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ABSTRACT. We explore the classical Lech’s inequality relating the Hilbert—Samuel multi-
plicity and colength of an m-primary ideal in a Noetherian local ring (R,m). We prove
optimal versions of Lech’s inequality for sufficiently deep ideals in characteristic p > 0, and
we conjecture that they hold in all characteristics.

Our main technical result shows that if (R, m) has characteristic p > 0 and R is reduced,
equidimensional, and has an isolated singularity, then for any sufficiently deep m-primary
ideal I, the colength and Hilbert—Kunz multiplicity of I are sufficiently close to each other.
More precisely, for all € > 0, there exists N > 0 such that for any I C R with ¢(R/I) > N,
we have (1 —e)l(R/I) <epx(I) < (1+¢e)l(R/I).
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1. INTRODUCTION AND PRELIMINARIES

In [19], Lech proved a simple inequality relating the Hilbert—Samuel multiplicity (Defini-
tion 1.5) and the colength of an ideal:

Theorem 1.1 (Lech’s inequality). Let (R, m) be a Noetherian local ring of dimension d and
let I be any m-primary ideal of R. Then we have

e(I) < dle(R){(R/I),
where e(I) denotes the Hilbert—Samuel multiplicity of I and e(R) = e(m).

Suppose R is a regular local ring and I = J¢, a power of an m-primary ideal J, then it is
easy to see that when t — oo, both sides of Lech’s inequality tend to t?e(J). In particular,
Theorem 1.1 is asymptotically sharp when R is regular. However, Lech also observed in the
proof [19, page 74, after (4.1)] that the inequality in Theorem 1.1 is almost never sharp:

when d > 1, we always have a strict inequality.
1
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In [23], Mumford conceptualized this and defined the 0-th flat multiplicity of a Noetherian
local ring R of dimension d to be

e(/)
) = sun { Gt
and the k-th flat multiplicity of R to be ex(R) = eo(R|[t1,. .., tk]]). He proved that ey(R) >
el(R) > -+ >ex(R) > -+, and defined a Noetherian local ring to be semi-stable if e;(R) = 1.
However, computing ej(R) (or even determining whether R is semi-stable) turns out to be
difficult (see [23, Section 3]). In this paper, we study an asymptotic version of Mumford’s
eo(R). Our main purpose is to obtain sharp versions of Lech’s inequality for sufficiently deep
ideals beyond the regular case. Our main conjecture is the following:

Conjecture 1.2 (Asymptotic Lech’s inequality). Let (R, m) be a Noetherian local ring of
dimension d > 1.

(a) If R has an isolated singularity, i.e., Rp is reqular for all P € Spec R — {m}, then

, e(])
1 ——— 5 =1.
N oo {dw(R/I)}
¢R/T)>N
As the above limit is always > 1 by considering I = m™ and letting n — o0, the

statement is equivalent to saying that for every e > 0, there exists N > 0 such that
for any m-primary ideal I with ((R/I) > N,

e(l) <d((1+e)l(R/I).
(b) We have e(Ryeq) > 1 if and only if

| o .
NI P {dw<R/f>}< (R).

{R/T)>N

In other words, e(Ryeq) > 1 if and only if there exists € > 0 and N > 0 such that for
any m-primary ideal I with ¢(R/I) > N,

e(I) <dl(e(R) —e)l(R/I).

Compared with Lech’s inequality, Conjecture 1.2 expects that for ideals having large
colength the constant e(R) in Theorem 1.1 can be usually replaced by a much smaller
number under various assumptions on the ring R. Our main result is the following:
Theorem A (Corollary 4.4, Proposition 5.3, Corollary 5.9, Proposition 5.11).

(1) Congecture 1.2 (a) holds in characteristic p > 0 when R/m is perfect.
(2) Congecture 1.2 (b) holds in equal characteristic.

We also show that in Conjecture 1.2 part (a), the assumption that R has an isolated singu-
larity is necessary in general: we construct a counter-example for non-isolated singularities
in Example 4.8. As for Conjecture 1.2 part (b), note that in characteristic p > 0, we have

e(I) enk (/)
() J0R/T) = U(R/T)

<enx(R)
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by [29, Lemma 4.2]. So Conjecture 1.2 (b) holds whenever egx(R) < e(R) (this happens
often, for example when R is F-rational but not regular). But our Theorem A above proves
it even in the case egk(R) = e(R). Nonetheless, we propose a stronger conjecture in charac-
teristic p > O:

Conjecture 1.3. Let (R, m) be a Noetherian local ring of characteristic p > 0 and dimension
d>1. If e(Ryeq) > 1, then

| o \_,
W o L | < et

L(R/I)>N

Note that by (1), the limit in Conjecture 1.3 is always < egx(R). Our Theorem A implies
that Conjecture 1.3 is true at least for isolated singularities with perfect residue fields (see

Corollary 4.5). Besides being natural, our conjectures are largely inspired from recent work
of Blum and Liu [1, Lemma 13]:

Lemma 1.4 (Blum-Liu). Let (R,m) be a Noetherian local ring of dimension d such that R
is a domain and R/m is algebraically closed. For any positive numbers §,e € (0,1), there
exists ng such that for any n > ng and any ideal m™ C I C m!*™! we have

e(I) < d\(1+ e)(R/T).

This Lech-type inequality, although a bit technical, is a crucial ingredient in their proof of
semicontinuity of normalized volume function on the valuation space centered at the origin,
see [1]. The main difference between Lemma 1.4 and Conjecture 1.2 part (a) is that in the
latter we no longer require the additional parameter ¢ and we expect the inequality for any
I that has sufficiently large colength. This is clearly much stronger than the conclusion of
Lemma 1.4, but assumes a strong hypothesis of isolated singularity. The proof of Lemma 1.4
given in [1] is rather involved and makes use of local Okounkov bodies. We will give two
elementary approaches in characteristic p > 0 using Hilbert—Kunz multiplicities in section
2, which in fact generalizes their result (in characteristic p > 0). More importantly, one of
the approaches will eventually lead to the main technical theorem of this article, from which
part of Theorem A will follow.

Theorem B (Theorem 4.2). Let (R, m) be a Noetherian local ring of characteristic p > 0
and dimension d > 1 with K = R/ m perfect. Suppose R is reduced, equidimensional, and

has an isolated singularity. Then for every € > 0, there exists N > 0 such that for any
m-primary ideal I with ((R/I) > N,

(1 —=e)l(R/T) <eux(I) < (1+e)l(R/I).

This will be proven in section 4. Note that if R is regular, then egx(I) = ¢(R/I) for any
m-primary ideal I so the theorem is trivial in this case. Basically, Theorem B indicates that,
for isolated singularities, the relation between colength and Hilbert—-Kunz multiplicities for
sufficiently deep m-primary ideals is somehow similar to the case of regular rings.



4 CRAIG HUNEKE, LINQUAN MA, PHAM HUNG QUY, AND ILYA SMIRNOV

1.1. Hilbert—Samuel and Hilbert—Kunz multiplicity.

Definition 1.5. Let (R, m) be a Noetherian local ring of dimension d and I be an m-primary
ideal. The Hilbert—Samuel multiplicity of [ is defined as

e(l) = lim M

n—oo nd

A closely related concept is integral closure. An element x € R is integral over an ideal
I if it satisfies an equation of the form z" + a;2" ' + - - ap_17 + a, =0 where a, € I*.
The set of all elements = integral over [ is an ideal and is denoted I. The Hilbert—Samuel

multiplicity is an invariant of the integral closure, i.e., e(I) = e(I). Even more generally, if
R is reduced, then
dli(R/I™
n—oo n

because there exists k such that Ik = (I¥)" for any n > 1 by [24, Corollary 4.13].

Y

Definition 1.6. Let (R, m) be a Noetherian local ring of characteristic p > 0 and dimension
d, and let I be an m-primary ideal. The Hilbert—Kunz multiplicity of I is defined as

. (R/IW
enel1) = im S5

where Il is the ideal generated by p°-th powers of elements of I.

It is a nontrivial result of Monsky [22] that the above limit exists. We point out that it
follows from work of Kunz [16] that, if R is reduced and F-finite (i.e., the Frobenius map

R L Ris a finite map), then

1/p° /T RY/P°

e—00 pe’Y

where v = d +log,[K U/r . K] for K = R/m. In general, the two multiplicities are related by
the inequalities ([29, (2.4)]):
1
It follows that e(I) = egx(I) when d < 1. On the other hand, as long as d > 2, the Hilbert—
Kunz multiplicity of I can be close to either e(1)/d! or e(I). For example, if I = (z1,...,x4)
is generated by a system of parameters of R, then we always have epux (/) = e(I) ([18,
Theorem 2|), while if I = J" is a power of an m-primary ideal J, we have [30, Theorem 1.1]:
. enx(J") ek (J")
1 Im =—2" 7 — lim —/—" 7 — 1

(1) nSoo o(JMYJdl  nee O(R/J")

We will strengthen this result by showing that, if R is reduced and equidimensional, then

lim ;?;z(/(j:)) converges to 1 uniformly, independent of J (see Remark 2.3).
n—o0
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2. BLUM—LIU’S LEMMA IN CHARACTERISTIC p > (0

In this section we give two simple alternative proofs of Lemma 1.4 in characteristic p > 0.
These results are not used directly in the proof of the main theorems. However, the methods
inspired the strategy of the proof of the main result in section 4, and we believe they have
independent interest.

We begin by recalling a lemma which is due to Watanabe [28, Theorem 2.1] when R is
complete normal with algebraically closed residue field. But the conclusion holds for any
complete local domain with algebraically closed residue field, which is implicit in the proof
of [14, Lemma 3.1]. For the sake of completeness we give the argument.

Lemma 2.1 (Watanabe). Let (R, m) be a Noetherian complete local domain with K = R/ m
algebraically closed. Then for I C J two integrally closed m-primary ideals, we can find a
chain

I=LCchc---Cl,=J

such that ((1;/1;_1) =1 for every j and all I; are integrally closed.

Proof. By induction on ¢(J/I), it is enough to find an integrally closed ideal I’ such that
ICI'CJand ¢(I'/JT) =1. Let R — S be the normalization of R. Since R is a complete
local domain, S is local by [11, Proposition 4.8.2], and so S = (S, n) is a normal local domain
with R/m = S/n = K since K is algebraically closed. In particular, computing length over
R and S are the same. By [28, Theorem 2.1], there exists a chain

IS=JhCJhChC---CJp=JS

such that each J; is integrally closed in S and ¢(J;41/J;) = 1 for every i.
Since I is integrally closed in R and S is integral over R, by [11, Proposition 1.6.1] we
know

JJNR=ISNR=1=1,

and similarly we know that J,, "R = J. Let t = max{i | ;AR = I}. Obviously 0 <t < m.
Set I' = J;y1 N R. Now we have I C I’ C J and I’ is integrally closed in R (one can use
[11, Proposition 1.6.1] again). Moreover, ¢£(I’/I) > 0 by our choice of ¢ while I'/I < Ji1/J;
shows that ¢(I'/I) < {(J41/J:) = 1. Thus, we have ¢(I'/I) = 1. O

Proof of Lemma 1.4 in characteristic p > 0. We can pass to the completion of R to assume
R is a complete local domain with R/m algebraically closed. We fix ¢ < (§%)/2. We next
pick ng such that for any n > ny,

(a) egg(m™) < (14 € )l(R/m™).

(b) ((R/m™)/C(R/mlnT) < 5.
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We note that such ng exists: we have nh_}rgo ‘;E{é‘/(;“l:; =1 by (1) and nh_)rgo i((};//:%:)) = 1, which
guarantees (a), and we can achieve (b) by using that
d'e(R)n? 1

Jim ((R/mm)U(R/wlT) = T 2 e(R)([on])? — 64"

Since R is a complete local domain with algebraically closed residue field, RV?" is a finite
R-module of rank p*®. Given an ideal I such that m" C I C m/! we apply [2, Corollary
2.2] and Lemma 2.1 to verify that

€ — € € e € TRl/pe = — e
((RYP" P RYP") — ¢(RYP" J[TRY?) = ¢ (W) > ((T/m7) - p.

After dividing by p°® and letting e — oo, we obtain
enk (1) < egx(m™) — ¢ (T/W) < (1+&)(R/m™) —¢ (T/W) = U(R/m™) + L(R/]),

where we used (a) for the inequality in the middle. Finally, we divide the above equation by
((R/I) to bound

e(l) < e(]) < enk (1)
dli(R/I) — dW(R/TI) ~ ¢R/I)
J(R/m?) L4 ((R/m")

U(R/T) ((R/mlonT)
2
< 1+€'~ﬁ§1+€,
where we used (b) and the choice of €’. This completes the proof. O

Our next proposition is a generalization of Lemma 1.4 in characteristic p > 0: besides
establishing an upper bound on the Hilbert—Kunz multiplicity in terms of colength, we also
obtain a lower bound, and we can relax the assumptions on R. We will later see what are the
optimal assumptions in Remark 2.6. More importantly, the proof strategy will be adapted
and extended to prove Theorem B (after we established some uniformity results in section

3).

Proposition 2.2. Let (R, m, k) be a Noetherian local ring of dimension d of characteristic

p > 0 such that R is reduced and equidimensional. Then for any positive numbers d,e € (0,1),
there exists ng such that for any n > ng and any ideal m™ C I C ml", we have

(1—e)l(R/I) <eux(I) < (1+e)l(R/I).
As a consequence, (1 —e)l(R/I) <e(I) < d\(1+e)l(R/I).

Proof. 1t is easy to see that, if we can prove the proposition for a faithfully flat extension
R’ of R with R'/m R’ a field, then the same conclusion holds for R since both colength and
multiplicities do not change when we pass to R’. With this in mind, we can first complete
R to assume R is a complete local ring that is reduced and equidimensional. We next apply
Hochster—Huneke’s I'-construction to reduce to the case R is F-finite. For any cofinite subset
' of a p-base of the residue field k, we have a faithfully flat and purely inseparable extension
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R — R (see [9, (6.11)] for details), and when T is chosen to be sufficiently small, R' is
still reduced by [9, Lemma 6.13] and equidimensional (since it is purely inseparable and R is

equidimensional). Finally, we replace R by RI' to assume R is complete, F-finite, reduced
and equidimensional (note that R! is excellent so completion preserves these properties).
Under these conditions, the total quotient ring of R is a product of fields [[;_, K;, where
K; = Frac(R/P,;) for each minimal prime P, of R. Since R is equidimensional, by [16,
Proposition 2.3] for logp[Kl-l/p : K] = d + log,[k'/? : k] for all i. We call this constant .

By the Cohen—Gabber theorem (see [12, Exposé IV, Théoreme 2.1.1] or [17, Theorem
1.1]), there exists a complete regular local ring A with the same residue field as R such that
A — R is module-finite and generically étale. Let ¢ # 0 be the discriminant of the map
A — R, then by [8, Discussion 6.3 and Lemma 6.5], cRY/?" C R[AYP"] =2 R @ AYP" for any
e. We consider the following two short exact sequences:

0 — R[AY?] - RY» - C, =0

0 — RY?" % R[AY"] = D, — 0.

It follows that C, and D, are annihilated by c for any e, and u(C.) < u(RY?"), u(D,) <
p(R[AYP]). Thus we have surjections:

(2) (R/cR™ /™) . ¢ - 0, and (R/cR)*EA™ ), D, — 0.

For any m-primary ideal I we tensor the two short exact sequences with R/I. Since A is
regular local, R[AYP"] = R® AY/P" = RP” by [15]. Thus we have

(R/I)*" — RV JIRY" - C./IC, =0
RYP" IRV — (R/T*" — D./ID, — 0.
Computing length, we know that
p?UR/I) — €(D./ID,) < L(RV¥" [IRY™) < pU(R/I) + £(C./IC.),
so by (2)
PUR/T) = pUR/ (L €)) < L(RYPJIRVP) < p 7 U(R/T) + p(RYP)UR/ (I, ).
Dividing the above by p7, we get that for any m-primary ideal I and every e,

(3) ¢R/T) (1 - 5(%(/1};))) < E(Rl/p;gRl/Pe) u(lz:pe) , 6(25}5)))
At this point, we note that if m® C I C m/®"1 then we have
UR/U, ) _ LR/ (m",c))
((R/T)  — C(R/mlom)
But when n — oo, we know that

lim U(R/(m™,c)) ~ lim e(R/cR)n1/(d —1)! _ _
n—o00 K(R/mw”ﬂ) n—00 e(R)édnd/d' n—o0 G(R)(Sd

< U(R/I) (1 +
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de(R/cR)

e(R)d¢
0 < e < 1andevery 0 < § < 1, there exists ng such that for any n > ng and any
m" C I C ml?"! we have

since is a constant that does not depend on n. Therefore we know that for every

U(R/(I,¢)) < ¢
UR/I) ~ emx(R)
We plug in the above into (3) and see that for any m™ C I C m/?"l and all e, we have
pe P enx(R)
Finally, we take the limit as e — oo and use the definition of Hilbert-Kunz multiplicity, we
see that

<e.

UR/T)(1 —¢) <

(1—e)l(R/I) <emx(l) < (1+4+e)l(R/I)
for any m® C I C ml°"l as desired. The last conclusion on Hilbert-Samuel multiplicity
follows immediately because we have epk (1) < e(I) < dlepk(I). O

Remark 2.3. Let (R, m) be as in Proposition 2.2. If we apply (3) to I = J" and let e — o0,

we see that
_UR/(T" ) _ enx(J") UR/(J",¢))
R/JY)  — LRI (R)J™)
By Theorem 1.1 and [14, Theorem 2.4], we know that there exists a constant D depending
only on R and ¢ such that

UR/(J"¢)) <n. e(J", R/cR) _ D e(J, R/cR) < Dk
UR/JY)  — e(J™, R) n eJ,R) T n

where k is the uniform Artin—Rees number for (¢) C R, see [14, Lemma 2.5]. Therefore as

LR/(J"0)) enk (J™)
n = 00, ~yR/Tm s wmgy 1

uniformly (independent of the ideal .J).

— 0 uniformly independent of J. This shows that, as n — co

Remark 2.4. If we examine the proof of Proposition 2.2 more carefully, the assumption
m” C I C m/*"1 is only used to show that UR/T)) g sufficiently close to 0. At first glance,

«(R/T)
one might hope that for a fixed ¢ # 0,

(
UR/(I,0))
((R/T)
infinity (or at least when [ is contained in a sufficiently large power of the maximal ideal).
If this is indeed the case, then Conjecture 1.2 (a) holds even without the isolated singularity

hypothesis on R. Unfortunately, this is false in general, as the next example shows.

always tends to 0 as long as ¢(R/I) tends to

Example 2.5. Let R = K[[z,y]] and let ¢ = x. Let Iy = (™, 2N Yy, -, zyV -1 y™).
Then Iy € m¥Y, and we have ((R/Iy) = N® + O(N?) and {(R/(Iy,c)) = N3. In particular,
R/ (I, c)

N—oo K(R/IN)
If we want to prove Conjecture 1.2 (a) using similar strategy, then the subtlety here is
that we must choose ¢ such that % tends to 0 for all sufficiently deep ideals. For this

we need ¢ to be sufficiently “general” (see section 3 and Claim 4.3). But then to run the
proof of Proposition 2.2 we also require ¢ to be the discriminant of certain map A — R

=1.
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coming from the Cohen—Gabber theorem. Such ¢ is indeed “special”, and even with the
isolated singularity hypothesis, we do not know whether there exists ¢ that satisfies both
conditions. In section 4, we resolve this issue by adjoining invertible indeterminates to R
and then applying the Lipman—Sathaye Jacobian theorem [20, 7]. This will give us some
freedom in choosing c.

Remark 2.6.  (a) In Proposition 2.2, for the upper bound eyx(l) < (1 + ¢)¢(R/I) (and
e(l) < d\(1+4¢)l(R/I)), we only need to assume R is reduced. In this case we have
0=PnN---P,NnQiN---NQ,, in R where Py, ..., P, are minimal primes of dimension
d and @1, ..., Q,, are minimal primes of lower dimension. Let S = ﬁ/ (PN---NP,).
Then S is reduced and equidimensional so we can apply Proposition 2.2 to S. But
enk (/) = enx(IS) since Hilbert—-Kunz multiplicity does not see lower-dimensional
components, and ¢(S/1S) < E(}A%/Iﬁ) = ((R/I). Therefore the result for S implies
the result for R. R

(b) On the other hand, the upper bound in Proposition 2.2 fails in general if R is not

reduced: let R = K[[z,y]]/2* and for every §,n let I, = m" +oml/%"l. Then clearly

m" C I, € m/"l. Since z is nilpotent, I, = m” and thus e([n) = e(m") = 2n while
U(R/I,) =n+ [dn]. Therefore for €, small, e(I,,) > (1 +¢)l(R/I,) for all n.

We end this section by showing that, the lower bound for Hilbert—Samuel multiplicity in
Proposition 2.2 holds in all characteristics in full level of generality.

Proposition 2.7. Let (R,m) be a Noetherian local ring of dimension d. Then for any
positive numbers 6, € (0, 1), there exists ng such that for any n > ng and any ideal m"™ C
I C m[‘s’ﬂ, we have

(1= )(R/T) < e(1).
Proof. We make use of Vasconcelos’s homological degree [25] as in [14]. We may assume R is

complete with infinite residue field. Let hdeg(7, R) be the homological degree with respect
to I (see [14, Definition 2.3]). We have ¢(R/I) < hdeg(/, R) and

hdeg(I,R) = e(I) + Y e(I, R/P),
PeA

where A is a finite set of prime ideals of dimension strictly less than d, by [14, (2.1) and
Definition 2.3]. Since m"™ C I C m/*" we have

e(I) 2 e(m'™"!) = [6n]"e(R)
and
e(I,R/P) <e(m™ R/P) <n“te(R/P).
Therefore we can choose ng large enough such that (1 — e)hdeg(I, R) < e([) for any n > ny.
It follows that (1 —e)l(R/I) < e(I). O

3. COMPARISON BETWEEN SOCLE AND COLENGTH

The goal of this section is to prove Theorem 3.6 and Corollary 3.8, which will be used
in Section 4. These results are basically saying that the socle of an m-primary ideal I is
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small compared to the colength of I, as long as the colength of I is sufficiently large. Such
a statement is clear if I is a large power of an m-primary ideal, as the growths of the socle
and colength are controlled by the Hilbert polynomials. However, we emphasize that we do
not impose any condition on the shape of I, which is exactly the subtlety.

The proof strategy is to reduce the question to a question about minimal number of
generators (instead of socles), and then prove the corresponding statement for all finitely
generated modules over a complete regular local ring by induction. Below we give the
details. We start by proving a critical lemma for monomial ideals in a polynomial ring.

Lemma 3.1. Let A = K[xq,...,xq] be a polynomial ring over a field K andm = (xq,...,2q).
Then for every € > 0 there exists N > 0 such that for any m-primary monomial ideal J with
ord(J) > N, we have

1(J)
(AL =

Proof. We use induction on d. The base case d = 1 is clear. Given € > 0, let k£ be an integer
such that 1/k < ¢/2. Furthermore, we fix N, that satisfies the induction hypothesis for
e/(2k) in K[z1,...,24-1]. We claim that N = Ny + k will satisfy the lemma.

Given an m-primary monomial ideal J C m”, we let J; be the projection of J onto
Klz1,...,x41] at 2%, ie.,

_ a1 Ad—1 a1 Qg—1 1
Ji = {7 g | 2" g 1Ty € J}.

Then {J;}22, form an ascending chain. We set A; = ((K[z1, ..., z4-1]/J;).

It is easy to see that a minimal generator of J will be necessarily a minimal generator of one
of the J; and no two minimal generators can project to the same monomial (since otherwise
they differ by a power of 24 which contradicts that they are both minimal generators). Hence,

Zu ) < u(Jo) + -+ p(Jeor) + Apa

Since ¢(A/J) > Ay + -+ -+ Aj_1, we obtain that

plS) o plJo) + o A (k) + A Aps L) o )
LA)T) — Ag+ -+ Ap T Ag -+ Ay Ay Apor
Since A; are non-increasing, we have
A1 < A1 1 e

=-< =
A0+"'—|—Ak_1 o /{ZAk_l k 2
On the other hand, we have ord(J;) > ord(J) —i > N — k > Ny by the construction. So by
our choice of Ny, %‘];’) < ¢e/(2k) for any 0 <1i < k — 1. Therefore

() Ak 1(Jo) pllk-1) _
< NI T e k— —
(AID) S Aot 4 A, A T AL T 3+ hop

This completes the proof. O
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Corollary 3.2. Let (A,m) be a reqular local ring. Then for any e > 0 there exists N such
that for any m-primary ideal I C m, we have

p(l)
((A/T)

Proof. Let ing I = @p>o(INm" +m" ™)/ m" C G = gr,.(A) be the form ideal of I (see [18]
or [10]). Since A is regular, G is a standard graded polynomial ring over a field. We have

U(A/I) =0(G)ing I), ingl-ingJ Cing(IJ), and in,m = G,.

Thus we have

< E.

p(I)

((I/mI) =0(G/ing(mI)) —(G/ing I)
< UG/ (Gsp) -ing I) — UG/ ing I) = pg(ing I).

Observe that if I C m”, then in, I C in, m" = GL, so we see that it is enough to prove
the corollary for homogeneous ideals in the polynomial ring G.

So now we assume A is a polynomial ring over a field and [ is an m-primary homogeneous
ideal. Pick a monomial order < and let J = in. I. We basically repeat the above process to
reduce to the monomial case. We have m" = in.m" Din_ I = J, ((A/I) = {((gr. A)/J),
and that mJ = in. m-in. I Cin_(m/). Therefore,

gr. A gr. A

) T2 (B2 = (),

Thus it is enough to treat the case of a monomial ideal J in a polynomial ring gr_ A, which
is precisely Lemma 3.1. U

gr. A
inc(ml)

p(l) = L(A/mI) — L(A)T) = ( gro A

</

inc [

We next prove the main theorem on comparing the minimal number of generators and the
colength for sufficiently deep submodules.

Theorem 3.3. Let (A, m) be a complete reqular local ring and L be a finitely generated A-
module. Then for every e > 0 there exists N > 0 such that for any submodule M C m”" L
with {(L/M) < oo, we have

Proof. We first prove the following claim.

Claim 3.4. Let 0 — Ly — L — Lo — 0 be a short exact sequence of finitely generated

A-modules. Suppose for every e > 0 there exists N1, Ny > 0 such that for any submodule
M; € mPiL; with £(L;/M;) < oo, we have

—HJ(MZ) < E.

((Li/M;)
Then for every e > 0, there exists N such that for any submodule M C m™ L with ((L/M) <
oo, we have
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Proof of Claim. Let M C L be a submodule. We have an induced short exact sequence:
Ly . L R L ~ Lo
MnN Ly M  M+L im(M)

From the above sequence it is clear that we have:

H(L/M) < 7o) + i)

0— — 0.

and, when ¢(L/M) < oo,
Ly Ly
l .
) Y Seon)
Moreover, if N > 0 and M C m" L, then by the Artin-Rees lemma we know there is a

constant C' such that M N L; C m™~¢ L,. In particular for N > 0, M N L; C m™ L; and
that im(M) C m™ Ly. Therefore

((L/M) = €

p() _ plars) + eGadn) ax{u(ﬁh) i)
((L/M) — K(er/wlL1>+€<imL(]2\/[)) a U5m) €<imL(]2\/[))

Now we prove the theorem. We use induction on dim A. For any finitely generated A-
module L, we consider a prime filtration

0=LoCLiC---CL,=L

where L;.1/L; = A/Q for a prime ideal @ C A. By Claim 3.4, it is enough to prove the
theorem for each A/Q. Now if @ = 0, the result follows from Corollary 3.2. If @ # 0,
then by Cohen’s structure theorem we know that A/Q is a finitely generated module over a
complete regular local ring A’ with dim A’ < dim A. Note that if we view an ideal J C A/Q
as an A’-submodule, then the minimal number of generators computed over A" will only
possibly increase compared with the minimal number of generators computed over A (while
the colengths are the same). So the result follows by induction. 0

t<e. O

So far our results deal with submodules that are contained in a large power of the maximal
ideal times the ambient module. The next corollary improves this condition to the condition
that the colength of the submodule is sufficiently large.

Corollary 3.5. Let (A, m) be a complete reqular local ring and L be a finitely generated
A-module. Then for every € > 0 there exists N > 0 such that for any submodule M such
that N < {(L/M) < oo, we have

p(M)

((L/M)

< E.

Proof. We fix a k that satisfies the conclusion of Theorem 3.3 for £/2. Namely, for any
submodule M’ C m*L with ¢(L/M’) < oo, we have
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Let M' = M Nm*L. We have
O(L/M) = 0(L/M') — 6(M/M') = 6(L/M") — 6((M +w*L)/m*L) > ¢(L/M') — ¢(L/m"L)
and
(M) = 0(M/mM) = 0(M/M") + (M’ /mM") — 6(mM/mM') < u(M') + ¢(L/m*L).
Because M’ C m*L, by our choice of k&,
p(M’) e
(L 2
Hence we have

pM) - p(M) + U(L/m L) (M) U(L/m*L)

((L/M) — ((L/M) - UL/M) - UL/M)
< w(M') 0(L/M)+ ¢(L/m*L)  ¢(L/m*L)
~ U(L/M) (L/M) ¢(L/M)
e ((L/mkL) £
2 " L (1+3)
Since ¢(L/m*L) is a constant, we choose N > 0 such that 42/ ;kL) <7 f(/a 2/2). The conclusion

follows. O
The next theorem is the main result of this section.

Theorem 3.6. Let (R, m) be a Noetherian local ring. Then for any € > 0 there exists N > 0
such that for any m-primary ideal I with ¢(R/I) > N,

(L :m)/T)
((R/T)

Proof. Since there is a one to one correspondence between m-primary ideals in R and R
and completion does not affect socle and length, we can replace R by R to assume R is
complete. By Cohen’s structure theorem, R is a quotient of a complete regular local ring A
(and hence a finitely generated A-module). Now by Corollary 3.5, there exists Ny such that

if Ny < ¢(R/J) < oo, then 745 < &. We fix this No.

Claim 3.7. There exists N such that if ((R/I) > N, then ((R/(I : m)) > Nj.

Proof of Claim. We will show that N = ¢(R/m™ ™) works. In fact, if £(R/(I : m)) < Np,
then we have m™ C [ : m. For if m™ ¢ I :m, then gr,(R/(I : m)) is nontrivial in degree
Ny, thus the colength of I : m is at least Ny + 1 which is a contradiction. But then we have
mMNoFtl C T and hence ((R/I) < {(R/mMoTl) = N. O

If I is an m-primary ideal with ¢(R/I) > N, Claim 3.7 shows that ¢(R/(I : m)) > Ny, so

(U m)/1) o pdim)
(R/I)  ~ UR/(I:m))
by our choice of Ny. This completes the proof. O

<e€
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The following corollary will be a crucial ingredient in the proof of the main result in the
next section.

Corollary 3.8. Let (R,m) be a Noetherian local ring and J C R a fized m-primary ideal.
Then for any € > 0 there exists N > 0 such that for any m-primary ideal I with ¢(R/I) > N,

(12 J)/1)
UR/T)

Proof. Since J is m-primary, there exists k such that m* C J. Thus it is enough to prove the
corollary for J = m*. We use induction on k. The base case k = 1 is precisely Theorem 3.6.

Now suppose the conclusion is proved for J = m*~!. Let N; be the number that works
for m with £/2, and let Ny be the number that works for m*~! with £/2. Let N > N; be
a number satisfying the conclusion of Claim 3.7. By Claim 3.7, for any m-primary ideal [
such that ¢(R/I) > N, ¢{(R/(I : m)) > Ny. Thus we have

O mMY/I) 6T m) s mE L /(L m)) + 6((1 : m)/T)

(R/I) ((R/T)
< O((1 :m):mP1 /(1 :m)) N (I :-m)/I)
- ((R/(I : m)) ((R/T)
< % + g =e.
This finishes the proof. U

We end this section with an example' showing that the conclusion of Corollary 3.8 fails if
J is not m-primary.

Example 3.9. Let R = K[z, y, z]] and Iy = S (z,9)'2" " 4 (2¥) where L > N. So for
each N, Iy C m¥ (in particular, ¢(R/Iy ) > N). It is easy to check that Iy : (z,y) =
(z,y,2)N7L, in particular ¢(In . : (z,y)/Inz) > L — N. From this we see that

lim f([N,L : (ﬂfay)/[N,L)

=1.
L—o0 E(R/]NyL)

CIn:(zy)/INL)
Thus for every N > 0, we can find Iy 1, such that J%TM

the conclusion of Corollary 3.8 cannot hold for J = (z,y). Of course, the problem here is
that J is not m-primary.

is arbitrarily close to 1. So

4. PROOF OF THEOREM B

We will use the following version of the Lipman—Sathaye Jacobian theorem [20, Theorem
2]. Note that full result found in [20] is considerably more general but with the additional
assumption that S is a domain. However, this condition can be replaced by S being reduced
and equidimensional (in particular, if S is module-finite over a regular local ring B, then S
is torsion free as a B-module), see [7, Theorem 3.1] for the generalized version.

"n fact, the anonymous referee points out that a similar and simpler example exists even in K [z, y]],
with Iy = 2(z,y)N ! + (y*) and J = ().



ASYMPTOTIC LECH’S INEQUALITY 15

Theorem 4.1 (Lipman—Sathaye). Let S be a complete local ring that is reduced and equidi-
mensional and let S" be the normalization of S. Suppose S is module-finite and generically
étale over a complete reqular local ring B. Then we have Jg/pS" C S.

We are ready to prove the main technical result of this article.

Theorem 4.2. Let (R, m) be a Noetherian local ring of characteristic p > 0 and dimension

d > 1 with K = R/ m perfect. Suppose R is reduced, equidimensional, and has an isolated
singularity. Then for every € > 0, there exists N > 0 such that for any m-primary ideal 1
with ((R/I) > N, we have

(1 —e)l(R/I) <eux(l) < (1+e)l(R/T).

Proof. We pass to the completion to assume R is complete, reduced, equidimensional and
has an isolated singularity. We fix a presentation R = W and let J be the Jacobian
ideal of R over K, i.e., J is the ideal generated by the (n —d) x (n — d)-minors of the matrix

(%) 1<i<t. Since K is perfect and R is equidimensional, the radical of J is the defining ideal
1<j<n

of the non-singular locus of R [26, Proposition 4.5 and Lemma 4.3]. Thus we know that .J
is m-primary. B

We next consider R = W with K = K(aij, bij), where (aij)nxn and (bi;)ixt
are matrices of new invertible indeterminates. Let (y1,...,yn) = (21,...,2,)(a;;) and
(g1, 9t) = (f1,--., ft)(bij). We claim that I?[[yn_dﬂ, e Unl] = R is module-finite and
generically étale (in fact, this holds for every K[[y;,,...,u:,]]). To see this, note that since K
is perfect and R is equidimensional, the complete module of differentials fAZ( r/P)/K has rank
d for every minimal prime P of R.? Thus by base change

rank 5 Q (B/P)/K = = rankp Q(R/p)/K.

Since (AZ( R/P)/R 1S generated by dxq,...,dz,, any d general linear combinations of them will
be a basis for Q@/P)/}? ®p/p £(F), where £(P) denotes the residue f‘ield at P (which is the
fraction field of R/P). It follows that dy, g1, .., dy, is a basis for Q(é/p)/f( ®%/p k(P) for

every minimal prime P. Therefore K [Yn—dt1;- - Y]]l = R is generically étale.

Let A = K[[yn—ast1s- .-, 9n)]. Since A — R is module-finite and generically étale, so is
AP 5 R@ 4 AVPS for any e. Since R ®4 AP s purely inseparable over R R®4 Al/p is
equidimensional. Moreover, we have R@ 4 AY/P° 22 AP [R] C RYP* (see [8, Lemma 6.4]) and
thus R @4 A7 is reduced. Now we apply Theorem 4.1 to S = R ®4 AY?* and B = A/P",
note that RYP° is contained in the normalization of R ®4 AP and S (o aa1/vey a1 =

Jija (R @4 AYP°) by base change (they have the same presentation), we have

JE/Aél/pe - §®A AP

2In fact, this is true even without assuming K perfect, but then one must choose a coefficient field carefully,
see [12, Exposé IV, 2.1.11].
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Since we have a presentation R= M, it follows from the definition that

(g15-,9t)
9gi 1/p° v
(4) ¢ = |2 |1<i<n-a € Jg/,, in particular cR/?" C R, AYY
83]] 1<j<n—d
At this point we mimic the strategy of the proof of Proposition 2.2. We consider the
following two short exact sequences:
0= R AYVY - RYP - C, =0
0— RY" 5 R AV — D, — 0.
It follows from (4) that C, and D, are annihilated by ¢ for any e, and u(C.) < pu(RYP),
w(D,) < u(R ® AYPY). Now we tensor the two short exact sequences with R/I for any

m-primary ideal I. Since A is a power series ring over K , A7 is a finite free A-module of
rank p® where v = d + log, [K'/? : K] (= d + n® + t*), we have

(R/IR)"" — RVP JIRV" — C./IC, — 0
RY" JIRVY — (R/IR)*" — D,/ID, — 0.
Computing length, we know that
pU(R/IR) — ((D,/ID,) < ¢(RY* JIRV") < p*¢(R/IR) + {(C./IC,),
where all the lengths are computed over R. Tt follows that
p7U(R/IR) — pU(R/(I,c)R) < ((RV" JIRY"") < p ¢(R/IR) + u(RY*)¢(R/(I,c)R).
Dividing the above by p®’, we get that for any m-primary / C R and any e, we have

f(é/[f{) (1 _ M) < g(ﬁl/pe/fél/pe) M(El/pe) | 5(&/([,0)@)) |

((R/IR) P P ((R/IR)
Taking limit as e — 0o, we have
WRJ/IR) [ 1— ((R/(1,0)R) ((R/(I,c)R)
((R/IR) UR/IR) |

Since I C R, ¢ E(E /IR) = (r(R/I). Therefore the theorem will be proved once we established
the following claim.

Claim 4.3. There exists N > 0 such that if (r(R/I) = ﬁﬁ(é/fﬁ) > N, then

U(R/(I,c)R) o E
U(R/IR) enx(R)’

< ((R/IR) (1 +

) < enk(I) < ((R/IR) (1 + enx(R)

Proof of Claim. Let I be the integral closure of I in R. Since (I, c)R is clearly integral
over (I, C)R by [14, Corollary 4.2] there exists a constant D such that ¢(R/(I,c)R) <
DUR/(I,c)R). Hence
UR/(T OR) _ S UR/(T O)R)
((R/IR) ~  URJIR)
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Thus by replacing €’ by €'/D, we may assume that [ is an m-primary and integrally closed
ideal of R. Consider the exact sequence

IR:ic ~ ~w =~ ~ = -
Oﬁ%%féRﬂR%RﬂR%RﬂhM$+Q

we see that

(RN, 0)R) = e(“fR )

Now we claim that for any divisorial valuation v of R centered at m, we have o(c) = 3(JR)

where ¥ is the extension of v to R. To see this note that since (g1, ..., ¢;) is a general (over
R) linear combinations of (fi,..., f;), ¢ = |2% Oy |1<Z<n 4 is a general linear combination of
1<j<n—d
|g§% ityein_g forall 1 <4y <9 < --- <14 < t. Therefore we have
! 1<j<n—d
_ . afi
v(e) = min {0(|57 i, 0 a) }-
11y-5tn—d Yj 1<j<n—d
But y1,...,y, are general (over R) linear combinations of x1, ..., z,, so each |8 liryosin g 18
T 1<j<n—d
a general linear combination of |8f’_ ityin_g forall 1 < g3 < go < -++ < jp—q < n. Thus
J1seesIn—d
Ofi ofi : ofi
in_g) = min {0(|=—i,.., N = min {v(|z—i,.., N
B A s AT v
Putting these together we see that
~ df; T
o(e) = min {o(|57 lirina)} = 0(J) = 0(JR).
seesin—d Lj j1yeein—d
Jise-osdn—d

Finally, we note that for any m-primary ideal a C R, @R = aR by [11, Lemma 8.4.2 (9)
and Lemma 9.1.1]. In particular, IR is integrally closed and to check whether an element is
in IR via the valuation criterion, it suffices to use divisorial valuations coming from R (i.e.,

the Rees valuations of IR are extended from the Rees valuations of I). Since 7(c) = (JR),
by the valuation criterion for integral closure, we have

IR:c=1R: JR.
Since JR is mé-prgnarzf, by Corollary 3.8, we know that there exists N > 0 such that for
any I C R with ¢(R/IR) > N, we have
UR/(I,e)R) _U((IR:¢)/IR) _U((IR:JR)/IR) e
((R/IR) ((R/IR) (R/IR)
This finishes the proof. U

0

As a consequence of Theorem 4.2, we prove Conjecture 1.2 part (a) in characteristic p > 0.
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Corollary 4.4. Let (R,m) be a Noetherian local Ting of characteristic p > 0 and dimension
d > 1 with K = R/wm perfect. Suppose R has an isolated singularity. Then for every
e > 0, there exists N > 0 such that for any m-primary ideal I with ¢((R/I) > N, we have
enx(l) < (14+e)l(R/I). As a consequence, e(1) < d!(1+e)l(R/I).

Proof. The second conclusion follows from the first by the inequality e(/) < d!epx([). To
prove the inequality on Hilbert—Kunz multiplicity, we deduce it from Theorem 4.2 by remov-
ing the reduced and equidimensional hypothesis on R.

We can write a primary decomposition of 0 in R in the following form

0=PN--P,NQ:iN---NQnN.J

where P; are minimal primes of dimension d, (); are minimal primes of lower dimension, and
J is the embedded component. Note that .J is necessarily m-primary since R has an isolated
singularity. It follows that S = ﬁ/ (PrN---N P,) is reduced, equidimensional, and has an
isolated singularity. Thus Theorem 4.2 can be applied to S. Let N(S) be the number that
works for € for S. R

Now for any m-primary ideal I C R we have ((S/1S) < {(R/IR) = ((R/I) and exk(IS) =
enk (1) because Hilbert—Kunz multiplicity does not see lower-dimensional components. Now

if ¢(S/1S) > N(S) then
eax(l) < (14 ¢e)0(S/1S) < (1 +e)l(R/I).
Otherwise, we have that
enk (1) = eux (1.5) < egx(S)U(S/IS) < epx(R)N(S).
Hence the assertion holds for N = exx(R)N(S)/(1 + ¢). O

The following partial result on Conjecture 1.3 is immediate.

Corollary 4.5. Let (R,m) be a Noetheman local ring of characteristic p > 0 and dimension

d > 1 with K = R/ m perfect. Suppose R has an isolated singularity and that e(Rred) > 1.
Then

. e(/
i, e (g f <o) 5 o)
UR/T)>N

Proof. Corollary 4.4 implies that the left hand side is less than 1 + ¢ Afor every €. Therefore
it is enough to show that egx(R) # 1. But if eyx(R) = 1, then R/P is regular for the

(necessarily unique) minimal prime of R of dimension d. Therefore e(Ryeq) = 1 which is a
contradiction. U
Remark 4.6. Let R be as in Corollary 4.5, if d > 2, then we actually have sup 7_, {%} <
enk (R). This is because by Corollary 4.5, we know there exists ¢ > 0 and N > 0 such that

d,;((é)/l) < epk(R) — € for all I such that ¢(R/I) > N. On the other hand, if ¢{(R/I) < N,

then the set {,QL} is a finite set of rational numbers, each one is strictly less
ALRIT) § yp/ry<n

than EHE/I) by [6, Theorem 2.2], and hence strictly less than egk(R) by [29, Lemma 4.2].
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Thus by shrinking ¢ if necessary, sup, 7_, {%} <epk(R) — e < egk(R). One can also

e(l

show that in this case sup 7_, {W} is attained for some m-primary ideals /.

We next give examples to indicate the sharpness of our result. We present a counter-
example to the statement of Conjecture 1.2 (a) without the isolated singularity assumption.
We recall a simple lemma.

Lemma 4.7. Let (R,m) be a Noetherian local ring of dimension d and let S = R][[T]]. For
an m-primary ideal I let J =15+ T*S. Then e(J) = Le(I).

Proof. One may compute a power of J as follows
Jn = J" + InT+ InT2 + InTS et ]nTL—l + ]n—lTL + ]n_lTL+1 4ot In_1T2L_1+
) (i e R N A S A A A

Thus we have
((S)T") =LY U(R/I)
k=0

and lim,, o, Y — T e(T), O

Example 4.8. Let (R, m) be a Noetherian complete local ring of dimension d > 1 such that
e(R) > 2(d+ 1)!. Consider the ring S = R[[T]] and let
J=J(N,L):= (@ 4+ T+ .4 mTV '+ mT +. . 4 mTE 1+ TH)S,
Observe that J is an (m, T)-primary ideal in S and J C (m,T)%, so in particular £(S/J) > N.
We now estimate its colength and multiplicity as
e(J) >e(m+mT +---+mT* '+ Th) = Le(R)
and
0S)J)=¢R/mY) + -+ U(R/m*)+ L—N+1<2L for L>0.
Now, for any € > 0 and any N, by taking L > 0 one will get that
e(J) > Le(R) >2L(d+ 1)! > (d+ 1)!(1 +¢e)l(S/J).

So the upper bound in Theorem 4.2 (and Corollary 4.4) cannot hold in general. However,
note that such S cannot be an isolated singularity.

Remark 4.9. We observe that the lower bound in Theorem 4.2 also cannot hold in general.
In [13, Example 4.6], Klein gives an example of a four-dimensional normal local ring R such
that there exist a sequence of parameter ideals ,, € m™ such that

tim 0y

n—oo e(In)

Since Hilbert—-Kunz and Hilbert—Samuel multiplicities agree for parameter ideals, R cannot
satisfy the conclusion of Theorem 4.2. The R constructed in [13, Example 4.6] is not Cohen—
Macaulay on the punctured spectrum, and hence cannot be an isolated singularity.
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We end this section by proving the one-dimensional case of Conjecture 1.2 (a) in all
characteristics. This will be used in the next section.

Proposition 4.10. Let (R,m) be a Noetherian local ring of dimension one. Suppose R
has an isolated singularity. Then for every € > 0, there exists N > 0 such that for any
m-primary ideal I with ((R/I) > N, we have e(I) < (1 +e)l(R/I).

Proof. We can pass to the completion to assume R is complete. Since R is a one-dimensional
isolated singularity, the nilradical of R has finite length. Thus, replacing R by R,.q will not
affect e(/) and will only drop ¢(R/I) (by at most the length of the nilradical). Therefore we
can replace R by R,.q to assume that R is reduced.

Let Py,..., P, be the minimal primes of R and note that R C [[, R/P,. Let S be the
integral closure of R in its total quotient ring [ [, Frac(R/P;). We write S =[] S;, where S;
is the integral closure of R/P; in its field of fractions. Since R is complete it follows that S;
is a DVR.

We have an exact sequence 0 - R — S — C' — 0 with dim C' = 0, which for each i
specializes to an exact sequence

0—R/P,— S, —C;—0,

where C; has finite length. Let r; be the degree of the residue field of S; over R/ m. By the
associativity formula for multiplicity, for any m-primary ideal I C R we have

e() =Y e(I,R/P)=> e(I,S) =) rie(IS;,S).

Since S = [[;_, Si, it follows that (g(S/IS) = zn:KR(Si/]Si). Since S; is a DVR, we have
i=1
ls(S;/1S;) = e(IS;,S;) and thus
e(I) = > rie(I8,8)="> rils(Si/15;) = Lr(S/IS)

< Ur(R/I) 4+ Cr(C/IC) < Lr(R/T) + Lr(C).
Therefore we can pick N > 0 such that eN > ¢(C). For any m-primary ideal I such that
U(R/I) > N, we then get e(I) < U(R/I)+((C) < (1 +¢)l(R/I) as desired. O

5. PROOF OoF THEOREM A

In this section we prove the remaining part of Theorem A regarding to Conjecture 1.2 part
(b). We begin by recalling [10, Lemma 2.6], that was stated for x being a regular element,
but its proof applies for a weaker assumption.

Lemma 5.1. Let (R, m) be a Noetherian local ring of dimension d > 0, I be an m-primary
ideal, © be a parameter element, and R' = R/xR. If v ¢ I, then we have

(a) ((R/I) = UR/(I : x)) + L(R'/]),

(b) e(l) <e(l:z)+de(IR).

In particular,
e(I) < max{ e(l:x) de(IR') }
((R/I) — OR/(I:x)) {(RIR) |~
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Lemma 5.1 gives us a powerful induction tool for Lech-type inequalities. It immediately
provides an alternative, and simple proof of Lech’s inequality. We will later generalize this
strategy to prove our main result.

Corollary 5.2 (Theorem 1.1). Let (R,m) be a Noetherian local ring of dimension d. Then
for any m-primary ideal I we have e(I) < dle(R){(R/I).

Proof. We may assume that the residue field is infinite by passing to R(t) = R[t|mrp. We
use induction on d, where the base case d=0is tri/\iial.

If d = 1, we can replace R by R and then by R/H(R) to assume R is complete and
unmixed (this doesn’t change the multiplicity and will only possibly decrease the colength).
Using the associativity formula we then further reduce to the case in which R is a one-

dimensional complete local domain. Let S be the integral closure of R in its fraction field.
Then S is a DVR. Let r be the degree of the residue field of S over R/ m. We have

e(l)=e(l,S)=re(lS,S)=1ls(S/1S) =Lr(S/IS).

In particular, we have e(R) = (x(S/m.S). Now by taking a filtration of I C R by R/ m and
base change to .S, we have

For d > 2 we also use induction on ¢(R/I). The inequality clearly holds for I = m. For
arbitrary I we use Lemma 5.1 for a superficial element € m (thus e(R) = e(R') by [11,
Proposition 8.5.7 and 11.1.9]). Then e(I : z)/¢(R/(I : x)) < d!e(R) by the induction on the
colength and de(IR')/¢(R'/IR') < d!e(R) by the induction on the dimension. O

Now we start the proof of Conjecture 1.2 (b) in equal characteristic. We first show that
the “if” direction hold, in arbitrary characteristic.

Proposition 5.3. Let (R,m) be a Noetherian local ring of dimension d > 1. Suppose

: e(])

1 _ed) |

A {dw(R/I)} <e(R)
UR/T)>N

~

Then we have e(Ryeq) > 1.

Proof. Without loss of generality, we may assume that R is complete. If e(Req) = 1, then
consider the family of ideals I, = m™ + /0. Since m" C I,, C m", we have e(I,) = e(m”) =
nde(R). On the other hand, ¢(R/I,,) = {(Ryeq/ M™ Ryeq), SO as n tends to infinity it tends to
nd/d! since e(Ryeq) = 1. Therefore

e(ly,) nte(R)

lim -y A
R/ L) A ey~ )

which is a contradiction. O

The next lemma originates from [4, Korollar 4.2] where the assumption on dimension was
missing. We present a proof here for completeness.
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Lemma 5.4. Let (R, m) be an equal characteristic Noetherian complete local ring of dimen-
sion d such that R/m is an infinite field. Let s < d — 2 and suppose R satisfies (Ry), i.e.,
Rp is regular for all primes of height at most s. Then for a general element x of m, R/zR
also satisfies (Ry).

Proof. Flenner [4, Satz 4.1] shows that a general element x € m satisfies that = ¢ P® for
any P # m. We will also demand that « ¢ @ for any minimal prime ideal @ of the defining
ideal of the singular locus J of height s + 1 (note that ht J > s+ 1 by our assumption, and
if J has height > s+ 2, then this condition is empty). This is possible because s + 1 < d by
our assumption.

Note that if the image of a prime ideal P containing x is a height h prime of R’, then P
has height i + 1. Since x* ¢ P?Rp, if Rp is regular then Rp/xRp is also regular. This is
automatic if h < s. If h = s, then since x € P, it follows that J is not contained in P (since
otherwise ht P > s+ 2) and hence Rp/zRp is still regular. O

The following lemma is also well-known. But we include a short proof for completeness.

Lemma 5.5. Let (R,m) be a Noetherian local ring of dimension one. Then the number of
generators of any m-primary ideal is bounded by e(R) + ((H2(R)).

Proof. Observe that S := R/H?(R) is a Cohen-Macaulay ring. Then
p(l) = ((I/mI) < p(IS) + (((Hy(R) + mI)/mI) < u(IS) + €(Hy (R)).
We may extend the residue field of R and S without changing p(15) or e(S) = e(R). Thus
we may assume m has a minimal reduction x. Now for any m-primary ideal I, we have
u(IS) = L(IS/mIS) < L(1S/z1S) =e(x,IS) =e(x,S) =e(R). O
We next recall the following result of Hanes ([6, Theorem 2.4]).

Theorem 5.6 (Hanes). Let (R,m) be a Noetherian local ring of characteristic p > 0 and
dimension d > 1. Then for any m-primary ideal I we have

( (I)l/(d—l) _ 1)d—1 1 d—1
a o0 epx(l) = d! (1 - W) enx([).

Proposition 5.7. Let (R,m) be an equal characteristic Noetherian complete local ring of
dimension d > 1. Then for any m-primary ideal I such that (1) < C, we have

o(I) < d! (1 - %) o(RUR/D).

Proof. If R has characteristic p > 0, then the assertion follows from Theorem 5.6 and the
fact that epx (1) < enx(R)(R/I) < e(R)((R/I) (for example see [29, Lemma 4.2]).

If R has characteristic 0, we prove it using Artin approximation and reduction mod p > 0.
We give the idea and omit the technical details here. Suppose we have a counter-example
in characteristic 0, then we think of the counter-example as a pair (R, ), where R is a
finitely generated module over a complete regular local ring A that has an algebra structure,
I C R is an A-submodule that is also an R-submodule whose number of generators over
R is < C. All these data can be described by using equations over A. We next note that

e(l) <d!
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one can keep track of e([), e(R) and ¢(R/I) using equations, for example see [21, 5.1].%
Therefore by Artin approximation, the counter-example descends to a counter-example over
a henselian regular local ring A’, and thus descends to a counter-example essentially of finite
type over K = R/m. We then use standard reduction mod p > 0 technique to obtain a
counter-example in characteristic p > 0, by noting that e(/) and e(R) can be computed by
alternating sum of the lengths of Koszul homology modules of a minimal reduction of I and
m respectively, and by picking a suitable model and the generic flatness, these lengths at
the generic fiber are the same as the special fiber for p > 0 (see [21, 5.2]). Therefore we
eventually arrive a counter-example in characteristic p > 0, which is a contradiction. U

We now prove the main result of this section. Compared with Theorem 1.1, this result
says that, under very mild assumptions on R, in dimension at least two Lech’s inequality can
be improved uniformly for all m-primary ideals /. The rough strategy is to use Lemma 5.1
and Lemma 5.4 to reduce to the case that dim R = 2, and then combine the previous results
to handle the two-dimensional case.

Theorem 5.8. Let (R,m) be an equal characteristic Noetherian complete local ring of di-
mension d > 2. Suppose R satisfies (Ry) and that e(R) > 1. Then there exists € > 0 such
that for any m-primary ideal I, we have

e(I) < di(e(R) — £)¢(R/I).

Proof. We may pass to R(t) = R[t|mpgp to assume that R has an infinite residue field.
Let x € m be a general element and R' = R/xR. We note that R’ still satisfies (Ry) by
Lemma 5.4, and since d > 2, we have e(R) = e(R') by [11, Proposition 8.5.7 and 11.1.9].

We use induction on d and we first show the inductive step. So, we assume d > 3 and the
result holds for R'. That is, there exists € such that e(J) < (d — 1)!(e(R') — e)¢(R'/J) for
any m-primary ideal J in R’. We use induction on ¢(R/I) to show that the same £ works
for R (the initial case I = m is obvious). By Lemma 5.1 we have

e(I) < max{ e(l:x) e(IR)
dUW(R/I) ~ dW(R/(I:x)) (d—1)¥(R'/IR)

[t remains to prove the base case d = 2. Let € m be a general element and R = R/zR.
We note that R’ still satisfies (Rg) by Lemma 5.4. Fix any gy > 0 such that e(R) —eo > 1. By
Proposition 4.10 we can find N such that e(J) < (e(R) — eo)l(R'/J) for every ideal J C R’
such that ¢(R'/J) > N.

Now, suppose that ((R'/IR') < N (e.g., {(R/I) < N). By [5, Lemma 2.2] or [27, Theo-
rem 1], u(I) < p(IR') + ¢(R'/IR') and by Lemma 5.5 this implies that p(I) is bounded by
a constant C' that only depends on R and R’. Therefore by Proposition 5.7,

o(I) < 2 (1 - é) o(R)(R/I).

Thus we can find &, such that e(I) < 2(e(R) — e1)l(R/1).

} <e(R)—e=¢(R)—c¢.

3[217 5.1] only explains this when I = m, but the same argument works for arbitrary m-primary ideal I.



24 CRAIG HUNEKE, LINQUAN MA, PHAM HUNG QUY, AND ILYA SMIRNOV

Finally we use induction on ¢(R/I) to show that & = min(eg, 1) works for all I. We may
assume that ¢(R'/IR') > N. Then by Lemma 5.1 we have

e(I) e(l:x) e(IR)

20(R/T) =M { 20(R/(I : z)) ((R'/TR)) } < e(R)—e. O

In dimension > 2, Conjecture 1.2 (b) follows from Theorem 5.8 (in equal characteristic):

Corollary 5.9 (Uniform Lech’s inequality). Let (R, m) be an equal characteristic Noetherian

~

local ring of dimension d > 2. Suppose e(Ryeq) > 1. Then there exists € > 0 such that for
any m-primary ideal I, we have e(I) < d!(e(R) — e)¢(R/I). In particular,

_ e(l)
B S O — )
Vo {dww/n}—e(m e <elf)
L(R/I)>N

Proof. Since completion does not affect colength and multiplicity, we may assume that R is
a complete local ring of dimension d > 2. Let Pi,..., P, be minimal primes of R such that
dim(R/FP;) = d. By the associativity formula for multiplicity, we have

n n

e(IRwa) =Y e(I,R/P) and e(Ria) =Y e(R/P).

i=1 =1

Thus by applying Theorem 5.8 to R..q, we know there exists € such that for any m-primary
ideal I,

n n n

> e(I,R/P) < d\()_e(R/P;) = e)l(Riea/IRuea) < dI(D>_e(R/P) — ){(R/I).

i=1 i=1 i=1
Therefore for any m-primary ideal I there exists k such that

e(I,R/Py) < dl(e(R/Py) —e/n)t(R/I).
For i # k, by Lech’s inequality we know that e(/, R/F;) < d'e(R/P;)¢{(R/I). Thus by the

associativity formula for multiplicity

n

e(I) = Y (I, R/P)((Rp,)

=1

< Xn: dle(R/P)((R/T)((Rp,) — d!%ﬁ(Rpk)E(R/I)

—d! (e(R) - %e(Rpk)) U(R/T).

Therefore by setting ¢’ = £ min; /(Rp,) > 0, we see that (/) < d! (e(R) —¢)) ((R/I) for any
m-primary ideal I. 0

It remains to prove Conjecture 1.2 (b) in dimension one. We point out the following fact
which is of independent interest.
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Lemma 5.10. Let (R,m) be a Noetherian local ring of dimension d > 1. Then we have:

lim  sup {ﬂ}— lim sup {ﬂ}
N—oo - | dU(R/T) N—oo - | dU(R/T) ’
UR/T)>N ICmN
Proof. If I C m", then clearly ¢(R/I) > N so “>" is obvious. Now we fix N and we let

\ = sup}ﬁ}?{%}. For any I let I’ = I Nm". Then we have e(I) < e(I’) while
Cm

[+m

((R/T) = UR/T) = L(I/T') = ((R/T") — {( ) > UR/I') — ((R/m™).

Since I’ C m", we have

e(1) e(l") UR/T")
A(R/T) = A(R/T) — (RjmV)) = <€<R/I'> — (R mN)) |

Note that when ¢(R/I) — oo, {(R/I') — oo and hence % — 1. Thus

e()
lim  sup {—}S)\. O
Nooo o LdU(R/I)

(R/I)>N

Finally we prove Conjecture 1.2 (b) in dimension one, in all characteristics. In fact, we
can completely understand this asymptotic invariant in dimension one.

Proposition 5.11. Let (R,m) be a Noetherian local ring of dimension one. Then we have

I . .
A}l_r)rloo \sfupm {%} =l := max{{(Rp,)|P; is a minimal prime of R}.
¢(R/I)>N
In particular, if e(ﬁred) > 1, then
e(/)
lim sup { } < e(R).
(R/I)

Proof. Since completion does not affect colength and multiplicity, we may assume R is com-
plete. Note that by Proposition 4.10, for any € > 0, there exists N > 0 such that if / C m"
(and hence I Req € m¥ Ryeq), then

e(IRrea) < (1 + )l(Reea/IRrea) < (1 +e)l(R/I).
Let Py,..., P, be the minimal primes of R. By the associativity formula for multiplicity,

Zf (Rp)e(I,R/P) <1- Z (I,R/P) =1-e(IRwq) <1-(1+e)l(R/I).

Therefore by Lemma 5.10, we have

e o {aef(z[/)n}:H‘w?pm{aef(z[/)f)}Sl‘

LR/I)>N ICm®
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On the other hand, we know | = ¢(Rp,) for some i. Consider the ideal Iy = P, +m®~. Then
clearly ¢(R/Ix) > N and we have

e(Iy) = En:e(RPi) e(In,R/P) >1-e(m™,R/P,) =1-Ne(R/P).

Therefore we have

im  su e(/) im —e(IN) im L Ne(R/P) =
A ) %%N {E(R/I) } Z M TR S A WP+ mY)

Finally, if e(Ryeq) > 1, then either n > 2 or e(R/P;) > 1, so in either case we have [ < e(R).
Thus the last assertion follows. U

Remark 5.12. (a) In the case d > 2, the conclusion of Corollary 5.9 is stronger than
what Conjecture 1.2 (b) predicts as it shows that % is uniformly bounded away
from e(R) for any m-primary ideal, while Conjecture 1.2 (b) only expects this for
sufficiently deep ideals. However, we point out that these are actually equivalent

I

statements. Suppose one knows % < e(R) — ¢ for any m-primary ideal [ with

¢(R/I) > N. Then since {%}g(R/I)SN is a finite set of rational numbers with
a bounded denominator and each is strictly less that e(R) by the non-sharpness of
Lech’s inequality in dimension > 2 (see [19, page 74, after (4.1)]), we know there
exists €’ such that % < e(R) — ¢ for any m-primary ideal I.

(b) If R has characteristic p > 0 and dim R = 2, the method we used in the proof of
Theorem 5.8 and Corollary 5.9 can be adapted to prove Conjecture 1.3 if dim R = 2.
We omit the details and leave this to the interested reader. Note that, however,
one cannot expect to use the same strategy to prove Conjecture 1.3 in the higher
dimensional cases. Because it is not true in general that we can find an element x € R
such that egk(R) = egx(R/xR). For example if we let Ry = K[[z1,...,z4)]/(2? +
-+-+22), then R/xR is isomorphic Ry ; for a linear form x, but egx(R3) > exx(R4),
see [31, §4].

As explained in [3, Remark 3.4], an improvement in Lech’s inequality gives an improved
Lech-type inequality on the number of generators of an integrally closed ideal.

Corollary 5.13. Let (R,m) be a Noetherian local ring of dimension d with infinite residue
field, x denote a general element in m, and I be an m-primary integrally closed ideal.

~

(a) If R is equicharacteristic, d > 3, and e(Ryeq) > 1, then there ezists € > 0 independent
of I such that

e(IR/xR) < (d—1)!(e(R) —e)(u(I) —d +1).

(b) If R has an isolated singularity of characteristic p > 0, d > 2, and R/m is a perfect
field, then for every e > 0, there exists N > 0 such that if u(R/I1) > N then

e(IR/zR) < (d — D)1+ &)((I) —d + 1).
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Proof. The proof of both results follows from the same argument as in [3, Theorem 3.1}, which
is based on Lech’s inequality in R/zR and a formula of Watanabe: u(I) = u(IR/xR) +
U(R/(I,z)) (see [27]). For the second assertion we observe that R/xR is still an isolated
singularity by the proof of Lemma 5.4 and that p(I) < 2¢(R/(I,x)) by Watanabe’s formula.

O
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