’ = Resp)p,(GLp—1 x GL,) such that @,
of f. Assume that for some place A\ prime to p, the function f has regular support at \ in the
sense of Definition 8.4 and that f’' has regular support at A in the sense of Definition 7.5.

fl is a smooth transfer

(i) Assume that vy is non-archimedean of hyperspecial type (cf. §4.1) and that f,, = LG/ (O ug)-
Then

Inty, (f) = —0Jy, (f,)
(ii) Assume that vy is archimedean, or non-archimedean of AT type (cf. §4.4). Then

Intvo(f) = _aJvo (f/) - J(féorr[vo])’

where fiop[vo] = @, feorrws With feom., = fi, for v # wvo, is a correction function. Further-
more, f" may be chosen such that f . [vo] is zero.

We refer to the body of the text for an explanation of the terms used (cf. Conjecture 8.13).
Here it suffices to remark that Int,,(f) is the weighted sum of the local contributions of all places
v of E over vy to the Gillet-Soulé intersection product of the diagonal subscheme My (H) of

M Kﬁc(ffé) and its translate by the Hecke correspondence R(f) associated to f. We denote
by J (respectively, d.J,,) the distributions (cf. (7.9) and (7.10)) that arise in the twisted trace
formula approach to the AGGP conjecture. The regularity assumption on f guarantees that for
non-archimedean vy the intersection of the two cycles has support in characteristic p, and the
regularity assumption on f’ guarantees that the distributions J and 9.J,, localize.

In the global context, when the Hecke correspondence R(f) satisfies a suitable regularity
assumption, the intersection product localizes, that is, is a finite sum of contributions, one from
each place v of E. We group together the local contributions from all places v which induce a
given place vy of Fy. From this point of view, Conjecture 1.1(i) predicts the contribution of the
good places, and Conjecture 1.1(ii) the contributions from the archimedean places and certain
bad places.

The conjecture is accessible in certain cases. We prove the following theorem.

THEOREM 1.2. Let vy be a non-archimedean place of Fy that is non-split in F'. Then Conjecture
1.1 holds true for n < 3.

The main input is our work in the local case (intersection product on Rapoport—Zink spaces):
the proof of the AFL conjecture in the hyperspecial case for n < 3 by one of us [Zhal2a] and the
proof of the AT conjecture for n < 3 in [RSZ17, RSZ18]. The passage from the local statement
to a global statement is modeled on the similar passage in [KR14] (which also inspired the
similar passage in [Zhal2a]). In fact, this similarity is not only formal. Indeed, the definition
of Kudla—Rapoport divisors uses in an essential way that the Shimura variety for GU(W) is
replaced by the Shimura variety for G (in fact, in [KR14], one uses Z2 x GU(W); as remarked

1749

Downloaded from https://www.cambridge.org/core. IP address: 173.48.177.162, on 27 Oct 2020 at 12:52:18, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/50010437X20007289


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007289
https://www.cambridge.org/core

M. RAPOPORT, B. SMITHLING AND W. ZHANG

in [BHKR"20], the definition can be realized on the Shimura variety for G). In this way, there
is a direct connection between the intersection problem occurring in Conjecture 1.1 and the
intersection problem in [KR14].

We also have a theorem for split (hence non-archimedean) places (cf. Proposition 8.12).

THEOREM 1.3. Let vy be a place of Fy that is split in F. Let f and f’ be as in Conjecture 8.8.
Then

Inty, (f) = 0Jy, (f') = 0.

The significance of this theorem is that in the global context, again under a regularity assump-
tion on the Hecke correspondence R(f), the contribution of the places vy which split in F' is
trivial.

Let us now put the results of this paper in perspective. B. Gross asked for integral models
of the Shimura varieties for unitary groups. Here we answer a modified version of his question
by constructing integral models of the Shimura varieties for G. However, we have to pay a price
by having to replace the field F', over which Gross’s Shimura varieties have a model, by the
field E, over which our Shimura varieties have a model; and F may be strictly larger than F.
This also causes us to modify our adaptation of the AGGP conjecture. It would be interesting
to understand whether the Kisin—Pappas construction of integral models of Shimura varieties of
abelian type [KP18] yields a solution of Gross’s question which can be used to give a variant of
the AGGP conjecture which avoids having to replace F' by a bigger field.

Our current knowledge of AT conjectures forces on us to be very specific when imposing level
structures in our moduli problems. It seems realistic to hope that more cases of AT conjectures
than in [RSZ17, RSZ18] can be formulated, and this would allow more flexibility for the level
structures. We hope to return to this point.

How realistic is it to hope that the conjectures on the arithmetic intersection pairing can be
proved, in cases that go beyond those treated in this paper? The stumbling block seems to be
that in higher dimension it is difficult to avoid degenerate intersections—and degenerate inter-
sections seem to be a challenge to currently available techniques, already in the local situation?
(intersection on Rapoport—Zink spaces). It might be fruitful to search for intersection prob-
lems derived from those considered here which avoid these apparently very difficult problems,
in the spirit of B. Howard’s papers concerning the Kudla—Rapoport divisor intersection problem
(cf. [How12, How15]).

As is apparent, automorphic L-functions do not appear explicitly in the statements above,
contrary to what happens in the AGGP conjecture. L-functions are involved implicitly because
the distributions J and 0., are related to them (cf. § 7). However, more analytic work is involved
to make this relation more explicit. One of us (W.Z.) hopes to return to this point and explain
this issue in more detail.

We also mention the article [Zhal8] of the third author, which discusses some of the broader
context on the relation of special values of L-functions and their derivatives to period integrals
and intersections of cycles, into which this paper falls.

The organization of the rest of this paper is as follows. In §2 we introduce the groups in
play and define the concept of matching in this context. In § 3 we introduce the various Shimura

4 Since the submission of the paper, the last author has made progress in the good reduction case
(arXiv:1909.02697).
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varieties mentioned above, the corresponding moduli interpretation over F, and the relation
between the moduli variety for W? and for W. In §4 we define the semi-global integral models
of these moduli schemes and the morphisms between them. We do this in several contexts: for
the hyperspecial level, split level, Drinfeld level, and AT parahoric level. These levels reflect the
possibility of applying the AFL conjecture (respectively, the AT conjecture, or the vanishing
theorem (Theorem 1.3) in the split level). The AT parahoric level is complicated by the fact
that the morphisms between the semi-global integral models are in some cases not defined in
the naive way. In §5 we give the global integral models, first without level structure and then
with Drinfeld level structure. Section 6 is devoted to giving our version of the AGGP conjecture.
Section 7 is preparatory for the final section. Here we explain the distributions arising in the
context of the relative trace formula and their relation to L-functions. In §8 everything finally
comes together. First, we formulate our conjecture on the arithmetic intersection numbers. We
do this in the global case without level structure, in the global case with Drinfeld level structure,
and in the semi-global case. Second, we give the proofs of the semi-global versions in cases of
small dimension (cf. Theorem 1.2). There are two appendices. In Appendix A we define the sign
invariant that is used in the formulation of the moduli schemes. In Appendix B we check that
in the case of banal signature the relevant local models are trivial in a precise sense.

Notation

Except in § 2, F' denotes a CM number field and Fj denotes its (maximal) totally real subfield of
index 2 (in § 2, F'/Fy can be any quadratic extension of number fields). We denote by a — @ the
non-trivial automorphism of F/Fy. We fix a presentation F = Fy(v/A) for some totally negative
element A € Fy, and we let ® be the CM type for F determined by v/A,

®:={p: F — C|p(VA) € Rug-v/—1}. (1.3)

Note that by weak approximation, every CM type for F' arises in this way for some F'/ Fy-traceless
element VA € F*.

We use the symbols v and vg to denote places of Fp, and w and wg to denote places of F'. We
write Fp, for the v-adic completion of Fp, and we set F, := F ®p, Fy,; thus F, is isomorphic
to Fp,» X Fp or to a quadratic field extension of Fp, according as v is split or non-split in F'.
We often identify the CM type ® (or more precisely, the restrictions of its elements to Fy) with
the archimedean places of Fj,. When v is a finite place, we write p, for the maximal ideal in Op,
at v, w, for a uniformizer in Fy,, and m, for a uniformizer in F;, (when v splits in F' this means
an ordered pair of uniformizers on the right-hand side of the isomorphism F, = Fy,, x Fy,). We
write Op, () for the localization of O, at the maximal ideal p,, and O, , C Fy , for its p,-adic
completion. We use analogous notation for other fields in place of Fy and other finite places
in place of v. In particular, we will often consider the v-adic completion O, = OFf ®0p, OFy
of O jan

We write A, Ag,, and Ap for the adele rings of Q, Fp, and F, respectively. We systematically
use a subscript f for the ring of finite adeles, and a superscript p for the adeles away from the
prime number p.

We take all hermitian forms to be linear in the first variable and conjugate-linear in the
second, and we assume that they are non-degenerate unless we say otherwise. For k any field, A
an étale k-algebra of degree 2, and W a finite free A-module equipped with an A/k-hermitian
form, we write det W € k*/Nmy /, A* for the class of det J, where J is any hermitian matrix
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(relative to the choice of an A-basis for W) representing the form. Note that this value group is
trivial when A ~ k x k. We also write —W for the same A-module as W, but with the hermitian
form multiplied by —1. Of course W and —W have the same unitary groups. When W is an
F/Fy-hermitian space of dimension n and v is a place of Fy, we write W, for the induced
F,/Fy »-hermitian space W ®p, Fp,, and we define

inv, (W) = (—=1)"""D/2 det W, € Fy',/Nm F)*. (1.4)

We say that W, is split at a finite place v if inv,(WW,) = 1; under our normalization, the antidi-
agonal unit matrix always defines a split hermitian form. When v is an archimedean place, the
form on W, is isometric to diag(1(), (=1)()) for some r 4+ s = n, and we write sig, (W) := (r, s)
(the signature). In the local setting, isometry classes of n-dimensional F),/Fp ,-hermitian spaces
are classified by inv, when v is a finite place, and by sig, when v is an archimedean place. By
the Hasse principle, two global hermitian spaces are isometric if and only if they are isometric at
every place v, that is, they have the same invariants at each finite place and the same signatures
at each archimedean place. Given a global space W as above, the product formula for the norm
residue symbol for the extension F/F gives

[Tiwve (W) =1, (1.5)

v

where v ranges through the places of Fy, and where we identify FOXW /Nm F* C {£1}. Conversely,
Landherr’s theorem asserts that a collection (W), of F,/Fp ,-hermitian spaces arises as the set
of local completions of a (unique, by the Hasse principle) global F'/Fy-hermitian space exactly
when inv,(W,) =1 for all but finitely many v and the product formula (1.5) holds. Given an
embedding ¢: F' — C, we write W, := W ®p,, C for the induced hermitian space over C.

For any abelian scheme A over a base scheme S, we denote by AV the dual abelian scheme.
When S is locally noetherian and the prime number p is invertible on it, we write 7),(A) for the
p-adic Tate module of A (regarded as a smooth Z,-sheaf on S) and V,(A) := T,(A) ® Q for the
rational p-adic Tate module (regarded as a smooth Qp-sheaf on S). When S is a Z,)-scheme,
we similarly write V? (A) for the rational prime-to-p Tate module of A. When S is a scheme in
characteristic zero, we write T(A) and V(A) for the respective full Tate and full rational Tate
modules of A.

We use a superscript o to denote the operation — ®z Q on groups of homomorphisms of
abelian schemes, so that, for example, Hom°(A, A") := Hom(A, A") ®z Q.

Given modules M and N over a ring R, we write M C" N to indicate that M is an R-
submodule of N of finite colength r. Typically R will be O, for v a finite place of F. When
A is an Op-lattice in an F'/Fy-hermitian space, we denote the dual lattice with respect to the
hermitian form by A*. We use the same notation when A is an Op,-lattice in an F),/Fj ,-hermitian
space, and we call A a vertez lattice of type r if A C" A* C m'A. Note that this terminology
differs slightly from [KR11, RTW14], for example.” A vertez lattice is a vertex lattice of type r
for some r. Let us single out the following special cases. A self-dual lattice is, of course, a vertex

® More precisely, in the case where F,/Fp . is the unramified extension Q,2/Qp, we have defined what [KR11]
calls a verter lattice of level 0 and type n — r, where n denotes the dimension of the hermitian space. In the case
where F, is a ramified extension of Fy,, = Qp, our A* is what [RTW14] calls a vertex lattice of type r, except that
[RTW14] should also require the containment A* C 7, 'A.
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lattice of type 0. An almost self-dual lattice is a vertex lattice of type 1. At the other extreme,
a vertex lattice A is m,-modular if A* = 7T;1A, and almost my-modular if A C A* ! 7r;1A.
Given a discretely valued field L, we denote by L the completion of a maximal unramified
extension of L.
We write 1,, for the n x n identity matrix. We use a subscript S to denote base change to a
scheme (or other object) S, and when S = Spec A, we often use a subscript A instead.

2. Group-theoretic setup

In this section we introduce the groups and linear-algebraic objects which will be in play
throughout the paper. Let F'/Fy be a quadratic extension of number fields.

2.1 Similitude groups and variants
We begin by introducing algebraic groups over Fjy:

G = Resp)p, (GLn—1 x GLy),
H{ := Resp/p, CLy_1, Hy:=GL, 1 x GL,, H},:= H} x Hj.

Next let W be a non-degenerate F'/ Fy-hermitian space of dimension n > 2. We fix a non-isotropic
vector u € W, which we call the special vector. We denote by W? the orthogonal complement of
u in W. We define another four algebraic groups over Fjy:

G:=U(W), H:=UW"),
th:HXG, HW:HXH

We systematically use the symbol ¢ to denote the similitude factor of a point on a unitary
similitude group. We further define the following algebraic groups over Q:

Z9 := {2 € Resp)g G | Nmp/p, (2) € G},
H? = {h € Resp, jo GUW’) | c(h) € Gy},
G®:= {g € Resp,jg GUW) | c(9) € G},
H:=7%xg,, H® = {(z,h) € Z® x HY| Nmp g, (2) = c(h)},
G = 2% xg,, GY={(2,9) € Z% x G?| Nmp/p,(2) = c(9)},
HG:=H XzQé:ZQ X Gy, H? X Gy, GU

={(2,h,9) € 2% x H? x G%| Nmp,p,(2) = ¢(h) = ¢(9)}-
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Note that Z© is naturally a central subgroup of H? and G©, and these inclusions give rise to
product decompositions

ﬁ;ZQxReSFO/QH G —— ZQxResFO/QG
(2,h) —— (2,27'h) (2,9) —— (2,27 '9)
(2.1)
HG —— Z% x Resp, jg(H x G)

(Za h‘ag) — (Za Z_lh> Z_lg)'

We also record that the decomposition W = W® @ Fu gives rise to natural closed embeddings
of algebraic groups:

HC———> & | H “—————~ HG 2.9
(z,h) —— (z,diag(h, z)) (z,h) —— (z, h,diag(h, 2)) . .

Thus, in terms of the product decompositions in (2.1), the embeddings H — G and H — HG in
(2.2) are obtained by applying the functor Z% x — to the embeddings Res ryoH — Resp )0 G
and Resp, /o H — Resp, jo(H x G), respectively.

2.2 Orbit matching
The following lemma is obvious.

LEMMA 2.1. The natural projections in (2.1) induce isomorphisms
é/ff = Resp, /o G/ Resg, o H

and

H\HG/H = Resp, /o H\ Resg, o Gw/ Resg, g H.
There is a natural injection of orbit spaces of reqular semisimple elements,

H(Fow)\Gw (Fo,u)rs/H(Fo) < Hj (FO,v)\G,(FO,v)rs/Hé(FO,v)v

for any place v of Fyy (see [RSZ17, § 2| for the case where v is a non-archimedean place not split in
F’; the case of archimedean places is completely analogous). If v is split in F', we define matching
as in [Zhalda, §2|. In brief, we identify H(Fp ) with GL,_1(Fo,) and G(Fo,) with GL,(Fo).
This gives a natural way of matching regular semisimple elements, a homogeneous version of the
matching relation of [Zhal2a).

Using Lemma 2.1, we obtain an injection for every prime number p,

H(Qp\HG(Qp)ss/H(Qp) — [] Hi(Fou)\G'(Fo)rs/ Hy(Fo,). (2.3)

vlp
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3. The Shimura varieties

For the rest of the paper we take F' to be a CM field over Q and Fy to be its totally real subfield
of index 2. We recall from the Introduction that we fix a totally imaginary element vA € F*,
and we denote by ® the induced CM type for F' given in (1.3).

3.1 The Shimura data
In this subsection we define Shimura data for some of the groups introduced in §2. We assume
that the hermitian space W has the following signatures at the archimedean places of Fj: for
a distinguished element ¢ € ® the signature of Wy, is (1,n — 1), and for all other ¢ € ® the
signature of W, is (0,n). We also assume that the special vector u is totally negative, that is,
that (u,u), < 0 for all ¢.

We first define Shimura data (G@, {hge}) and (HQ, {hye}) (cf. [PRO9, §1.1]). Using the

canonical inclusions G’% C [Ipee GU(W,) and Hﬁ% C Ilpen GU(Wg), it suffices to define the
components hGQW of hgo and h HO,p of ho. We define matrices

S Jdiag(L(=D0Y), o = e,
. diag(—1,-1,...,-1), ¢ € ®~{vo},

and we define the matrix JE, by removing a —1 from .J,. We may then choose bases W, ~ C" and
Wg ~ C"~! such that u ® 1 € W, identifies with a multiple of (0", 1), such that the inclusion
Wg C W, is compatible with the inclusion C" 1 c C" 1@ C = C", and such that the hermitian
forms on W, and W:: have respective normal forms

(z,9)p = ' J,y and (xb,yb)q, = tachZjb.
We then define the component maps
hga,: C° — GU(W,)(R) and  hye,: C* — GU(W2)(R)
to be induced by the respective R-algebra homomorphisms

C — > End(W,) C —— End(W))
and

V= —= V1, VoI —— VLR,

By definition of @, the form z,y +— trc/r @(\/E)*l(h(;@w(\/—l)x, Y), is symmetric and positive
definite on W, for each ¢ € ®, and similarly for Wg.
We next define Shimura data (H, {hz}), (@G, {hg}), and (I/{\é, {h##}). For this, note that ®

HG
induces an identification

ZUR) = {(2,) € (C*)? | |2,] = |2 for all p, ¢’ € @}

In terms of this identification, we define hyo: C* — Z2(R) to be the diagonal embedding, pre-
composed with complex conjugation. We then obtain the desired Shimura data by defining the
Shimura homomorphisms

h_ qo,h ~ h_o,h h_,0,h 0,k
hg: CX zehud) prig), hg: C hzehed) &gy, hie: C thzehwehed) o).
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It is easy to see that (H, {hgh)s (G, {hg}), and (HG, {h
characterized by

7ic.y) have common reflex field £ C C

Aut(C/E) ={o € Aut(C) |co® =P and 0 0 g = ¢p}. (3.1)
We therefore obtain canonical models over E of the Shimura varieties
Shi (H,{hg}), Shk.(G.{ha}), Shx. (HG {hzg}),

where Kj (reispectivE}Z K&, Kyg) varies through the open compact subgroups of H (Ay)
(respectively G(Ay), HG(Ay)).

Remark 3.1. When F is of the form KFj for an imaginary quadratic field K/Q and ® is the
unique CM type induced from K containing ¢o (the case taken by Harris and Taylor in [HTO01]),
o identifies F' = E. In general, E is the join of F' (embedded in Q via () and the reflex field
Eg of @ (the latter is the fixed field in C of the group {o € Aut(C) | 0 o ® = ®}). In particular,
o always embeds F' into E, but £ may be larger.

The morphisms (2.2) are obviously compatible with the Shimura data {hz} and {hg},
(respectively, {hy} and {hg.})-
that is, injective morphisms of pro-varieties, in the sense of [Del71, Proposition 1.15]:

We therefore obtain injective morphisms of Shimura varieties,

Sh(H,{hz}) < Sh(G, {hz}) and Sh(H,{hz}) < Sh(HG,{h (3.2)

)

Remark 3.2. The above Shimura varieties are related to other Shimura varieties as follows.
(i) The pair (Z2, {h4o}) is a Shimura datum, and there are morphisms of Shimura data

(H,{hg}) — (2% {hze}), (G.{hg}) — (Z%{hze}), (HG {hyzg}) — (2% {hze})
induced by the natural projections to Z2. These induce morphisms of Shimura varieties
Sh(H, {hj;}) — Sh(Z%, {hze}),
Sh(G, {hg}) — Sh(Z2 {h0}), (3.3)
Sh(HG, {hjze}) — Sh(Z%, {hze}),

which identify
Sh(HG, {hy}) = Sh(H, {hjz}) Xsn(zo,4n ) SH(G, {hg})-

The reflex field of (Z2, {h4o}) is the subfield Eg of E.
(ii) There are morphisms of Shimura data

(H,{hz}) — (H® {hye}) and (G, {hg}) — (G% {hge}),
both induced by the natural projections, which induce morphisms of Shimura varieties
Sh(H,{hz}) — Sh(H? {hyo}) and Sh(G,{hgz}) — Sh(GY, {hga}).
(iii) One may also introduce Shimura data

(ResFO/QH,{hH}), (ResFO/QG,{hg}), (ResFO/Q(HxG),{hHXg}),
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where hp (respectively hg, hixc) is defined by composing hy (respectively hg, hie) with the
projection to the second factor in (2.1). Note that the restrictions of hy, hg, and hgxg to the
subgroup R* of C* are trivial. In particular, the corresponding Shimura varieties are not of PEL
type. These are the Shimura varieties that appear in Gan, Gross, and Prasad [GGP12, § 27]. The
product decompositions in (2.1) induce product decompositions of Shimura data,

(H,{hgz}) = (2% {hz0e}) x Respym, H, {hu}),
(G, {he}) = (2% {hze}) x (Respyr, G, {ha)), (3-4)
(HG,{hze}) = (2%, {hza}) x (Resp,jo(H x G), {haxc})-

In [GGP12, §27], the Shimura variety Sh(Resg, o G,{hc}) is considered over its reflex field,
which is F', embedded into C via g. By contrast, in the present paper, we consider the Shimura
variety Sh(G, {h&}) over E, which is the join of the reflex fields of the two factors in the product
decomposition (3.4). The natural projections then induce morphisms of Shimura varieties,

Sh(H,{hz}) — Sh(Resg, o H, {h}),
Sh(G, {hg}) — Sh(Resg, /0 G, {ha}), (3.5)
Sh(HG, {hzg}) — Sh(Resg, jo(H x G), {h#xc})-

Remark 3.3. Let us finally make our Shimura varieties more concrete. We consider the case of
Sh(G {hg}); the other Shimura varieties are analogous. In terms of the product decomposition
Gr = ZQ X [Tpee U(Wy) induced by (2.1), the conjugacy class {hg} is the product of {hzo}
with the U(W )(R)-conjugacy class {hq,,} for each ¢ € ®, where hg , denotes the ¢-component
of the cocharacter hg defined in Remark 3.2(iii). The conjugacy class {h o} consists of a single
element; so does {hq,,} for ¢ # o, since in this case hg , is the trivial cocharacter. For ¢ = ¢,
in terms of the basis for W, chosen above, hq ,, is the cocharacter

hGpy: 2 — diag(z/z,1,...,1).

The conjugacy class {hqg,y,} then identifies with the open subset D, C P(W,,,)(C) of positive-
definite lines for the hermitian form (send h € {hg,y,} to the —l-eigenspace of h(y/—1); we
remark that Dy, is also isomorphic to the open unit ball in C"!). Thus, for Kz C é(Af) an
open compact subgroup, we obtain the presentation

Shi (G, {hg})(C) = G(Q\[Dy, x G(Af)/Kg),

where the action of G(Q) is diagonal by the translation action on G (Ay) and by the action on
D,, given via

G(Q) — Gaa(R) — PU(Wy,)(R).

3.2 The moduli problem over E

In this subsection we define moduli problems on the category of schemes over Spec E for the
three Shimura varieties above. Since these are almost identical in each case, let us do this
for Sh(G, {hG}) and only indicate briefly the modifications needed for the other two (mostly

for Sh(HG {hze}))- We will only consider open compact subgroups Kg C é(Af) which, with
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respect to the product decomposition (2.1), are of the form
K@ = KZ@ X Kg, (3.6)

where K¢ C G(Ap, f) is an open compact subgroup and Ko C Z%(Ay) is the unique maximal
compact subgroup

Ko = ZUZ) = {z € (Or ® L) | Nmpyp,(2) € Z*}. (3.7)

(Note that Z9 is defined over SpecZ in an obvious way.)

Before doing this, let us first introduce an auxiliary moduli problem My over E. In fact, for
use in the construction of integral models later, we will define a moduli problem Mg over Og
whose generic fiber will be M. For a locally noetherian Opg-scheme S, we define M(S) to be
the groupoid of triples (Ag, to, o), where

e Ap is an abelian variety over S with an Op-action vy: O — End(Ap), which satisfies the
Kottwitz condition of signature ((0,1),e), that is,

char(t(a) | Lie Ag) = H (T —®(a)) for all a € Op; (3.8)
ped

and
e )\ is a principal polarization of Ay whose Rosati involution induces on Op, via tg, the non-
trivial Galois automorphism of F'/Fj.

A morphism between two objects (Ao, Lo, Ao) and (Af, ¢j, Aj) is an Op-linear isomorphism
po: Ag — Aj under which X pulls back to Ag. Then My is a Deligne-Mumford (DM) stack,
finite and étale over Spec O (cf. [How12, Proposition 3.1.2]).% (In fact, in [How12, Proposition
3.1.2], My is defined over the ring of integers O, in the reflex field of ®, which is contained in
Og; cf. Remark 3.2(i).) We let M, denote the generic fiber of M.

Unfortunately, it may happen that Mg is empty. In order to circumvent this problem, we
also introduce the following variant of My (cf. [How12, Definition 3.1.1]). Fix a non-zero ideal
a of Op,. Then we introduce the DM stack M of triples (Ao, to, Ao) as before, except that we
replace the condition that g is principal by the condition that ker A\g = Ag[a]. Then, again, M|
is finite and étale over Spec Of (cf. [How12, Proposition 3.1.2]).

If M§ is non-empty, then the complex fiber M§ ®¢p,, C is isomorphic to a finite number of
copies of ShKZQ(ZQ, {hze}). More precisely, let L} be the set of isomorphism classes of pairs
(Ao, (,)o0) consisting of a locally free Op-module Ay of rank 1 equipped with a non-degenerate
alternating form (,)o: Ag X Ag — Z such that (azx,y)o = (x,ay)o for all z,y € Ay and a € Op,
such that x +— <\/Z.’E,IL’>0 is a negative-definite quadratic form on Ag, and such that the dual
lattice Ay of Ag inside Ag ®z Q equals a='Ag. Then £ is a finite set.” If (Ao, (,)o) defines a
class in £}, then using ® to identify F' ®g R — C®, and hence to define a complex structure on

6 Strictly speaking, Proposition 3.1.2 in [How12] is stated only for CM algebras and CM types ® which are of a
rather special sort, but the proof relies only on the very general Theorem 2.2.1 in [How12] and applies equally
well to our situation.

7 Indeed, let ® denote the different of F/Q, and set b := VAd ta. Let Hb<<0 be the set of isomorphism classes of
hermitian Or-modules (Ao, (,),) of rank 1 (with (,), valued in F') such that the F-hermitian space Ap ®z Q has
signature (0,1) at every archimedean place of Fp, and such that the dual lattice A§ of Ao inside Ap ®z Q with
respect to (,), equals b~'Ag. Then (Ao, (,),) — (Ao, trr/g VAT!(,),) defines a bijection H% o = L£§. It is easy
to deduce from the finiteness of the class group for F' and the product formula for hermitian spaces that H%
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Ao ®z R, the quotient (Ag ®z R)/Ag is a complex torus which defines a C-point on M§F. On the
other hand, given a C-point (Ao, to, Ag) on M§, the first homology group Hi(Ay(C),Z), endowed
with its Riemann form induced by Ao, defines a class in £g. In this way L§ is in bijection with
the isomorphism classes of objects in M{(C).

These inverse processes give rise to a decomposition of Mg into a union of Shimura varieties,
in terms of the following equivalence relation on £§: define Ag ~ Af) if Ag ®7 7 and Ay ®7 7 are
OF linearly similar up to a factor in ZX and if AO ®z Q and Aj ®z Q are F-linearly similar up
to a factor in Q*. We have the followmg lemma.

LEMMA 3.4. The stack M{ admits a decomposition into open and closed substacks,

]_[ MGE (3.9)

£eLy/

induced by sending an object (Ao, to, Ao) in M§(C) to the ~-class of Hi(Ao(C),Z) endowed with
its Riemann form.

Proof. Since Mg is finite and étale over SpecOp, it suffices to demonstrate the asserted
decomposition in the generic fiber Mg,

ME= ] Mg*. (3.10)
§eLy/~

To establish (3.10), again by étaleness, it suffices to show that the ~-class of H;(Ay(C),Z)
is constant on the Aut(C/E)-orbit of each object (Ao, o, o) € M§(C). So let o € Aut(C/E).
Then o identifies the Tate modules f(Ao) = f(Ag) compatibly with the Weil pairings on the
two sides up to the similitude factor given by the image of ¢ under the cyclotomic character
Aut(C) — 7x. Hence, by the compatlblhty between singular homology and the Tate module,
Hi(Ap(C), Z) and H;(Ag(C), Z) are Op-linearly similar up to a factor in Z*. On the other hand,
the CM abelian variety Ag is isomorphic to one defined over the algebraic closure of E in C,
and hence by [CCO14, Theorem A.2.3.5] there exists a quasi-isogeny of complex abelian varieties
Ap — AF pulling A\J back to a Qso-multiple of Ag. Hence H;(Ap(C),Q) and H;(AF(C),Q) are
F-linearly similar up to a factor in Q*, as desired. O

If M§ # 0, then for fixed £ € L§/~, the complex fiber /\/lf)lf ®0,, C of the summand in (3.9)
is canonically isomorphic to the Shimura variety Shx o (Z Q. {h,qe}); this can be checked similarly
to [KR14, Propositions 4.3, 4.4], or see [Del71, (4.12), (4.18)—(4.20)].

Remark 3.5. (i) Given finitely many prime numbers py,...,p,, there always exists an ideal a
relatively prime to pi,...,p, such that M§ is non-empty.

(ii) If F/F} is ramified at some finite place, then M§ is non-empty for any a (cf. [How12,
proof of Proposition 3.1.6]). A special case of this is when F' = K F{), where K is an imaginary
quadratic field and the discriminants of K/Q and Fy/Q are relatively prime. We further remark
that in the context of the global integral models we define in § 5 below, we will eventually impose
conditions on the hermitian spaces W and W’ that force F//Fy to be ramified at some finite
place (cf. Remark 5.3).

is finite. Note that in the particular situation of [KR14], where Fy = Q and A is the discriminant of F, one has
a = b, but a and b certainly may differ in general.
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(iii) When Fy = Q, the set L§/~ is a singleton, so that the decomposition (3.9) is trivial.

(iv) The decomposition (3.9) in fact holds over Spec O, via the same proof. We have worked
over Spec Of only for notational simplicity throughout the rest of the paper.

(v) Let (Ao, to, Ao) € M{(k), where k is a perfect field of positive characteristic p. Here is the
recipe to determine on which summand ./\/lg’5 this point lies. Let (go,fo, Xo) be the canonical lift
of (Ao, Lo, Ao) over the ring of p-typical Witt vectors W (k). Then (EO,ZO,XO) is defined over a
subring R C W (k) which is finitely generated over Z, and after choosing an embedding R — C,
we obtain a point of M§(C) which determines ¢ € £§/~ as in Lemma 3.4. This is the label of
the summand containing (Ao, to, \o).

In the following, we fix an ideal a such that M is non-empty. We continue to denote the
generic fiber of this stack by Mg. We also fix § € £g/~. We now define a groupoid Mg (é)
fibered over the category of locally noetherian schemes over E. Here, for ease of notation, we
have suppressed the ideal a and the element £. For such a scheme S, the objects of Mg, (é)(S )
are collections (Ay, Lo, N, 4, t, A, 77), where

e (Ap, g, Ao) is an object of M;’g(S’);
e A is an abelian scheme over S with an F-action ¢: F' — End°(A) satisfying the Kottwitz
condition of signature ((1,n — 1)y, (0,7)pco-{po}), that is,

char(c(a) | Lie A) = (T — @o(a))(T — @o(a))™* H (T — p(a))" forall a € Op;
pED~{wo}
(3.11)

e )\ is a polarization A — AY whose Rosati involution induces on F, via ¢, the non-trivial Galois
automorphism of F'/Fy; and

e 7 is a Kz-level structure, by which we mean a Kg-orbit (equivalently, a K-orbit, where K
acts through its projection Kz — K¢g) of Ap s-linear isometries

n: V(Ao A) ~ —W @p Ap ;. (3.12)
Here we regard the right-hand side of (3.12) as a constant smooth Ap y-sheaf on S, and
V (Ao, A) := Homp(V (Ao), V (A)),
endowed with its natural Ap ;-valued hermitian form hj4, defined by
ha(z,y) = Ay oy¥ oXox € Endy,, (V(Ag)) = Apy (3.13)

(cf. [KR14, §2.3]). Over each connected component of S, upon choosing a geometric point 5 — S,
we may view 17(140, A) as the space HOmAF’f(‘/}(A()g), V(Ag)) endowed with its (.5, 5)-action,
and in this way we require the orbit 7 to be 71 (S, s)-invariant (cf. [KR14, Remark 4.2]). We note
that the notion of level structure is independent of the choice of 5 on each connected component
of S.

A morphism between two objects (Ao, to, Ao, A, ¢, A7) and (Af, th, Ay, A,y N, 1) is given
by an isomorphism pg: (Ao, to, No) — (A, tf, Ay) in My £(9) and an F-linear quasi-isogeny
w: A — A’ pulling \ back to A and 77’ back to 7.
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Remark 3.6. (i) Let r: Hom(F,C) — {0,1,n — 1,n}, ¢ — 7, be the function defined by

1, ¥ = ¥o,
re =40, v € D~ {po}, (3.14)
n—rg ¢¢e.
Then the Kottwitz condition (3.11) is
char(u(a) [LieA)=  J[ (T—¢(a)) forallacOp

pEHom(F,C)

(cf. [RZ17, (8.4)]).

(ii) The intervention of the sign on the right-hand side of (3.12) arises from our conventions
on the signatures of W at the archimedean places given at the beginning of §3.1 and on the
signatures in the Kottwitz conditions (3.8) and (3.11); cf. the proof of Proposition 3.7 below. If

one took the opposite signatures for W and in the two Kottwitz conditions, then no sign would
be needed.

The following proposition is a special case of Deligne’s description of Shimura varieties of
PEL type.

PROPOSITION 3.7. Mg (G) is a DM stack smooth of relative dimension n — 1 over Spec E. The
coarse moduli scheme of M Kg (GQ) is a quasi-projective scheme over Spec E, naturally isomorphic
to the canonical model of Shy (G, {hg}). For K sufficiently small, the forgetful morphism
Mk, (G) — My £ is relatively representable.

Proof. We will content ourselves with exhibiting a map, which turns out to be an isomorphism,
MK@(G) ®pC — ShKG(G, {h@})
By Remark 3.2(iii), the target is the product of Shimura varieties
Shi o (Z9,{hze}) x Shi,(Respyp, G, {ha}).

For the map into the first factor, we simply compose the forgetful map M K (é) ®@p C— M £ ® E

C with the isomorphism MS"g ®p C ~Shg g (Z9,{h40}).

To explain the map into the second factor, let (Ao, o, Ao, A,¢, A\, 77) be a C-valued point
of Mk_(G). Let M = Hy(A,Q) and Ho := H1(Ap, Q). The polarization A endows M with a
Q-valued alternating form (,) satisfying (c(a)x,y) = (x,c(a)y) for all @ € F, and such that the
induced form z,y — (v/—1-z,y) on H ®g R is symmetric and positive definite, where multiplica-
tion by v/—1 is defined in terms of the right-hand side of the canonical isomorphism Hg = Lie A.
Similarly, \g endows Hy with a Riemann form (, )g.

Let V (Ao, A) := Homp(Ho, H). Then V(Ag, A) is an F-vector space of the same dimension
as W, and we make it into an F'/Fp-hermitian space by defining the pairing (a, 3) to be the
composite

a BY
H(] H H\/ HE)/ H07

T (—,x)
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where the checks denote Q-linear duals and the last arrow is the inverse of y — (—,y)o; this
composite is an F-linear endomorphism of the one-dimensional F-vector space Hy, and hence
identifies with an element in F. Clearly V(Ap, A) ®p Ap s = V(Ag, A) as hermitian spaces.
Hence, by the existence of a level structure, V(Ag, A) ®r Apy ~ —W ®p Ap . Furthermore,
it is easy to see that the Kottwitz conditions (3.8) and (3.11) imply that V (Ao, A), has signa-
ture (n — 1,1) if ¢ = ¢p and (n,0) if ¢ € ® \ {po}. Hence, by the Hasse principle for hermitian
spaces, V(Ap, A) and —W are isomorphic. Choose an isometry j: V(Ag, A) = —W. Using the
complex structures on Hor and Hg, let z € C* act on V(Ag, A) by sending the F-linear map
o to zaz~!. This defines a homomorphism C* — U(V (4, 4))(R), and composing this with
Ge: U(V(Ag, A))(R) = U(—=W)(R) = U(W)(R) gives an element in {hg}. The level structure 7
corresponds to an element of (Resp, /g G)(Af)/Kg, and eliminating the choice of j corresponds
to dividing out by the action of (Resg, /g G)(Q). O

An analogous description holds for the model My, (ﬁ ) of the Shimura variety
ShKﬁ(fI, {hz}) (replace n by n — 1, and W by w). -

There is also an analog for the Shimura variety Shx . (HG, {hj}). In this case we take the
level subgroup to be of the form

KHNG:KZ@ XKH XK(;, (315)

where as always Ko is the subgroup (3.7), and Ky C H(Ap, ) and Kg C G(AFp, ) are open

compact subgroups. The value of the corresponding moduli functor M KH‘G(H G) on a locally
noetherian scheme S over F is the set of isomorphism classes of tuples

(A07 Lo, AO? Ab) ['b7 )‘ba A7 Ly )\7 (Uba 7]))7
where the last entry is a pair of Ag s-linear isometries
0 V(Ag, A) = —W’ @p Ap; and n: V(Ag, A) =~ —W ®p A,

modulo the action of K X Kg. In other words, the moduli functor M Kﬁc,;(ﬁé) is simply the

fibered product Mk (H) X gt Mk (G).

In terms of these moduli problems, the injective morphisms (3.2) can be described as follows.
After possibly scaling the special vector u € W, we may and do assume that the norm (u,u) is in
OF,. Further, assume that Ky C H(Ap, y) N Kg. Then the first morphism of Shimura varieties
in (3.2) arises by base change from E to C from the functor morphism

Mic. (1) My (@)
" ¢ (3.16)
(A07L07>\07Ab71‘b7)\b7ﬁb) — (A(JaLOa)\O)Ab X AOaLb X ['07)\b X AO(U)aﬁ)
Here A\g(u) = —(u,u)\g, which is indeed a polarization by [Zin82, Lemma 1.4] since —(u,u)

is totally positive. Furthermore, the isomorphism 7: V(AO, AP x Ag) ~ —W ®p Apy mod Kg is
given, with respect to the decomposition

Homp(V (Ap), V(A* x Ag)) = Homp(V (Ag), V(A%) @ V(Ag)) = V(Ag, A°) & Ap,
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by the trivialization
ﬁb: ‘7(A0, Ab) ~ —Wb KRR AF’f mod Ky

in the first summand, and by identifying the basis element 1 in the second summand with
u®1l e —-W ®p Ap . The morphism (3.16) is finite and unramified.
The second morphism in (3.2) then arises from the graph morphism of (3.16),

mmﬂﬁ)—thﬁdﬁb:Mkﬂﬁ)&%gMKJQ. (3.17)
The morphism (3.17) is a closed embedding.

Remark 3.8. For Fy # Q, the Shimura varieties above are compact. For Fy = Q, it may happen
that the Shimura variety Mg (H G) is non-compact. In fact, this will be automatic when n > 3.
In this case, we will need to use its canonical toroidal compactification (cf. [Howl5, §2]).

4. Semi-global integral models

Fix a prime number p and an embedding 7: Q — @p. This determines a p-adic place v of E
and, via (g, places vg of Fy and wg of F. In this section we will define ‘semi-global’ integral
models over O (,) of the moduli spaces introduced in § 3, in the case of various level structures
at p. We denote by V), the set of places v of Fjy over p. Throughout this section, we assume
that the ideal a occurring in the definition of M is prime to p (cf. Remark 3.5(i)). We also fix
§eLy/~.

4.1 Hyperspecial level at vg
In this case we assume that the place vy is unramified over p, and that vy either splits in F' or
is inert in F' and the hermitian space W, is split. We also assume p # 2 if there is any v € V,
which is non-split in F.® We will define smooth models over O E,(v)-

For each v € V,, choose a vertex lattice A, in the F,/Fp,-hermitian space W,. By our
assumptions on vy in the previous paragraph, we may and do take A,, to be self-dual. Recalling
the subgroup Kz = Kzo x K¢ from (3.6), we take K¢ to be of the form

KG = Kg X Kgyp,

where K% C G(A? is arbitrary, and where the level subgroup at p is the product
G Fo.f

KGJ) H KG’U - G FQ ®Qp H G Fov (4.1)
vEV)p vEVp
with K¢, the stabilizer of A, in G(Fp,).

We formulate a moduli problem over Spec O, as follows. To each locally noetherian O (.-
scheme S, we associate the groupoid of tuples (Ag, to, Ao, 4, t, A\, TIP), where (Ao, Lo, \g) is an object
of MS’E(S). Furthermore:

e (A1) is an abelian scheme over S with an Of ® Z,)-action ¢ satisfying the Kottwitz condition

(3.11) of signature ((1,7 — 1)y, (0,7) pedfpo})-

8 In the construction of semi-global models in [RSZ19, §§4-5], this assumption is relaxed to the assumption that,
when p = 2, all v € V5 are unramified in F'.
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e )\ is a polarization on A whose Rosati involution induces on Op ® Z, the non-trivial Galois
automorphism of F'/Fy, subject to the following condition. Note that the action of the ring
Or, ® Zy =11, v, OFR,,» on the p-divisible group A[p>] induces a decomposition of p-divisible
groups,

Ap™] = ] Al™]. (4.2)
vEV)p
Since Ros), is trivial on Op,, A induces a polarization A\, : A[v>®] — AY[v>°] = A[v>°]" for each
v. The condition we impose is that ker A, is contained in A[c(m,)] of rank #(A}/A,) for each
v E V.
o 7P is a Kg-orbit of A}, s-linear isometries

nP: VP(Ag, A) ~ —W @p A%’f, (4.3)

where
VP(Ag, A) := Homp(VP(Ag), VP (A)),
and the hermitian form on VP(Ag, A) is the evident prime-to-p analog of (3.13).

We also impose for each v # vy over p the sign condition and the Eisenstein condition. Let
us explain these conditions.

The sign condition at v is only non-empty when v does not split in F', in which case it requires
that at every point s of .S,

invy, (Ao s, Lo,s, Ao,ss As, Ls, Ag) = invy, (—Wy). (4.4)

Here the left-hand side is the sign factor defined in (A.5) and (A.8) in Appendix A (in the
definition of (A.8), one may use the embedding v fixed at the beginning of this section). The
right-hand side is the Hasse invariant of the hermitian space —W, defined above in (1.4). Note
that by Proposition A.1, the left-hand side of (4.4) is a locally constant function in s.

The Eisenstein condition is only non-empty when the base scheme S has non-empty special
fiber. In this case, we may even base change via v: Op (,) — Z,p (the ring of integers in @p) and
pass to completions and assume that S is a scheme over SpfZ,. Similarly to (4.2), there is a
decomposition of the p-divisible group A[p>],

Ap] = [T Alw), (1.5
wlp

where the indices range over the places w of F' lying over p. Since we assume that p is locally
nilpotent on S, there is a natural isomorphism

Lie A = Lie A[p™] = @Lie Alw™].
wlp

For each place w, by the Kottwitz condition (3.11), the p-divisible group A[w™] is of height
n - [Fy : Qp] and dimension

dim A[w™] = Yoo, (4.6)

peHom(Fy, ,@p)
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Here 7y, is as in (3.14), and we have used the embedding 7: Q — @, to identify
Homg(F,Q) ~ Homg(F,Q,), (4.7)
which in turn identifies

{¢ € Homg(F,Q) | w, = w} ~ Homg, (Fu, Q,), (4.8)

where w,, denotes the p-adic place in F' induced by v o ¢.

Now suppose that w lies over a place v different from vg. Then the action of F' on A[w™] is
of a banal signature type, in the sense that each integer r, occurring in (4.6) is equal to 0 or n
(cf. Appendix B). Let m = m,, be a uniformizer in F,,, and let F\, C F,, be the maximal unramified
subextension of Q). For each ¢ € Homg, (Fq’;,@p), let

Ay ={pe€ Hom@p(Fw,@p) | gp]}% =1 and r, = n}.

Set
Qa,(T) = [] (T —(n)) € Z,[T).

L,DGAw

Since we assume that S is a scheme over Spf Zp, there is a natural isomorphism

OF@ ®Zp Og = H (957
weHome (Fﬁn@p)

whose ¢-component is ¢ ® id. Hence the Op; -action on Lie AJw*] induces a decomposition

Lie A[w™] = & Liey, A[w™]. (4.9)
weHomg, (F},T,)

The Eisenstein condition at v demands the identity of endomorphisms of Liey, A[w™],
Qa, (t(m) | Liey A[w™®]) =0 for each w |v andeach 1 € Homg,(F,,Q,). (4.10)

This condition is the analog in our context of the condition with the same name in [RZ17, (8.2)].
The Kottwitz condition implies that the Eisenstein condition at v is automatically satisfied when
the one or two places w over v are unramified over p (cf. Lemma B.3).

A morphism between two objects (Ao, Lo, Ao, 4, ¢, A, 7P) and (Af, th, A, A,/ N, 77'P) is given
by an isomorphism (A, to, Ao) — (Af, th, Ap) in Mg’é(S) and a quasi-isogeny A — A’ which
induces an isomorphism

Ap™] — A'p™],
compatible with + and ¢/, with X\ and X\, and with 7 and 7.

THEOREM 4.1. The moduli problem just formulated is representable by a DM stack M, (G)
smooth over Spec O, (.. For K¢, small enough, MK@(G) is relatively representable over Mg’é.
Furthermore, the generic fiber M Kg XSpecOp ) Spec E' is canonically isomorphic to M Kg (é)

Proof. Representability and relative representability are standard (cf. [Kot92, p. 391]). Smooth-
ness follows as usual from the theory of local models (cf. [PRS13]). More precisely, the local model
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for Mk, (é) decomposes into a product of local models, one for each of the abelian schemes A

and A in the moduli problem. The local model corresponding to Ay is étale because Mg’g
Now, under the identifications (4.7) and (4.8), we have

Homg(F, Q) ~ |_| Homg, (Fy, Qp). (4.11)
vEV)

In this way the completion E, identifies with the join of the local reflex fields Fg, and FE,|, in
Q, as v varies through V,, where ®, := ® N Homg, (F,, Q,) in terms of the identification (4.11),
and where r|,: Homg,(F,,Q,) — Z denotes the restriction of the function r to the v-summand
on the right-hand side of (4.11). The local model M corresponding to A then decomposes as

M =[] My xspecor,, SpecOp,. (4.12)
vEV)

Here for v # vy, by the Kottwitz condition (3.11), M, = M(F,/Fou,7|s, Ay) is a banal local
model, that is, of the form defined in Appendix B. Hence M, = Spec OEW by Lemmas B.1 and
B.4. (The same is true for the local model corresponding to Ay at every v € V,, by these lemmas
and Remark B.2) The local model M,, is smooth by [G6r01].

It remains to prove the last assertion. Let S be a scheme over E, and let (Ag, to, Ao, 4, ¢, A\, 7P)
be a point of Mg (5). We want to associate to this a point of Mk (S), that is, we want to
add the p-component of 7. The product of hermitian spaces W ®¢q Q, = Hvevp W, contains the

lattice Hvevp Ay, where A, is a vertex lattice in W,,. By assumption on the polarization A, the
product of hermitian spaces
V, (Ao, A) := Homp(V,(Ag), V; =[] vo(40,4
vEV)p

contains Homo,, (7,(Ao), T,(A)) as a product of vertex lattices, where the factor at each v is of
the same type as A,. Since p # 2 when there are non-split places in V,, it follows that, if there
exists an isometry n,: Vj(Ag, A) ~ —W ®g Q) at all, then there also exists one that maps these
two vertex lattices of identical type into one another, and the class modulo K¢g, of such an
isometry is then uniquely determined.

Hence we are reduced to showing that there exists an isometry n,, that is, the equality
of Hasse invariants inv,(V, (Ao, A)) = inv,(—W,) for all v € V,. By the Hasse principle and
the product formula for hermitian spaces, it suffices to prove that for any C-valued point
(Ao, 10, Ao, A, L, )\,ﬁp) of MKé,

inv,(V (Ao, A)y) = inv,(—W,) for all v # vy,

where v runs through all places of Fj, including the archimedean ones. Here, as in the proof of
Proposition 3.7, V(Ag, A) = Homp(Ho, H), where Ho = H1(Ap, Q) and H = H1(A, Q). For the
non-archimedean places not lying over p, this follows from the existence of the level structure;
for the places v € V, \ {vp}, this follows from the sign condition (4.4) at v; and finally, for the
archimedean places, this follows from the fact that the signatures of V(Agp, A) and —W at all
archimedean places are identical (cf. the proof of Proposition 3.7). O

We analogously define the DM stacks M. (H) and MK}TG(I/:TT?) over SpecOp () (cf. the
end of §3.2). Both are again smooth over Spec O (..
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Let us now assume that the special vector u € W has norm (u,u) € O;O () Then we

obtain a finite unramified morphism (respectively, a closed embedding), in analogy with (3.16)
(respectively, (3.17)),

For this we assume that Ky, C H(AY, ;) N K. Furthermore, we assume for each v € V, that the
lattices in W, and W satisfy the relation

Ay = A & Op,u. (4.14)

For the lattice in W2 @ W,, we take the direct sum A’ @ A,

We end this subsection by defining Hecke correspondences attached to adelic elements prime
to p. We first consider the case of M, (G).Fix g € G(AI}) Let K% = Z9(ZP) x Kgand Kg =
7Z9(Z,) x Kgp, and set

P ._ P p —1 I N
K= .—K~ﬁgKég and Ké.—KéxKG

G G D’

Then we obtain in the standard way a diagram of finite étale morphisms

Mg, (@)
y Q (4.15)
M (G) M (G),

G G

which we view as a correspondence from M Ké(G) to itself. Note that for a central element
g=7z€ Z(G)(AL, ;) = {7 € (AL ;)* | Nmp/p,(2) = 1}, the diagram (4.15) collapses to a map

M (G) == Mg (G), (4.16)

and this induces an action of Z(G)(A%, ;) on Mg, (G).
The cases of M, (I;T ) and M K e, (ﬁé) are completely analogous, simply replacing G every-

where by H and H G, respectively. For later use, we record the diagram of finite étale morphisms
we obtain for HG:

MK;TGU/_I\@)

y th (4.17)

My (HG) My, (HG).

HG

4.2 Split level at vg

We continue with the setup and assumptions of the previous subsection, except we now allow v
to be ramified over p. In addition, we assume that vy splits in F, say into wy and another place
wp. We will define smooth integral models over Op, ().

We define the moduli functor My, (G) as follows. To each locally noetherian Of (,y-scheme
S, we associate the groupoid of tuples (Ay, to, Ao, A, ¢, A\, 77P) as in the previous subsection, except
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that we impose the further condition corresponding to wg that when p is locally nilpotent
on S, the p-divisible group A[wg°] is a Lubin-Tate group of type 7|y,, in the sense of [RZ17, § 8]
(note that this involves the Eisenstein condition of [RZ17, §8]). Here r|,, is the restriction of
the function r on Homg(F,Q) to Homg, (Fuy,Q,), in the sense of the identification (4.8). We
note that if vy is unramified over p, then this further Eisenstein condition is redundant, and the
moduli functor Mg, (G) is the same as the one defined in the previous subsection (cf. [RZ17]).

THEOREM 4.2. The moduli problem just formulated is representable by a DM stack M, (é)
smooth over Spec O (,). For K?, small enough, ./\/lKé(é) is relatively representable over ./\/lg’g.
Furthermore, the generic fiber MK@ XSpecOp (1) Spec E is canonically isomorphic to Mk, (G~»')

Proof. The proof is the same as that of Theorem 4.1, using in addition that the factor at wq
for the local model for A for the newly introduced Eisenstein condition is smooth (cf. [RZ17,
§8]). O

We analogously define the DM stacks M. (H) and Mk, (HG) over Spec Og, () (cf. the end

of §3.2). Both are again smooth over Spec O, (,,). We then obtain a finite unramified morphism
(respectively, a closed embedding),

and Hecke correspondences exactly as in the previous subsection.

4.3 Drinfeld level at vg

We continue with the setup and assumptions of §4.2, with vy split in £’ and possibly ramified
over p. In this subsection we will define integral models over O, (,y where we impose a Drinfeld
level structure at vg. To do this, we require that the matching condition between the CM type
® and the chosen place v of F is satisfied, which demands that

{¢ € Hom(F,Q) |w, = wo} C @, (4.19)

where w,, is the place of F' induced by 7 o ¢, as in (4.8). We note that this condition only depends
on the place v of E induced by v. When condition (4.19) is satisfied, we also say that the CM type
® and the place v of E are matched. Here are some examples in which the matching condition
is guaranteed to hold.

LEMMA 4.3. The matching condition for ® and v is satisfied in each of the following two
situations.

(i) F is of the form KF, for an imaginary quadratic field K/Q, ® is the unique CM type
induced from K containing g, and p splits in K.
(ii) The place vy is of degree 1 over Q.

Proof. The matching condition is obvious in (i), and in (ii) it holds because the left-hand side
of (4.19) is the singleton set {¢o}. O

Remark 4.4. We call the case Lemma 4.3(i) the Harris-Taylor case (cf. [HTO01]).
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Now let m be a non-negative integer. We define the level subgroup K% C G(Ap,,r) in exactly
the same way as K¢ in §4.1 (subject to the choice of certain vertex lattices A, for v € V), except
that in the vo-factor where G(Fp ) =~ GLj (Ep ), we take K, to be the principal congruence
subgroup modulo py} inside Kq . In particular, K¢ coincides with K7 for m = 0. We define
KZ = Kzo x K¢ as in (3.6).

We now define the moduli functor ./\/lng(é) over Mg, (G). Let (Ag,t0,Nos A, 1, \,7P) €

Mk (G)(S). Consider the factors occurring in the decomposition (4.5) of the p-divisible group
A[p>],
Alvg®] = AJwg®] x Alwg?]. (4.20)

When p is locally nilpotent on S, the p-divisible group A[wg®] satisfies the Kottwitz condition
of type 7]y, for the action of O, on its Lie algebra, in the sense of the previous subsection.
Thus, by the formulation of the Kottwitz condition in Remark 3.6(i) and the matching condition
(4.19),

char(¢(a) | Lie Alwg®]) = H (T —p(a)"> =T —@o(a) for all a € Opy,.

p: F—Q
W =wW0

Hence Awg®] is a one-dimensional formal Op,,-module. Similarly, A[wg®] has dimension
n - [Fy, : @p] — 1. Since Ros)y induces the conjugation automorphism on O, A furthermore iden-
tifies A[wi®] and A[wy®] with the (absolute) duals of each other, and hence both have (absolute)
height n - [F, : Qp]. Analogously,

Ao[vg”] = Ao[wg®] x Ao[wy”],

where, by (4.19) and the Kottwitz condition on Ay, the p-divisible group Ao[wg®] with O u,-
action is étale of height [F,, : Qp], whereas Ag[w’] is identified with the dual of A[wg®].
In analogy with the prime-to-p theory, we introduce the finite flat group scheme over S,

Ty (Ao, A)wg'] := Homg,. , (Ao[wy'], Afwg']).

Note that as m varies, the right-hand side is naturally an inverse system under restriction of
homomorphisms, and making it into a directed system depends on the choice of uniformizer m,,, of
Fo,w,- The colimit T, (Ag, A) := hLQm T, (Ao, A)[w(?] is a one-dimensional formal Op 4,,-module
since AJwg®] is.

For the moduli problem MKZL(CNJ), we equip the object (Ag,to, Ao, 4,1, \,P) € /\/lKé(é)
with the following additional datum. Let A,, = Ay, ® Ay, denote the natural decomposition of
the lattice A,, attached to the split place vg. The additional datum is

e an Opy,-linear homomorphism of finite flat group schemes,
P: Mg Ay /Awy — Homo, | (Ao[wg']; Alwg')), (4.21)
which is a Drinfeld w{'-structure on the target (cf. [HT01, §II1.2]).

THEOREM 4.5. The moduli problem ./\/lng (é) is relatively representable by a finite flat mor-

phism to M KE;(G) It is regular and flat over SpecOp (). Furthermore, the generic fiber
/\/lKg(é) XSpecOp () Spec E' is canonically isomorphic to MKén (G).
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Proof. After an étale base change, the subgroup Ag[w(’] of the universal abelian scheme A over
M8’€ becomes constant, and then the proof of [HT01, Lemma II1.4.1(4)(5)] applies. O

We analogously define the DM stack M Km (}NI ) over Spec Op, (), and obtain for it the analog
of Theorem 4.5. We also define MKTTG(I?@) = MKg(fNI) X oot MKg(CNJ), but we note that
0

this stack is not regular for m > 0. We then obtain a finite unramified morphism (respectively,
a closed embedding)

Mg (H) — Mpn(G) and  Mgon(H) <—>MK;?,G(}7@),

provided that K%, C H(A%O PN K?, and that the lattices A, and A’ are as in (4.14). Indeed,
the Drinfeld level structure ¢”: w;g”AZ)O /AEU0 — Homg, (Ag[wd], A°[wy]) induces a Drinfeld
level structure

¢ Ty Mg /Ay — Homo, | (Aolwg'], (47 x Ap)[wg])

by taking the direct sum of ¢’ and the OF w,-linear homomorphism

©o: W;gnORwOU/ORwOU - HOimOwaO (Aﬁ[wgl]’AO[an]) ( )
4.22

—m .
Tg U | id,

with respect to the natural decompositions in the source and target of ¢.

In the present situation there are more Hecke correspondences than those defined for adelic
elements prime to p in the previous two subsections (cf. [HTO01, §II1.4]). We again first treat the
case for G. With respect to the decomposition obtained from (2.1),

é(Qp) = ZQ(QP) x H G(Fow),

vEV)

let g € G(Fo.,), considered as an element on the left-hand side. In the special case where g €
K, since K¢7, is a normal subgroup of K¢, we get a diagram of finite flat morphisms

M (G)

N

Micn (G) Mz (G),

analogously to (4.15). For general g € G(Fp,,), choose u large enough that

puA’UO C gA’UO C wv_omgAUO - p_MAUO'
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Then K, (2;“ fo C K¢y N9KG, g~ 1, where e = e,, is the ramification index of vy over p. Hence we
obtain a diagram of finite flat morphisms

y w (4.23)

as before. In terms of the moduli descriptions above, these morphisms are given as follows.

Consider a point (Ao, to, Ao, A, 1, A, 77, ) of M 2ue(G). Then nat; sends this point to the point
G

represented by (Ag, to, Ao, A, 1, A\, TP, cp\(wfmA A 0)). To describe natg, let Cy,y C A[wg“e] be the
U)O w; w

unique closed subgroup scheme for which the set of ¢(z), © € p#gAwy/Awy C P~ Ny /Ay, 15 &
complete set of sections; cf. [KM85, Cor. 1.10.3] (note that Hom,. (Ao [we], A[wg"“]) is étale-

locally isomorphic to A[wg“ “]). Since A induces a principal polarization on the p-divisible group

A[v°], the A-Weil pairing on A[p?*] induces a perfect duality between Ajwi"‘] and A[wa"“]; in
this way, let Cg, C A[E%” ‘] be the annihilator of C,,. Let C be the (totally isotropic) subgroup

of Alp],

Ci=Cuy xCmy x  [[ A",
vEVp~{vo}

where e, denotes the ramification index of v over p. Let
A= A/C.

Let ¢/ denote the induced Or ® Z-action on A’, and let a: A — A" be the corresponding
Op-linear isogeny. Then there is a unique polarization X’ on A’ such that the diagram

p
A—— AV
o ()

commutes, and A" is a polarization of the type in the moduli problem for M (G). Further-
more, the level structure 77” induces, via the quasi-isogeny p~*a, a level structure 7P for the
pair (Ag, A’). We obtain a Drinfeld level wg'-structure ¢' on Hom,, | wo (Ap[wy], A'fwg]) via the
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following commutative diagram:

W;?Awo/f\wo
90/
p~Hg l N \\
T D gy /D7 H 9wy — == —> Hom(Ag[wy'], A'fwi])
N N
P2 Ny /D gAwy — — — = Hom(Ao[wi®], Ajwg"]/Cuy )

I |

P Ay [ A Hom(Ao[wy"], Afwg"]).

Here the dashed arrows are induced by ¢. Then the image of (Ao, o, Ao, 4, ¢, A, 7P, ) under
nat, is (Ao, to, Ao, A', ', N, P, ¢'). We remark that the construction of the latter tuple is, up to
canonical isomorphism in the moduli problem for M K (@), independent of the choice of p.

Again, as in (4.16), this defines an action of the center of G(Fp ,,) on /\/le (@).
The above construction carries over in the obvious way with H in place of G. Taking the
product over ./\/lo’5 of the diagram (4.23) with the one attached to H and an element h € H (FO %)

we obtain, for p sufficiently large, an analogous diagram of finite flat morphisms for H HG. We
record this as the following diagram, where g € (H x G)(Fp y,):

MKgm(HG)

:‘y K (4.24)

MK;}G(E@) Mpem (HG).

4.4 AT parahoric level at vg

In this subsection we assume that p # 2 and that the place vg is unramified over p. We again
choose a vertex lattice A, C W, for each v € V,, as in §4.1. We require that the pair (vo, Ay, ) is
of one of the following four types, which we call AT types.

(1) wp is inert in F' and A, is almost self-dual as an Op,,-lattice.
(2) v ramifies in F', n is even, and A, is my,-modular.

(3) wp ramifies in F, n is odd, and A, is almost m,,-modular.

(4) v ramifies in F, n = 2, and A,, is self-dual.

We refer to the end of the Introduction for the terminology on lattice types.
Again recalling the decomposition Kz = Ko x Kg from (3.6), we take the subgroup K¢ to
be of the form

KG = Kg X KG’p,
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where K7, C G(A%O f) is arbitrary, and Kq, C G(Fy ® Q) is given by

Kap= ][] Kawc [] GFon),

vEV) vEV)p

with K¢, the stabilizer of A, in G(Fp,).

We define the moduli functor M Kg (é) over Spec Of () similarly to §4.1. To be precise, to
each O (,)-scheme S, we associate the groupoid of tuples (Ao, to, Ao, 4, ¢, A, 777), where (Ao, 10, Ao)
is an object of Mg’g(S), A'is an abelian scheme over S up to isogeny prime to p, ¢ is an Op ® Z;)-
action on A satisfying the Kottwitz condition (3.11) of signature ((1,n — 1)y, (0,7)pco{wo})
and A is a polarization on A whose Rosati involution induces on Op ® Z, the non-trivial Galois
automorphism of F'/Fp, subject to the condition that under the decomposition (4.2) of the p-
divisible group A[p™], ker \, is contained in A[(m,)] of rank #(A}/A,) for all v € V,. Finally,
7 is a K7 -equivalence class of A% s-linear isometries (4.3).

We also impose for each v # vy over p the sign condition (4.4) at v. To ensure flatness of
M Ké(é), we impose the following additional conditions. For each v # vy over p we impose the
Eisenstein condition (4.10) at v. In addition, when the pair (vg, Ay,) is of AT type (2), (3), or
(4), we impose the following conditions.” As in the case of the Eisenstein condition, it suffices
to impose the conditions when the base scheme S lies over Spf Zp, so that, as in (4.9), there is
a decomposition

Lie A[v°] = D Liey A[v5]; (4.25)
d’EHome (FO,UO 7@p)
here, in the index set for the direct sum, we have used that Fjo = Fp, (vo is unramified over
p in this section, and in types (2)—(4) vy ramifies in F'). For each ¢ € Homg, (Fou,,Q,), the
extensions of i to F;,, form a conjugate pair

Furthermore, in terms of the identification (4.8), we have {r,,,r5,} = {0,n} unless
Y =10 := po|R,,

in which case {re, .75, } ={re0,75,} ={l,n—1}. For all ¥ € Homg, (Fo,uy,Q,) ~ {tho}, we
impose the Eisenstein condition (4.10) on the summand Liey A[vg°]. This completes the list
of conditions in type (4). In types (2) and (3), we impose the following further conditions on
Lie% A[Ugo ]

o If (vg, Ay,) is of type (2), then we impose the wedge condition

2
A\ (e(ma,) + o, | Liey, Afvf]) =0, (4.27)
and the spin condition
the endomorphism 1(my,) | Liey, Alvg®] is non-vanishing at each point of S (4.28)

(cf. [RSZ18, §6]).

9 In particular, no further conditions are required in AT type (1); this was already observed by Cho [Chol8], who
based himself on a preprint version of the present paper in which we required vg to be of degree 1 over p in all AT
types.
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o If (vg,Ay,) is of type (3), then we impose the refined spin condition (7.9) of [RSZ18] on
Liey, A[vg°]. More precisely, [RSZ18] applies as written (taking our Fy,/Fo., as the local
extension F/Fy there) in the case where vy has degree 1 over p, so that Liey, A[vg°] =
Lie Avg®]. For general vy unramified over p, analogously to (4.25), the Og-module M (A[v5°])
(notation of [RSZ18]) decomposes under the action of OF, ., into a direct sum P, My (A[v5°]),
and for each 9 there is an exact sequence

0— Fil}b — My (A[vg°]) — Liey A[vg°] — 0.

Now taking ¢ = 1), the condition we impose is given by [RSZ18, condition (7.9)], except with
Fﬂ}bo in place of Fil', with the almost Tyo-modular lattice Ay, in place of A_,,, and with the
tensor products — @0, Og and — ®p Forvo Og in terms of the structure morphism

Yo =
OFo,vo C OF,vo — Zp — 05.

(The same applies to the definition of L™ "', (S) in [RSZ18, (7.6)].)

—m,—1

Remark 4.6. When vg is of degree 1 over p, the triple (A[vg°], ¢[vg°], A[vg°]) arising from our
moduli problem is of the type occurring in the moduli problem for one of the RZ spaces in
[RSZ18, § 5-8] (because in the degree-1 case, the relative dual of A[vg°] which is used in [RSZ18]
is the Serre dual).

THEOREM 4.7. The moduli problem just formulated is representable by a DM stack Mk, (G)
flat over Spec O (.. For K, small enough, Mk, (é) is relatively representable over Mg’g. The

generic fiber M, (G) XSpec Op.() Spec E is canonically isomorphic to M, (G). Furthermore:

(i) Mk, (C:’) is smooth over Spec O, () provided that (v, Ay,) is of AT type (2) or (3).

(ii) Mk, (G) has semi-stable reduction over Spec Op, () provided that (vo, Ay,) is of AT type
(1) and E, is unramified over Q).

Proof. The representability assertion and the assertion for the generic fiber are proved in the
same way as in Theorem 4.1. The assertions concerning the local structure of Mg, (é) all
reduce to statements about the local model. As in the proof of Theorem 4.1, the local model
is a product of local models, with one factor for Ay and one for A, and the factor for A is
trivial. The factor for A furthermore decomposes as in (4.12) into a product of local models

My XSpecOg ‘ Spec Op, indexed by the places v € V,, and the factor for each v # vy is again
trivial. At the place vy, let E;}‘n denote the maximal unramified extension of Emo in @p, and
v
let OEuln denote its ring of integers. After extending scalars OET‘ — OEu‘n , the canonical
rlvg vo Tlvg

isomorphism Op, ., ®z, OE;}‘T;O ~ ] JeHomag, (Fo.ug Ty) 0] By (recall that vy is unramified over p)

induces a further decomposition of the local model

Mvo ><SpeCOE Spec OEun = H M’Uo,’(/} XSpeC OE Spec OEu" .
lug lvg o Tlyg,p g
¢6HOme (FO,’UO 7@;7)
Here, in terms of the identifications (4.7) and (4.8) and the notation (4.26), 7|y, denotes the

restriction of r to the set

{30 € Home(Fvoa@p) | 90|F0,u0 = w} = {@1117@1;)}7
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and My, = M(Fy/Fou,7|vew,Av) is a local model attached to the algebraic Fp,,-group
GU(W,,), the signature function 7|y, and the Oy, -lattice A,,. For 1 # 1)y, the signature
function 7|y, is banal, and M,  is again trivial. For 1) = 1y, the local model M, ,, is smooth
over Spec OETIUO,% in types (2) [RSZ17, Proposition 3.10] and (3) [Smil5, Theorem 1.4], and
is flat of semi-stable reduction Spec OET‘UwO in types (1) [RSZ18, proof of Theorem 5.1] and
(4) [RSZ18, §8, pp. 1119-20]. This completes the proof, noting in assertion (ii) that semi-stable
reduction is preserved under an unramified base extension. ]

Remark 4.8. The unramifiedness condition on E, in part (ii) of Theorem 4.7 is always satisfied
when F contains an imaginary quadratic field K and @ is induced from K, since ¢g: F = E in
this case (cf. Remark 3.1) and F,, is unramified over @, in AT type (1).

Remark 4.9. In the case of AT type (4), in the notation of the proof of Theorem 4.7, we
have ET|1)0, o

(cf. [RSZ18]). However, the extension E,/Fp,, is always ramified (because F;, maps into E,),

= Fy4y, and the local model M,, ,, has semi-stable reduction over Spec Op,

and therefore M Ké(é) is not regular over the place v in this case. For this reason, we will
exclude AT type (4) when considering arithmetic intersections.

We analogously define the DM stack Mk (f[ ) over Spec O,y when the pair (Uo,AE]O) is
of AT type. To define M. (ff@), we take as before the lattice A2 @ A, in W2 @ W for each
v € V), but the relation between Az and A, that we allow can be more complicated. Furthermore,
the definition of the analog of the morphisms (4.13) requires more care.

Let us first suppose that (vg, Ay,) is not of AT type (2). In this case, we assume that the
lattices A, and A? satisfy A, = A2 @ Op,u for all v. We also assume that (u,u) € Oy, ., for all v,
with the single exception of v = vy when (vg, Ay, ) is of AT type (1), in which case we impose that
Afzo is self-dual and ord,, (u,u) = 1 (and of course we use the definition of M Kﬁz(ﬁ ) from §4.1).
Provided that K%, C H (A%o, Pla K?,, we then obtain a finite unramified morphism (respectively
a closed embedding)

My (H) — Mg (G) and My (H) — My, (HG), (4.29)
as in (4.13).

Remark 4.10. The unit (u,u) was chosen very carefully in [RSZ18] because there we made a
definite choice between the two isomorphic RZ spaces N}EO) and Nél) in the odd ramified case
(more precisely, a definite choice of the framing object). Here we make no such choice, and
therefore (u,u) can be an arbitrary unit at ramified places.

Now suppose that (v, Ay, ) is of AT type (2). Then we cannot define such simple embeddings,
and it is necessary to consider more complicated diagrams involving additional spaces (cf. [RSZ18,
§12]). In fact we will consider two variants. For both variants, we assume that (u,u) € O

Fo,(p)’

and that AL’)O and A,, are related by a chain of inclusions
T (A © Opou)* C Ayy €1 A @ Op . (4.30)
Note that (4.30) is equivalent to the condition that AL’,O is almost m,,-modular in Wgo, and that

Ay, is one of the two m,,-modular lattices contained in AZO ® OF,u. For simplicity, we also
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assume in type (2) that vg is of degree 1 over p, as we will do later in §8 for all places of AT
type in the context of arithmetic intersections.

Variant 1. In the first variant, we continue to assume that for all v # vy, we have A, = AZ a5
Oru. We define Pg to be the moduli stack defined in the same way as Mg, (G), except that
at the place vy,

e ker \,, has rank p"~2; and
e when p is locally nilpotent on the base scheme, Lie A[v§°] satisfies condition (9.2) of [RSZ18].

Now let £ denote the self-dual multichain of O ® Zjy-lattices in W ® Q, = ®vevp W, gen-
erated by A,, and AL’)O ® Opyu (and its dual), and by A, for all v # vg. We define Pé to be the

moduli stack of tuples (Ao, to, Ao, A, A, 7P), where (Ao, 1o, Ao) is an object of ./\/18’5, A ={A\}is
an L-set of abelian varieties, A is a Q-homogeneous principal polarization of A, and 77 is a K, g—
equivalence class of AZ}’ s-linear isometries n”: VP (Ao, A) ~ —W @F A%, s (cf. [RZ96, Definition
6.9]). We require that A satisfies the Kottwitz condition (3.11) for all A. We further require that
over a base on which p is locally nilpotent, when the vg-summand of A is A, Lie A [v5°] satisfies
the wedge condition (4.27) and the spin condition (4.28) above; and when the vg-component of
Ais AZO ® OFp,u, Lie Ap[vg°] satisfies condition (9.2) of [RSZ18]. We obtain a diagram

pL
V ) Y (4.31)
Mg (G

My (H) —= Pg ).

H

Here the lower left morphism is defined in the usual way, analogously to (3.16), provided that
Ky C H(A%, ;) N K. It is again finite and unramified. The arrows 7 and 72 are induced by

A— A(AQO@OMOU)@@#% A, and A — AAvOEBGBU#O A, Tespectively.
LEMMA 4.11. The morphism w1 is finite étale of degree 2.

Proof. The morphism is obviously proper. It is also finite because each geometric fiber has
precisely two points. This last assertion follows over the complex numbers by looking at the
homology of the abelian varieties in play, and in positive characteristic by looking at their
Dieudonné modules. The question of étaleness reduces to the local models, which are isomorphic
by [RSZ18, Proposition 9.12(ii)]. O

The morphism 79 is proper, and it is finite étale over the generic fiber of degree (p™ — 1)/
(p — 1). However, 7o is not finite when n > 4 (cf. [RSZ18, Remark 9.5]).
Now define

_(H) X yue P-.

,PTLIVG = MKﬁ(H) XMg,g 'Pé and ,le‘{NG = MKH Mg,g fel
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ARITHMETIC DIAGONAL CYCLES ON UNITARY SHIMURA VARIETIES

Applying the functor My (I:T) X yqo¢ to the rightmost three spaces in (4.31), we obtain a diagram
0

/
Pae

e S (132)

M, (H) — Ppg My, (HG).

Here the lower left embedding is the graph of the one in (4.31), again provided that K%, C
H (A%O f) N K7.. Of course, the oblique arrows inherit the properties of the corresponding ones
in (4.31) under base change. Set

MK;\{(H) = MKE (H) XP}TG P%TG"
Note that the generic fiber of My (H) is equal to My (H), where K}? = Kzo x Kip x Ky,
H H b
with K, = Ky, at all places v # v, and Ky, the simultaneous stabilizer of AZO and Ay, .
LEMMA 4.12. The morphism
Mg (H) — Mg, (HG)
H

induced by (4.32) is a closed embedding.

Proof. The proof of [RSZ18, Proposition 12.1] applies. O
Variant 2. For the second variant, in addition to the place vy, we allow there to be places
Vi, ...,Um—1 € V, for which the lattice A,, is m,,-modular. For each i =0,...,m — 1, we then
assume that the relation (4.30) holds with v; in place of vg. For all v # vy, ..., vy,—1, We again

assume that A, = AZ ® Orppu. We then define the stack Pz exactly as above. We also define
Pé exactly as above, except we now take L to be the self-dual multichain of Of ® Z,-lattices

inW®Q,= @vevp W, generated by the lattices A,, and Ai’)i ® O, uforeachi=0,...,m—1,
and by A, for all v # vg,...,vy—1. (To be clear, the conditions above on the Lie algebra of the
p-divisible group when p is locally nilpotent on the base still only involve the place vy.)

In complete analogy with (4.31), there is a diagram

7
7 Y (4.33)
My, (H) — Pg My, (G),

where the lower left morphism is defined provided that K7, C H(AL ;)N K¢, and where the
arrows 71 and me are induced by

A= Ay oon,, 00, A, and A v— Ap 60,08,

respectively. The proof of Lemma 4.11 transposes to yield the following lemma.

LEMMA 4.13. The morphism m; is finite étale of degree 2.
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M. RAPOPORT, B. SMITHLING AND W. ZHANG

In analogy with Variant 1, the morphism o is proper, and finite étale over the generic fiber
of degree ((p" —1)/(p — 1))™. However, it is again not finite when n > 4.
Finally, we again define

Pﬁ@ = MKﬁ(fI) XMg,g Pé and PI%JG = MKFI(H) XM8’§ 7)/~’

and we apply the functor My (f[ ) to obtain

XMS@ -

Pio
/ \ (4.34)
Pre M

(HG).

Kge

M, ()
Here for the lower left embedding we assume, as always, that Ky C H(A}, () N Kg. Set
MK}?(H) = MKH (H) XPH‘G ,Pl/“{NG

Note that the generic fiber of My (H) is equal to My (H), where K}? = Kyo x Kip x Ky,
H H b

with K IILI,U = Kpg, at all places v # vg, ..., V-1, and K }I,w the simultaneous stabilizer of Af)i and
Ay, at all places v; for ¢ =0,...,m — 1. As in the case of Lemma 4.12, we obtain the following
result.

LEMMA 4.14. The morphism
My (H) — M, (HG)
induced by (4.34) is a closed embedding.

We note that if (v, Ay, ) is of type (2) or (3), then the spaces Mg, (H) and MK (I/{\é) are
smooth. If (vo, Ay,) is of type (1), then My (H) is smooth, and MKﬁc(ﬁé) has semi-stable
reduction provided that F, is unramified over Q,.

In these cases, one can define Hecke correspondences prime to p, as at the end of §4.1.

Remark 4.15. In analogy with the above cases in which (v, Ay, ) is of AT type (2) and (vo, AZO) is
of AT type (3), one may also consider a situation in which (vg, Ay, ) is hyperspecial and (vo, AE,O)
is of AT type (1). One obtains a closed embedding analogous to the one in Lemma 4.12, where
the source is a finite covering of M (H).

5. Global integral models

In this section we define integral models of the above moduli spaces over Spec Og. We will take
a = Op,, that is, we will assume that My = MOOFO
this hypothesis is satisfied whenever F'/Fj is ramified at some finite place, a condition which we
will eventually impose below in the context of arithmetic intersections (cf. Remark 5.3). We fix

¢ € £8/~ and set M = M *

is non-empty. Recall from Remark 3.5(ii) that
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5.1 Trivial level structure

In this subsection we will define integral models over Spec O of the previously defined moduli
spaces in the case where the open compact subgroup is the stabilizer of a lattice of a certain
form. Let us start with the case of G. We consider the following finite set of finite places of Fj,

VI = {v | v is either inert in F' and W, is non-split, or v ramifies in F'}. (5.1)

Let
DKVT = H qv C OpF,
’UEVX'{F
where q, denotes the (unique) prime in O determined by v € VY. We fix an Op-lattice A in
W with
Ac A c @OV A (5.2)
We assume that the triple (F/Fy, W, A) satisfies the following conditions.

(1) All finite places v of Fy ramified over Q or dividing 2 are split in F.1°
(2) All places v € VX["/r are unramified over QQ, and the pair (v, A,) is isomorphic to one of the
AT types (1)—(4) in §4.4.

As a consequence, for any finite place v of E, denoting by v the place of Fyy induced by v via
©0, the pair (vg, Ay,) is of the type considered in one of the four subsections of §4. Associated
to these data is the open compact subgroup

K& = {g € G(Ar, 1) | 9(A @0, Or) = Ao, Or},

and as usual we define K% = Kyo X K¢
We formulate a moduli problem over Spec Of as follows. To each Op-scheme S, we associate
the groupoid of tuples (Ag, Lo, Ao, A, ¢, A), where (Ag, 1o, \g) is an object of /\/lg(S). Furthermore,

e (A,.) is an abelian scheme over S, with Op-action ¢ satisfying the Kottwitz condition (3.11)
of signature ((1,7 — 1)g,, (0,7)pea{yo}); and

e )\ is a polarization whose Rosati involution induces on Op the non-trivial Galois automorphism
of F/FO

We impose the sign condition that at every point s of S,
invy (Ao s, L0,s, Ao,ss As, Ls, Ag) = Invy, (—Wy), (5.3)

for every finite place v of Fy which is non-split in F'. Furthermore, we impose that for any finite
place v of E, denoting by p its residue characteristic, the triple up to isogeny prime to p over
S XSpecOp Spec OE,(V)J

(A L)t ® L), A ® L)),

satisfies the conditions in the semi-global moduli problem for v defined in §4.
The morphisms in this category are the isomorphisms.

10 1n [RSZ19, §6.1] this assumption is relaxed to the assumption that all such v are unramified in F, with the
analog of Theorem 5.2 below continuing to hold true.
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M. RAPOPORT, B. SMITHLING AND W. ZHANG

Remark 5.1. (i) Suppose that n is even. Then when v is a finite place of Fj inert (respectively,
ramified) in F, the two isometry types of the n-dimensional F),/Fj ,-hermitian spaces are distin-
guished by whether they contain a self-dual (respectively, m,-modular) lattice. This implies that
when there are no places v such that the pair (v, A,) above is of AT type (4), the sign condition
(5.3) is automatically satisfied.

(ii) Suppose that Fy = Q. Then there is no need for the sign condition. Indeed, by the Hasse
principle for hermitian forms, it is equivalent to impose the condition that for every geometric
point 5 of S, there exists an isomorphism of hermitian Op -lattices

Homo, (Ty(Aos), Te(As)) ~ —Ay

for every prime number ¢ # char k(5). Hence we recover in this case the definition of the integral
moduli problem of [BHKR ™20, §2.3] (where the principal polarization in the moduli problem of
[BHKR™20] is replaced by the polarization type we have specified above).

The only point requiring proof in the next theorem is the representability of M K, (é), which
is, however, routine.

THEOREM 5.2. The moduli problem just formulated is representable by a DM stack M K (é)
flat over Spec Op. For every place v of E, the base change M Xspec 0y Spec O, is canon-
ically isomorphic to the semi-global moduli space defined in one of §§4.1, 4.2, or 4.4 above.
Hence:

(i) MK% (G) is smooth of relative dimension n — 1 over the open subscheme of Spec O obtained
by removing all places v for which the induced pair (vo, Ay,) is of AT type (1) or (4) in
§4.4.

(i) M Ke (G) has semi-stable reduction over the open subscheme of Spec O obtained by remov-
ing all places v for which (vo, Ay, ) is either of AT type (4) or of AT type (1) and for which
E, is ramified over Q.

Replacing W' by W’ and choosing a lattice A> C W” analogously to above, we define the DM
stack MK%( ), where K2 = Kzo x K with Ky, C H(Ap, s) the stabilizer of A’ ®o,, Op.

Similarly, we define M K;TG(H G), where K’ﬁ@ = K0 x K§ x K¢, and where we impose the

following additional conditions on A” and A. We first require that AE} is self-dual for all v which
are split or inert in F' (i.e. we require that V%b consists of exactly the finite places of Fy which
ramify in F), and that A’ and A, are m,-modular or almost 7,-modular for all v which ramify
in F (i.e. VX? and VY% contain no v for which (v, A3) or (v, A,) is of AT type (4)).

Remark 5.3. The conditions that we have just imposed on A’ place non-trivial constraints on
the extension F/Fy and on the hermitian space W’. Let d := [Fy : Q].

First consider the case when n = 2m + 1 is odd. Then our assumptions on A’ imply that
W is split at all finite places of Fy. On the other hand, at each archimedean place ¢, the Hasse
invariant invw(Wg) is equal to (—1)™1 if p = g, and to (—1)™ if ¢ # @o. Hence the product
formula (1.5) imposes the congruence

dm =1 mod 2. (5.4)
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In particular, since this requires d to be odd, the extension F/Fj is forced to be ramified at at
least one finite place (otherwise the product formula for the norm residue symbol (—1, F/Fp)
would fail). On the other hand, if the congruence (5.4) is satisfied, then the hermitian space wP
will exist and admit a lattice A” as above.

Now consider the case where n = 2m is even. If F//Fj is ramified at some finite place, then
a hermitian space W’ admitting a lattice A> as above will exist for any d and m. On the other
hand, we claim that F/Fy being everywhere unramified is again disallowed. Indeed, the same
argument applies: our assumptions on A’ would again imply that WP is split at all finite places
of Fy, and the Hasse invariants at the infinite places are again given by (—1)""! at ¢y and by
(—1)™ at each ¢ # po. Hence we again obtain the congruence dm = 1 mod 2, forcing d to be
odd.

In future work, we plan to handle more cases of an AT conjecture which will allow us to
weaken the constraints we have placed above on the extension F'/Fj and on the lattices A and
A; this will allow for more general hermitian spaces W and WP. More precisely, we expect to
allow places v which are inert in F' and unramified over Q such that A, is self-dual and A is
almost self-dual (cf. Remark 4.15).

Let us continue with the conditions we impose on A? and A. When n is odd, we require that
A=A @ Opu,

and that (u,u) is a unit at each finite place v unless v is inert in F' and W, is non-split, in
which case ord,(u,u) =1 (and hence (v,A,) is of AT type (1)). In this case, we have closed
embeddings

Mics, (H) — Mic (G) and - Mics () — Mic;, (HG) (5:5)

completely analogous to those we have considered before (e.g. (4.13), (4.18), and (4.29)).

Now suppose that n is even, and let vy,..., v, be the finite places of F{y which ramify in F’
(cf. Remark 5.3). As in the discussion in §4.4 after Remark 4.10, we assume for simplicity that
each v; is of degree 1 over Q. By our assumptions already made, each (v;, A';Z) is of AT type (3).
For each ¢, we further require that (u,u) is a unit at v;, and that A,, is one of the two lattices
for which the relation (4.30) holds with v; in place of vg. Then (v;, Ay,) is indeed of AT type (2).
At the split and inert places v, we again require that A, = AL’] ® Opu, where (u,u) is a unit at
v unless v is inert in F" and W), is non-split, in which case ord,(u,u) = 1. Then we obtain natural
global analogs of the diagrams (4.33) and (4.34),

/
Re

M (H) — Rg Mg (G)
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and

Rie
Mice (H H) > Rz MK;;G(I?@)-

Here the global analogs R R s Rie and R’HAJG of the auxiliary spaces appearing in (4.33) and
(4.34) are defined in the obv10us way. Similarly, we obtain a closed embedding

Mo (H) := Mcs (H) x g, Rie, — M (HG). (5.6)

We note that M (H H) and Mk (HG) are smooth over the open subscheme of Spec O
obtained by removing all places v for which the induced pair (vo,Ay,) is of AT type (1).
Furthermore, MK;I\G(-/H\E) has semi-stable reduction over the open subscheme of SpecOp
obtained by removing all places v for which F, is ramified over Q,.

5.2 Drinfeld level structure
We continue with the setup at the beginning of the previous subsection. In particular, we have
the lattice A C W satisfying relation (5.2) and the assumptions that follow it. Let

»sPL = {places v of Fy | v splits in F}, (5.7
5.7
L. — £y € 35P! | every place v of E above v matches ®}

(cf. (4.19)). In addition, we fix a function
m: 2P 7 (5.8)

with finite support contained in X5Ph®.
Associated to these data is the open compact subgroup

K& :={ge G(Ap, ;)| 9(A ®o, Or) = A ®0, OF and g = id mod N(m)},

where
H pm(v
’UEESPI
As usual, we define KZ':= Kzo x K& as in (3.6). Note that if m =0, then K& = K¢ and
m __ o
Ké — K@. _
The subgroup K’G~“ defines a moduli stack M Km(G) as in §3.2, which maps via a finite flat

morphism to MK% (G). We then define MKm (G) to be the normalization of MKO (G) in MKga (@).
As with Theorem 5.2, the proof of the followmg theorem is routine.

THEOREM 5.4. MKgx(é) is a regular DM stack finite and flat over ./\/lKo( ). For N(m) big

enough, M K (é) is relatively representable over Mg. For every finite place v of E, the base

change M m Xspec 0y Spec O () is canonically isomorphic to (variants of) the semi-global
modauli space defined in one of §§4.1, 4.3, or 4.4 above.
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Note that in the last assertion of this theorem, in the case where m is not identically zero,
we are implicitly allowing smaller open compact subgroups of K, in these subsections (this is
what is meant by ‘variants’). We analogously define the DM stacks M Kg(ﬁ[ ) and M K}r?c(ff\é)
over Spec Og.

To define embeddings between the stacks we have introduced, we make the same assumptions
on the lattices, on (u,u), and on the ramified places of Fi when n is even as after Theorem 5.2
in §5.1. When n is odd, we analogously obtain closed embeddings

Mgm(H) — Mgm(G) and Mgm(H) — Mgm (HG). (5.9)
H G H HG
When n is even, we analogously obtain a closed embedding

MK/;(I?) — MK;IQG(I?G). (5.10)

Also, in all cases we obtain Hecke correspondences for elements g € H;ezspl,q)(H x G)(Fow)
(restricted direct product),

MK;%G(I?@)

/ X (5.11)

Micm (HG) Mg (HG).

6. The arithmetic Gan—Gross—Prasad conjecture

In this section we state a version of the arithmetic Gan—Gross—Prasad conjecture [GGP12]. It is
based on some wide open standard conjectures about algebraic cycles.

6.1 Standard conjectures on height pairing

Consider the category ¥ of smooth proper varieties over a number field F, and let H*: ¥ —
grVecy be a Weil cohomology theory with coefficients in a field K of characteristic zero. Let X
be an object in ¥, and let Ch’(X) be the group of codimension-i algebraic cycles in X modulo
rational equivalence. We have a cycle class map

cl: Chi(X)g — H*(X).

Its kernel is the group of cohomologically trivial cycles, denoted by Chi(X )o,0- We take the
Weil cohomology theory H* as either the Betti cohomology H*(X(C),Q), or, for a prime ¢, the
¢-adic cohomology H*(X ®g E,Qy), endowed with its continuous Gal(E/E)-action. Comparison
theorems between Betti cohomology and étale cohomology show that the subspace Chi(X )Q,0 is
independent of the choice of these two.

We will base ourselves on the following conjectures of Beilinson and Bloch (cf. [Jan90, §2]).

CONJECTURE 6.1. There exists a regular proper flat model X of X over Spec Og.
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Let X be such a model, and consider its ith Chow group Ch*(X )o- Restriction to the generic
fiber defines a map

Ch*(X)g — Ch'(X)g.
Let Chj;,(X)g be the kernel of this map (cycles supported on ‘finite fibers’), and let Ch*(X)q,0

be the pre-image of Ch’(X )o,0- We will use the Arakelov pairing defined by Gillet and Soulé
[GS90, §4.2.10],

(,)as: Ch¥(X)go x Ch¥1(X)g9 — R, d:=dimX. (6.1)

Let Chgil_i(/\,’)é C Ch*(X)g,0 be the orthogonal complement of Chg:l_i(/l’)@ under the pairing
(6.1).

CONJECTURE 6.2. The natural map Chgf—i(X)a — ChY(X)q, is surjective.

Assuming Conjectures 6.1 and 6.2, the height pairing of Beilinson and Bloch
(,)pp: Ch¥(X)go x Ch¥™(X)g0 — R (6.2)

can be defined as follows. Lift the elements ¢; € Ch(X)go and ¢z € Ch¥™ 1 X)g to ¢ €
Chg;rl*z(é\,’)(ég and ¢z € Ch}m(é\.’)é, respectively. Define

(c1,¢2)BB = (€1, C2)Gs- (6.3)

It is easy to see that this is independent of the choices of the liftings.

Remark 6.3. Assuming Conjectures 6.1 and 6.2, the pairing (6.2) is independent of the choice of
the (regular proper flat) integral model X' (cf. [Kiin01, Lemma 1.5]).

Remark 6.4. Assume that there exists a smooth proper model X of X over Op. Then by [Kiin98,
Theorem 6.11], Conjecture 6.2 holds for X and therefore the intersection product (6.2) is defined;
again, by [Kiin0l, Lemma 1.5], the intersection product is independent of the choice of X
(assumed to be smooth and proper).

6.2 Cohomology and Hecke—Kiinneth projectors
We apply these considerations to the Shimura varieties defined in §3.'' In order to simplify
notation, we write K for K in ShKH\G(I?C/}) throughout the rest of this section.

Denote by % the Hecke algebra of bi- K -invariant Q-valued functions with compact support,
with multiplication given by the convolution product,

Hic = CF(HG(Ay) | K, Q). (6.4)

The variety ShK(I—/fé) is equipped with a collection of algebraic correspondences (Q-linear
combinations of algebraic cycles on the self-product of Sh(%) x with itself), the Hecke
correspondences associated to f € H%.

The Hodge conjecture implies that the Kiinneth projector from @, , Hi(ShK(ffé),Q) to

each summand H'(Sh (P/I\C/?), Q), or to the primitive cohomology, is induced by algebraic cycles

1 Note that these spaces can in fact be (and in particular cases of interest to us, are) DM stacks, but we will
suppress this point in our discussion throughout the rest of the paper. The extension of the usual intersection
theory to DM stacks is supplied by Gillet’s paper [Gil09].
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(with Q-linear combinations). Morel and Suh [MS19] prove a partial result on the algebraicity of
Kiinneth projectors for Shimura varieties (the so-called ‘standard sign conjecture’), conditional
on Arthur’s conjecture. We now recall their theorem.

Remark 6.5. The hypotheses on which [MS19] is based are in fact known in our setting. (1) The
stabilization of the twisted trace formula is known from the work of Waldspurger. (2) The Arthur
conjecture on the expression of the discrete spectrum in terms of discrete Arthur parameters is
known (cf. Mok [Mok15] for quasi-split unitary groups, and Kaletha, Minguez, Shin, and White
[KMSW14] (and its sequels) for inner forms of unitary groups). Here we note that our group
HG is a product of a unitary group and a torus by (2.1). (3) The comparison between the
Adams—Johnson classification and the Arthur classification of cohomological Arthur parameters

of real groups is known from Arancibia, Moeglin, and Renard [AMR18].

THEOREM 6.6 (Morel-Suh). Let e € Z/2Z. Then there exists f€ in 5 such that the associated
Hecke correspondence induces the projector to the even (respectively, odd) degree cohomology,

P Hi(Shi(HG).Q) — @ H(Shg(HG),Q).

€L i=e mod 2

DEFINITION 6.7. We set ft = f0 and f~ = f! as in Theorem 6.6, and call them the even
(respectively, odd) Hecke—Kiinneth projectors in .

Proof of Theorem 6.6. This follows from [MS19, Theorem 1.4, Lemma 2.2]. We outline the proof
given in [MS19]. It suffices to prove the assertions after tensoring with C. We henceforth consider
H(Shg(HQ),C) with the action by ¢ = H#j @ C.
By Matsushima’s formula [BW00, VII], we have a decomposition of the Betti cohomology'?
into a finite direct sum,
H*(Shg(HG),C)~ P Ve, (6.5)

=T @ oo
where we set

Vi K = Maisc () (7'(']{( & H*(F)E, Koo; Too))-
Here

e 7 runs through the set Hdisc(ﬁé) of irreducible representations of I?E(A) in the discrete
automorphic spectrum LgiSC(ZQ(R)I?C/J(Q)\I?é(A)), and mgise(7) is the multiplicity of ;'3

° 63 is the complex Lie algebra of I-/I\EJ(R);

o K is the centralizer of hy, in I/{\C/?(R);14 and

° wff denotes the invariants of ¢ under K.

The isomorphism (6.5) is % -equivariant, where #% acts on the right-hand side through the
space 71'}{ .

12 When the Shimura variety ShK(I-/I\é) is non-compact, one has to replace H* (ShK(I-/I\é), C) by the image of the
Betti cohomology of the toroidal compactification in the Betti cohomology of ShK(fI\é). This also coincides with
the intersection cohomology of the Baily—Borel compactification of ShK(Efé).

13 When the group HG is anisotropic modulo its center, the quotient is compact and then L3, = L.

4 In particular, Z%(R) is contained in K.
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We have a decomposition of the discrete spectrum as HG(A)-modules (cf. [Art89], [Kot90,
§8)),
Lzﬁsc(z@( ) ( \HG @ @

’IZJ WGHw

Here the sum is taken over all equivalence classes of global Arthur parameters v, with trivial
associated quasi-character of Z@(R). Furthermore, I, denotes the Arthur packet attached to
¥, and m(y, ) denotes the Arthur multiplicity. Hence we may rewrite the decomposition (6.5)
according to global Arthur parameters as

H*(Shg (HG), EB Vi ks (6.6)

where we set

Vo = D m@,m)(rf @ H (bg, Kooi To0))- (6.7)

T=T QT oo €lly,

The isomorphism (6.6) is #%-equivariant. Moreover, there is a canonical Lefschetz class (coming
from the cup product with the Killing form) which induces an SLg(C)-action on the graded vector
space H*(Shi (HG), C) (cf. [Art89, Proposition 9.1]). Correspondingly, there is an SLy(C)-action
on the graded vector space H*(hg, K ; Too). The decomposition respects the SLo(C)-action and
the grading on both sides of (6.6). We refer to [Art89] for details.

In general, the definition of Arthur parameter involves the hypothetical automorphic Lang-
lands group. In the case of classical groups, Arthur avoids the Langlands group by using cuspidal
(or isobaric) automorphic representations of general linear groups as substitute parameters
[Art13]. In our setting, our group is a product HG = Z2 x HG, where

HG := Resp, o(H x Q) (6.8)

(cf. (2.1)). Accordingly, we will write an Arthur parameter ¢ as a pair (¢, ¢1) where 1)y and 1)1
are Arthur parameters for the two factors Z2 and HG and those are defined in terms of cuspidal
(or isobaric) automorphic representations of general linear groups.

By the product decomposition (3.4) we have

ShK(ﬁZ;)(C ~ ShKZQ(ZQ)(C XSpecC ShKHG (HG)(C
and an induced isomorphism (note that the first factor above is zero-dimensional)
H*(Shg(HG),C) ~ H°(Shg o (2%),C) ® H*(Shi . (HG), C). (6.9)

We may therefore replace Sh K(ﬁé) by Shg . (HG) in the conclusion of Theorem 6.6. We record
the decomposition similar to (6.5):

H*(Shg,.(HG), @ Viy K- (6.10)

For a fixed my ¢, let

Hoo(ﬂ'l,f) = {71'1700 € H(HG(R)) |7T1’f @ Tl,00 € Hdisc(HG)}'
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Here II(HG(R)) denotes the set of equivalence classes of irreducible admissible representations
of HG(R). Then we may rewrite (6.10) as

H*(Shg 6 (HG),C) ~ P Vi, K (6.11)
7l'1,f
where
VW1,f7KHG = @ Vﬂ'l,oo®771,f7KHG'

m,ooel'[oo(m,f)

Now by [MS19, Theorem 1.4], the degree i modulo 2 such that H'(hg, Koo; T1,00) # 0 is constant
(in Z/27) as 71 varies through Il (7 ) and i varies through Z. We denote the constant i
mod 2 above by (7 ¢) € Z/2Z.

The (finitely many) non-zero direct summands V. are distinct J¢% c-modules. There-

1,1 -Kua

fore, for each my y, there exists fr, , € #k c that induces the projector to Vi . k. Now
set
fre= > fuy oand fTi=0 > fa
T, f TLf
€(7l'17f):0 6(7r1’f)11
This completes the proof of Theorem 6.6. O

Remark 6.8. Let Hf, :=@D,_. mod2Hi(ShK(ﬁE¥),Q). Then [MS19, Theorem 1.4] asserts that
H;g and Hj, both being semisimple #%-modules, do not share any common irreducible
Jc-submodule.

6.3 Arithmetic diagonal cycles - -
We now apply the considerations of §§ 6.1 and 6.2 to the canonical model M (HG) of Shx(HG)
over E. When K = K is as in (3.15), we have given in §3.2 a moduli interpretation of

My (HG).
We consider the cycle class map in degree n — 1 (for the Betti cohomology),

clp1: Ch" (Mg (HG))g — H*™V(Shg (HG),Q).

Note that dim MK(IZTY})) = 2n — 3 is odd. In particular, the above cohomology group is not in
the middle degree, but just above. N _

Let Kz be a compact open subgroup of H(Ay) contained in K N H(Af). We have a finite
and unramified morphism

My, (H) — Mg (HG).
The proper push-forward defines a cycle class [Mg (H)] € Ch™ Y (M K(f?é))@ We now fix a
Haar measure on H (A) such that the volume vol(K ) € Q. We then define the normalized class
2 = vol(K ) [Mx, (H)] € Ch"~ (M (HG))q, (6.12)

which is independent of the choice of the group K. We call zx the arithmetic diagonal cycle

since it lies in the arithmetic middle dimensio&/that is, 2dim zx = dim Mg (HG) + 1. Let Zk
be the cyclic Hecke submodule of Ch" ™! (M (HG))q generated by 2.
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Let f~ € % be an odd Hecke-Kiinneth projector (cf. Definition 6.7). We obtain a map to
the Chow group of cohomologically trivial cycles,

R(f7): Ch" ! (Mg (HG))g — Ch" (Mg (HG))g,. (6.13)
We obtain a cohomologically trivial cycle in the Chow group,
zx0 = R(f7)(zk) € Ch" (Mg (HG))gy. (6.14)
Accordingly we call zx o the cohomologically trivial arithmetic diagonal cycle.

Remark 6.9. (i) Since the Hecke-Kiinneth projector f~ € % is not unique, we comment on
the (in)dependence of the induced cohomologically trivial cycle in the Chow group zxo =
R(f7)(zk) € Ch”fl(MK(I?é))Qp. Conjecturally, for any smooth projective variety X over a
number field, it should be true that, given 4, Chi(X )o is finite-dimensional, and if a cor-
respondence induces the zero endomorphism on H?~1(X), then the induced endomorphism
on Ch'(X)g, is zero (cf. [Bei87, Lemma 5.6] and [Jan90, Conjecture 9.12]). Moreover, one
expects that Chi(MK(I/{\é))Q is a semisimple A-module. If these were true for X = MK(IiI\é)
and ¢ =n — 1, then by Remark 6.8 it would follow that the simple J#%-modules appearing in
Ch" Y (Mg (I?C/l))(@,o and Im(cl,—1) are disjoint. Furthermore, one expects that there is a unique
decomposition of (finite-dimensional) semisimple .#%-modules

Ch" Y (Mg (HG))g = Ch" Y (Mg (HG))g,0 @ Im(cl,_1). (6.15)

The endomorphism R(f~) would then define the projector onto the ~_summand Chm !
(Mg (HG))go- In particular, the induced endomorphism of Ch™ (Mg (HG))g, and hence
the element zx o= R(f7)(2K) € Ch”_l(MK(E[\é))@yo, would be independent of the choice of
f~ € . The summands in (6.15) would decompose as #x-modules,

Ch" N (My (HG))co = €D Chm ! (Mk (HG))c ol f ],

(6.16)
Im(cl,—1)c = @ Im(cln_l)@[ofc{].

Here 7 runs through all automorphic representations contributing to H?"~3(Shy @), C), and
o runs through all automorphic representations contributing to H?"2(Shx (HG),C). Also,
Ch”_l(MK(HG))QO[ﬂJ[f] denotes the ﬂff—isotypic component of the J#x-module, that is, the

image under the evaluation map, which is injective,
mf ® Hom g (wff, Ch" ™ (M (HG))e0) — Ch"H (M (HG))co-

Then
Ch" (Mg (HG))eo[r ] = 7 @ Hom s (nff, Ch" (Mg (HG))c,0). (6.17)

Similar definitions apply to Im(cln_l)@[aff .

(ii) In [Zha09] the Chow-Kiinneth decomposition was used to modify the arithmetic diagonal
cycle to make its cohomology class trivial. However, it is difficult to show the existence of a
Chow-Kiinneth decomposition except in some special cases. Therefore, the procedure above is
preferable.
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6.4 The arithmetic Gan—Gross—Prasad conjecture, for a fixed level K C If{\é(Af)
Let Zx o denote the cyclic Hecke submodule of Ch" '(My(HG))go generated by zx g or,
equivalently, the image of Zx under the map R(f™). We would like to decompose as 7% -modules

ZK,() c Ch ! (MK(ITI\C/:))(C,().

In the conjectural decomposition (6.16), we only consider the tempered part of the spectrum.
The non-tempered part is also interesting but will be postponed to the future.

Let m be an automorphic representation of ffé(A) with trivial restriction to the central
subgroup Z2(A). By (2.1) we may consider 7 as an automorphic representation of (H x G)(Ag,).
Let R be the tensor product representation of the L-group of H x G defined in [GGP12, §22].
The L-function L(s,m, R) depends only on the Arthur parameter ¢ of 7.

To explain this L-function, we write a tempered Arthur parameter o) = (=1 () formally

P = @wz("’l), ) = @%@), (6.18)
i J

as

where w§n—1) correspond to distinct cuspidal automorphic representations of GL N1 such that

~1) - . .
> Ni(” =n — 1, and similarly for ©/(™. Then the L-function in question equals

L(s,m, R) = [[ L(s, 0" " &™), (6.19)
(2]

where each factor is a Rankin—Selberg convolution.

We assume that 7 lies in the packet 11, of a cohomological tempered packet ). Here ‘coho-
mological’ is a condition on the archimedean component 1, and refers to the trivial coefficient
system.

The first version of the AGGP conjecture can now be stated as follows.

CONJECTURE 6.10. Let K C I/{\é(Af) be an open compact subgroup. Let m be as above, that

is, with trivial restriction to the central subgroup ZQ(A) and lying in a cohomological tempered

Arthur packet. Consider the following conditions on 7.

(a) dimHom g, (7, Zx ) = 1.1

(b) The order of vanishing ords_;o L(s,m, R) equals 1, the space Homﬁ(Af)(ﬂf,(C) is one-
dimensional, and its generator does not vanish on the subspace W}( Cmy.

(C) HOID%K (71—}(7 Chn_l(MK(HG))(C,O) 7& 0.

Then (a) and (b) are equivalent and imply (c). If E = F, then (a), (b) and (¢) are equivalent,

where

(c) dimHom (77?, Ch”fl(MK(IiI\é))QO) = 1, the space Homﬁ(Af)(Wf,(C) is one-dimensional,

and its generator does not vanish on the subspace W]If Cmy.

Remark 6.11. If E = F, the equivalence between (b) and (¢’) is part of the Beilinson-Bloch
conjecture [Blo84, Bei87] that generalizes the Birch—-Swinnerton-Dyer conjecture.

15 Note that we always have dim Hom sz, (W}(, Zr,0) <1, because Zx o is a cyclic H#x-module.
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We would like to test the conjecture quantitatively through height pairings. Now we
assume that Conjectures 6.1 and 6.2 hold for M, K(I/—I\C/?) For instance, this is the case when
Mg (HG) has everywhere good reduction'¢ (cf. Remark 6.4). In particular, we have the
Beilinson—Bloch height pairing (6.2) between cohomologically trivial cycles for i =n — 1. We
extend it to a hermitian form on Ch"~ (M K(.ﬁé))@,o. Pairing against the distinguished element
2K,0 € Ch”fl(MK(I/{\é))Q’o then defines a linear functional

l: Ch" N (Mg (HG))c, C

Z B (Z,ZK,(])BB.
Let Z K’O[wjlf | be the WJIC{ -isotypic component of Zx o as an .#x-module, so that

ZK,O[W;(] ~ ﬂjlc( ® HOHlf;fK (7‘(’?,2}(70).

The second version of the AGGP conjecture in terms of the height pairing can be stated as
follows.

CONJECTURE 6.12. Let K C I/—IT}(Af) be an open compact subgroup. Let w be as above. Then
the following conditions on 7 are equivalent.

(a') €K|ZK70[7T?} # 0
(b) The order of vanishing ord,_; /o L(s,m, R) equals 1, the space Homﬁ(Af)(ﬂf,(C) is one-
dimensional, and its generator does not vanish on the subspace 7rJIf Cmy.

(c) €K|Ch"*1(MK(I?@))c,o[ﬂf(] 70

Remark 6.13. Our formulation differs in several aspects from [GGP12, Conjecture 27.1]. First,
in [GGP12], the Shimura varieties are associated to unitary groups, whereas here we consider
Shimura varieties associated to groups which differ from those in [GGP12] by a central subgroup
(cf. Remark 3.2(iii)). Correspondingly, the varieties in [GGP12] are defined over F', whereas our
varieties are defined over the extension E of F'. As a consequence, we cannot predict the dimen-
sion of Hom (77;(, Ch”_l(MK(f/I\é))C,o) in Conjecture 6.10(b) when F' # E (in the version of
[GGP12], this space is one-dimensional if it is non-zero). Note, however, that if F' = K Fy for an
imaginary quadratic field K and the CM type is induced from K (as in [HTO01}), then F = E.
Second, we exploit that the standard sign conjecture is known in our case, and we use it to
construct the cohomologically trivial diagonal cycle zf ¢ and the corresponding linear functional
£x that occur in our version of the conjecture. Third, we work with a fixed level K and specify
the compact open subgroup K over which the linear functional £x should be non-zero. Finally,
we note that, in the terminology of [GGP12|, we are only considering the case of a trivial local
system F.

Remark 6.14. The space Homg( Af)(ﬂ'f, C) is at most one-dimensional. It is one-dimensional if
and only if the member 7 in the packet II, is as prescribed by the local Gan-Gross—Prasad

16 Instances of everywhere good reduction can in fact be constructed (cf. Remark 6.17).
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conjecture [GGP12, Conjecture 17.3]. The local Gan—Gross—Prasad conjecture [GGP12, Conjec-
ture 17.1] predicts that there is a unique 7 in the packet Il such that Homﬁ(Af)(Wf, C) #0 (in

which case dimHomz , (7, C) = 1).

H(Ay)

Remark 6.15. Let us restrict our attention to the tempered part in the decomposition in the first
line of (6.16),

Ch" Y (Mg (HG))cotemp = D Ch" Y (Mg (HG))colrf].

7 tempered

Let Zg 0,temp be the Hecke submodule of Chn_l(M K (ET\G/))QO, temp generated by (the projection
of) zk . Then Conjecture 6.10 (together with the expectations in Remark 6.9(i)) implies that
when £ = F,

ZK,O,temp = @ Chnil (MK(‘/E—[E))(C,O[T#(L

where the sum runs over all tempered automorphic representations 7 such that
ords_i/o L(m,s,R) =1

and such that the space Homg( Af)(ﬂ'f, C) is one-dimensional, with generator not vanishing on

the subspace TF]Ic( Cmy.

Remark 6.16. A parallel question is to investigate the structure of the % -submodule in
HQ("_Q)(MK(I/{\C/?),(C) generated by the cohomology class cl,_1(zx). However, since every
automorphic representation contributing to the cohomology in off-middle degree must be
non-tempered, the answer to such a question must involve the non-tempered version of the
Gan—Gross—Prasad conjecture. We hope to return to this in the future.

Remark 6.17. As remarked above, the height pairing is defined unconditionally if M K(I/-IT})
has everywhere good reduction. To construct such cases, let us assume now that K = K5 =
K o x Ky x K¢, where K 4q is the usual maximal compact subgroup (3.7), K¢ is the stabilizer
of a lattice A in W, and Ky is the stabilizer of a lattice A’ in W?. We make the following
assumptions on the field extensions F/Fj/Q.

e Each finite place v of Fjy which is ramified over Q or of residue characteristic 2 is split in F.
e Each finite place v of Fjy which ramifies in F' is of degree 1 over Q.

We also make the following assumptions on the hermitian spaces W and W”. We distinguish
the case where n is odd from the case where n is even (cf. Remark 5.3).
When n = 2m + 1 is odd, we impose that

e IV is split at all finite places of F{y which are inert in F'; and
e W’ is split at all finite places, which forces m and [Fy : Q] to be odd (cf. Remark 5.3).

Then we choose A, to be self-dual when v is split or inert in F', and almost m,-modular
when v is ramified in F. Furthermore, we choose A’ to be self-dual when v is inert in F and
my-modular when v is ramified in F. Such lattices exist, even when we impose that A = A” ® Opu
with (u,u) € Op, . With these definitions, My (fTG/) has everywhere good reduction.

When n = 2m is even, we impose that
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o IV is split at all finite places of Fpy, which again forces m and [Fp : Q] to be odd (cf. Remark
5.3); and
e W’ is split at all finite places of Fy which are inert in F.

Now we choose A, to be self-dual when v is split or inert in F, and m,-modular when v
is ramified in F. Furthermore, we choose A’ to be self-dual when v is inert in F and almost
my-modular when v is ramified in F'. Such lattices exist, even when we impose that there exists
u€ W with (u,u) € O;O such that, for all inert finite places A, = A? @ Oryu, and such that,

for all ramified places, AZ and A, are related by a chain of inclusions
To(A @ Opu)* ' A, P A° @ Opu

(cf. (4.30)). With these definitions, M K(I?C/r’) has everywhere good reduction.

One may ask in this connection whether Conjecture 6.10 is non-empty for M K(I?é) (with
everywhere good reduction). By our expectations in Remark 6.9(i), this comes down to asking
whether there are representations 7w € Hdisc(f?é) with TrJIf # 0 which contribute to the cohomol-

ogy H 2”_3(ShK(ﬁé), C). Chenevier [Chel6] has indicated to us a method of producing such 7
for low values of n, when F'/Fj is everywhere unramified. The method should also apply when
F/Fy is ramified once one has a better understanding of the local Langlands correspondence for
unitary groups in ramified cases.

Remark 6.18. Assume n = 2. In this case, the Beilinson—Bloch pairing is defined unconditionally
and coincides with the Néron—Tate height. Conjecture 6.12 is closely related to the Gross—Zagier
formula in [YZZ13]. It would be interesting to clarify this relation.

7. L-functions and the relative trace formula

In this section we recall certain distributions on the group G’ = Resp/p,(GL,—1 x GLy) that
appear in the context of the relative trace formula. For test functions with some local hypothe-
ses, we follow [Zhal2a, §3.1] and [Zhalda, §§2.1-2.4]. In general, our definition relies on the
truncation of relative trace formulas of Zydor [Zyd20].

On the one hand, these distributions are related to L-functions via the Rankin—Selberg theory
(for GL,,—1 x GL,) of Jacquet, Piatetskii-Shapiro, and Shalika [JPS83]. On the other hand, they
will serve as the analytic side in our conjectures on arithmetic intersection numbers formulated
in the next section.

7.1 The L-function

Let IT = II; X II3 be a cuspidal automorphic representation of G'(Ag,), where Iy, Iy are auto-
morphic representations of GL,_1(Ap) and GL,(Ap), respectively. Let L(s,II; K II3) be the
Rankin—Selberg convolution L-function. This is an entire function in s € C and it satisfies a
functional equation of the form

L(s, 1] K1Iy) = e(s, 1} K o) L(1 — s, 1T ML)

(cf. [JPS83]). Here II denotes the contragredient representation of II;.
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The L-function L(s,II; M 1Iy) is represented by an integral. Let ¢ = @), p» € II = Q, 11, be
a decomposable vector. Consider the integral

Mg, s) = / o(h)|det(B)|5 dh, s € C. (7.1)
(R )\ (A )

Then by [JPS83], with the Haar measures specified in [Zhal4b, § 2], we have a decomposition
(cf. [Zhal4b, §3.3])

Ay, s) = L(s + %,Hl X HQ) H)\U(gpv,s).

Here the left-hand side is an entire function in s € C, and the local factors A(¢y,s) have the
following properties.

(1) For every ¢, € II,, the function s— A,(py,s) is entire, and there exists ¢ such that

Mo(pS,s) = 1.
(2) For any decomposable ¢ = @), p» € II = Q), II,, we have A\,(¢y,s) =1 for all but finitely
many v.

It follows that if L(3,II; K II5) = 0 (e.g. II; and II, are self-dual, and €(1/2,1I; K II,) = —1),
then we have

d
ds

1
/ o) det(h) [y dh = 23,1 BT [T A, 0)
s=0 J H{(Fo)\H{(AR,) v

We note that, if II; and IIs correspond to the Arthur parameters 1/1(”_1) and w(") in (6.18), then
we may write the L-function in (6.19) as

L(S, T, R) = L(S, H1 X HQ)

7.2 The global distribution on G’
We briefly recall the global distribution on G’ from [Zhal2a, § 3.1] and [Zhal4a, § 2] (the notation
in these papers is slightly different). We denote by Ag and A g, the maximal Fo-split tori in the
centers of G’ and Hj, respectively. We have (via the embedding H; — G') an equality Aer = Ay
and both are isomorphic to G, 7y X G, Fy-

Let ' =Q, fi € #(G'(AR,)) = C*(G'(AR,)) be a pure tensor. We consider the associated

automorphic kernel function

Koy = [ S Fatew)ds @y e G(AR). (7.2)
AG’ (FO)\AG’ (AFO) yEG F())
We define
J(f',s) ::/ / K ¢i(h1, ho)n(ho)|det(hy)|% dhy dho,  (7.3)
H{(Fo)\H{(AF,) AHQ(AFO)HQ(FO)\HQ(AFO)

where the quadratic character n: Hy(Ap,) — {£1} is defined as follows: for he = (xp_1,2,) €
Hé(AFO), with z; € GLZ(AF())a

1(ha) = p/k, (det(zn—1)" det(n)"71)).
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Here np/p, A}X«“O — {£1} is the idele class character associated to the extension of global fields
F/Fy.

The kernel function (7.2) has a spectral decomposition. The contribution of a cuspidal
automorphic representation Il to the kernel function is given by

Knp(z,y)= Y (I()e)@)ey).

peOB(II)

where the sum runs over an orthonormal basis OB(II) of II. Correspondingly, a cuspidal
automorphic representation II contributes to the global distribution J(f’, s),

= Y M s) BR),

peOB(II)

where 3 is the Flicker—Rallis period integral with respect to the subgroup H) (cf. [Zhal4b, §3.2]).
It follows from the endoscopic classification for unitary groups that the period 8 does not vanish
identically if and only if II is in the image of base change from (quasi-split) unitary groups
associated to the quadratic extension F'//Fy (cf. [Mok15, Theorem 2.5.4, Remark 2.5.5], and note
that the corresponding Asai L-function has a pole if and only if the period § does not vanish
identically (cf. [Zhalda, Remark 8, p. 976] and references therein)).

We again use the Haar measures specified in [Zhal4b, §2].

ProOPOSITION 7.1. Let Il = II; W 1Is be cuspidal, and assume that it is the base change of an
automorphic representation m on (quasi-split) unitary groups. If L(1/2,11; X II3) = 0, then

d ;o 2L(1/2 I, ® IL,)
% S:OJH(f’S) _L(lan) 1 T, Ad HJ f’v

where Jip, (f!) is the local distribution defined in [Zhal4b, §3, (3.31)], and L(1,m, Ad) is the
adjoint L-function (cf. [Zhal4b, §3.4], [Mok15], [KMSW14]).

Proof. Tt follows from [Zhal4b, Proposition 3.6] that

L(S+1/2 H1|XH2
')s) = L(1,n)* 4
Ju(f'ss) (1,m) L(1, 7, Ad) H‘]Hv v S (7.4)

Here the local distribution Ji, (f], s) is defined in an analogous way to that of its value at s = 0
given by [Zhal4b, §3, (3.31)],

i / s) 30 ’
JHU(f{),S) _ {z:} )\v(Hué{zS);ji);DU))ﬁ (90 )7 (7'5)
Vv

where the linear functional o, — )\E,(cpv, s) on II, is defined by [Zhal4b, §3, (3.24)], using the
Whittaker model. We refer to [Zhal4b, §3] for the precise normalization of measures and the
linear functionals 3% and 6. In particular, if L(1/2,11; X 1I) = 0, then we have

d , o L'(1/2,T1) K TIy)
— =L(1
gs|_ ) = L =y Hmm

Since J, (f,,0) = Ju, (f)) by definition, the proof is complete. O
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PROPOSITION 7.2. Let f' =@, f1, € #(G'(AR,)) = C°(G'(AR,)) be a pure tensor. Suppose
that for a split place v the function f] has the property that, for every character x,, of the center
Zer(Fow) of G'(Fop), the function f, \ g fZ@/(Fo,v) ' (29)x; ' (2)dz is the sum of matrix
coeflicients of supercuspidal representations. Then the integral (7.3) converges absolutely and it
decomposes as

L(s +1/2,11;, K IIy)
:zn:JH(f' ZL = (1/,7r,A1d : HJH“ o?

where the sum runs through the set of cuspidal automorphic representations 11 = II; K IIs of
G'(AR,) coming by base change from automorphic representations m of (quasi-split) unitary
groups. Here the distribution Ju,(f},s) is defined by (7.5).

Proof. The spectral decomposition (i.e. the first equality) follows from the simple version of
the relative trace formula in [Zhal4a, Theorem 2.3]. Note that there the test function f’ is

required to be ‘nice’ with respect to a character of the center x of G'(Ap,). However, the spectral
,lI)?X’U
coefficient of a super-cuspidal representation. Hence the result holds by the linearity of J under

decomposition only requires the existence of a place v where the function is a matrix
the current assumption. Moreover, though only the case s =0 is stated in [Zhal4a, Theorem
2.3], the same proof works for all s € C. The second equality follows from Proposition 7.1. [

Remark 7.3. There are many test functions f] with the property in the above statement. It
suffices to construct such functions for GL,,(F') where F is a p-adic local field. Let = be a
supercuspidal representation of GL,,(F') and f a matrix coefficient. Let 1[,,—q] be the charac-
teristic function of the set consisting of g € GLy,(F') such that det(g) € Of. Then we claim that
f= f 1val=q) has the desired property. To see this, let xo be the central character of 7, and v
an unramified character of F* of order (exactly) m. Then f,, = (1/m) Zﬁgl f (v odet) (we
normalize the measure such that vol(Of) = 1). Now note that f(zg) = xo0(2)f(g) for z € OF.
Hence f, = 0 unless xxg Ui unramified. If XXo Lig unramiﬁed we may assume that xx, L ¢gm
for some unramified character £&. Then f, = (1/m) > 10" f - ((€v%) o det), hence a sum of matrix
coefficients of 7 ® €%, 0 < i <m — 1.

It follows that for f’ as in Proposition 7.2, we have an expansion for the first derivative

d , ,L'(1/2,1 R IL,)
— = E L(1
ds SZOJ(f ’S) - ( 7n) (I,W,Ad HJH” f’U’O

e(I)=-1

L(1/2,1; K1) d
> L(1n)’ — :
* . W) =707 Ad) a5 <HJ“ 0 ) - (7.6)
e(Il)=1

Here €(IT) = €(1/2,11; X IIy) is the global root number for the Rankin—Selberg convolution.

Remark 7.4. We note that the contribution to the spectral decomposition from non-cuspidal
automorphic representations is more complicated and we will not touch on this topic in this
paper. A full spectral decomposition to remove the local restriction on f] in the last proposition
is work in progress by Chaudouard and Zydor, and a coarse spectral decomposition has been
obtained by Zydor in [Zyd20].
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DEFINITION 7.5. Let A be a place of Fy. A function f} € C2°(G'(Fy,»)) has regular support if
supp(fy) C G'(Fo)rs- A pure tensor f' = Q), f, € #(G'(AF,)) has reqular support at X if f
has regular support.

Let us assume that f’ has regular support at \. Later we will assume that A\ is non-
archimedean. Then, by [Zhal2a, Lemma 3.2|, the integral (7.3) is absolutely convergent for
all s € C, and admits a decomposition into a finite sum for a given f’ (see the proof of [Zhal2a,
Lemma 3.2]),

J(f's) = > Orb(~, f', s), (7.7)

YEG! (Fo)rs/Hy 5(Fo)

where each term is a product of local orbital integrals [Zhal2a, (3.2)],

Orb(y, f',s HOrb (7. 1 5), (7.8)

where in turn

Orb(y, f1,s) == / f{)(hflfyhgﬂdet hi|*n(he) dhy dho.
Hi Q(FO 'v)
We set

J(f') = J(f,0). (7.9)

Then the decomposition (7.7) specializes to

J(f) = > Orb(y, f),
YEG'(Fo)rs/H] 5(F0)
where
Orb(v, f') :== Orb(y, f,0).

We introduce

Jo(f,5) := > Orb(y, f},s) - [ Orb(v, £2).
YEG! (Fo)rs /HY 5 (Fb) utv
We set
A i /
aj(f) T dS o—0 J(f 73)7
/ d /
OJu(f') = —|  Julfs), (7.10)
ds s=0
/ d /
90rb(v, f) == ——|  Orb(v, f; ).
ds s=0
Note that
g (") = > 00rb(v, f,) - [] Orb(y, f (7.11)
YEG' (Fo)rs/H] 5(F0) uFv

Then we may decompose

)= 0d(f). (7.12)
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Without the regularity assumption on f’ the integral (7.3) may diverge in general. For all
'€ #(G'(AR,)), the truncation process of Zydor [Zyd20] allows us to define a meromorphic
distribution J(-,s) [Zyd20, Theorem 0.1] which is holomorphic away from s = +1. This allows
us to define (7.9) and (7.10). We will use these distributions to formulate our conjectures in the
next section. Zydor also obtains a coarse decomposition of J(-, s) into a sum of global orbital
integrals, although for a non-regular-semisimple orbit there is no natural decomposition into a
product of local orbital integrals.

7.3 Smooth transfer
The notion of smooth transfer between functions on unitary groups and on linear groups or their
symmetric spaces is based on the concept of matching (cf. [RSZ18, §2| and [Zhal2a, Zhal4al).
Using the results of §2.2, we can transpose this concept to our situation at hand.

Our definitions below depend on the choice of the transfer factor w and on the choices of
Haar measures. For definiteness, we will always take the transfer factor from [RSZ18, §2.4] (this
is a slight variant of [Zhalda, §2.4]), which works for all places v,

wy) =[Jwew), 7= (w) € G(AR). (7.13)

The transfer factor has the following properties.

(1) (n-invariance) For hy € H|(Ag,) and hy € H(AR,), we have w(hy *yhs) = n(ha)w(7).
(2) (product formula) For v € G'(Fp), we have

[Tws(n) =1 (7.14)

Now let p be a rational prime. We fix Haar measures on Z%(Q,), H(Fy,), and Gy (Fp,,) for
v | p. We choose the Haar measures on H(Q,) and HG(Q)) compatible with the product decom-
positions HG(Qy) = Z%(Qp) x [1,1, H(Fo,) and HG(Qp) = Z%(Qy) x [, Gw (Fo,»), induced

by (2.1). We choose the quotient measure on (ﬁ(@p) X ﬁI(Qp))/A(ZQ(Qp)). For the archimedean
places, we also choose Haar measures satisfying similar compatibilities. N
We define the orbital integral for f, € C°(HG(Qp)) and g € H(Q,)\HG(Qp)ws/H(Qp),

Orb(g, f,) == / B B fo(hytgha) dhy dhs. (7.15)
(H(Qp)x H(Qp))/A(Z2(Qp))

DEFINITION 7.6. A function f, € Cgo(]/'{\é((@p)) and a collection (f}) € [[,, C°(G'(Fov)) of
functions are transfers of each other if for any element v = (v,) € Hv‘p G'(Fo)s, the following
identity holds:

Orb(g, fp), whenever g matches ~,
0, no g € ﬁé((@p) matches .

w(x) [T Orb(s £1) = {
vlp

We make the same definition for a function f. € C°(HG(R)) and a collection of functions

(f3) € Iojoe CE° (G (Fo )

Let us explain the relation to smooth transfer between functions in C°(G'(Fp,)) and func-
tions in C°(Gw (Fo,w)), as W varies through the isomorphism classes of hermitian spaces of
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dimension n over F),. This definition is based on the concept of matching between elements of
G'(Fou)rs and elements of Gy (Fo)rs (see [RSZ17, §2] for non-archimedean places v of Fjy that
are non-split in F'; the definition extends in an obvious way to the archimedean places and to
the split non-archimedean places).

DEFINITION 7.7. A function f, € C’é’o(ﬁ\é(@p)) is completely decomposed if it is of the form

fo=bp @ Q) fo, (7.16)

vlp

where ¢, € C(Z9(Q,)) and f, € C=(Gw(Fp)). A pure tensor f = &, fr € e%”(f/l\é(Af)) is
completely decomposed if f,, is completely decomposed for all p.

Note that an arbitrary element in J# (If{\é(Af)) is a linear combination of completely
decomposed pure tensors.

Remark 7.8. Let f, = ¢ ® ®v|p fv be completely decomposed. Set

c(op) == /Z@(Qp) op(2) dz.

By Lemma 2.1, we have, for g € f?é((@p) corresponding to the collection g, € (H x G)(Fp ),

Orb(g, fp) = C(¢p) H Orb(gvv fv)a

v|p

where

Orb(gy, fo) = fo(hitguha) dhy dha

is the orbital integral in [RSZ18, §2]. If the orbital integrals of f,, do not vanish identically, then
fp and ( f{))v|p are transfers of each other in the sense of Definition 7.6 if and only if for some

non-zero constants ¢, such that c(¢,) = Hv|p ¢y, the functions f, and ¢, f] are transfers of each
other for each v in the sense of [RSZ18, §2].

DEFINITION 7.9. Let v be an archimedean place of Fyy. A function f] € C°(G'(Fy,)) is a Gaus-
sian test function if it transfers to the constant function 1 on Gy, (Fp ), where Wy denotes the
negative-definite hermitian space, and transfers to the zero function on Gy (Fp,) for any other
hermitian space W (i.e. in the terminology'” of [Zhal2a, Definition 3.5, f/ is pure of type Wy
and a transfer of 1y, (i, ,))-

A pure tensor ' =Q), fi, € #(G'(AF,)) is a Gaussian test function if the archimedean
components f] for v | oo are all (up to scalar factor) Gaussian test functions.

We have fixed a Haar measure on each (compact) Hyy, (Fp ). We will assume that the volume
of Hy,(Fpp) is 1. Then f] is a Gaussian test function if and only if for all v € G'(Fp ,)ss,

1, there exists g € Gw,(Fp,,) matching v,
wy(7) Orb(y, ;) = { o (Fou) (7.17)

0, no g € Gy, (Fo,,) matches 7.

17 But note that here Gw is the product of two unitary groups.
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The existence of Gaussian test functions is still conjectural. A Gaussian test function does
not have regular support, in the sense of Definition 7.5.

DEFINITION 7.10. A pure tensor f =@, fy € %(ET@(Af)) and a pure tensor /=), fi €
H(G'(AR,,f)) are smooth transfers of each other if they are expressible in such a way that f,
and ( f{,)v|p are transfers of each other for each prime p. Here we choose the product measures
on ZQ(Ay), HG (Ay), and G'(Ap, ¢) (implicitly we require that our local choices are made such
that the product is convergent); also, the adelic transfer factor (7.13) is simply the product of
the local transfer factors.

Remark 7.11. The existence of local smooth transfer is known for non-archimedean places
[Zhal4a|; hence for any f e #(HG(Ay)) as above, there exists a smooth transfer f/' e
H(G'(AR,f)) as above, and conversely.

LEMMA 7.12. Let f' =), f;, € #(G'(AFR,)) be a Gaussian test function. Assume that f’ has
regular support at some place \ of Fy. Then for any place vy of Fy split in F,

0Jy, (f') =0.

Proof. This is [Zhal2a, Proposition 3.6(ii)]. Note that implicitly our test function f’ is pure of an
incoherent type [Zhal2a, §3.1], so that for every regular semisimple =y, the local orbital integral
Orb(~, fI, s) vanishes at s = 0 for at least one non-split place v. O

8. The conjectures for the arithmetic intersection pairing

In this section we formulate a conjectural formula for the Gillet—Soulé arithmetic intersection
pairing for cycles on the integral models of Mg (fTé) we introduced earlier. This formula uses
the distributions introduced in §7.

Throughout this section we assume that the extension F'/Fj and the hermitian space W are
such that all places v € V{% (cf. (5.1)) are of degree 1 over Q.

8.1 The global conjecture, trivial level structure
Let A"~C WP and A C W be a pair of Op-lattices related as in §5.1, and recall the models
MK%(H), MK% (G), and MK%G(HG) over Spec O defined in §5.1 for the Shimura varieties

of §3. In the case where Fyp = Q and M K‘?\G(_/E?—C}) is non-compact, we are implicitly replacing
H

M K;Tc(f{\é) by its toroidal compactification. Then the model M Ko (HG) is proper and flat
over Spec Og. Furthermore, it is regular provided that there are no places v of E for which E,
is ramified over Q, and (vg, Ay,) is of AT type (1), where vy denotes the place of Fyy induced by
v via ¢g. Throughout this section we assume that there are no places vy for which (vg, Ay, ) is of
AT type (4) (the justification for this assumption is given by Remark 4.9).

The compact open subgroup K}% CH (Ay) contains K[O?é NH (Af), with equality when there
are no places v of Fy for which (v, A,) is of AT type (2). In this case, there is a closed embedding
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Asin (6.12), we obtain a cycle (with Q-coefficients) ZKe = VO](K%)[MK% (H)] on MK;?G (HG).
We denote by the same symbol its class in the rational Chow group,

2Ko € Chnfl(MK;m(ﬁé))Q. (8.1)

In general, let vy, ..., v, € V% be the places for which (v;, Ay,) is of AT type (2). We use the
closed embedding (5.6) to define the cycle KR = VOl(K%)[MKQ/ (H)] and its class in the Chow
H

group.

Remark 8.1. The definitions above of the cycle class ZKe. use a Haar measure on H (Ay). We
will always choose the product of the measures used to deﬁne the local orbital integrals (7.15).

We denote by @“—1(/\4 K;{\g(fl\é)) the arithmetic Chow group. Elements are represented by

pairs (Z,gz), where Z is a cycle and gz is a Green’s current (cf. [GS90, §3.3]). We will use the
Gillet-Soulé arithmetic intersection pairing (cf. [GS90]),

(\)as: Ch" (Mo (HG)) x Ch" " (Myee (HG)) — R.

We extend this from a symmetric pairing to a hermitian pairing on the corresponding
C-vector space (C-linear combinations of (Z, gz)),

(:)as: Ch"!(Muc;, (HG))e x Ch*~H(Muc;_(HG))e — C. (8:2)

We choose a Green’s current g.,, of the cycle (with Q-coefficients) 2K to get an element
HG

in the rational arithmetic Chow group,

Bko = (ks Gee ) € O (Mo (HG))o. (83)
HG
The Green’s current is not unique. We shall work in the following with an arbitrary but fixed
choice.
Let

%KI;;I’ C Ao = H(HG(Ay), K2-) (8.4)

be the partial Hecke algebra spanned by completely decomposed pure tensors of the form f =
&, fr € %K;I\G’ where f, = ¢p ® @, fv, as in Definition 7.7, with ¢, = 1K 0, for all p and
where f, =1ge . unlessv € »sPh® Here ¥5PL® is as in (5.7). We have

spl,® _
%K}}‘c ~ X AHG K, -
vexyspl,®
By Lemma 4.3(ii), we have Y% 5 ydes=1.— [y, ¢ 359! | deggpv =1} and hence the algebra

HAE? is not too small.
HG

For f € c%”Spr@, we introduce via (5.11) a Hecke correspondence, hence an induced endomor-

phism R(f) on the arithmetic Chow group @"*I(MK%G (HG))c (cf. [GS90, 5.2.1]). Using the
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arithmetic intersection pairing (8.2), we define

Int*(f) := (R(f)Zxs_, 2k )as.

1 (8.5)

Int(f) := -Int?(f).

- T(ZQ)[E: F)
Here
7(Z9) = vol(2%(As)/2%(Q)).

CONJECTURE 8.2 (Global conjecture, trivial level structure). Let f = ®p fp € 7 SPFI)

HG
'=Q, fi € #(G'(AR,))) be a Gaussian test function such that @ 1 is a smooth transfer
of f. Then

, and let

v<o0o

Int(f) = _aj(f/> - J(féorr)7
where .. € C°(G'(AR,)) is a correction function. Furthermore, we may choose f’ such that
féorr =0.

Remark 8.3. The notion of smooth transfer at each individual place v depends on the choice of
transfer factors, and of Haar measures on various groups. However, the validity of the conjecture
does not depend on these choices (use the product formula (7.14)).

This conjecture has the following drawback. Since we cannot impose any regular support

assumptions on functions in 77, S%{’fb, the left-hand side of the asserted equality may involve self-

intersection numbers, and these aI;g difficult to calculate explicitly. Analogously, on the right-hand
side, the terms in Zydor’s truncation that are not regular-semisimple orbital integrals are more
delicate. Nevertheless, assuming a spectral decomposition of J(f’,s) that generalizes the case
of special test functions in Propositions 7.2 and (7.6), Conjecture 8.2 relates the intersection
number Int(f) to the first derivative of L-functions in (the AGGP) Conjectures 6.10 and 6.12.

8.2 The global conjecture, non-trivial level structure
In this subsection we use the integral models of the Shimura varieties with deeper level structures
depending on the choice of a function m as in (5.8). Note that the models M Km (HG) are not
regular in the fibers over places lying above the support of m (in effect, we are taking here the
product of two copies of the Drinfeld moduli scheme). Therefore, the Gillet—Soulé pairing (8.2) is
not defined for them. However, under certain hypotheses that ensure that our physical cycle zx
and its physical transform under a Hecke correspondence do not intersect in the generic fiber, we
can define a naive intersection number for them, by the usual derived tensor product formula.
Similarly to the case with trivial level structure, we obtain a cycle (with Q-coefficients)
ZKm = vol(Kg")[Mng(fI)] on MKgc(ﬁé) (cf. (8.1)) and, again, we denote by the same
symbol its class in the Chow group. We choose a Green’s current g.,., of the cycle (with
HG

Q-coefficients) 2K to get an element in the arithmetic Chow group,

o P i
ZK;“I\G = (ZKﬁg’gzK}?G) € Ch (MKH\G(HG))Q (86)
Let
Ao = A (HG(Ag), K2 )P (8.7)
HG
1801
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be the partial Hecke algebra spanned by completely decomposed pure tensors of the form f =
&, fr € %K;?c’ where f, = ¢, ® ®U|p fv, as in Definition 7.7, with ¢, = 1k, for all p, and

where f, =1 K., ., unless v € »PL® We have
U

spl, <I> ®
I m Wigite Koo -

vexspl,®

By Lemma 4.3(ii), we have XsPL® 5 y19des=1.— £y, ¢ 315P1 | 4 § § and degg v = 1}, for any finite
set S of places of Q such that the places of Fy above S contain the support of m.
To any f € %” Spl ® we associate via (5.11) a Hecke correspondence on M K (H G).

DEFINITION 8.4. Let A be a non-archimedean place of Fp, of residue characteristic £. Let
fo € CZ(HG(Qy)) be completely decomposed, that is, fr = ¢¢ ® @, fo (cf. Definition 7. 7).

Then f; is said to have regular support at X if supp fy C Gw (Fo ) If f = ® fp € BT
HG

a completely decomposed pure tensor, then f has reqular support at X if f; has regular support
at .

THEOREM 8.5. Let f = ® fp € Hom Spl ® be a completely decomposed pure tensor. Assume that

f has regular support at some place )\ of Fy. Then the following statements on the support of
the intersection of the cycles ZKm and R(f )ZK;?G of M Km (H G) hold.

(i) The support does not meet the generic fiber.
(ii) Let v be a place of E lying over a place of Fy which splits in F. Then the support does not
meet the special fiber MK;?,G (HG) ®op Ku-
(iii) Let v be a place of E lying over a place of Fy which does not split in F'. Then the support
meets the special fiber MKIr,?G (HG) ®0yp, Ky only in its basic locus.'®

Remark 8.6. Let Fy = QQ and assume that /\/le (HG) is non-compact. Then the closure in the

toroidal compactification [How15, §2] of M KP?G(H G) of the support of the intersection of the
cycles 2K and R( f)ZKII{EG does not meet the boundary. Indeed, this follows from Theorem

8.5(iii) because the basic locus of M Km (HG) ®0,, kv does not meet the boundary.
The proof of Theorem 8.5 will be based on the following lemma.

LEMMA 8.7. Let k be an algebraically closed field which is an Og-algebra. Let (Ag,tg) be an
abelian variety with Op-action with Kottwitz condition of signature ((0,1),ea) (cf. (3.8)), and
let (A,1) be an abelian variety with Op-action with Kottwitz condition of type r as in Remark
3.6(i). Assume there exists an F-linear isogeny

Ay — A

18 In this special case, the basic locus is characterized as follows. Let (Ao, o, Ao, AN ﬁb, gpb, AL, AT, )
correspond to a point of M K (HG@) with values in an algebraically closed extension of x(v). Consider the decom-

position A[p™] = [[,,, A[w™] (respectively A[p>] = L., A°[w™]) of the p-divisible group of A (respectively, A”)

under the action of O ® Z,; then all factors A[w™] (respectively, A°[w™]) are isoclinic.
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Then k is of positive characteristic p. Let v be the corresponding place of E. The place vy of Fy
induced by v is non-split in F', and the isogeny classes of Ay and A only depend on the CM type
®. If vy is the only place of Fy above p, then Ay and A are supersingular.

Proof. We prove the first statement by contradiction. Assume that k is of characteristic zero.
Then an isogeny as above induces an F' ® k-linear isomorphism

Lie(Ag)" — Lie A.

Such an isomorphism cannot exist due to the different Kottwitz conditions on Aj and A.
Now suppose that the place vy of Fy induced by v is split in F. Then there is a splitting of
the p-divisible group of Af (respectively, A) according to the two places of F' above Fy,

A=) = x50 x X8, Ap=) = XD x xO),
An F-linear isogeny as above induces isogenies of p-divisible groups,
xV—x0, xP . x@.
However, by the Kottwitz conditions, the dimension of Xél) (respectively, X(()2)) is divisible by n,
whereas the dimension of X (respectively, X (2)) is = £1 mod n. Hence such an isogeny cannot
exist, hence vg is non-split in F.

The rational Dieudonné module M of Ay[p™>] is a free F' @ W (k)-module of rank 1. Consider
its decomposition according to the places w of F' above p,

My = @ Mo .-
w

Then each summand is isoclinic. More precisely, if w lies above a non-split place of Fy (such as
the place wp induced by v), then Mg, is isoclinic of slope 1/2; and if W # w, then the slope of
Moy, is equal to a,/dy,, where

aw =#{pe®|w,=w}, dy:=[Fu:Qpl.
Here we chose an embedding of Q into @p so that any ¢ € ® induces a place w,, of F'. O
Proof of Theorem 8.5. (i) Suppose that
(Aos 10, Mo, A7, N T, 7 A AT ) € Mg (HG)(K)

is a point in the support, where k is an algebraically closed field of characteristic zero. Then
(A, 1, \) = (A° x Ag, 2" x 19, N> x Xo(u)), and there exists g € (H x G)(Af, f)rs such that there is
an isogeny

p: A=A"x Ay — A

which makes the diagram
~ n
V(Ag,A) — —W ®r Apy
¢ l J/ g (8.8)

~ n
V(Ag, A) — —WpApy
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commute. From the splitting A = A” x Ay, we also have
w: Ag — A,

which makes the diagram

~ 70

V (Ag, Ag) Apy

ul lu (8.9)

~ n
V(Ag,A) — W QrAry

commute, where 7 is defined in the obvious way. We consider the homomorphism
(qﬁiu)ogignfl . Ag — A

whose ith component is ¢'u : Ag — A. We claim that this is an isogeny. It suffices to show that
its induced map on any rational Tate module is an isomorphism. This follows by the commu-
tativity of the diagram (8.8) from the regular semisimplicity of g. This conclusion contradicts
Lemma 8.7.

(ii), (iii) Now let (Ag, to, Ao, A%, 2, N, 70, @, A, 1, \, T}, @) € MK;?G(I—TG/')(I@) be a point in the
support, where k is an algebraically closed field of positive characteristic p. When there exists
g€ (H xQG) (N}m #)rs such that there exists a commutative diagram (8.8) (with an upper index ”
added everywhere), the argument is as before, by reduction to Lemma 8.7.

Now assume that the place vy of Fjy induced by v is split in F' and that there exists g €
G(Fo,u)rs such that there is an isogeny

b A=A x Ay — A

which makes a diagram analogous to (8.8) commute. To explain this diagram, we use a compatible
system of Drinfeld level structures,

953 Awo [71'1;01]//\11,0 - Two (AOa A)a
which induces for every m a Drinfeld level w('-structure on the w{'-torsion subgroup,
7T;:ZAwo/Awo - Two (AOa A) [ng]

Then the analog of (8.8) is the following commutative diagram for sufficiently large m/':

@
Awo [W;ol]/Awo — Ty, (AOv A)
g i J{ g (8.10)

@
Awo [Wzlol]//\wo - Two (A07 A)

From the splitting A = A® x Ay, we also have

u: Ag — A,
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which makes the diagram

%0
OF,’LUO [W;(H/OF,”LUO - Two (AO; AO)

" l l . (8.11)
Nuo [l 1/ sy —— Ty (Ao, A)

commute, where @p is the limit over m of the homomorphisms (4.22). We consider the
homomorphism

(¢"w)o<i<n—1: Af — A

whose ith component is ¢'u: Ag — A. We again claim that this is an isogeny, which would
contradict Lemma 8.7. It suffices to show that its induced map on the p-divisible group is an
isogeny. This follows by the commutativity of diagram (8.10) from the regular semisimplicity
of g. O

Let us assume that f € %;I;{q) is a completely decomposed pure tensor which has regular

HG
support at some place A of Fy. Then, by Theorem 8.5(i), the generic fibers of the cycles 2K

and R(f )ZKI?G do not intersect, and we may define

u = R = m 2 m
Intu(f) - <R(f)ZKﬁG7 ZKI;I\G>V IOg qv,

1 (8.12)
Int(f) = ——— Int? (f).
Here the first quantity is defined for a non-archimedean place v through the Euler—Poincaré

characteristic of a derived tensor product on MK;?'G (HG) ®op Op ) (cf. [GS90, 4.3.8(iv)]).
Note that the intersection numbers are indeed defined for a non-archimedean place because
the intersection of the cycles 2K and R( f)ZKE'G avoids all fibers of M K (fl\é) over places

v lying over the support of m, as follows from Theorem 8.5(ii). Therefore the intersection of
these cycles takes place in the regular locus of M Kfl?‘c(ffé) (cf. Theorem 8.5), and hence the
Euler—Poincaré characteristic is finite. For an archimedean place v, the last quantity is defined
by the archimedean component of the arithmetic intersection theory and we have set loggq, :=

[E, : R] = 2 (cf. [GS90]).

CONJECTURE 8.8 (Global conjecture, non-trivial level structure). Let f = @), fp € %”I?%jq) be a
HG

completely decomposed pure tensor and let f' = @), f,, € #(G'(A)) be a Gaussian test function
such that @, ... fy is a smooth transfer of f. Assume that f has regular support at some place
A of Fy. Then

Int(f) - _8<](f/) - J(fclorr)7

where fl.,, € C°(G'(A)) is a correction function. Furthermore, f' = @, f, may be chosen such
that f' has regular support at A and that f. . = 0.

Remark 8.9. Part of the conjecture asserts that a change of the Green’s current is compensated

by a change of the correction function f/ .
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Remark 8.10. Similar to the case of trivial level structure, when there exists a split place v
such that f] satisfies the assumption in Proposition 7.2, by (7.6), Conjecture 8.8 relates the
intersection number Int(f) to the first derivative of L-functions in (the AGGP) Conjectures 6.10
and 6.12. The hypothesis on the existence of such a split place v could be dropped once a full
spectral decomposition of J(f’, s) for all test functions is available.

Note that here the right-hand side is well defined (cf. §7.1). We also point out that if f # 0
has regular support at some place A of Fy, then A must be in suppm (in particular, A is split in
F). Since we will not need this statement, we omit the proof.

LEMMA 8.11.

(i) Let u € suppm be a place above p (in particular, u is split in F'). There exists a non-zero
function f, € %K}?@P that has regular support at u.

(ii) For any f, € C%”Klr}g,cyp with regular support at the place u above p, there exists a transfer

(f4)ulp such that f, has regular support at u.

Proof. Let m be a positive integer. At a place w split in F, by choosing a basis of a self-
dual lattice in W’ @ Fy, (respectively, W ® Fy,,), we may identify H(Fp,) = GL,—1(Fp,) and
G(Fou) = GLn(Fou), and Kjj, (respectively, K¢',) with the principal congruence subgroups
of level m. We may choose the basis of the lattice in W ® Fp,, by adding the special vector u
to the basis of the lattice in W’ ® Fy,. Therefore we may further assume that the embedding
H(Fy,u) — G(Fpu) has the property that Kj, = K¢, N H(Fpy). Moreover, the stabilizers of
the lattices are identified with GL,,—1(Op, ) and GL,(OF, ) respectively, and GL,—1 — GL,
sends h to diag(h,1).

Now let f, = ¢, ® ®U|p fv be completely decomposed. It suffices to show that there exists
a non-zero fy, = fr—14 ® fnu € Z((H x G)(Fou), Ki, % Kgu) with regular support. We con-
struct such a function by first setting f,,—1, =1 Kp - Note that the pair of functions ( fr,—1,u, fn,u)

defines the function fu e H(G(Fou), K, ’g}u) by ‘contraction’ under the map

HxG

G

(8.13)
(h,g) — h71g,

namely,

H(Fo,u)

We then have f, = vol(K},,) fru- Then the function fi, = fr—1,u ® fn,u has regular support (with
respect to the H x H-action) if (and only if) fu or, equivalently, fnu has regular support (with
respect to the conjugation action of H). This holds because the inverse image of G(Fp 4, )rs under
the contraction map (8.13) is exactly (H x G)(Fou)rs-

We now choose f,, , supported in GL,,(OF, ). Recall that G(Fp ,)rs is defined by the equation
A # 0 where A is a polynomial in the entries of GL,, with coefficients in Z, and it is easy to exhibit
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an element g € GL,,(Op, ) such that A(g) € Z* = {£1}." Then the function f,,, = 1KE”:,u9K6”,u
has regular support. Indeed, consider the reduction map GL,,(OF, ) — GLp(OF,u/w@,") where
@, is a uniformizer. It is easy to see that for k, k' € 1 + w@]' M, (Op, ) we have A(kgk') = A(g) =
+1 mod wy". In particular, we have K¢ gK¢, C GLy,(OF,,u)rs- This completes the proof of the
first part.

To show the second part, by a reduction process similar to the first part (cf. [Zhal4a, Propo-
sition 2.5]), it suffices to work with the inhomogeneous version, that is, to show that there exists
a smooth transfer f;, with support in Sy, (Fp ,)rs- We may identify S, (Fo.,) = GL, (Fo ) and then
the notions of regular semisimplicity on Sy, (Fo,) and on G(Fp,,) coincide. This completes the
proof. O

The left-hand side of (8.12) can be localized, that is, we can write it as a sum over all
non-archimedean places,

Int(f) =) Int,(f), (8.14)
where
Tnty(f) := T(ZQ)I[EF] S Inté (). (8.15)
v|v

By Lemma 8.11, the smooth transfer f’ of f can be chosen such that f’ has regular support
at A, which we assume from now on. Then also the right-hand side of Conjecture 8.8 can be
written as a sum of local contributions of each place of Fy (cf. (7.12) for 0J(f’) and (7.9) for

I (feorr))-

PROPOSITION 8.12. In the situation of Conjecture 8.8, let vy be a place of Fy that is split in F.
Then

Intvo (f) = 8Jv0 (f/) =0.

Proof. In Lemma 7.12 we have proved 9.J,,(f’) = 0. Now Int,,(f) = 0 follows from Theorem
8.5(ii). O

In the next subsection we will formulate a semi-global conjecture for each non-split place v
(including archimedean ones) which refines Conjecture 8.8.

8.3 The semi-global conjecture
Let vg be a place of Fyy above the place p < 0o of Q. By Proposition 8.12, from now on we may
and do assume that vg is non-split in F'

Now assume that vg is non-archimedean. We assume that vy is either of hyperspecial level type
or of AT parahoric level type, in the sense of § 4. We also take up the notation of §§4.1 and 4.4 and
denote, for any place v of E lying over vy, by ./\/lKé(é)(,,), MKH(ﬁ)(V), and MK}TGU/{T;)(V) the
corresponding semi-global moduli stacks over Spec O (,). Let K7, = K)IZTG X K}TG,p C HG(Ay)

19 For example, g = € GL,(Z) satisfies A(g) € {£1}.

= o oo
= o O =
= O = O
o= OO
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be as in §4.1 (respectively, §4.4). Let
ff]?H\,G C Hx . = (HG(Ay), Kig) (8.16)

be the partial Hecke algebra spanned by completely decomposed pure tensors of the form f =
Q) fo € Hi ., where fr=¢;® ®U|£ fv, as in Definition 7.7, with ¢y = 15, for all £, and

where
o =1Kze,
We note that this defines a bigger Hecke algebra than (8.7) when Kz, = K;InG,
D spl,®
ijﬁ,G D %K??c . (8.17)

Let f =, fr € AL be completely decomposed with regular support at some place A. We
define, as before in (8. 15)

It} (f) = (R(f)ZK ey B ) 108 @,

1 8.18
Intvo (f) = W Z Inth ( )
v|vg
where again the contribution of the place v is defined through the Euler—Poincaré characteristic
of a derived tensor product on Mg, (ITC/})(,,). This extends definition (8.15) to the bigger Hecke
algebra ,%ﬂp

We proceed similarly for an archimedean place vy € Hom(Fp,R). Denote, for any place v of
E lying over vg, by Mg . (G)( vy Mk (H )(,,), and My (HG)( ») the corresponding complex
analytic spaces (in fact, orblfolds). Note that the Green’s current erc ., is the multi-set erc v

indexed by v € Hom(E, C). We define
It () = (R(f)2k e By ) 108 o

1 (8.19)
Int, = Int’
n O(f) T(ZQ)[EF]; n]/(f)7
v|vg
where the first quantity is defined before Conjecture 8.8.
A refinement of Conjecture 8.8 is now given by the following statement.

CONJECTURE 8.13 (Semi-global conjecture). Fix a place vy of Fy above a place p < oo of Q.
Let f =Q, fr € %pﬁc (‘%OKH"G if p is archimedean) be completely decomposed, and let f' =
X, fo € H(G'(AR,)) be a Gaussian test function such that @), ... f, is a smooth transfer of f.
Assume that for some £ prime to vg and some place A above £, the function f has regular support

at A in the sense of Definition 8.4 and that f’ has regular support at \ in the sense of Definition
7.5.

(i) Assume that vy is non-archimedean of hyperspecial type (cf. §4.1), and that f; =
1G’(OF0,1;0)' Then

Intvo (f) - _a‘]vo(f/)-
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(ii) Assume that vy is archimedean, or non-archimedean of AT type (cf. §4.4). Then

Ity (f) = —0Juy (f) — J(florelvo]),

where fiop[vo] = @, feorrws With feom., = fi, for v # wvo, is a correction function. Further-
more, f' may be chosen such that f! . [vo] is zero.

THEOREM 8.14. The semi-global Conjecture 8.13 for all places vy implies the global Conjecture
8.8.

Proof. By (7.12), and (8.14), it follows from Proposition 8.12 for split places vy of Fy and the
semi-global Conjecture 8.13 for non-split places vg that

Int(f) = _a'] Z J fcorr UO

vo bad

where the sum runs over a finite set of places vy in Conjecture 8.13(ii). Here we note that by
(8.17) we may apply the semi-global Conjecture 8.13 for the given test function f in the global
Conjecture 8.8. This proves Conjecture 8.8 by taking

Corr - E fcorr UO D

vg bad

Working towards the semi-global conjecture, there are the following results.
THEOREM 8.15. Conjecture 8.13(i) holds when n < 3.

Proof. Let p denote the residue characteristic of vy, and as previously in the paper, let V), denote
the set of places of Fy lying above p. It suffices to show that the result holds if we assume the
AFL conjecture, which is known under these circumstances (see [Zhal2a, Theorem 5.5]; cf. also
[Mih17]).

We imitate the proof of [Zhal2a, Theorem 3.11]. More precisely, we consider the non-
archimedean uniformization along the basic locus,

(M) €0y, Op, )™= HG'(Q) \ [N x HG(8%) /K] . (8.20)

Here the hat on the left-hand side denotes the completion along the basic locus in the special fiber
of M,y := Mg (H G))- The group H HG' is an inner twist of HG. More precisely, the group
HG' is associated to the pair of hermitian spaces (W",W'), where W” and W' are negative
definite at all archimedean places, and isomorphic to W’ (respectively, W) locally at all non-
archimedean places except at vg. Furthermore, A/ is the RZ space relevant in this situation.
Using Lemma 8.16 below, can write

N = (Z2Q)/K e ,) x Nog, x T[] (H x @) (Foo)/ (K x Ka). (8.21)
veVp~{vo}
Here No,, ZN@JOF Oy, , where N'= N, 1 o, N, is the relative RZ space of [Zhal2a].
v wQ v wQ
More precisely, the formal scheme in the uniformization theorem is the RZ space of polarized

p-divisible groups with action by O, satisfying the Kottwitz condition (3.11) of signature
(1,7 = 1)gy, (0,n)pes,,~{po})- That this coincides with the relative RZ space of [Zhal2a, §2.2]
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follows from [Mih16, Theorem 4.1], where in the notation of this paper we take Ey = Fp,,
E = Fy, (r,8) = (1,n—1), and K = Q,,.
Therefore we may rewrite (8.20) as

(M) ®0p. ) Op )~ = HG’(Q)\[NOED x HG(AY)/K™ ]. (8.22)
Here we denote for simplicity (even though HG is not an algebraic group over Fp)

HG(AP)/K® = HG(A)/KP x (2%(Qy)/K z0,,) X H{ }(H X G)(Fo)/ (Kt X Kap)-
veVp~{vo

There is also a similar uniformization of the basic locus of Mg (ﬁ] )(v) involving the twisted

form H' of H.

By Theorem 8.5(iii), the intersection of the cycles is supported in the basic locus, and hence
we can imitate the proof of [Zhal2a, Theorem 3.9]. The difference is that here we have an extra
central subgroup Z@. By the same procedure as in that paper, we see that (8.19) can be written
as a sum

1
[E : F)

Tty (f) = > o) (o) T omes) mie 62

g€O(HG(Q))rs veVp~fuvo}

(cf. Remark 7.8). Here the volume factor 7(Z%) = vol(Z9(A;)/Z%(Q)) is canceled with the one
in the definition of Int,,(f), and
Orbl(g, 17) = ] Orbg. ).
“p
Also, we have set
O(HG(Q))ws = H(Q\HG'(Q)rs/H'(Q),

and, for g € (H x G)(Fp,), in analogy with (8.18),

Int] (g) :== ) Int(g),

vlvo (8.24)
Int(9) = (AWa-10,, ) IAWN-1.0, )Xo, 108 G-

Now note that

> nti(9) = Y (AWNa-10,, ). 9AN-10, ))No, 1080

v|vg v|vg
= [E : F]<A(Nn—l)>gA(Nn—1)>N logQwo- (825)

Here we use the equality Zy‘wo €v jwo fv jwo = ZV|”LU0 dyjw, = [E : F|. By the AFL identity (cf.
[RSZ18, §4]), we have

2<A(Nn—1>v 9A<Nn—1)>/\f log Quy = —Wyg (7) 60rb(77 le;o)v (8'26)
for any v € G'(Fo, )rs matching g. Since vy is inert in F, we have log gy, = 21log ¢y, and hence

Int? (9) = —[E : Flwy,(v) 80rb(, f1,). (8.27)
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ARITHMETIC DIAGONAL CYCLES ON UNITARY SHIMURA VARIETIES

Since f and f’ are smooth transfers of each other, we have, for v € G'(Fy) matching g €
O(HG(Q))rs,

Orb(g, f7) = T w.(y) Orby, £1). (8.28)

V<00, vip

By Remark 7.8, since the orbital integrals of f,, and f; do not vanish identically, one of the
following holds.

(1) ¢(¢p) = 0 or one of f,, for v € V, \ {vg}, has identically vanishing orbital integrals.
(2) The orbital integrals of f, do not vanish identically.

In the first case, one of f, for v € V, \ {vp}, has identically vanishing orbital integrals, and we
have

Inty, (f) = 0 = 0Jy, (),

where the second equality follows from (7.11).

Therefore we only need to consider the second case. By Remark 7.8, there are non-zero
constants ¢, such that Hvevp ¢y = c(¢p), and for every v €V, ¢, f), is a transfer of f,. By
computing orbital integrals at some special g and v (e.g. [Yunl1]) we conclude that ¢,, = 1 (this
follows in any case if the fundamental lemma (FL) conjecture of Jacquet—Rallis holds, which is
known when the residue characteristic is big enough). It follows that

cep) [I Owblg.fo)= T[] woly)Orb(r,£)). (8.29)

veVp~{vo} veVp~{vo}

Note that for v archimedean, f] is a Gaussian test function so that we have, for regular
semisimple v € G'(Fo)rs (cf. (7.17)),

1, there exists g € (H x G)(Fo,,) matching ~,
0, no g€ (H x G)(Fy,) matches .

wy(y) Orb(y, f,) = {

By the last equality for archimedean v, by (8.28) for non-archimedean v with v { p, by (8.29) for
v €V, \ {vo}, and by (8.27) for v = vy, we have (cf. (8.23))

Int,, (f) = — > wro (1) 00Tb(y, 1) - [ wo(7) Orb(, £)).

’YGG,(FO)I"S/HLQ(FO) ’U#UO

Here the sum runs a priori only over those 7 which match some g € Gy (Fp). However, those v
which do not match any g € Gy (Fy) have vanishing orbital integrals away from vy (cf. [Zhal2a,
Propositon 3.6, (3.4)]).

By the product formula for transfer factors (7.14), we have [[, w,(v) = 1, and hence

Inty, (f) = — Z d0rb(vy, f H Orb(v, f,
'YEGI(FO)rs/Hi’Q(FO) U#UO
By (7.11), the right-hand side equals —9.J,,(f’), and this completes the proof. O

In the preceding proof, we used the following lemma.

LEMMA 8.16. Let Lo/Q, be a finite extension and L/Ly an étale Lg-algebra of rank 2.
Assume p # 2 if L is a field. Let ®1, C Homg,(L,Q,) be a local CM type for L/Lg, and let
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rr: Homg, (L,Q,) — {0,n} be a banal generalized CM type of rank n. Let E' be the join of
the reflex fields of ®;, and rr. Let k be an algebraic closure of the residue field of Og:. Let
(Xo, tx,5 Ax,) be a Iocal CM triple of type ®y, over k, where \x, is principal. Let (X, tx, Ax) be
a local CM triple of type r over k which satisfies the Eisenstein condition (cf. (B.5)). Assume
that ker \x C X[r], where 7 denotes a uniformizer®® of L. Let NELJ‘L be the formal scheme
over Spf O, that represents the functor which associates to S € Ni]pOE, the set of isomorphism

classes of tuples (Xg, o, Mo, X, ¢, A, 00, 0), where (X, 19, o) is a local CM triple of type ®1, and
(X,t,A) is a local CM triple of type rp, over S, and where

o - (X(),L(),)\O) XSF — Xo Xspecﬁg7 p: (X7 2 )‘) ng — X XSpeCE§

are quasi-isogenies respecting the Op-actions and the polarizations. Here (X, ¢, \) is supposed to
satisfy the Eisenstein condition. Then

N3, », = G(Lo)/K,

dr,rr

where G is the unitary group of an L/Ly-hermitian vector space of invariant inv't (X, X), and
where K is the stabilizer of a vertex lattice of type t := log |ker Xx|, ¢ := #O/7Op.
Here the invariant inv" (X, X) is defined in Remark A.3.

Proof. By Lemmas B.1 and B.4, /\%L rp 18 formally étale over Spf O, . So it remains to determine
. - — . . rig nl ig
the point set N¢’L,TL (k) or, equivalently, the point set /\%L“(E ), where ./\%L’TL denotes the

generic fiber. Consider the crystalline period map 7: /\%ig . —FQm E' (cf. [RZ96]). However,
L>TL
by the banality of 7, the Grassmannian F consists of a single point. Furthermore, the fiber over
this point is identified with G(Lg)/K, since /\%lgr corresponds in the RZ tower to the level
L"L
K. O

Remark 8.17. We have considered local CM triples of type ®;, in the lemma because these are
what naturally arise from the Kottwitz condition (3.8) in the moduli problem for Mj. Of course,
one could just as well consider the moduli space Ng, ,,; then one replaces ®; with @y in the
definition of inv"~ (X, X) (cf. Remark A.2).

Remark 8.18. Consider the J-group in the sense of Kottwitz [RZ96] associated to the situation
of Lemma 8.16, when L is a field. Let M (Xp) (respectively, M (X)) be the rational Dieudonné
module of Xg (respectively, X). Let M = Homp,(M(Xy), M (X)). Then M is a rational Dieudonné

module free of rank n over L ®z, W (k) which, by our assumption, is isoclinic of slope zero. It
is equipped with a hermitian form h: M x M — L ®z, W (k). Let C be the space of Frobenius
invariants in M. Then the restriction of A makes C into an L/Lg-hermitian vector space of
dimension n. The J-group is the unitary group J = U(C'). We claim that J ~ G. Indeed, the

difference between inv"t (Xg, X) and inv(C') is equal to sgn(rr), where

sgn(re) = (—1)>eenn e

(cf. (A.7), (A.11)). Since 7y, is banal, the exponent is a multiple of n. Therefore the assertion
follows in the case when n is even. When n is odd, any two unitary groups of L/Lo-hermitian
vector spaces of dimension n are isomorphic.

201f L = Lo @ Lo, this means, as elsewhere in the paper, an ordered pair of uniformizers in the usual sense.
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ARITHMETIC DIAGONAL CYCLES ON UNITARY SHIMURA VARIETIES
THEOREM 8.19. Conjecture 8.13(ii) holds when n < 3 and vg is non-archimedean.

Proof. This follows in the same way as in the proof of Theorem 8.15, from the AT conjecture
proved for n < 3 in [RSZ17, RSZ18].

We indicate where we need to modify the proof. To simplify, we only prove the ‘Furthermore’
part of Conjecture 8.13(ii). We first consider the ramified case in §4.4. In (8.21), we have NOEV =

N ®0Fw Oy, , where N = N, X0 N, is the relative RZ space in [RSZ17, RSZ18]. Then we

replace the AFL identity (8.26) by the AT identity (cf. [RSZ17, §5] when n is odd, and [RSZ18,
§ 12] when n is even),

(ANn-1), JANL-1))x 108 guy = —wyy (7) DO1b(7, f,), (8.30)

where f} is a function in the AT conjecture. Now since vg is ramified in F', we have log qu, =
log ¢y, and hence equation (8.27) remains true by (8.25).

In the case of unramified AT type, we replace the corresponding space A after (8.21) by the
RZ space in [RSZ18].

In both cases, the rest of the proof is the same. O

Remark 8.20. The proof in the ramified case explains the discrepancy of the factor 2 in the
ramified AT conjecture [RSZ17, RSZ18] and the AFL. In these identities, it would be most
natural to normalize the intersection number by the factor log gy, -

ACKNOWLEDGEMENTS

We are grateful to G. Chenevier, B. Gross, B. Howard, S. Kudla, Y. Liu, P. Scholze and Y. Tian
for helpful remarks. We also thank the referees for their work. We acknowledge the hospitality
of the ESI (Vienna) and the MFO (Oberwolfach), where part of this work was carried out.
M.R. is supported by a grant from the Deutsche Forschungsgemeinschaft through the grant
SFB/TR 45. B.S. is supported by Simons Foundation grant #359425 and NSA grant H98230-
16-1-0024. W.Z. is supported by NSF grants DMS #1601144, #1901642 and a Simons Fellowship.

Appendix A. Sign invariants

In this appendix we adapt the sign invariants of [KR15] to the setting of the moduli problems
introduced in §§4 and 5 (see also [KRZ20]). We continue with the notation in the main body of
the paper, with F//Q a CM field, Fy its maximal totally real subfield of index 2, and ® a CM type
for F'. However, we will allow for more general functions r than in (3.14). Set d := [Fp : Q], and
let v be a finite place of Fy which is non-split in F. (In the case where v splits in F, the analog
of the theory in this appendix is trivial, in so far as the value group Fofv /Nm F* is trivial.) Let
k be an arbitrary field. We will first define an invariant

inv, (Ao, to, o, 4, 1, \)F € Fy,/ Nm Ff (A1)
attached to the following objects over k:

e abelian varieties Ag and A over k of respective dimensions d and nd;

e rational actions ¢p: F' — End°(4p) and ¢: F — End°(A); and

e quasi-polarizations Ao € Hom®(Ag, Ay) and X € Hom°(A4, AY) whose corresponding Rosati
involutions induce the non-trivial automorphism on F'/Fj.
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We will then write
invy (Ao, Lo, Ao, 4,1, A) € {£1} (A.2)

for the image of inv, (Ao, to, Ao, 4, ¢, \)? under the identification Foxw/ Nm F = {+1}. We note
in advance that this invariant will depend on Ay and A only up to isogeny. We give the definition
separately in the cases where reschar v # char k and reschar v = char k, where reschar v denotes
the residue characteristic of v.

(a) rescharv # char k. Let ¢ := rescharv, and let V;(Ap) and V;(A) denote the respective
rational ¢-adic Tate modules of Ag and A. Set

Vg(AQ, A) = HomF(Vg(A()), Vg(A))

Then V;(Ao, A) is a free F' ®@g Qp-module of rank n. The polarizations \g and A endow V;(Ag, A)
with a non-degenerate hermitian form h, defined by

h(¢1,¢2) == Ao "0 dy o Ao 1 € Endpgg,(Ve(Ao, A)) = F @ Q.

The decomposition Fy ® Qp = Hv,| ¢ Fo.»/, where v’ runs through the places of Fyy over ¢, induces
a decomposition

Ve(Ap, A) = @D Vi (Ao, A),
v’ |0

and each V,/(Ap, A) is a free Fy-module of rank n. By assumption F), is a field, and we define
the invariant at v as for any n-dimensional F,/Fj,-hermitian space in the main body of the

paper (1.4),
invy (Ao, 10, Ao, A, 1, A)* 1= (=1)""D/2 det V, (Ao, A) € Fy',/Nm F,

where det V,,(Ap, A) is the class mod Nm F of any hermitian matrix representing the component
h,. We note that inv, (Ao, to, Ao, A, 1, A\)? is unchanged after any base change k — k'.

(b) rescharv = chark = p. Let k be an algebraic closure of k. Let W = W (k) denote the
ring of Witt vectors of k, and let o denote the Frobenius operator on W. The decomposi-
tion Op, ® Zp = [[,y), Or, v induces decompositions of p-divisible groups Ag[p>] = [, Ao[v"*]
and A[p>] = [, , A[v"*], and we denote by M(Ap)g,, and M(A)qg,, the respective rational
Dieudonné modules of Ag[v™>°] and A[v*>°] over Wg. Let Fy and F denote the respective Frobe-
nius operators of M(Ag)g,, and M(A)qg,,. Then M(Ag)g,, and M (A)g,, carry actions of F;, which
commute with the Frobenius operators and make M (Ag)g,, and M(A)q, into free F, ®q, Wo-
modules of respective ranks 1 and n. Furthermore, M (Ag)q,, is isoclinic of slope 1/2. We consider
the internal Hom in the category of isocrystals with Fj-action,

Mg,y := Homp,gwy (M (A0)qw, M(A)gw),

which is a free F;, ®q, Wp-module of rank n. Here, as for any internal Hom object, the Frobenius
operator EM@ , on Mg,, sends ¢ — Fo¢go EO_I. The polarizations A\g and A endow Mg, with
an Fy, ®q, Wo/Fo,» ®g, Wo-hermitian form h, defined by

h(¢1, ¢2) = Ao~ 0 ¢y o Ao 1 € Endp,ew,(M(Ao)gw) = Fy ®g, Wo-
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Let

n
No. = /\ Mg
Fy ®W@

Then Ng,, is isoclinic of slope zero, and h induces a hermitian form (,) on it satisfying
(ENQ,U‘I7ENQ’U:U) = (:1:7 y)a, $,y & NQ,’U'

For any element 9 € Ng, fixed by F, , the class (zo,z0) € Fy,/ Nm F is independent of
the choice of zg, and we define

invy (Ao, 0, Ao, A, 1, A = (=1)"" D2 (20, 20) € Fy,/ Nm FY

for such zg.

Now let r: Homg(F, Q) — Z>0 be a generalized CM type for F of rank n, that is, a function
¢ — 1y, satisfying r, + rz = n for all ¢ € Homg(F,Q) (cf. [KR15, Definition 2.1]). Also, let o
be the opposite of the canonical generalized CM type for F' of rank 1 attached to the CM
type @,

0, ped, —
70 = € Homg(F, Q). A3
0,0 {17 oia ¥ (£, Q) (A.3)

Let E be the subfield of Q characterized by
Gal(Q/E) = {0 € Gal(Q/Q) |0 0 ® = ® and 75, = 1, for all p € O} (A.4)

Thus E is the join of the reflex fields of r and of rg, in the sense of [KR15, §2]. Note that, in the
situation of the main body of the paper, this definition of E agrees with (3.1); but in contrast
to the main body, in general F' need not admit an embedding into E.

Recall from [KR15, §2| that a triple of CM type r over an Og-scheme S is a triple (A, ¢, \)
consisting of an abelian scheme A over S, an action ¢t: O — Endg(A) satisfying the Kottwitz
condition of type 7, and a polarization A\: A — A such that Ros) induces on O, via ¢, the
non-trivial Galois automorphism of F'/Fy. We denote by M, , the stack over Spec O of tuples
(Ao, Lo, Ao, A, 1, A), where (Ag, Lo, Ao) is a CM triple of type ro and (A,¢, A) is a CM triple of
type r.

Let k be a field which is an Og-algebra, and let (Ao, o, Ao, 4,1, A) € My, (k). Again let
v be a finite place of Fy which is non-split in F. We will define the r-adjusted invariant
inv] (Ao, to, Ao, A, ¢, \) (it depends on both r and 7). If the residue characteristic of v is different
from the characteristic of k, then we set

invy (Ao, Lo, Ao, A, 1, A) := invy, (Ao, Lo, Ao, 4, 1, A). (A.5)

Now suppose that the residue characteristic of v is equal to the characteristic p of k. Let v be
the place of E determined by the structure map O — k, and let v: Q — @Q,, be an embedding
which induces v. Let

®,, :={p € ®|voy|lp induces v }.

Then the set ®,,,, is independent of the choice of ¥ inducing v, and, using v, we may identify

Homg, (Fy, Qp) =~ @,y L By . (A.6)
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Let

Tvw *= 74|<I>,,,v|_|$u,v'
Then we define

sgn(ryy) 1= (~1)% e (A7)
and
invy, (Ao, Lo, Ao, A, L, A) == sgn(ry,) - invy (Ao, Lo, Ao, 4, L, A). (A.8)
The analog of [KRZ20, Appendix] (which corrects [KR15, Proposition 3.2]) is now as
follows.

PROPOSITION A.1. Let (Ao, o, Mo, A, 1, A) € My »(S), where S is a connected scheme over
Spec Og. Then, for every non-archimedean place v of Fy which is non-split in F, the
function

: '
S —— 1V, (A0,87 L0,s; )‘0,S7 ASa ls, As)

is constant on S.

Proof. The proof is easy when the residue characteristic ¢ of v is invertible in Og, in which case
A" Vi(Ag, A) is a lisse étale sheaf on S (cf. the proof of [KR15, Proposition 3.2]). A similar
argument proves the assertion when S is a scheme over F, and ¢ =p (cf. [KRZ20, Lemma
8.2.2]).2! The remaining cases are reduced to the case £ = p and S = Spec Op,, where L is the
completion of a subfield of @p which contains E and such that its ring of integers Op is a
discrete valuation ring with residue field &k = IF,. To compare the invariants at the generic and
closed points of S, as in [KR15, proof of Proposition 3.2], we will use p-adic Hodge theory. Let
A, and Ap 1 denote the respective generic fibers of A and Ag, and let Ay and Agj denote the
respective special fibers. Let v denote the induced place of E.

We decompose the homomorphism module of the rational p-adic Tate modules of Ay 7 and
Ap, (respectively, the homomorphism module of the rational Dieudonné modules of A j and Ay)

with respect to the actions of F ®g Q) = Hw|p F,,

Vp := Hompgg, (Vp(Ao,), Vp(AL)) = EB Vo,
w|p
Mg := Hompy s (M(Aos)g. M(Ar)g) = @D Mo,
w|p

Here w runs through the places of F', and we recall the notation @p = W(k)q. Furthermore,
for each place w | p, the summand V,, is a free F,-vector space of rank n, and Mg, is a free
Fy ®q, Qp-module of rank n. At our distinguished place v, we set

n n
Sy 1= /\Vv and Ng, = /\ Mg,
Fy Fv@@p

Then S, and N(Srgbzl are one-dimensional F,-vector spaces (the latter because Ng, is isoclinic
of slope zero) equipped with natural F,/Fy,-hermitian forms. Our problem is to compare these
hermitian spaces, which we will do via [RZ96, Proposition 1.20].

21 The corresponding passage in the proof of [KR15, Proposition 3.2] is an over-simplification.
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To explain the group-theoretic setup in our application of [RZ96, Proposition 1.20], let 7" be
the torus over @, which is the kernel in the exact sequence

1 —T — ReSFv/Qp Gm,Fv N_m> ReSFo,v/@p Gm,Fo,v — 1.

Then HY(Q,,T) = Fy,/ Nm F¥. The spaces S, and N&gbzl are natural Q,-rational represen-
tations of T', and we may regard the isomorphisms of hermitian vector spaces Isom(N(grgb:l, Sy)
as an étale sheaf on Spec Q,. This is a T-torsor. To calculate its class cl(V, b fgbzl, Sy) via [RZ96,

Proposition 1.20], we seek to express the filtered isocrystal Ng, in the form Z (N&gbzl) for an
admissible pair (u,b) in 7', in the notation of [RZ96, 1.17].
Since Ng, is isoclinic of slope zero, we take b € T(Q,) to be the identity. To determine

the cocharacter u, we need to identify the filtration on Ng, ®©p @p. Choose any embedding
@p — @p, and identify Hom@p(Fv,@p) ~®,, U 5,,71, as in (A.6). By the Kottwitz condition, the
filtration on M (A)g.v 3, Qp = eawebu,vu&,,v M (Ay)q,, is given by, for each ¢,

M (Ag)q,e O™ Fil, D0,

where the displayed terms are in respective degrees 0, 1, and 2, and the upper index on the first
containment means that the cokernel is of dimension 7. The filtration on M (Ao x)g,» 3, @p &~
D oD, B, M (Ao,k)q,p is similarly given by, for each ¢,

M (Ao x)q.e D" Fily, D0,

where 79, is given in (A.3). The unique jump in this filtration occurs in degree 1 —rg . The
filtration on the dual space M (Ao»k)éW therefore has unique jump in degree 79, — 1. Therefore
in the filtration on the one-dimensional space

n n
Now = [\ Mo = (M(A0x)g0)*" © A\ M(Ak)ge.
Qp Qp
the unique jump occurs in degree n — ry, + n(ro, — 1) = nro, — ry.
Now consider the natural identification
~ Fv F U bk U
X, (T) = ker[Indjy | (IndQ(; Z) — IndQ(; Z).
The corresponding filtration on Ng, is then given by the cocharacter p € X, (T") with
o =MNT0p — Ty, @€ Py, 6,,,1,.

Then Ng,, = I(N(Srgb:l) for the above choices of ;1 and b.
Now, by p-adic Hodge theory, in the case of the abelian scheme A, there is a canonical
isomorphism

V:D(AL) ®Q, Bcrys = M(Ak)Q ®@p Bcrys (A,9)

compatible with all structures on both sides (e.g. the Frobenii, the F-actions, and the polarization
forms); cf. [Tsu99, Fal02]. Here Be,ys is the crystalline period ring of Fontaine [Fon94]. Moreover,
after extension of scalars under the inclusion B.ys C Bgr, this isomorphism is compatible with
the filtrations on both sides. Furthermore, there is an analogous isomorphism with Ag in place
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of A. Taking homomorphism modules on both sides between the v-components of (A.9) and its
analog for Ag, and then passing to top exterior powers, we obtain an isomorphism between free
F, ®q, Berys-modules of rank 1,

L(;v 69(2p lgcrys = j\Q@,v G?@zp chrySa

again compatible with all structures on both sides, and in particular with the hermitian forms.
Taking Frobenius-fixed elements in the zeroth filtration modules, we obtain an isometry of
F,/Fy ,-hermitian spaces,

S, = FZ(NE=),

where F denotes Fontaine’s functor from admissible filtered isocrystals to Galois representations.

We conclude that the class cl(XV, F’rgbzl, S,) is computed by the formula s (b) — pf in [RZ96,
Proposition 1.20]. Here u* denotes the image of u in the coinvariants X, (T)r, where T :=
Gal(Q,/Qy). Since b is trivial, under the identification X, (T)pr = H*(Q,,T) = Z/2Z, we obtain

ANEP= S = = Y o (A.10)
PE=,

where Z,, is any half-system, that is, =, U Z, = Homg, (Fv,@p). In the formula for sgn(r,,,), we
took 2, = @, ,. O

Remark A.2. In the definition of the r-adjusted invariant above, we took the function 7y in
(A.3) to be the opposite of the canonical rank-1 function for ® because this is what occurs in the
moduli problem for M§ in the main body of the paper (cf. (3.8)). Of course, we could instead have
worked with respect to the canonical function (sending ¢ — 1 for ¢ € ® and ¢ +— 0 for ¢ ¢ ),
which is tantamount to replacing ® by ®. In this case one defines the r-adjusted invariant at a
place v dividing char k to be (—1)2%571 " - inv, (Ao, to, Ao, 4, ¢, ), and the statement and proof
of Proposition A.1 for this version go through virtually without change.

Remark A.3. There is an obvious variant of the sign invariant for p-divisible groups. More pre-
cisely, let Lo be a finite extension of Q,, and let L/Lg be a quadratic extension. Fix a local CM
type @1, C Home(L,@p) for L/Lgy, and let rp: Home(L,@p) — Z>0 be a local generalized
CM type of rank n for L/Lqy (cf. [KR15, §5]). Let k be a field of characteristic p which is an
OEq)L,TL—algebra, where Es, ,, C @p denotes the join of the reflex fields for ®; and for ry. Let
(Xo,t0, Ag) and (X, ¢, \) be p-divisible groups over k with actions by O, and quasi-polarizations
whose associated Rosati involutions induce on F' the Galois conjugation over L. Assume that
(Xo,10) is of CM type @, and that (X,¢) is of generalized CM type 71, (cf. [KR15, §5]). Then
there is a sign invariant

inv"™ (Xo, to, Mo, X, ¢, A) :=sgn(rr) - inv(Xo, to, Ao, X, £, A), (A.11)

with properties analogous to the case of abelian varieties. In fact, returning to all of our notation
from the global setting, suppose that k is an Og-algebra, and let (Ao, o, Ao, 4, ¢, A) € M, (k).
Consider the decomposition of the corresponding p-divisible groups induced by the decomposition

OFO ® ZP = Hv|p OFO:“’

Aolp™] = [[Aolv™] and App™] =[] Ap>].
vlp vlp

1818

Downloaded from https://www.cambridge.org/core. IP address: 173.48.177.162, on 27 Oct 2020 at 12:52:18, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/50010437X20007289


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007289
https://www.cambridge.org/core

ARITHMETIC DIAGONAL CYCLES ON UNITARY SHIMURA VARIETIES

Let v denote the place of F determined by k, and for a place v | p which is non-split in F', take
L:=F,, ®p:= ®,,,and rp := r,, (where we implicitly choose an identification Homg, (F, @p) ~
®,, LU ®,, as above). Then

inv; (Ao, to, Ao, A, 1, A) = inv"™? (Ag[v™], to[v™°], Mo[v™°], A[v™], t[v™], A[v™°)).

Appendix B. Local models in the case of banal signature

In this appendix we prove that local models attached to Weil restrictions of GL,, and GU,,
defined using an analog of the Eisenstein condition of [RZ17], are trivial in the case of banal
signature. Let L/K be a finite separable extension of discretely valued henselian fields, with
respective valuation rings Op, and Op. Let 7 be a uniformizer for L, and fix an algebraic closure
K of K. The material in this appendix applies to the main body of the paper in the case K = Q,
and L = F,, for w a p-adic place of the number field F.

B.1 The GL,, case
Let n be a positive integer, and fix a function

r: Hompg (L, K) — {0,n} (B.1)

P Ty
The reflex field attached to r is the fixed field E, C K of the subgroup of the Galois group,
{o € Gal(K/K) | rgop = 1 for all ¢ € Homg (L, K)}.

Then E, is a finite extension of K, contained in the normal closure of L in K. Note that in
contrast to the analogous global situation considered in the main body of the paper (with the
particular choice of r in (3.14)), L need not admit an embedding into E,. Let £ be a periodic
Op-lattice chain in L™.

The local model attached to the group Resy,/x GLy, the function r, and the lattice chain £ is
the scheme M = MRges, /i GLy,r, L OVer Spec Op, representing the following functor. To each Og, -
scheme S, the functor associates the set of isomorphism classes of families (A ®o, Og — Pa)acc
such that

e for each A, Py is an Of, ®o, Og-linear quotient of A ®p,. Og, locally free on S as an Og-
module;

e for each inclusion A C A’ in £, the arrow A®p, Og — A ®0, Og induces an arrow
Px — Par;

e for each A, the isomorphism A ®¢,. Os W;&> (mA) ®0, Os identifies Py — Prp; and

e for each A, Py satisfies the Kottwitz condition

charp (a® 1| Py) = H (T —p(a))™ forall aecOr. (B.2)
p€Hom (L,K)
We further require that the family (A ®o, Og — Pa)aer satisfies the (analog of the) Eisen-

stein condition of [RZ17, (8.2)], which in our case takes the following form. Let L! denote
the maximal unramified extension of K in L. We first formulate the condition when S is an
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OEth—scheme, where E, Lt is the compositum in K of E, and the normal closure Lt of Lt by

Lemma B.1 below, the condition will descend over O, (and yield M ~ Spec O, ). For each
¥ € Homg (L, K), set

Ay :={p € Homg (L, K) | p|pt = ¢ and r, = n},

By = {¢ € Homg (L, K) | ¢|pt = ¢ and ry, = 0}.

Further, set

Qa (1) = [ (T —¢(n)) and Qp,(T):= [] (T —e(m).

pEAy PEBy,

Then Qa, and Qp, are polynomials with coefficients in O Since we assume that S is an

Oy, j.-scheme, there is a natural isomorphism
™

E,.Lt

OLt ROk Og AN H Og, (B.3)
eHomp (Lt K)

whose -component is 1) ® id. This induces a decomposition, for each A,

P — @ (PA) - (B.4)

YEHomg (Lt,K)
The Eisenstein condition is that, for each A,
Qa,(m @ 1)|(p,), =0 forall ¢ € Homg(L', K). (B.5)

To complete the definition of the moduli problem, an isomorphism from (A ®o, Os —
Pa)aer to (A®o, Os — P))aec consists of an isomorphism Py — P} for each A, compati-
ble with the given epimorphisms in the obvious way. Note that such an isomorphism is unique
if it exists.

The main result is that the moduli scheme M we have defined is trivial, in the following
sense.

LEMMA B.1. Let S be an Oy, 7,-scheme. Then M (S) consists of a single point.

E, Lt

Proof. 1t suffices to consider the case where £ consists of the homothety class of a single lattice A;
the general case then follows immediately. Let A ®o, Og = 691/} EHom (L4, K) (A ®0, Og)y denote
the decomposition induced by (B.3). Then the Eisenstein condition forces

(Pa)y = (A @0k Og)y/Qa,(m®@1) - (A @0y Og)y, (B.6)

which completes the proof. O

As we have already noted, it follows by descent that M = Spec O, . This also shows that
the Eisenstein condition is independent of the choice of uniformizer .

Remark B.2. In the special case n = 1, we may take A = Oy, in the proof of Lemma B.1, and
then the Kottwitz condition already implies (B.6). Thus the Eisenstein condition is redundant
in this case.
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We also note that the Eisenstein condition is redundant in the unramified case (cf. [RZ17,
Proposition 2.2]).

LEMMA B.3. Suppose that L/K is unramified. Then the Kottwitz condition (B.2) on Py implies
the Eisenstein condition (B.5).

Proof. When L = L' is unramified over K, all sets A, have at most one element. If A is
empty, then (Py), = 0 and condition (B.5) is empty. If A, is non-empty, then condition (B.5)
is equivalent to the definition of the 1)-eigenspace in the decomposition (B.4). O

B.2 The unitary case

In this subsection we assume that the residue characteristic p of K is not 2. We retain the setup
of the previous subsection, and we assume in addition that L is a quadratic extension of a field
Lo/K. Let a — @ denote the non-trivial automorphism of L/Lg, and for each ¢ € Hom (L, K),
define @(a) := ¢(a). We assume that the function r in (B.1) satisfies r, + 75 =n for all ¢ €
Homp (L, K). Furthermore, we endow L™ with a non-degenerate L/Lg-hermitian form h, and
we assume that the lattice chain £ is self-dual for h. We define the alternating K-bilinear form

(,): L x L™ — K as follows. Let 19201/1( be a generator of the inverse different DZ(}/K. If L/Lg

is unramified, then choose an element ¢ € O] such that { = —( (since p # 2, such a (¢ always
exists), and set

<£U,y> = trL/K(ﬁZ(}/KCh(:Evy)% T,y € L".

If L/ Ly is ramified, then choose the uniformizer 7 to satisfy 72 € Lq (since p # 2, such a 7 always
exists), and set

<xay> = trL/K(ﬁZOI/KTr_lh(:U:y))a T,y € L.
Then in both cases, the dual A* of an Op-lattice A in L™ is the same with respect to h as it is
with respect to ().
The local model attached to the group Resy, GU(h), the function r, and the lattice chain

L is by definition the closed subscheme MReSLO /i GU(R), L of MRes, /i Gl L defined by the
following additional condition:

e for each A, the perfect pairing

(Ao, Os) x (A* ®0,, Og) 129,

identifies ker[A ®0, Os — Pal* with ker[A* ®o, Og — Pr«].

Os

It is a trivial consequence of Lemma B.1 that this additional condition is redundant, and
that we again have the following result.

LEMMA B.4. MR@SLD/K GU(h),r,C = Spec OEW
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