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Weil representation and Arithmetic

Fundamental Lemma

By W. ZHANG

Abstract

‘We study a partially linearized version of the relative trace formula for
the arithmetic Gan—Gross—Prasad conjecture for the unitary group U(V').
The linear factor in this relative trace formula provides an SLa-symmetry
which allows us to prove by induction the arithmetic fundamental lemma

over (Q, when p is odd and p > dim V.
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1. Introduction

The theorem of Gross and Zagier [14] relates the Néron-Tate heights of
Heegner points on modular curves to the central derivative of certain L-func-
tions. The arithmetic Gan—Gross—Prasad conjecture [9], [46], [40] is a general-
ization of this theorem to higher-dimensional Shimura varieties. This conjec-
ture is inspired by the (usual) Gan-Gross—Prasad conjecture relating period
integrals on classical groups to special values of Rankin—Selberg tensor prod-
uct L-functions. In [21] Jacquet and Rallis proposed a relative trace formula
(RTF) approach to this last conjecture in the case of unitary groups, and there
has been much progress along this direction in the past years. Inspired by their
approach, in [46] the author proposed a relative trace formula approach to the
arithmetic Gan—Gross—Prasad conjecture. This approach reduces the problem
to certain local statements, notably the arithmetic fundamental lemma (AFL)
conjecture formulated by the author in [46], and the arithmetic transfer (AT)
conjecture formulated by Rapoport, Smithling, and the author [37], [38]. The
AFL and AT conjectures relate the special values of the derivative of orbital in-
tegrals to arithmetic intersection numbers on a Rapoport—Zink formal moduli
space (RZ space) of p-divisible groups,

601‘b(’y, ]'Sn(OFD)) = —Int(g) - logg;

cf. the precise statement of Conjecture 3.8 for the AFL conjecture.

The goal of this paper is to give a proof of the AFL conjecture over
Fy = Qp when p > n for an open dense subset of regular semisimple elements
(i.e., the set of “strongly regular semisimple elements” in the sense of [45]);
cf. Theorem 15.1. This restriction is harmless for the relative trace formula
approach to the arithmetic Gan—Gross—Prasad conjecture.

In fact, we also obtain a proof of the Jacquet—Rallis fundamental lemma,
(FL) conjecture over p-adic field, a theorem due to Yun [45] and Gordan [13]
for p large, which is an identity between two orbital integrals

Orb(~, lSn(Opg)) = Orb(g,1k,);

cf. the precise statement of Conjecture 2.3. The idea is similar to the proof of
the AFL and is easier to explain. For our proof of the FL, the main input is a
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WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 865

study of a “partially linearized” version of the Jacquet—Rallis RTF, which we
call a semi-Lie algebra version. This is closely related to the RTF of Yifeng
Liu to the Fourier-Jacobi periods/cycles [29], [30]. The advantage of the lin-
earization is to gain more “symmetry,” i.e., there is an “action” on the RTF
(changing test functions) by SLs under the Weil representation. The SLa-
modularity plays the role in the global setting of the Fourier transform in
the local harmonic analysis, a crucial ingredient in [47] to prove the smooth
transfer conjecture of Jacquet—Rallis.

Now we give a little more detail of our approach. Let Fy be a totally
real number field, and F' a CM quadratic extension of Fy. Let V' be an F'/Fy-
hermitian space with dimpV = n, and let U(V') be the associated isometry
group (a reductive group over Fp). Consider the (diagonal) action of U(V) on
the product U(V) x V', where the two factors are viewed as affine varieties over
Fy endowed with the conjugation action and the standard action respectively.
For unexplained notation, we refer the reader to Section 1.2 and the main
body of the paper. To any Schwartz function ® € S((U(V) x V)(Ay)), we can

associate a kernel function

Ka(g) = Z ‘I’(g_l(ﬁ, u)), g€ U(V)(Ao),

(d,u)e(U(V)xV)(Fo)

which is left invariant under U(V')(Fp). Then, as one usually does in the theory
of relative trace formula, one may study the distribution on (U(V') x V')(Ao)
(at least for certain nice test functions @),

I[(®) = \/[U(V)] Ka(g) dg.

Here [G] := G(Fp)\G(Ap) for an algebraic group G over Fy. Similarly, one
can start with the (diagonal) action of GLy r, on the product S, x V., where
V) = Min x My,1 is the product of the space of column and row vectors; cf.
Section 2.1. To any Schwartz function ® € S((Sn xV,;)(Ao)), we have a similar
kernel function K¢ and a distribution (for nice test functions ®')

I®) = [ Kelo)nem o det(a) da
[ L‘n‘Fg
By the smooth transfer between ® and ®’ through their orbital integrals (rel-
ative to the group actions here), one can match the distributions I and J.
Now, due to the presence of the linear factors V and V, respectively, the

Weil representation w of SLy(Ag) acts on S((U(V') x V)(Ap)) and S((S, X
V) (Ag)), hence on the distributions I and J,

I(h,®) :=[(w(h)®) and J(h,®"):= J(w(h)D"),
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866 W. ZHANG

where h € SLy(Ap). Moreover, the action is “modular” in the sense that
h +— I(h,®) and J(h,®') are left invariant under SLy(F}), as an application
of the Poisson summation formula. In other words, we may enrich the kernel
function to a two-variable one:

Ks(g,h) = > w(h)®(g7(5,u)), g€ U(V)(Ag), h € SLa(Ay).
(6,u)e(U(V)xV)(Fo)

The natural question now is how the Weil representation fits into the com-

parison of the two distributions. From [47] and [43] one can deduce that the

Weil representation commutes with smooth transfer; cf. Theorem A.1 in the

appendix.

Both distributions I and J can be expanded as a sum over orbital inte-
grals. Then the SLs-modularity amounts to certain recursive relations between
the orbital integrals appearing in I and J. One may hope that the recursive
relations are ample enough to allow us to extract identities such as the afore-
mentioned fundamental lemma, starting from some simple identities that can
be verified directly. This resembles the situation in the geometric approach
(cf. [34], [45]) where one also needs to verify some simple cases directly as a
starting point before applying the “perverse continuation principle.”

The idea does not work directly to yield a proof of the Jacquet—Rallis FL;
however, it does work if we take two additional inputs. The first input is to
consider a “slice” of the semi-Lie algebra version. For example, we fix a suitable
monic polynomial & and denote by U(V')(a) the subscheme of U(V') consisting
of elements with characteristic polynomial equal to a. We then introduce a
kernel function,

Ko.a(9) = > ®(g7'(6,u)), g€ U(V)(Ao).
(B:w)e(U(V)(a)xV)(Fo)
Here the sum runs only over a subset of U(V')(Fp)-orbits on (U(V) x V)(Fp).

Similarly, we define a distribution
Io(®) = / Ks.a(g) do.
[Vl
This still keeps the action of SLy(Ag) under the Weil representation w,

(1.1) Io(h, ®) = Ia(w(h)®), h € SLa(Aq).

We have the similar construction for S, x V,;. Clearly by varying a we have
refined the relations between the orbital integrals appearing in I and J. In the
local situation, this sliced version was utilized in [47] to prove the existence of
smooth transfer by an induction argument. Here we are exploiting the global
analog, i.e., the SLo(Fp)-modularity of (1.1) and its counterpart for J.
Another input is to impose that U(V') is compact at archimedean places,
and at the same time to plug in a (weaker version of ) Gaussian test function; cf.
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WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 367

Section 12. This simplifies the spectra of the SLy-automorphic forms I,(-, ®)
and its counterpart on S, x V., to the extent that the spectra are finite. In
fact, in our case, they lie in a finite dimensional vector space corresponding to
classical holomorphic modular forms with known levels and weights.

The two inputs allow us to deduce the Jacquet—Rallis fundamental lemma,
by induction on the dimension of V', at least when p > dim V.

Now that we have explained our approach to the FL, let us move to
the AFL conjecture. We have indicated that the extra symmetry is the SLo-
modularity of the kernel function, which follows from the Poisson summation
formula. In the arithmetic setting, the extra symmetry is a version of the mod-
ularity of generating series of special divisors in the arithmetic Chow groups
of the integral models of unitary Shimura varieties (e.g., in the recent work of
Bruinier-Howard-Kudla-Rapoport—Yang [5]).

To take advantage of the modularity, we consider the semi-Lie algebraic
version of the AFL conjecture, which has appeared in Mihatsch’s thesis [31, §8]
and in Liu’s work [30, Conj. 1.11]. In the semi-Lie algebraic version, we consider
the intersection numbers of the Kudla-Rapoport divisors (KR divisors, for
short) [24] and the (derived) fixed point locus of an automorphism of the RZ
space. We show in Section 3 that there is an inductive structure similar to the
smooth transfer and the fundamental lemma. More precisely, it is possible to
reduce the special case when the KR divisor is (formally) smooth to the AFL
in one-dimension lower. This is still hardly useful if we only work on the local
moduli space. Therefore we introduce a global version of the fixed point locus,
called “the derived CM cycle,” or “the fat big CM cycle,” being a “thickened”
variant of the “big CM cycle” in the work of Bruinier-Kudla—Yang [6] and
Howard [18]. The naively defined CM cycle may have dimension larger than
expected. However, we note that it is a union of connected components of
the fixed point locus of a Hecke correspondence (over the integral model); cf.
Section 7.5. Therefore there is a natural derived structure on the naive CM
cycle, and the derived CM cycle has virtual dimension one, as expected.

By the modularity of generating series of special divisors mentioned above,
we obtain a modular form (with known level and weight) by taking the (arith-
metic) intersection numbers (cf. (9.4)) of a fixed (derived) CM cycle with spe-
cial divisors; cf. Section 9.2. The rest is then similar to the proof of the FL
conjecture. The resulting modular form is the arithmetic analog of (1.1). By
induction, together with a special case of the AFL (cf. Proposition 3.9), one
may assume that the £&-th Fourier coefficients are known if £ is prime to a cer-
tain finite set of places. The desired equality for all Fourier coefficients then
follows from the modularity of the generating series and a density principle
for the Fourier coefficients of holomorphic modular forms (cf. Lemma 13.6).
Finally, one deduces the AFL conjecture from the global identity, together
with a local constancy property of the intersection numbers on RZ spaces; cf.
Theorem 5.5.
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368 W. ZHANG

In our approach, it is important to understand the archimedean local inter-
section (i.e., the values of Green functions; cf. Section 10), and correspondingly
the derivatives of the archimedean orbital integrals for Gaussian test functions
(cf. Section 12). After subtracting the archimedean terms, the intersection
numbers and derivative of orbital integrals at non-archimedean places all lie in
the (Q-linear span of log p for a finite set of primes p. One can then separate the
contribution from different primes by the linear independence of logarithms of
prime numbers.

We have restricted this paper to the case Fy = Q since in a few places
there are missing ingredients in the literature and some of them are subtle.
However, we have tried to present most of the arguments in the general totally
real field case, especially in the analytic side of RTF.

We would like to point out some earlier works related to the AFL conjec-
ture. The author proved the AFL for low ranks of the unitary group (n = 2
and 3) in [46]. Rapoport, Terstiege and the author [41] proved it for arbitrary
rank n < p and minuscule group elements. A Lie algebraic version (in the case
of artinian intersection) was studied by Mihatsch in [33], [31], simplifying the
proof and generalizing the result in [46]. Finally, in the minuscule case, Li and
Zhu in [27] have given a simplified proof of [41]; recently, He, Li, and Zhu [17]
have also removed the restriction on the residue characteristic.

During the preparation of this paper, the author learned that Beuzart-
Plessis [2| has given a purely local proof of the Jacquet—Rallis fundamental
lemma, for all p-adic fields with p odd, by induction and using a more precise
version (i.e., a local relative trace formula) of the compatibility between the
local Weil representation (mainly the Fourier transform) and smooth transfer.
It is an interesting question whether there is a purely local proof of the AFL
along the line of his proof.

1.1. Acknowledgements. We thank Chao Li, Andreas Mihatsch, Michael
Rapoport, Chen Wan and the referee for their comments. An earlier version
of the paper was circulated in the ARGOS seminar in the spring 2019 and in a
seminar in Morningside center Beijing in the summer 2019. The author would
like to thank Michael Rapoport and Ye Tian for communicating comments
from their seminars, which have helped the author improve the paper.

1.2. Notation.
Notation on algebra
e R, : the set of positive real numbers.

e Let F' be a field of character zero. For a reductive group H acting on an
affine variety X, we say that a point z € X (F') is
— H-semisimple if Hz is Zariski closed in X (when F' is a local field, equiv-

alently, H(F')z is closed in X (F) for the analytic topology);
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— H-regular if the stabilizer H, of x is trivial.

And we say that z is reqular semisimple if it is regular and semisimple. We
denote by X (F')s the set of regular semisimple elements and by [X (F')],s the
set of regular semisimple H(F')-orbits. We denote the categorical quotient
by X g with the natural map X — X /y.

For global fields, unless otherwise stated, ' denotes a CM number field and
Fy denotes its (maximal) totally real subfield of index 2. We denote by a — @
the nontrivial automorphism of F/Fy. Let Fj  (resp. Fy>o) be the set of
totally positive (resp. semi-positive) elements in Fj.

We denote H = SL» as an algebraic group over Fy. Denote by B the Borel
subgroup of upper triangular matrices and by N its unipotent radical.

We use the symbols v and vg to denote places of Fp, and we use w and wyqg
to denote places of F'. We write Fy, for the v-adic completion of Fy, and we
set [ := F ®p, Fy,; thus F}, is isomorphic to Fy, x Fy, or to a quadratic
field extension of Fj, accordingly as v is split or non-split in F'. We write
Opyw C Foyp for the ring of integers. We use analogous notation for other
fields in place of Fp and other finite places in place of v.

Unless otherwise stated, we write A, Ag, and A for the adele rings of Q, Fp,
and F', respectively. We systematically use a subscript f for the ring of finite
adeles and a superscript p for the adeles away from the prime number p.

For an abelian scheme A over a locally noetherian scheme S on which the
prime number p is invertible, we write Tj(A) for the p-adic Tate module of

A (regarded as a smooth Zp-sheaf on S) and Vp(A4) := Tp(A) @ Q for the
rational p-adic Tate module (regarded as a smooth @Qp-sheaf on S). When S
is a Zy)-scheme, we similarly write Y (A) for the rational prime-to-p Tate
module of A. When S is a scheme in characteristic zero, we write {}(A) for

the full rational Tate module of A.

We use a superscript o to denote the operation — ®z Q on groups of homo-
morphisms of abelian schemes so that, for example,

Hom°(A, A") := Hom(A, A") @z Q.

All Chow groups and K-groups have QQ-coefficients.

Given a discretely valued field L, we denote the completion of a maximal
unramified extension of it by L.

We write 1,, for the n x n identity matrix. Let My, ,,(R) denote the R-module
of n x m-matrices with coefficients in a ring R.

For a vector space V over a field Fy (of characteristic not equal to 2), a
quadratic form q : V — F has an associated symmetric bilinear pairing
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870 W. ZHANG

defined by

(1.2) (z,y) =q(z+y) —q(z) —a(y), =zyeV.
In particular,

(1.3) (z,z) = 2q(x).

For a quadratic field extension F' of Fy, an F'/Fp-hermitian space is an
Fo-vector space V' endowed with an Fp-linear action of F' and an “F/Fp-
hermitian form,” i.e., a map (-,-) : V x V — F that is F-linear on the first
factor, and conjugate-linear on the second factor. Its dimension will be the
dimension as an F-vector space. It induces a symmetric bi-Fp-linear pairing
by (z,y) = trp/p,(z,y) € Fo. In particular, the corresponding quadratic
form on V is

(1.4) q(z) = (z,x) € Fo.

We will treat V as an affine variety over Fj, and for £ € Fj;, we denote by
Ve the subscheme defined by q(z) = &.

e For a F/Fy-hermitian space V over a non-archimedean local field, and an
Op-lattice A C V (of full rank), we denote by AV its dual lattice under the
hermitian form.

e Let R be a commutative ring. We denote by (LNSch),r the category of
locally noetherian schemes over Spec R. We denote by R[T'|deg=m the set of
monic polynomials with coefficients in R of degree m.

Notation on automorphic forms.

e Fix the non-trivial additive character 1 = 9g o tr, /g : Fo\Ao — C*, where
g is the standard one and trg, g : Fo\Ao — Q\A is the trace map. For
§ € Fp, we denote by 1 the twist ¢ (x) = ¢ (&z).

e For a smooth algebraic variety X over a local field F', we denote S(X (F')) by
the space of Schwartz functions on X (F'). When F is non-archimedean, this
is the same as the space of locally constant functions with compact support.
When F' is archimedean, S(X(F')) consists of smooth functions ¢ on X (F)
such that, for every algebraic differential operator D on X, the function D¢
is bounded. Similarly, for a smooth algebraic variety X over a global field F',
we denote S(X (A)) by the space of Schwartz functions on X (A).

e H={r=>b+1ia € C|a>0}: the complex upper half plane.
e For £ € R and k € Z, the weight k¥ Whittaker function on SLy(R) is defined
by

(1.5) Wék)(h’) _ |a|kf282wi£(b+ai)xk(ﬁg)?
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where we write h € SLy(R) according to the Iwasawa decomposition

1/2
(1.6) h= (1 ll’) (“ a—lﬁ) kg, acRy, beR

and

(1.7) K(0) = ( cosf Sing) € SO(2,R).

—sinf cos#
Here the weight k-character of SO(2,R), for k € Z, is defined by
(1.8) Xk (ko) = €.

e The principal congruence subgroups of SLy(Z) are

T(N) = {7 e SLQ(Z)}’]/ — (2 3) = (é (1}) mod N} .

e Apol(T', k) is the space of holomorphic modular forms of level I', weight k,
for I' where I'(N) C I' C SLa(Z). For any subfield L C C, we denote by
Anol (T, k)1, the L-vector space consisting of f € Anol(I', k) whose Fourier co-
efficients in the g-expansion at the cusp ico all lie in L. Fixing an embedding
Q — C, the C-vector space Apol (I',k) has a Q-structure via the g-expansion
at the cusp @00, i.e., Anhol(L, k) = Apa (T, k)@ ®g C. For any L-vector space
W, we have an L-vector space

(1.9) .Aho](F, k)L R W.

We will view this vector space as the space of formal power series in g'/V

with coefficients in W

Z Aeqt, Ag €W,
£>0Le 1L

where there exist elements f; € Anol(I', k) indexed by a finite set I whose
g-expansion at the cusp ico are given by ) .- etz ag(f@)q‘s € L[qlfw]], and
elements w; € W,i € I, such that

A => ag(fiyw; forall &
iel
o Anqi(H(Ap), K, k) is the space of automorphic forms (with moderate growth)
on H(Ay), invariant under K C H(Ag ), and parallel weight k£ under the
action of [],etom(mp,r) SO(2,R), holomorphic (i.e., annihilated by the ele-
ment 3 (1 1;) in the complexifed Lie algebra of H(Fp) =~ SLa(R) for every
v € Hom(Fp,R)). This is a finite dimensional vector space over C, and it
has a Q-structure via the g-expansion at the cusp ico. For any subfield
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872 W. ZHANG

L c C and any L-vector space W, we define Apo(H(Ao), K, k)7, similar to
Ana (T, k), and

(1'10) Ahol(H(Aﬂ)=K1 k)L QL W

similar to Apoi(T, k) ® W as above.

e To a (parallel) weight k function ¢ : H(Ag) — C and hy € H(Aoy), we
define gﬁ%f to be the function:

é?lf : H'UIOO H s C

(1.11) k2
T = (Tv)vloo — IaOOI ‘;ﬁ(hom hf)?

1/2 ]
where hoo = (hv)y|oo, v = (1 bl“” (a” 6_1/2) ,To = by +ayt € H and |ac| =

[Tojeo |ay|. When hy = 1, we simply write it as ¢ If ¢ € Apoi(H(Ao), K, k),
then .;f;‘,;f € Anol(T, k), where ' = h,th;l NH(F).

e For a left N(Fp)-invariant continuous function ¢ : H(Ag) — C, its &-th
Fourier coefficient for £ € Fy is defined as the function

Fo\Ao

(1.12) h € H(Aq) — Wy(h) = / p Kl 31’) hl _e(b)db.

Then there is a Fourier expansion (by an absolute convergent sum): for

h € H(Ao),
(1.13) ¢(h) = > Wse(h).

£eFp

o The case Fy = Q: the C-vector space Aexp(H(A), K, k) consists of smooth
functions ¢ on H(Q)\H(A) with at worst exponential growth (i.e., for every
hs € H(A;), there exists a constant C such that |¢(hoohys)| < €“® when
a — 00, where ho € SLa(R) denotes the matrix (1.6)), invariant under K C
H(Ay) and weight k under the action of SO(2,R), such that 1 (1 %) ¢ €
Anol(H(A), K,k — 2). This is related to the space A}c(pf) in [8, Def. 2.8,
pp. 2104], noting that the differential operator % t _1%) is the Maass lowering
operator. This is an infinite dimensional vector space over C.

Part 1. Local theory

Throughout this part, Fpy is a field of characteristic zero and F' is a qua-
dratic étale Fp-algebra.
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2. FL and variants

2.1. Group-theoretic setup. Let
e:=(0,...,0,1) € M, 1 (F) = F"

be a column vector, and let €* € My ,(F) =~ My 1(F)* = (F™)" be the transpose
of e. Consider the embedding of algebraic groups over F,

2.1) GL,., —GL,
' ~Yo — diag(7o0, 1);

this identifies GL,—; with the subgroup of points v in GL, such that ve = e
and e*y = e*.
We introduce the algebraic group G’ over Fy and its subgroups,
G = ReSFfFo(GLH—l X GLn),
Hj := Respyp, GLn—1,

Here H{ is embedded diagonally, and H) is embedded in the obvious way. We
consider the natural right action of H] x Hj on G',

(h1, h2) -y = by 'yhs.

Consider the symmetric space

(2.2) S := 8y :={g € Resp/p, GLy, | g7 = 1, }
and its tangent space at 1;, called “the Lie algebra” of Sy,
(2.3) § =5y, :z{yER,eSFXFDMn}y—i—@:O}.
Set

H' := GL;—1.
Then H' acts on Sy, and s, by conjugation

h-~v=h"1yh.

We also consider a variant (arising from the Fourier—Jacobi period [9],

[29]). Let

(2:4) Vi = Fg 7 x (B30

and consider the (diagonal) action of H' on the product Sp—1 x V,_,
h- (v, (u1,u2)) = (B~ yh, (R ug, uzh)).

The action of H' on the its Lie algebra s,,_; x V;]_; is defined similarly.
Next let V¥ be an F'/Fp-hermitian space of dimension n > 2. We fix a
non-isotropic vector ug € V¥, which we call the special vector. We denote by
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V the orthogonal complement of u in V#. We define the algebraic group G
over Iy and its subgroups,

G :=U(VH,
(2.5) H:=U(V),
Gy := H xG.

We have the natural action of H x H on Gy and the conjugation action of H
on G. We also consider the adjoint action of H on the Lie algebra g = u(V¥)
of G. When dimV = 1, the Lie algebra u(V) is denoted by u(1), which
is canonically isomorphic to F~, the (—1)-eigenspace of F' under the Galois
conjugation.

We also need the variant arising from the RTF for the Fourier—Jacobi
period [29]): the (diagonal) action of H = U(V') on the product U(V) x V and
u(V) x V, where the two factors are endowed with the adjoint action (on the
group and the Lie algebra) and the standard action respectively.

2.2. Orbit matching. There is a natural bijection of orbit spaces of regular
semisimple elements,

(26) v [(U(VH)(Fo)]y — [Sn(Fo)]
and
(2.7) v [(U(V) x V)(Fo)] s — [(Sn—1 % V;i_1) (Fo)]rs

(cf. [46] and [29]), where the disjoint union runs over the set of isometry classes
of F/Fp-hermitian spaces V, and the larger space Vi =V @& F - is then
determined uniquely by demanding the special vector ug to have norm one (or
any fixed number in FJ when varying V). Here the left-hand (resp. right-hand)
sides denote the orbits under the action of the group U(V) (resp. GLy,_1). The
bijections define a matching relation between regular semisimple orbits. In
both cases, there are also similar injections for orbits on the Lie algebras:

(2'8) HV [(u(Vu)(Fﬂ)] s — [5“ (FD)] IS
and
(2.9) v [(w(V) x V)(Fo)] s — [(sn—1 x V1) (F0)]rs -

We recall how the map (2.7) is defined. Choose an F-basis for V' and
complete it to a basis for V! by adjoining ug. This identifies V with F™~!
and V! with F™ in such a way that wp corresponds to the column vector
e:=(0,...,0,1) in F™, and hence determines embeddings of groups U(V#) —
Resp/p, GLn. An element g € U(V)(Fo)rs and an element vy € Sy (Fo)rs are
said to match if these two elements, when considered as elements in
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Resp/p, GLn(Fp), are conjugate under Resp;p, GL,—;. The matching rela-
tion is independent of the choice of embeddings and induces a bijection [46,
§2]. In a similar way, we view elements in (S, x V,/_;)(Fp) as elements in

Resp;py My (Fo) by

Ug 0

(’Y: (H],ug)) s ('Y Ul) ?

and we view elements (g, u) € (U(V) x V)(Fp) as elements in Resp/r, Mn n(Fo)

(4 5).

Here we view u € V(Fp) as the corresponding element in Hom(V 1, V') sending
ug € V+ = F -ug to u, and u* is the element in Hom(V, V') = Hom(V, F - ug)
defined by v’ + (u',u)up. Then, an element (g,u) € (U(V) x V)(Fp)rs and
an element (v, (u1,u2)) € (Sn—1(Fo) x F§™" x (F§'™")*),, are said to match
if these two elements, when considered as elements in Resp/p, Mnn(Fo), are
conjugate under Resp)p, GLn—1.

Equivalently, (g,u) € (U(V) x V)(Fp)rs matches

(7, (u1,u2)) € (Sn—1(Fo) x Fg ' x (Fg~1)*)

if and only if the following invariants are equal:

Is

det(T 1,1+ g) =det(T'15,—1 +~) and (géu, u) = ugy'uy, 0<i<n—2

Here det(T' 1,1+ g) € F[T]qeg=n—1 is the characteristic polynomial of g. (We
remind the reader that F[T|geg—n—1 denotes the set of monic polynomials with
coefficients in F' of degree n—1; cf. Section 1.2.) In fact, these invariants define
natural identifications of the categorical quotients (U(V)x V') yyy(v) and (Sp—1 %
V1) JGL,_, With an Fy-subscheme of the affine space Resp; g, (F[T]qeg=n—1 %
F“'_l), and we denote this Fp-subscheme by B, _1:

(210) B, 1—— R'eSFXF[] (F[T]deg=n—1 X F'n.—l)_

We refer to [47] for the analogous case U(Vﬂ) JUWV) = SnyaL,_,- Similarly, the
characteristic polynomial defines a natural identification of U(V') juy) and
Sn—1/GL,_, With an Fp-subscheme of the affine space Resp/r, (F[T]qeg—n—1),
which will be denoted by An—1:

(211) A,—L_]C—) R'eSFfFo(F[T]deg=n—l)‘

More precisely, A,,_; is the Fp-scheme of conjugate self-reciprocal monic poly-
nomials a € F[T|geg—n—1, i.€.,

Tdee(@) o(T=1) = o(0)a(T),
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where @ is the coefficient-wise Galois conjugate of a (in particular, a(0)a(0)
= 1). Moreover, both A and B have natural integral models over Op,, so we
will freely talk about their points over any Ofp,-algebra.

For a € A,_1(Fp), we will denote by S,_;(a) its preimage under the
natural morphism S,_; — Ap_;. For { € F, we will denote by V_ 1¢ the
subscheme of V]_; defined by usu; = £& We denote by [Sn_l(a)(Fo)] (resp.
[(Sn—1(a) x Vu_1)(Fo)] and [(Sp—1(a) x V;_, ¢)(Fo)]) the set of GLy_1(Fp)-
orbits in Sp—1(a)(Fo) (resp. (Sn—1(a) xV;_)(Fo) and (Sn—1(a) xV,_; ¢)(Fo))-

Similar notation applies to unitary groups.

2.3. Orbital integral matching: smooth transfer. We recall orbital inte-
grals [38, §2.2]. Now let F'/Fy be a quadratic extension of local fields of char-
acteristic zero. (The split F' = Fy X Fp is similar and simpler.) Let

n="np/p : Fg — {£1}

be the quadratic character associated to F'/Fy by local class field theory.

To simplify the exposition we consider the non-archimedean case, though
the archimedean case requires very little change. Then there are exactly two
isometry classes of F'/Fy-hermitian spaces of dimension n — 1, denoted by V,
and V. When F/F; is unramified, we will assume that V; has a self-dual
lattice. Then the orbit bijections are now

[(UVE)(Fo)] . LTIU(VH(Fo)] . — [Sn(Fb)]
and
[(U(Vo) x Vo)(Fb)] . LI[(U(V1) x VA)(Fb)] . — [(Sn—1 X Vyi_y) (Fo)lss -

For v € S,(Fo)ws, ' € S(Sn(Fp)), and s € C, we define
(2.12) Orb(v, f',s) == / f'(h=~h)|det h|*n(h) dh,
GLn—1(F0)

where | | denotes the normalized absolute value on Fp, where we set

n(h) := n(det h).
We define the special values

(2.13)

d
Orb(y, f') = w(y) Orb(7, f',0) and BOrb(y, f') =w(y) |

where the transfer factor w(+y) is to be explicated below by (2.16). Here, we

Orb(, f', s),

have included the transfer factor in the special values of the orbital integrals,
different from [38, §2.2].
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For (v,u’) € (Sp—1 X V_1)ws(Fv), ® € S((Sp—1 x V_1)(Fp)), and s € C,
we define
(2.14) Orb((v,u'), @', s) ::/ ®'(h - (y,u"))|det h|*n(h) dh,
GLyp—1(Fo)

and we define their special values similar to (2.13), replacing the transfer factor
w() by w(v,u’) to be explicated below by (2.17).
On the unitary side, for g € U(V*)(Fp)rs and f € S(U(VH)(Fy)), we define

Orb(g, f) ::/ f(h~1gh)dh.

U(V)(Fo)
For (g,u) € (U(V) x V)(Fo)rs and ® € S((U(V') x V')(Fp)), we define
(2.15) Orb((g,u), @) := / ®(h-(g,u))dh.

U(V)(Fo)

Finally, we define an explicit transfer factors; cf. [38, §2.4]. First fix an
extension 77 of the quadratic character 7 from F* to F'* (not necessarily of or-
der 2). If F' is unramified, then we take the natural extension 7j(z) = (—1)¥(®).
For S;,, we take the transfer factor

(2.16) w(y) := (det(y)""/* det(v'e)oci<n-1), 7 € Sn(Fo)rs-
For (y,v') € (Sn_l X VT;_I) (Fo)rs where v’ = (u1,u2) € Va—1(Fo) = Fg’”_l X
(FF~1)*, we take
(2.17) w(,u') := 7(det ()L™ V2] det(y'uy )o<i<n—2)-
Similarly, we define transfer factors on s, and s,_1 x V,,_;.

Definition 2.1. A function f' € §(Sn(Fo)) and a pair of functions (fo, f1) €
S (U(VJ)(FD)) xS (U(Vlﬂ) (Fo)) are (smooth) transfers of each other if for each
i € {0,1} and each g € U(V*)(Fo)ss,

Orb(g, f'i) = Ol‘b(’]/, f’)

whenever v € S(Fp)rs matches g.

Definition 2.2. A function @ € S((Sn—1 % Va—1)(Fo)) and a pair of func-

tions (®o, ®1) € S((U(Vo) x Vo)(Fo)) x S((U(V1) x V1)(Fo)) are (smooth) trans-
fers of each other if for each i € {0,1} and each (g,u) € (U(V;) x V;)(Fo)rs,

(2.18) Orb((g, ), ;) = Orb((y, ), ®)
whenever (v,u’) € (Sn—1 X V;i_1) (Fo)rs matches (g, u).

The definitions made above easily extend verbatim to the setting of the full
Lie algebras u(V') x V and s,—1 x V,,_;. Finally, we remark that the definitions
extend to the archimedean local field extension F//Fy = C/R, where one only
needs to replace the pair of functions (®g, ®1) by a tuple of functions {®y }y
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indexed by the set of isometry classes of F'/Fy-hermitian spaces V, as in (2.7)
and (2.9). We will not repeat the detail here.

2.4. Review of the FL conjecture. We review the FL conjecture; cf. [21],
[46], [38]. Let F/Fy be an unramified quadratic extension of p-adic field for
an odd prime p. Assume furthermore that the special vectors u; € V; have
norm one (or any fixed unit in Op,). Then the hermitian space Véu is again

split for 2 = 0 and non-split for i = 1. We write G; = U(Viﬂ), gi = Lie Gj, and
H; = U(V;). Fix a self-dual Op-lattice

Ao C Vo,
which exists and is unique up to Ho(Fp)-conjugacy. Let
Al = Ao ® Opug C V{,
which is again self-dual. We denote by
Ko C Ho(Fp)
the stabilizer of Ag, and by
K} c Go(Fo) and € c go(Fo)

the respective stabilizers of Ag. Then Ky and Kg are both hyperspecial maxi-
mal subgroups.
We normalize the Haar measures on the groups

GLp—1(Fo) and U(Vo)(Fbp)
by assigning measure one to each of the respective subgroups
GLR—](OFu) and KD-

With respect to these normalizations, the Jacquet—Rallis fundamental
lemma conjecture is the following statement; cf. [38, §3]. Note that the semi-
Lie algebra version below is essentially the Fourier—Jacobi case arising from
the relative trace formula of Yifeng Liu [29].

CONJECTURE 2.3 (Jacquet—Rallis fundamental lemma conjecture).

(a) (The group version) The characteristic function 1g, 0n) € S(Sn(Fo))
transfers to the pair of functions (1k,,0) € S(Go(Fp)) x S(G1(Fp))-

(b) (The semi-Lie algebra version) The characteristic function
L(Su1xV!_1)Omy)) € S((Sn—1 X Vi_1)(F0))

transfers to the pair of functions

(LkoxA0,0) € S((Ho x Vo)(Fo)) x S((H1 x V1)(Fo))-
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Remark 2.4. There is also a Lie algebra version: the characteristic function
15, (0p,) € S(sn(Fo)) transfers to the pair of functions (1¢,0) € S(go(Fo)) x
S(g1(Fp)). This Lie algebra version is equivalent to the group version, at least
when p is odd; cf. [45, §2.6].

Remark 2.5. We note that the equal characteristic analog of the FL con-
jecture was proved by Z. Yun for p > n; cf. [45]; J. Gordon deduced the p-adic
case for p large, but unspecified; cf. [13].

It is straightforward to check a special case.

PROPOSITION 2.6. The semi-Lie algebra version FL holds for (g,u) €
(Go x Vo)(Fo)rs when g is reqular semisimple (i.e., F|g] is a product of fields
with total degree equal to dimV') and generates a mazimal order Op[g] (in

F[g]).

Proof. This is easy to check (see, e.g., [45, Lem. 2.5.5] for the Lie algebra
version), but the argument is the same for the semi-Lie algebra version. |

PROPOSITION 2.7. Fiz F/Fy. Assume that ¢ > n, where g denotes the
cardinality of the residue field of Op,. Then

(1) in Conjecture 2.3, parts (a) and (b) are equivalent;

(ii) in Congecture 2.3, part (a) for Sn—1 implies part (b) for (g,u) € (Hp %
Vo)(Fo)rs where the norm of u is a unit.

Proof. We will prove a similar statement, namely Proposition 4.12 for the
AFL conjecture, where the situation is more delicate; we omit the argument
here and only point out that the proof also works here. |

3. AFL and variants

For Sections 3 and 4, we let F' be an unramified quadratic field extension
of a p-adic local field Fy for an odd prime p.

3.1. The AFL conjecture and variants. For any n > 1, we recall the con-
struction of the Rapoport-Zink formal moduli scheme N, = N,, p /F, Aassoci-
ated to unitary groups; cf. [38, §4]. For Spf O-schemes S, we consider triples
(X, e, A), where

e X is a p-divisible group of absolute height 2nd and dimension n over S,
where d := [Fp : Qp),

e . is an action of Op such that the induced action of Op, on Lie X is via
the structure morphism Op, —+ Og, and

e )\ is a principal (Op,-relative) polarization.
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Hence (X, t|oy, ) is a formal Op,-module of relative height 2n and dimension n.
We require that the Rosati involution Ros) on Op is the non-trivial Galois
automorphism in Gal(F/Fp), and that the Kottwitz condition of signature
(n —1,1) is satisfied, i.e.,

(31)  char(s(a) | LieX) = (T —a)" (T —a) € Os[T] forall ac Op.

An isomorphism (X, ¢,A) = (X', ¢/, \') between two such triples is an Op-linear
isomorphism ¢ : X = X’ such that ¢*(\') = A.

Over the residue field k of Oy, there is a triple (Xp, tx,,, Ax, ) such that
X, is supersingular, unique up to Op-linear quasi-isogeny compatible with
the polarization. We fix such a triple, which we call a framing object (for the
functor N,). Then Ny, (pro-)represents the functor over Spf O} that associates
to each S the set of isomorphism classes of quadruples (X, ¢, A, p) over S, where
the final entry is an Op-linear quasi-isogeny of height zero defined over the
special fiber,

p: X xg8 —X, XSpecE§=

such that p*((Ax,)g) = Ag. Here p is called a framing. The formal scheme A/,
is smooth over Spf O of relative dimension n — 1.

For n > 2, define the product Nn_l,n = Nn_1 X Spf Oy Nn. Itisa (locally
Noetherian) formal scheme of (formal) dimension 2(n — 1), formally smooth
over Spf Oj.

When n = 1, we have the (unique up to isomorphism) formal Op-module
E (with signature (1,0)) over k and its canonical lift £ over Op, as well as
the “conjugate” objects E and € (with signature (0,1)). For n > 2, there is a
natural closed embedding of formal schemes

(32) 5 == 5Nn—1 : Nn—] }Nn
(X, e, A p) —— (X XS,LXLg,/\X/\g,pog),

where we set X; = E and inductively take
(3.3) X, =X, xE
as the framing object for A,,. Let

(idN'n_l B

9)
E— Nn—l >'<S]Jf0_¢f. Nn = Nn—l,n
be the graph morphism of §. Then

(34) ANn—l :Nn—]_

(3.5) A = An,_;(Nn-1)
is a closed formal subscheme of half the formal dimension of A n—1,n. Note that
(3.6) Auto(Xﬂ,, LX,» /\Xn) s U(Vn) (Fo),
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where the left-hand side is the group of quasi-isogenies of the framing object
(Xn, tx,,, Ax,, ), and

V, = Homy, (E,X;)
is the hermitian space on which the hermitian form is induced by the principle

polarizations on X,, and E. Note that V,, does not contain a self-dual lattice.
More concretely,

U(Vy)(Fo) = {9 € Endp(V,) | gg* =id}.

Here we denote by g* = Ros), (g) the Rosati involution. Then the group
U(Vﬁ,) (Fo) acts naturally on Ny, by acting on the framing:

g-(X,e,A\p)=(X,t,A,gop).

Furthermore, V,, contains a natural special vector ug given by the inclusion of E
in X, = X,,_1 X E via the second factor. The norm of ug is 1. Then V,, is a non-
split hermitian space of dimension n. Therefore, in the setting of Section 2.3,
we can choose identifications Vlu = Vn and V7 = V,_1 compatible with the
natural inclusions on both sides. Hence we obtain an action of Hi(Fp) on
Nn—l, of Gl(Fo) on Nn, and of GV] (Fo) = (U(Vn_l) X U(Vn))(Fo) on Nn—l,n;
cf. (2.5). Furthermore, the maps dx;, , and Ay, , are equivariant with respect
to the respective embeddings H;(Fp) < G1(Fp) and Hy(Fp) — Gy, (Fp).

For g € Gy; (Fp)s, we denote by Int(g) the intersection product on Nj,_;
of A with its translate gA, defined through the derived tensor product of the

structure sheaves (cf. (B.4)):

L
(3.7) Int(g) := (A, Q'A)Nn—l,n = X(Nn—l,n; Oa ® Oga).
We similarly define Int(g) for g € G1(Fo)rs,
(3.8) Int(g) == (A, (1 x g)A>Nn—1,n'

In both cases, when ¢ is regular semisimple, the right-hand side of this def-
inition is finite since the (formal) schematic intersection A N gA is a proper
scheme over Spf Oy. We refer to Appendix B for the terminology regarding
various K-groups of formal schemes, following the work of Gillet—Soulé for
schemes in [11].

Now we introduce a new variant of the above intersection number Int(g)
via the Kudla—Rapoport special divisors [24]. This variant is closely related
to in the AFL conjecture in the context of Fourier—Jacobi cycles in the work
of Yifeng Liu [30, Conj. 1.11]. A special case has also appeared in Mihatsch’s
thesis [31, §8].

Recall from [24] that for every non-zero u € Vy, Kudla and Rapoport
have defined a special divisor Z(u) in N;. This is the locus where the quasi-
homomorphism u : E — X, lifts to a homomorphism from £ to the universal
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object over ;. By [24, Prop. 3.5], Z(u) is a relative divisor (or empty). Then
the morphism § in (3.2) induces an obvious closed embedding

(3.9) Nn-1 —— Z(uo)

for the unit norm special vector ug, which is an isomorphism by [24, Lem. 5.2].

It follows from the definition that if g € U(V,)(Fp), then
(3.10) 9Z(u) = Z(gu).

For simplicity, we will write A, x N}, for the fiber product N, X Spf O} N,.
For g € U(V,)(Fp), let T'y € N, x Ny, be the graph of the automorphism of
N, induced by g. We define the (naive) fized point locus, denoted by N3, as

the (formal) schematic intersection (i.e., fiber product of formal schemes)
(3.11) N§ =Ty NAp,,

viewed as a closed formal subscheme of N,,. We also form a derived fized point
locus, denoted by N, i.e., the derived tensor product

L L
(312) LNT% = FQ‘ N ANn = Org ®0Nann OAN’n

viewed as an element in KE)V'% (Nn); cf. Section B.1.

For a pair (g,u) € (U(Vyn) x Vy)(Fo)rs, we define (cf. (B.4))
(3.13) Int(g,u) = ( LN#,Z(u))Nﬂ =X (Nn, LN# ‘%ONR OZ('u.)) .

Similar to (3.7) and (3.8), when (g,u) is regular semisimple, Ny N Z(u) is a
proper scheme over Spf O and hence the right-hand side of this definition is
finite. The number Int(g, «) depends only on its U(V;)(Fp)-orbit.

Remark 3.1. By the projection formula for the closed immersion A : N, —
N7 x Ny, we obtain an equality in Ké‘gnA(Z(uD(Nn x Nn),
Larg L L
RAL(NT @oy, Ozw) = Or, @0xxnn Orzw):

where we have used RA«(Oz(y)) = Oa(z(w)) for a closed immersion. Therefore,
an equivalent definition of the intersection number (3.13) is

L
Int(g=u) =X (Nﬂ X Nﬂ? OFQ ®0Nann Oﬂz(u)) :

This also appears in the AFL in the context of Fourier-Jacobi cycles in [30].

CONJECTURE 3.2 (Arithmetic fundamental lemma conjecture).
(a) (The group version) Suppose that v € Sp(Fo)rs matches an element g €

601‘b(’y, ISn(OFD)) = —Int(g) - logg.
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(b) (The semi-Lie algebra version) Suppose that (y,u') € (Sp x V)(Fo)rs
matches an element (g,u) € (U(Vy) x Vi) (Fo)rs. Then

601'})((7?‘1!.!), 1(SnxV,;)(OFD)) = — II"_["J(_(;.‘1 ‘u.) - 10g q.

Remark 3.3. We refer to [38, §4, Conj. 4.1(a)] for the homogeneous group
version of AFL involving the intersection numbers (3.7) rather than (3.8); it is
equivalent to part (a) of Conjecture 3.2.

Remark 3.4. Mihatsch [33] has pointed out that a naive formulation of
Lie algebra version of AFL is not well behaved (unless the formal schematic
intersection is artinian), unlike the case of FL (cf. Remark 2.4). Therefore the
semi-Lie algebraic version seems to be the best possible linearization of the
AFL conjecture.

Definition 3.5.
(a) A regular semisimple element (g,u) € (U(V') x V)(Fp) is called strongly
regular semisimple (“srs” for short) if g € U(V')(Fp) is semisimple with respect
to the conjugation action of U(V).
(b) A regular semisimple element g € U(V#)(Fp) with respect to the conjuga-
tion action of U(V) is called strongly regular semisimple (“srs” for short) if it
is also semisimple with respect to the conjugation action of U(V“).

Definition 3.6.
(a) A regular semisimple element (v, ') € (Sp—1 X V,,_;)(Fp) is called strongly
regular semisimple (“srs” for short) if v € S;,_1(Fp) is semisimple with respect
to the conjugation action of GL,_1 g,.
(b) A regular semisimple element 7' € Sy, (Fp) with respect to the conjugation
action of GL,—1 F, is called strongly regular semisimple (“srs” for short) if it
is also semisimple with respect to the conjugation action of GLy £,.

Remark 3.7. On the Lie algebras the notion of “strongly regular semisim-
ple” has appeared in [45].

CONJECTURE 3.8 (Arithmetic fundamental lemma conjecture for strongly
regular semisimple elements).
(a) (The group version) Suppose that v € Sp(Fo)sts matches an element g €

601‘b(’y, ISn(OFD)) = —Int(g) - logg.

(b) (The semi-Lie algebra version) Suppose that (v,u’) € (Sp—1 X Vi_1)(Fo)srs
matches an element (g,u) € (U(Vyp—1) X Vi_1)(Fo)srs- Then

60rb(('y, u'), l(Sn—le,;_l)(OFO)) = —Int(g,u) - logg.
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384 W. ZHANG

3.2. A special case of AFL.

PROPOSITION 3.9. Let p > n. Conjecture 3.8 part (b)(i.e., the semi-Lie
algebra version AFL) holds for (g,u) € (U(Vp—1) x Vi_1)(Fo)srs when Orp|g]

is @ mazimal order (in F[g]).

Proof. This follows from [31, Cor. 9.9] (as well as the fact that the assertion
holds when n = 2). When Fy = @Qp, this can also be deduced from [18]. O

4. Relation between the two versions of AFL

In this section, we continue to let F' be an unramified quadratic field
extension of a p-adic local field Fj for an odd prime p.

4.1. Orbits in U(Vy). We recall that the Cayley map is the rational mor-
phism

C=1Cy: u(Vy,) — U(V,)
4.1
- k2.

Here {*£ denotes (1 — z)7!(1 +z) = (1 + 2)(1 — 2)~! since the two factors
commute. Its inverse is

- 1+4
17,7
c = .

By definitions V,, = Homg, (E,X;;) and X;, = X;,_; x E, we decompose

Accordingly, write ¢’ € U(V},) in the matrix form
, [ h u
(4.2) “w* d
Xp1 xE—— 5 X1 xE,

where * denotes the map Homg, (E,Xp—1) — Homg  (Xn—1,E) induced by
polarizations on X,,_; and E, and

heEndd, (X, 1), w,weVny, decEnd} (E).
LEMMA 4.1. Let ¢' € U(Vy,) be as in (4.2). Write

_ r u
(4.3) 2 — M (g) = (_,ﬁ* ) e u(V,),
and define
(4.4) g :=cp_1(z) € U(Vy_q).
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Then
g=h+(1—d) luw*,
u=201-d)t1-g)!
det(1 — ¢') = (1 — d) det(1 — g),
quw = €q U,
where we define
1—d
4.6 =
(4.6) AT 14

Proof. By definition of ¢, ', we expand the equality 1+ ¢’ = (1 — ¢’),
1+h u _(1=h —u r u
w* 1+d) \ —w* 1-d)\-u* e}’

{l—i—h:(l—h)m—i—uﬁ*,

w* = —w*z — (1 — d)u*.

to obtain

The second equality yields
@ = —(1-d) w1 +a),
which implies that
(4.7) i=—(1—d) (1 —z)w.
Plug into the first equality
1+h=1—-h)z—(1—d) uw*(l+2z),
and this implies that
1+h+(1—d) uw*=01—h—(1—d) luw*)z.
It follows that
g=ctn1(z) =h+ (1 —d) tuw*,
and this proves the first equality in (4.5).
Now note that the condition for ¢’¢”* = 1 amounts to

(4.8) hh* +uu* =1, hw+du=0, ww+dd=1.
The last equality in (4.5) now follows:
gw = hw + (1 — d) luw*w
= (—d+(1—dd)(1—d) Hu

1—d
= u.
1—d
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Now we return to (4.7), noting that 1 —z = —2(1 — g) g,
u=2(1-d) (1 -g) lgw=2(1-d)"'(1 - g) u.
This proves the second equality in (4.5).
Finally, by 1 — ¢’ = (i:;ﬁ - ";) and the first equality in (4.5), we have
det(1 —¢') = (1 — d) det((1 — h) — (1 — d) " tuw*)
= (1 —d)det(1 — g).
This proves the third equality in (4.5) and completes the proof. |

We now define a rational map by the formulas in Lemma 4.1,

t: U(Vn) —_— U(Vn_l) X Vn—l
(4.9)

U

g (9, =hve)

where € € O, is chosen such that F' = Fy[\/¢e]. We also define a variant

(4.10) ~
gr— (g, %) :
Following the notation in Lemma 4.1, let U(V,,)° be the open sub-variety
of U(V,,) defined by
1—-d#0 and det(l—g")#0.

Let (U(Vp—1) X V—1 x u(1))° be the open sub-variety of U(V;,_1)xV,_1 xu(1)
defined by
det(1—g) #0 and det(1+2a') #0.

Here (g, %, ¢) € U(Vy—1) x Vu1 xu(1) and 2’ is as in (4.3), where z = ¢, ().

LEMMA 4.2. The map t together with e € u(1) (cf. (4.3)) induce an iso-
morphism, equivariant under the action of U(Vp—1),

T=(r,e): U(Vy)° —— (U(Vn_1) x Vo1 x u(1))°
g' > (x(g'),e).

The same holds if we replace ¢ by 8.

Proof. By (4.5) we have
det(1 — ¢') = (1 — d) det(1 — g),

and by 1 —d # 0, it follows that det(1 — g) # 0. Then the map z +— ¢(z) is
well defined since 1 — g = ﬁ Therefore the rational map t = (v, e) is defined
on U(Vy)°
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WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 387

To reverse the map ¥, let (g,u,e) € (U(V,—1) X V1 x u(1))°. First we
send g to ¢"!(g) = z. (This is defined since det(1—g) # 0.) Then we define @ by
u = 2,/e(1—g)"tu; cf. (4.5) and (4.9). Finally, we apply Cayley map ¢ (4.1) to
(_%.. g) to obtain ¢’. (The Cayley map is well-defined by the second condition
det (1 +2') # 0 when defining (U(V,_1) x Vg x u(1))°.) It is easy to see
that the composition of above maps is defined on (U(Vp—1) x Vp_1 x u(1))°
and defines an inverse to the rational map t. The desired assertion for t follows.
It is easy to see the assertion for t¥. |

We may apply the same construction to £¢’ for £ € F! =ker(Nm : F'* — F):

Te: U(Vn) E— U(Vﬂ,—l) X Vi1

(4.11)
g—rt(&9).

We define the variant rg similar to (4.10).

LEMMA 4.3.
(i) An element ¢ € U(V,)°(Fp) is regular semisimple (with respect to the
conjugation action of U(Vy,_q) for Vo, = V1 @ Fug) if and only if v(g') =
(g,u) is regular semisimple as an element in (U(Vy,_1) x Vy,_1)(Fp).
(i) Let ¢’ € U(Vy)°(Fo)ses- Then, for all but finitely many & € F', we have
€9’ € U(Vn)°(Fo) and re(g') € (U(Vn—1) x V1) (Fo)srs.
(iii) Let (g,u) € (U(Vn—1) X Vu_1)(Fo)sts- Then, for all but finitely many
e € u(1), we have (g,u,e) € (U(Vp_1) x Vg x u(1))° (Fp) and v (g,u,€) €
U(Va)°(Fo)srs.

Proof. The regular semi-simplicity for ¢’ € U(V,,)(Fp) is equivalent to the
vectors
{g"ug |0<i<n—1}

being a basis of V,, (as an F-vector space). By the decomposition (4.2), this is
equivalent to {h'u,0 < i < n — 2} being a basis of V,,_1. By the first equality
in (4.5), we can show inductively that, for all 1 < i < n — 2, g'u — h'u lies in
the span of u, hu, ..., h""tu. This proves part (i).

Let P(A) = det(X + h) be the characteristic polynomial of h, and let

Q(\) = det(A + h) - w* (A + h) ",

which is a polynomial in A of degree n — 2. Then the characteristic polynomial
of ¢’ can be written as

(4.12) det(A+ ¢') = (A +d)P(X) — Q(X).

Since ¢’ € U(Vy)°(Fb)srs (particularly, regular semisimple relative to the U(Vy,)-
conjugation action), this polynomial in A has only simple roots.
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Let t¢(9") = (g¢,u¢). W now study how the characteristic polynomial of
g¢ (or equivalently, of £71g;) depends on £ . By the first equality in (4.5),

det(X + &1 ge) = det ()\ +h+ 7 _fdguw*) .

Set

_ ¢
t_l—dg'

Then

det(\ + & ' g¢) = det(A + h) det (1 + tuw* (A +h) ")
= det(A + k) (1 + tw* (A + h)"'u)
= det(A + h) +t det(A + h) w*(A + h) " lu
= P(\) +tQ(N).

Here in the second equality we have used the fact that vw* € End(V,_1) is of
rank at most one.

Let R(§) be the GCD of P()A) and Q(A). By the semi-simplicity of ¢’, the
polynomial R(A) is multiplicity free. Fix an algebraic closed field Q2 D F. Since
there are only finitely many ¢ €  such that P/R+tQ/R and R have common
roots, the question is reduced to the case R = 1 (and possibly smaller n). Now
assume R = 1. Then P+tQ € Ft, A] is an irreducible (over §2) polynomial in
t, A, hence defines an irreducible curve C in A% (the affine plane in ¢, \), and ¢
defines a non-constant rational morphism to the projective line C — P},ﬂ. The
polynomial P + ¢ () has a repeated root precisely when the rational morphism
is ramified at ¢. Hence there are only finitely many such ¢ € ). This proves
part (ii).

Part (iii) is proved similarly to part (ii). O

4.2. Reduction of the intersection numbers. We recall from (3.2) that ¢ :

Nn—1 — N5, is the embedding whose image is the special divisor Z(up) for a
unit up € Endp . (E); cf. (3.9). Consider

(8,9)

Nn—l XNn_l Nn X Nm

and let my : Njy_1 X Ny —— N1 be the projection to the second factor.
We have the following pull-back formula for the graph of an automorphism.

LEMMA 4.4. Let g' € U(V,,)°(Fp) be such that 1—d € Op;, and let (g,u) =
t(g’) S (U(Vﬁ,—l) X Vn—l)(FD)- Then

(4.13) (8, 8)'Ty ~ T, N 12 (u),
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where (8, 8)* is the naive pull-back, i.e., the fiber product

(5,6)'Ty —— Ty

L oo
(4,9)

Nn—l XNn—l —)Nﬂ. XNn-

Moreover, if u is non-zero, then

L L
(4.14) ONe1xNuzt ®Onxnm O, = Orynnzzw) = Ory ® Onsz(w),
as elements in K{(Iy N 732 (u)).

Remark 4.5. By (4.5), we have gw = egu. Since d # 1, ¢ = g is a unit
in O, and hence we may replace 75 Z(u) by 77 Z(w) in the above statements.

Proof. We prove that the natural map on S-points is the identity map.
Let (X1,X2) be an S-point of N1 XSpfO Nn—1, and let X! = X; x £. (In
the notation we have omitted S and the obvious additional structure ¢, A etc.)

We start from (Xi,X52) on the graph I'y; i.e., there exists (uniquely)
¢ X — X} lifting ¢’. Write ¢ in the matrix form

(P ¥
(5 9)

X1X54>X2X81

which lifts the diagram (4.2). We then need to construct elements in I'g N
m32Z(w). The subtle point is that X; and X2 are different, whereas the X, in
the target and the source in the map ¢’ of (4.2) are (unfortunately) identified.

First we have X3 € Z(u). (Note that the u in v(¢') = (g,u) differs from
the u in (4.2) only by a unit (1 — d),/€, hence we ignore the difference in this
proof.) Consider the homomorphism

6::@+%:X1—>X2.
This is a lifting of ¢ € U(V,) by Lemma 4.1, hence we have constructed
(X1,X2) on Iy N 75 Z(u). Again by Lemma 4.1, ¢ lifts egg'u (and €4 = %
is a unit), hence
V= eap = ea PV

can be recovered from ¢ and . The desired isomorphism follows.

Now we prove the second part of the lemma. We assume that u is non-zero.
If Z(u) is empty, then clearly both sides vanish. Now we assume that Z(u) is a
(non-empty) relative divisor. Now note that the dimension of the intersection
is as expected. Since both I'yr and N1 xNy_1 are local complete intersections
in the ambient N,, x Ny, Lemma B.2 shows that higher Tor all vanish. This
proves the first equality in (4.14); the second one is proved similarly. |
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Recall from (3.5) that A is the image of the closed embedding Ay, ,
No—1 = Nop—1n = Naog X Np; cf. (3.4).

PROPOSITION 4.6. Let g’ € U(Vy,)°(Fo) be such that 1 —d € O, and let
(g,u) = t(g") € (U(Vn-1) x Vu_1)(Fo). Assume further the vector u # 0 in
Vno1. Then

L L
AN (idx ¢g)A =N | N Z()

as elements in K)(Nn_; N Z(u)). In particular, if ¢ is reqular semisimple
(hence so is (g,u) by Lemma 4.3(1)), then

Int(g') = Int(g, u).

Proof. Consider the following two cartesian squares, where we have ap-
plied Lemma 4.4 (4.13) to the middle term in the top row,

NI NZw)——TyNnasZ2(u) —— Ty

| s | 5 |

N1 — B S N1 X N1 —225 Ny X N,

We obtain equalities as elements in Kj(N5_; N Z(u)),

L

ONﬂ—l QONx N OPQ;
L L

= ONp—1 KON, xNp_4 (ONn—1>xNa—1 ®OpNxAm OT‘g!)
L

=0n,_, RO, %Nyt O[‘gnm—2z(u) (Lemma 4.4 (4.14))
L

= (ONn—l ®0Nn—1XNn—1 O[‘g) @ONn_lan_l Oﬂ—iz(u) (Lemma 4.4 (414))
L

= "7, @0y, Oz (by (3.12)).

Similarly, we have two cartesian squares

AN(1xg)A——(1xg)A——Ty

| w2, oo ]
(idar,_q,4) (8,idpr,)

Nn—l —)Nn 1 XNn —>Nn Nﬂa

with similar equalities as elements in K{(A N (1 x ¢')A) = K{(N7_, N Z(u)),
which lead to

L L
A ﬂNﬂ,—l,ﬂ (]‘ X gf)A :Nﬂ_l ﬂNnXNn Fg"

This completes the proof. |
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4.3. Reduction of orbital integrals. We use the Cayley map for S, (a ra-
tional morphism):

C=¢Cp:5, — 5

415 _
) y—
Its inverse is )

-1 +
[ = —.
() =1— S

Similar to U(Vy), we now write 7/ € S, according to the decomposition
Fn = 1 g Fuyg:
, _[a b
T=\¢e a)-
LEMMA 4.7. Let

- b
(4.16) Y =c'(Y)= (g ;) €sp, and y=cp1(y) € Sn-1.

Then

y=a+ (1—d) tbe,
B=21-d) ' (1-),
F= —2e(1 - ) (1 - ),
b= €qb,

(4.17)

where we recall that eq = %; cf. (4.6).

Proof. Similar to the proof of 4.1, we obtain

l1+a=(1-—a)y+be,
{c: —cy — (1 —d)e.
We then obtain
c=—(1-d)le(1+y)

and

l+a+(1—d)tbe=(1—a—(1—d) 'be)y.
It follows that

y=ctn-1(y) =a+ (1 —d) be

The remaining assertions follow similarly. O
We now define a rational map by the formulas in Lemma 4.7:

R p— A
(4.18)

P (7).
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From (4.17), and the fact that y € s,_; = y? € M, 5,, it follows that the last
component of t(v') indeed lies in V,/_; = FJ! x (Ff™1)*. We also define a
variant:

WS, —— S, 1 xV/_,
P (5 8)

Following the notation in Lemma 4.7, let S;, be the open sub-variety of

S, defined by

(4.19)

1-d#0 and det(1—4")#0.
Let (Sn_l x VI_4 % 51)0 be the open sub-variety of S;,_; x V;]_; X s1 defined by
det(1—7)#0 and det(1+y') #0.

LEMMA 4.8. The map v together with e € s1 (cf. (4.16)) induce an iso-
morphism (between two open sub-varieties), equivariant under the action of

GLR—]:
T=(r,e): Sy —— (Sn_1 x V)_y x 81)°
el > (2(7);€)-

The same holds if we replace t by .

Proof. The proof of Lemma, 4.2 still works, and we omit the detail. |
We may apply the same construction to &y for £ € F! =ker(Nm: F*— F°):

S, ——= S,y xV'_
(4.20) £ T e
v (&Y).

We define tg similar to (4.19).

LEMMA 4.9.
(i) An element ' € Sy (Fy) is reqular semisimple if and only if t¢(y') € (Sp—1 %
V! _1)(Fo) is reqular semisimple.
(i) Let 4" € S2(Fy)ss- Then, for all but finitely many & € F!, we have &' €
S2(Fo) and te(y') € (Sn—1 X V!_1)(F0)sts-
(iii) Let (v,u') € (Sp—1 X V;_1)(F0)srs- Then, for all but finitely many e €
s1, the element (v,u/,e) lies in (Sn_l x V! % 51)0 (Fy), and T 1(y,u/,e) €
Sy (Fo) is strongly regqular semisimple.

Proof. The same argument as the proof of Lemma 4.3 works here. Hence
we omit the details. O
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LEMMA 4.10. If v/ € S,(Fo)ss and ¢ € U(Vy,)(Fo)ss match, then the
following pairs also match (whenever they are well defined for & € F! under
the rational maps):

o td(7) € (Sn-1 % V;_y)(Fo)srs and ti(g') € (U(Vn-1) x Vi_1)(Fb)srs:
® (7)) € (Sn—1 X Vi_1)(Fo)sts and v¢(g’) € (U(Vn—1) X Vn_1)(Fo)sts-

Proof. We retain the notation in Lemmas 4.3 and 4.7. We may assume
£=1. By choosing a basis of V,—1 and of V,, = V,_1 & Fup, we write
¢ € Myn(F) in matrix form; cf. the discussion on matching orbits in Sec-
tion 2.2. Since the inverse Cayley map (cf. (4.1), (4.15)) preserve the matching
conditions, ¢~!(v’) and ¢7!(¢’) also match. It follows that the two elements
denoted by e in their lower right corner are equal. Moreover, there exists

k € GL,_1(F') such that

(=T )EIC ),

or equivalently,

It follows that
g=c(z) =k c(y) k =k vk,

and hence

(o - )G )

This proves the first part.
By Lemma 4.1 (4.5), u = 2(1 — d)~1(1 — g)"'u, we obtain

o <

u=2"11-d)(1-g)u=(1—-d)(1+=z) 'a
We compute the invariants of (g,u). For 0 <i<mn—1,
wgu=(1-d)(1-d)a*(1+2z")""d'(1+=z)"'u
=(1-d)(1-d)u"(1-2%)""g'5,

where we have used that ¢ and z commute, and z* = —z. In terms of the
invariants of (v, b, ¢), this last quantity is equal to

u*g'u = (1 —d)(1 —d)u*(1 — 2?) " g'u
= —(1-d)(1—d)ck(1—-2)"g' k1
= (1 - )1~ d)e(1 —*) "D,
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Obviously g and « have the same characteristic polynomial. It follows that
t(g') = (g, m) has the same set of invariants as

1= —1_ —
(v. (Ve b e e (1—v)7")) =x(7).
This completes the proof of the second part. |

LEMMA 4.11. Let ' € Sp(Fo)rs and g’ € U(Vy,)(Fo)rs be a matching pair,
and let £ € F'. Assume that

(4.21) 1—¢de O} and det(1—¢&y) € OF.
Then
Orb(+/, 15,05, 5) = Orb (¢4(7): (5,1 xv2_1)(0r,): 5)
= Orb (tﬁ(’)/)? l(Sn—IXVé—l)(OFo)’ S) ’

Proof. 1t suffices to prove the assertions for £ = 1. We also consider the
orbital integral on the Lie algebra s,. Since det(1 —4') € O by assumption
(4.21), and since the Cayley map is equivariant under the GL,—1(Fp),

h-¢<'(7) €5n(OR,) ifandonlyif h-v € Sa(OR).
It follows that
()I‘b(c_l(,y-")1 15n(OFU)’ S) = Orb(')f', ]‘Sn(OFD)? S).

Similarly, by det(1 +y) = (1 — d)"'det(1 — +/) and (4.21), we know that
det(1 + y) € Op. Therefore,

h~lyh € 5,-1(Op,) if and only if h~'yh € Sp—1(OR,).
It follows that (note that d and e are now in O and s1(OF,) respectively)
Ol‘b(C_l(’Y,), lsn(OFO)’ S) = Orb (th(’y"), 1(Sn—1XV,:_1)(OFD)? S) .

This proves the first equality.
We now simply denote

d=c-(1-¢*)"!
so that B
() = (7. (b/vVe.@ /Ve)) -

Note now that det(1 — y?) = Nmdet(1 + y) € Op, under our assumption.
Therefore, when h™!vh € S,—1(Op,), we have

z —
Zh €Ok, ifand only if %h c oL
This immediately implies the second equality. |
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4.4. Relation between the two versions of AFL.

PROPOSITION 4.12. Assume that g > n, where q denotes the cardinality
of the residue field of Op,. Then

(1) in Conjecture 3.8, part (a) for V,, is equivalent to part (b) for Vy_;.
(ii) in Conjecture 3.8, part (a) for Sp—1 implies part (b) for V,_1 and (g,u) €
(U(Vp—1) X Vyu_1)(Fp)sts, where the norm of u is a unit.

Remark 4.13. Similar results hold for Conjecture 3.2 for regular semisim-
ple elements.

Proof. For part (i), let ¢ € U(Vy)(Fo)srs. We may assume that d € Op
and the characteristic polynomial of both ¢’ and g have integral coefficients
(otherwise both sides of part (a) vanish). Since ¢ + 1 > n, there exists £ €
F! such that det(1 — &¢’) € Oj is a unit (looking at the reduction of the
characteristic polynomial modulo the uniformizer wr of Of). Since both sides
of part (a) for V, are invariant under the substitution ¢’ — £¢’, we may just
assume that ¢’ has the property that d € Or and det(1 — ¢') € Op. From
the third equality in (4.5) and the integrality of det(1 — g), it follows that
1—d e Op. Now ¢ € U(Vy)°(Fo)sts, so that we may apply the map t. By
Lemma 4.3, we may adjust £ € F'! within the same residue class mod wp
such that the image t(¢') = (g,u) lies in (U(Vy—1) X Vy_1)(Fp)sis. Now, by
Proposition 4.6,

Int(g") = Int(g, u).
Now we consider the orbital integral. By Lemma 4.11,

d0rb(Y', 15, 0y, )) = OOrb ("(W'% 1(Sn_1xv7;_l)(%)) .

Here we refer to [37, Lem. 11.9] for the comparison of the transfer factors. By
Lemma 4.10, v(y') € (Sn—1 X V,._1)(Fo)srs and t(g") € (U(Vn—1) x Vi,_1)(F0)srs
match. This shows that part (b) for V,,—; implies part (a) for V.

For the inverse direction, we start from (g, u) € (U(Vn—1) X Vn—1)(Fbd)srs.
Again it suffices to prove part (b) when the invariants of (g,u) are all integers.
By multiplying a suitable £ € F!, we may assume det(1 — g) € O Then
det(1 + z) € Op. By Lemma 4.3 part (iii), there exists e € u(1)(Op,) such
that det(1 + z’) € O, (g,u,e) lies in (U(Vp—1) X V1 x u(1))° and ¢ =
©1(g,u,e) € U(V,)%s. Then det(l — ¢’) € Of and hence (1 — d) € OF (by
the third equality in (4.5)), and we may therefore apply Proposition 4.6. A
similar procedure proves the desired identity between orbital integrals. This
shows that part (a) for V,, implies part (b) for V,,_;.

For part (ii), we note that for ¢ € U(V,_1)(Fo)ss, the pair (g,up) €
(U(Vp—1) X V1) (Fp)srs, and it is easy to see

Int(g) = Int(g, uo).
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One can show that the orbital integrals are equal easily; we leave the detail to
the reader. O

5. Local constancy of intersection numbers
This section is not used until Section 15.

5.1. Local constancy of the function Int(g,-). We recall the Bruhat-Tits
stratification of the underlying reduced scheme A req of Ny, following the
work of Vollaard-Wedhorn [42] (see also [24, §2.2]). The scheme N req ad-
mits a stratification by Deligne—Lusztig varieties of dimensions 0,1, ..., L“’%IJ,
attached to unitary groups in an odd number of variables and to Coxeter el-
ements, with strata parametrized by the vertices of the Bruhat—Tits complex
of the special unitary group for the non-split n-dimensional F'/Fp-hermitian
space V5. The vertices of the Bruhat—Tits complex are bijective to the vertex
lattices in Vy,, where an Op-lattice (of full rank) A C V,, is called a vertex lat-
tice if A € AY € w!A. The parametrization of the strata by vertex lattices
in V,, is compatible with the action of the group U(V,) on N req (cf. (3.6))
and on V,,. The type of a vertex lattice A is by definition the integer ¢(A) :=
dimg AV /A. Denote by V(A) the corresponding (generalized) Deligne—Lusztig
variety; it is smooth projective of dimension %; cf. loc. cit. Note that the
type t(A) is necessarily odd because the F'/Fyp-hermitian space Vy, is non-split.

LEMMA 5.1. Let n > 3, and let A C V,, be a vertexr lattice of maximal
type (i.e., type 2[(n—1)/2]+1). Let C € Chy ypy(Nnrea). Then the function

Intc: Va— 5 Q
ur—— x(Np, C 1 Z(w))

is locally constant and compactly supported. Here, even though the function is
only defined for u # 0, the local constancy around w = 0 is to be interpreted as
that the function takes a constant value for all u # 0 in a neighborhood of 0 € V.

Proof. The proof is essentially the same as [26, Cor. 6.2.2], noting that
Intc is a linear combination of Inty sy for vertex lattices AN D Aoftype3. O

PROPOSITION 5.2. Fiz a regular semisimple element g € U(Vy,). Let
Vg i={u €V, | (g9,u) is not reqular semisimple}.
Then the function
Int(g,-) : Vp\ Vi, s Q
s Tnt(g, u) = x(No, ‘W A Z(u))

is locally constant.
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Proof. We first observe that, when u € V,\ V,, 4, the formal scheme NIN
Z(u)=NinZu)NZ(gu)N---NZ(g" 'u) is a noetherian scheme. It follows
that, since g is fixed, the scheme NN Z(u) depends only on the lattice spanned
by ¢*u,i=0,1,...,n—1. For any u € Vi \Vp g, there is a small open neighbor-
hood U of u in V,\V;, 4 such that this lattice does not vary when varying v € U.
Let us fix such an open neighborhood . Therefore, without changing the nota-
tion, we may and will simply work with the restriction of the relevant coherent
sheaves to a suitable fixed noetherian open formal subscheme N, of A,.

In the codimension filtration (B.1), the classes of Or, and Oa,, belong
to F“_lKgg(Nn x Ny) and F"_IK(?N“ (N5 x Ny) respectively. Therefore, by
(B.3) the class T\ (cf. (3.12)) lies in the filtration JI*_Q“"_QK"]V‘f (Np X NR) =
F K, a&"ﬂ (Nn). Since Z(u) is a Cartier divisor, the Euler-Poincaré charac-

L
teristic x(Np, Z N Z(u)) vanishes if Z is a (noetherian) zero dimensional sub-

scheme of Ny. Therefore, it suffices to consider N e GI"”‘_IKE;VF’g (Nn); see
(B.2) for the definition of the graded groups Gr*Ky. We may represent (the
restriction to N, of) LA by a finite sum > ¢multc - [O¢| where multc € Q
and all C are one dimensional, formally reduced (i.e., the sheaf O¢ has trivial
nilradical), irreducible, and closed formal subschemes of Ny . Fix such a C. Tt
suffices to show that the following function is locally constant:

Ite: U——5Q
w——s x(No, C B Z(w)).

There are the following (mutually exclusive) two cases for C:
e C is a closed formal subscheme of Ny, red;
e C is not a closed formal subscheme of Ny, reqd.

For the first case, we can assume that C' C V(A) for some vertex lattice A of
maximal type. Then we have proved an even stronger statement in Lemma 5.1.
Now we consider the second case. We let C be the normalization of C
and let m : C — C be the normalization morphism. (This is a finite mor-
phism by the excellence of C.) It suffices to show the local constancy of

L
u € U = XN, mOx @ Ozy)). Note that Z(u) is a Cartier divisor on
Ny Then C x N,, Z2(u) has expected dimension. (Otherwise C' C Z(u); then

C c CNZ(u) C N N Z(u), and hence C is a closed subscheme of Ny, req.)
Therefore we have equalities in K{(N N Z(u)):

L
1.0z @0y, Ozw) = 05 ®oy, Oz
= mO0x ®Oy (Ong oy, Oz(w)

= W*Oa ®ON,% ON‘I’?HZ(E)
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It follows that

L
(51) X(Nn: ?T*Oa. X Oz(u)) = X(Nn,?l'*Oa ®ON§ ONgﬂZ(u))‘

We have seen in the beginning of the proof that the sheaf Oy9z(,) does not
change when varying u in Y. Therefore the Euler—Poincaré characteristic (5.1)
is a constant for u € Y. O

Remark 5.3. We could avoid (B.3) in the proof of Proposition 5.2 as
a
follows. Now we cannot conclude that LN,g,y € F "_IK‘(’)\[ ™7 (Nn). There-

fore, in the two cases of the proof, the closed formal subscheme C' may have
dimension higher than one. For the first case, Lemma 5.1 holds for any
C € Ch;y)(Nnyrea) of arbitrary dimension i (see [26, §6.4]). For the sec-
ond case, we still have (5.1), and therefore the proof above still works.

5.2. Local constancy of the function Int(-,-).
LEMMA 5.4. Fiz (go,uo,e0) € (U(Vyn) x Vp x u(1))° such that

g = ’5_1(90;‘150;60) € U(Vit1)sess

cf. Lemma 4.3 for the notation. Then the map (defined on some open subsets
of Fo-varieties)
char(go, . ) : Vﬂ, * u(l) E— U(Vn-i—l),fU(Vn_,_l)

(u, ) ——— char poly(¥~!(go, u, €))

is submersive (t.e., the induced map on tangent spaces is surjective) at (up, €o).
Here U(Vnt1) ju(v,,,) denotes the categorical quotient (with respect to the
the conjugation action) and char poly denotes the characteristic polynomial.

Proof. The question is local on the source. Tracing the definition back to
(4.9) and Lemma 4.2, we may reduce the question to the Lie algebra version:

for a fixed (_235 :00) € w(Vi41)srs, the map

Vn bt u(l) e u(vn+1)ézU(vﬂ+l)

sending (u,e) to the characteristic polynomial of ( % ) € u(Vpyq) is sub-
mersive at (ug, €p).
Note that a complete set of generators of invariants relative to the U(Vy,)-

action on u(V,41) is given by
charpoly(z), e, wu*zlu, 0<j<n-—1,
where ' = ( _5» ¢ ) € W(Vyq1); cf. [46]. It is easy to see that an equivalent set is

charpoly(z), char poly(z’).
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Therefore, it suffices to show the analogous map
Vo — H?:_ol FEY
sending u € V, to the invariants
wrdu, 0<j<n-—1,
is submersive at ug. Here F(=1 is the (—1)?-eigenspace of F' under the Galois
conjugation. Now the assertion follows from the regular semi-simplicity of zg,

which reduces the question to the case n = 1, but for the product of field
extensions of F'. This is routine and we omit the detail. |

THEOREM 5.5. The function
Int(-,-) : (U(Vy) x V) (EFp)ss ———— Q
(9, u) ———— Int(g, u)
is locally constant. Its support is compact modulo the action of U(Vy)(Fop).

Remark 5.6. See the forthcoming work of Mihatsch [32] for a different
proof, which also yields the local constancy on the regular semisimple locus.

Proof. We may assume that the invariants of (g,u) are all integers. We
now fix such a pair (g,u), and we want to show the local constancy near (g, u).

First, by the argument in the proof of part (i) of Proposition 4.12, there
exists ¢’ =T (g, u,€) € U(Vyy1)°(Fp)ss such that

(5.2) Int(g") = Int(g, u).

In fact, by the same argument the equality holds if we replace (g,u,e) by
any element (g, uf, ef) near it, and ¢’ by the respective image ¢ under the
map t L.
On the other hand, we may write
Int(g") = Int(q’, ug),
where ua € Vp41 is the fixed unit normed vector that induces the embedding
N7 < Nnt1. We now apply Proposition 5.2 to (¢, ug):
Int(g’, uy) = Int(g',u’),

where v’ € V44 is close to ug. In particular, the equality holds for ' = huy for
h € U(V,41) in a small neighborhood of 1. By the invariance under U(V,4,),
for ' = huj, we have

Int(g’,u') = Int(h ™ g’h, up).
It follows that Int(g’,uf) = Int(h~1g’h,u})) and hence
(5.3) Int(g’) = Int(h™'g'h)
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for h € U(Vyp41)(Fp) in a small neighborhood of 1. This shows that, as a
function on the quotient [U(V,41)/U(V,)](Fp), Int(¢’) is constant on those
elements near ¢’ and having the same characteristic polynomial (as ¢’).
Now we claim that the desired local constancy near (g,u) € (U(V,) x
V1) (Fo)sts follows from the following two properties:
(1) the local constancy in the u-variable (for a fixed g), by Proposition 5.2;
(2) the invariance (5.3) under conjugation by elements h near 1 € U(Vy,41).
To show the claim, let ¢’# be an element in a small neighborhood of ¢’. By
Lemma 5.4, there exists a neighborhood Q C Vy x u(1) of (u,e) such that g
is conjugate (by an element h € U(V,,41)(Fp) near 1) to t1(g, uf, e?) for some
(uf, e?) € Q. By the invariance (5.3), we have

Int(g") = Int(v (g, uf, et)).
By (5.2) (and the remark following it),
Int(t~(g, uf, e*)) = Int(g, u?).
By Proposition 5.2 for the local constancy in u,
Int(g, u*) = Int(g, u).

Again by (5.2), Int(g,u) = Int(g’), we obtain Int(g"*) = Int(g’). The desired

local constancy of Int(g, u) follows from (5.2) (and the remark following it).
To show the compactness of the support modulo U(Vy,)(Fp), it suffices to

show the claim: the support is contained in the union of compact subsets

Ka x A C (U(Vy) x Vy)(Fo),

where A runs over all vertex lattices, and K, is the stabilizer of A. Then
the desired compactness follows from the fact that the group U(V,)(Fp) acts
transitively on the set of vertex lattices of any given type ¢ (and there are
only finitely many possible types t = 1,3,...,2[(n — 1)/2] + 1). Now we show
the claim. If Int(g,u) # 0, then there exists a point z € Ny (E) lying on
Z(u) and Nj. Let V(A) for some vertex lattice A be the smallest stratum
containing the point . Then gA = A (otherwise the intersection gV(A)NV(A)
is non-empty and is a strictly smaller stratum), and v € A by [24, Prop. 4.1].
Therefore (g,u) € K) x A as desired. O

Part 2. Global theory
6. Shimura varieties and their integral models

In this section we recall the construction of the integral models of unitary
Shimura varieties, following [5], [40], [39]. In fact, rather than the full strength
of loc. cit., we only need a regular integral model away from a suitable finite
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set of primes: the key is to keep those primes where the relevant hermitian
space locally contains a self-dual lattice.

6.1. Shimura varieties. Let F' be a CM number field with maximal totally
real subfield Fy and nontrivial F'/Fyp-automorphism a — @. Let n be a positive
integer. A generalized CM type of rank n is a function r : Homg(F, Q) — Z>o,
denoted ¢ + 7y, such that

(6.1) ro+rp=mn forall ¢.

Here @ denotes the pre-composition of ¢ by the nontrivial F'/ Fp-automorphism.
When n = 1, a generalized CM type is the same as a usual CM type (i.e., a half-
system ® of complex embeddings of F'), via ® = {p € Homg(F,Q) | rp = 1}.
Let (V,(, )) be an F//Fp-hermitian vector space of dimension n. Fix a CM
type @ of F'. Then the signatures of V' at the archimedean places determine a
generalized CM type r of rank n (and vice versa), by the following recipe:

(6.2) sighp = (1o, 1), p€®, Vo:=V®p,C
Let G? be the group of unitary similitudes of (V,( ,)),
GU .— {g € Rengf@ GU(V) | C(Q‘) € Gn }:

considered as an algebraic group over Q (with similitude factor in Gy, ), where
¢ denotes the similitude map.

Given ®, r and V, we define a Shimura datum (G@, {hge}) as follows
(cf. [39, §2.2]). For each ¢ € ®, choose a C-basis of V,, with respect to which
the matrix of ( , ) is given by

(6.3) diag(1y,, —1r;)-

Then {hgo} is the G2(R)-conjugacy class of the homomorphism
hgo : Resc/g Gm — G3,

defined with respect to the inclusion

(6.4) GUR) € GLpgr(V ®R) =+ [] GLc(V,),
ped

by hge = (hgo p)pecd With the component hge , (on the R-points)
hao 2 € C* > diag(z - 15,2 - 1p).

Then the reflex field E(GQ, {hmo}) is the reflex field E, of r, which is the
subfield of Q defined by

(6.5) Gal(Q/E,) = {0 € Gal(Q/Q) | o*(r) =1 }.
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Now, in addition to the CM type ®, we also fix a distinguished element
o € ®. From now on we assume that the generalized CM type r is of strict
fake Drinfeld type relative to ® and ¢y, in the sense of [39], i.e.,

r. — n'_]-? ¥ = Yo,
¢ n, pe®~\ {po}.

The first special case is when n = 1 and V is totally positive definite,
i.e., V has signature (1,0) at each archimedean place.! In this case, we write
ZQ .= GQ (a torus over Q) and hg := hgo. The reflex field of (Z9, {h4o}) is
Egs, the reflex field of ®.

For general n, we set
G:=7%xg, G,
where the two maps are respectively given by Nmp, p, and the similitude char-

acter. We form a Shimura datum for G by
h,o.h ~
hg : C* (rehad) mg).

Then the reflex field E C Q of (Ef, {hg}) is the composite Eg By (cf. [39, §3.2]).
In particular, the field F' is a subfield of E via ¢g.

In [40, Rem. 3.2 (iii)] (also [39, §2.3]) the authors also defined a Shimura
datum (Resp, /g G,{hg}), where G is the unitary group G = U(V) (an alge-
braic group over Fj); this gives the Shimura variety in the Gan—Gross—Prasad
conjecture; cf. [9, §27]. Note that there is a natural isomorphism

G —"— Z% x Resp, o G
(2,9) ——— (2,27 1g)
and, when K5 = Kzq X K¢ is a decomposable compact open subgroup of
G(Ay), we have a product decomposition of the Shimura varieties over
(6.6)  Shk_(G,{hg}) ~ Shk,4 (29 {hze}) x Shk, (Resp,/q G, {hc}).
6.2. Integral models.

6.2.1. The auziliary moduli problem for Z2. We recall the moduli problem
M over Og,, of [40, §3.2]. For a scheme S in (LNSCh)/OEd,: we define My(S)

to be the groupoid of triples (Ag, tg, Ag), where
e Ap is an abelian scheme over S;
® 40 : Op — End(Ap) is an Op-action satisfying the Kottwitz condition

(6.7) char(u(a) | Lie Ag) = H (T — ¢(a)) forall ac Op;
ped

'Here we follow the convention of [39], which differs from [40] where the space V is totally
negative definite.
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e )\ is a principal polarization on Ag such that the induced Rosati involution
via tg coincides with the Galois involution on Op.

A morphism between two objects (Ao, to, Ao) and (Ag, ¢y, Ap) in this groupoid
is an Op-linear isomorphism pp : Ag — Af under which Aj pulls back to Ag.
Then the functor My is represented by a Deligne-Mumford stack, finite and
étale over Spec Og,; cf. [18, Prop. 3.1.2].

The generic fiber My of Mg is a disjoint union of copies of the Shimura
variety ShK;Q (Z Q {h Zq}), where K¢ is the unique maximal compact sub-
group of Z2(Ay); cf. [40, Lem. 3.4] specializing to the ideal a = Op,. To avoid
the possible emptiness of Mg, we assume that F'/Fp is ramified throughout
this paper (cf. [40, Rem. 3.5 (ii)]). For our purpose, it suffices to work with
a fixed copy of the Shimura variety ShK;Q (ZQ , {hzq}) in the disjoint union
in Mp, and by abuse of notation we will still denote it by My and by M the
corresponding smooth integral model for the rest of the paper.

We also introduce a level structure for Mo. We let Kzo = [[, K70, C
Z@(Af) be an open subgroup such that the prime-to-0 components remain
maximal. Analogous to My, there is a moduli functor Mg g 70 with K ;q-
level structure, whose generic fiber is SthQ (ZQ , {hzq}). The construction is
not important to this paper and we omit the detail (cf. [30, §C.3]); it suffices
to mention that an object in the groupoid MO,KZQ (S) will be denoted by
(Ao, to, Ao, ), where 77, denotes a K yo-level structure.

6.2.2. The RSZ integral model for (Ei, {ha}). We now follow [40, §5.1]
and [39, §6.1] to define the moduli interpretation of our Shimura varieties
associated to the Shimura datum (E, {hﬁ}) for a certain special level structure.
When Fy = Q, this is closely related to [25], [5]. In fact, for this paper, we only
need an integral model over a suitable Zariski open subscheme of Spec Op.

Let %, denote the finite set consisting of all non-archimedean places v of
F, such that

e the residue characteristic of v is 2, or
e v is ramified in F', or
e v is inert in F' where V,, is non-split.

Let 2 be a finite set of non-archimedean places containing %, such that & is

pull-back from a set of places Y of Q. Define
0= H p.

P|%q

We will consider the Shimura variety for (Eﬁ, {hé}) with level-structure at the
finite set of places dividing 0.
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For every non-archimedean v ¢ 2, we fix a self-dual Op, -lattice Aj C V,,
ie.

(6.8) Ay = (A7)7,

where we recall that (AJ)Y denotes the dual lattice with respect to the hermit-

ian forms on V. Let
(6.9) K&, € U(Vy)(Fop)

be the stabilizer of the lattice AJ, a hyperspecial compact open subgroup of
U(Vy)(Fop). Let Kg =[], Keo C G(Ag, f) be a compact open subgroup such
that K¢, = K¢, for all v 10. Let Kzo =[], Kz0p C ZQ(Af) be an open
subgroup such that the prime-to-9 components remain maximal. Accordingly
we define

Kz =Kzo x Kg C G(Ay).
Recall that E = EgE, is the reflex field of (Ef Aha))-

Definition 6.1. The functor M Kg (Eﬁ) associates the groupoid of tuples
(Ao, 0, Ao, A, ¢, A,7) to each scheme S in (LNSch) 0, [1/0], where
e (Ao, t0, Ao, 7o) is an object of Mo k4 (S5);
e A is an abelian scheme over S;
e 1 : Op[1/0] — End(A)®zZ[1/0] is an action satisfying the Kottwitz condition
of signature

((n—1, 1)800 , (n, 0)906@\{900})

on Op[1/0];
e A: A — AV is a prime-to-0 principle polarization whose Rosati involution
inducing the Galois involution on Or[1/0] with respect to ¢;

e 7 is a [],pp KG,v-orbit of isometries of hermitian modules (as smooth Fy =
[Ivo Fo-sheaves on S endowed with its natural hermitian form induced by the

polarization)
(6.10) n: Vo(Ag, A) —— V(Foyp),
where
Vo(Ao,4) == [ Vp(40,4),  Vj(A0, A) = Hompeyg, (Vo(Ao), Vp(A4))
pfo
and
(6.11) V(Foo) =[]V ®eQ =[]V @r Fou-

pd v[o

More precisely, this is understood in the sense of, e.g., [25, Rem. 4.2]. Fix-
ing any geometric point § of a connected scheme S, the rational Tate module
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Va(Ag,A) is a smooth F = oo Fu-sheaf on S determined by the rational
Tate module Vy(Ags, As) together with the action of the fundamental group
m1(8,5). Moreover, the polarizations on Ag and A defines an Fy-valued her-

mitian forms (-,-) on Vy(Ap3, As):
(x,y) = Aal oy’ ooz € Endp, (Va(Aoz)) = Fo.

Then the level structure 7 is a [ [,jp K¢ p-orbit of isometries of hermitian mod-
ules

(6.12) 1 : Vo(Aos, As) —— V (Fop)

that is required to be stable under the action of m(S,5). The notion of
[Top K¢ y-level structure is independent of the choice of the geometric point 5
on S.
e Finally, we impose the Eisenstein condition (cf. [39, §5.2]) for every place
widof F 2

A morphism between two objects (Ao, Lo, Ao; g, A, ¢,A,7) and (Af, ¢(, A, Tos
A’/ N, 7) is an isomorphism (Ag, Lo, Ao, 7o) — (Af, th, Ay, Tp) in Mok ,0(5)
and an Op-linear d-isogeny A — A’ pulling X" back to A and 77’ back to 7.

THEOREM 6.2. The functor MKQ (G) s represented by a Deligne—Mumford

stack. The morphism Mk (Ef) — Spec Og[1/0] is separated of finite type, and
smooth of relative dimension n — 1.

Proof. This follows from [40, Th. 5.2] (when all p { 9 are unramified in F)
and [39, Th. 6.2], except we note that here we have omitted the sign conditions
in loc. cit. However, the sign conditions hold automatically for all places away
from 9 (cf. [39, Rem. 6.5(i)]), and therefore these two theorems still apply to
the current situation. O

Note that when both [[,, K70, and [[,, Kcp are small enough, the
functor M KG(G) is represented by a quasi-projective scheme, smooth over
Spec Og[1/0]. We will make this smallness assumption for the rest of the
paper. _ _

By [40, Prop. 3.5], the generic fiber M Ké(G) of M Kg (G) is isomorphic
to the canonical model of Shk (G, {hs}). We also recall the moduli functor
Mk, (G) over Spec E for any compact open subgroup Kz C G(Ay) of the form

K5 = Kzo x K¢. Similar to Definition 6.1, the functor MKG(G) associates to
each scheme S in (LNSch),p the groupoid of tuples (Ao, t0, Ao, 7gs A, t5 A7),

2The Eisenstein condition at a place w of F' [39, §5.2] follows from the Kottwitz condition
if we assume that w is unramified over p. Therefore we only have this condition at finitely
many places w ramified over p.
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where everything is the same as Definition 6.1 with the following minor change.
Now ¢ : F — End°(A) is an F-action, A : A — AV is a polarization, and 7 is a
K g-orbit of isometries of A /AR, s-hermitian modules

(6.13) n: V(4o, A) —— V(A 1),

where

V(4o, A) =[] Vp(4o. 4)

and V(Ap, r) =V ®p, Apy,r. The rest is the same as Definition 6.1, with the
appropriate modification of the definition of morphisms in the groupoid; cf.
[40, §3.2].

7. Kudla—Rapoport divisors and the derived CM cycles

In this section we consider two types of special cycles on the integral
models of Shimura varieties introduced in the previous section:

e the Kudla-Rapoport special divisors [25], and

e the derived CM cycle, which is a variant of the (1-dimensional) “big CM
cycle” of Bruinier-Kudla—Yang and Howard [6], [18].

The derived CM cycle is the main novel geometric construction of this paper.

We make the following notational assumption: in Part 2 of the paper, all
Schwartz functions on totally disconnected topological spaces are (Q-valued.
The reason for this assumption is to define elements in various Chow groups
or K-groups with QQ-coefficients.

7.1. The global Kudla—Rapoport divisors on MKé(a) over Spec E. First
we define the global Kudla—Rapoport divisors on the canonical model M Kg (Ef )

of ShKé(a, {h&}) over Spec E, introduced at the end of Section 6.2.2, for an
arbitrary compact open subgroup of the form K5 = Kzo x Kg. We follow
[25] when Fp = Q, and [30, Def. 4.21] and [39, §3.5] for a general totally real
field Fjp.

Let £ € Fo4, and let u € V(Ag r)/Kg be a Kg-orbit.

Definition 7.1. For each scheme S in (LNSch) g, the S-points of the KR
cycle Z(&, i) is the groupoid of tuples (Ao, t0, Ao, A, ¢, A, 7], 1), where
e (Ao, 0, Ao, Mo, A, L, A7) € Mk (G)(S5).
e u € Hom}(Ag, A) such that (u,u) =&, and 7j(u) is a homomorphism in the
Kg-orbit p. Here (-,-) denotes the hermitian form on Hom%(Ag, A) induced
by the polarization Ag and A for z,y € Hom{.(Ap, A):

(z,y) =A;' oy o Aoz € Endy(Ao) ~ F.
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A morphism between two objects (Ag, Lo, Ao, Tgs A, ¢, A, T, 1) and (Ag, ¢p,
Ay Mo, AT, N7, 4) is an isomorphism (Ao, to, Ao, 7o) — (Af, ths Ny, Th) in
Mo(S) and an F-linear isogeny ¢ : A — A’, compatible with A and X', with i
and 77, and such that ' = uo ¢.

Forgetting u defines a natural morphism i : Z(&, p) — M KQ(EE); we defer
to Proposition 7.3 for its properties. In particular, the push-forward defines a
class in the Chow group Ch! (Mg (G)). For ¢ € S(V(Aos))Ke, we define

(7.1) ZE0) = Y, dwZEn),

neEVe(Ao,5)/Ka

viewed as an element in the Chow group Ch'(M, Kg (Ei)) Here Vg is defined in
Section 1.2 after (1.4). Note that (7.1) is a finite sum due to the compactness
of the support of ¢ (and G(Ag s) acts transitively on V¢(Ag ) when £ # 0).

7.2. The global Kudla—Rapoport divisors on the integral model MKG (Ef)

We now consider the moduli function M = Mk (5) with level structure at

primes dividing 9; cf. Definition 6.1. Here K is of the form K5 = Kz x K¢

with K¢ =[], Kgv € G(Ag,f) such that Kg, = K¢, for v {0, where K¢, is

the stabilizer of the self-dual lattice AJ; cf. (6.8) and (6.9). ,
Let £ € Fy 4+ and p € V(Fpp)/Kgp. Here V(Fyy) is as in (6.11).

Definition 7.2. For each scheme S in (LNSch),0,[1/2], the S-points of the
KR cycle Z(&, i) is the groupoid of tuples (Ao, to, Ao, 7o, A, ¢, A, 7], 1) where
e (Ao, t0,A0,Mp, A, L, AT € Mk, (G)(S).
e u € Homp,.(Ao, A) ®z Z[1/9] such that (u,u) = &, and 7(u) is a homomor-
phism in the Kgp-orbit p. Here (-,-) denotes the hermitian form induced by
the polarization Ag and A:

(z,y) = Ayt oy¥ o Aoz € Endp, (Ap) ®z Z[1/0] ~ Op[1/7].
A morphism between two objects (Ao, to, Ao, Ty, A, ¢, A, 7, u) and (Af, ¢,
Ay, o, AT U, N 77, 4) is an isomorphism (Ao, to, Ao, Tlg) — (4§, ths No,Tlp) in
Mok o (S) and an Op-linear prime-to-0 isogeny ¢ : A — A’, compatible with
A and ), with 77 and 7, and such that v’ = u o ¢.
Forgetting u defines a natural morphism i : Z(§, pu) -+ M Kg (Ei)

PROPOSITION 7.3.
(a) The morphism i: Z(&,pu) — Mk, (Ef) is representable, finite and unrami-
fied.

(b) The morphism i defines étale locally a Cartier divisor. Moreover, the mor-

phism Z(&, u) — Spec Og[1/0] is flat.
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Proof. When Fy = Q, part (a) follows from [25, Prop. 2.9], and part (b)
follows from [5, §2.5]. For a general totally real Fj, both follow from [30, Prop.
1.22]. O

To a function ¢y € S(V5)KG2, we associate ¢ = 140 ® ¢ € S(V(Ag f)),
where A =[], Ay for the self-dual lattice Ay in (6.8). Then we define

(7:2) Z(&9) = ). b ZEnp),

peVe(Fop)/Kan

viewed as an element in the Chow group Ch'(M Kg (@)). For such functions
¢o and the associated ¢, the generic fiber of Z(&,¢) is Z(§,¢) defined by
(7.1) (specializing to the current level K5). In particular, the generic fiber
of Z(&, ) is the union of the KR cycles Z(&, ') in Definition 7.1 for suitable
peV(Aoy)/Ke.

7.3. Special divisors in the formal neighborhood of the basic locus. We
consider the restriction of the KR divisors to the formal completion of M =
Mk, (Zi) along the basic locus.

Let v { 0 be a non-archimedean place of E. Its restriction to F' (resp. Fj)
is a place denoted by wq (resp. vg). Assume that vy is inert. We recall from
[40, §8, in the proof of Th. 8.15] the non-archimedean uniformization along the
basic locus:

(7.3) Mo, = (M) ®0p,, Op,) = “G"r(Q)\[Nf x G(AR)/KZ|.

Here the hat on the left-hand side denotes the completion along the basic locus
in the geometric special fiber of M(,). The group G’ is an inner twist of G.

More precisely, the group G’ is associated to the “nearby” hermitian space V'

that is positive definite at all archimedean places, and isomorphic to V', locally

at all non-archimedean places except at vg. Let N' = N, i o/Fug — SPE O
T v wq

be the RZ space introduced in Section 3.1, and take its base change NOE =
N@oﬁ Oy . Then as in loc. cit.,> we may rewrite (7.3) as
'UJD v

(7.4) Mo, =G'(Q)\ |[No,, x G(AP)/KZ].

3The formal scheme in the Rapoport—Zink uniformization theorem is the “absolute” RZ
space of PEL-type in [31] rather than the ‘“relative” RZ space N, Fug/Fu, I Section 3.1.
These two RZ spaces coincide by [31, Th. 3.1], noting that the Eisenstein condition imposed
in [31] for the signature (r,s) = (n — 1,1) reduces to the Eisenstein condition in [39, §5.2,
case (2)] for the definition of the moduli space M = M Ka.(é) in this paper.
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Here, by abuse of notation, we denote

G(AP)/KL = G(A})/KL x (ZUQ)/Kgey) x [ CFon)/Keo,

veSp~{vo}

where S}, denotes the set of places of Fy above p. For the action of the group
G'(Q) in (7.4), we fix an isomorphism G’(A\.U“) o~ (A'UD)

Note that the uniformization (7.4) mduces a projection to a discrete set
(in fact an abelian group)

(7.5) Mo,

— Z2Q)\(2%As)/K ).

This gives a partition of the formal scheme Mg 5 each fiber is naturally

isomorphic to
(7.6) Mo, o= G’(Fo)\ [NO . X G(AR)) /Kgﬂ]

Recall that we have the local KR divisors Z(u) on N = Nn,pwu /Fo,u,
for each u € V' ® Fy,, ~ Hom®(E,X,), the hermitian space of local special
homomorphisms (for some fixed framing objects E and X, in the uniformization
(7.4) above). For a pair (u,g) € V'(Fp) x G(AEE})/K&P with u # 0, we define
the product divisor on Noﬁj X G(A\. )/K””,

(7.7) Z(“?Q)Kgﬂ = Z(u) x Ly k2o

We then consider

Z Z(ufa g’)szD’

where the sum is over (v/,g’) in the G'(Fp)-orbit of the pair (u,g) for the
diagonal action of G'(Fp) on V'(Fp) x G(Ag’;) /K. Since the sum is G'(Fj)-
invariant, it descends to a divisor on the quotient Mg 5 0 I (7.6), which we

denote by [Z(u, g)]

PROPOSITION 7.4. Let & € Fo . The restriction of the special divisor
Z(&,¢) to each fiber of the above projection (7.5) is the sum

(7.8) > ¢ (g7 ) - [Z(u, 9]k,
(,9)€G (Fo)\(V{ (Fo)xG (Ag%) /K )
viewed as a divisor on (7.6). This is a finite sum.

Remark 7.5. This is similar to the description of the special divisors over
the complex number; cf. (8.8).

Proof. This follows from the proof of [25, Prop. 6.3]; also cf. [30, §4.2]. O
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7.4. Fat big CM cycles. We introduce a fat variant of the “big CM cycle”
in [6], [18] on our moduli space M = Mg (Ei) with level structure at primes
dividing d (cf. Definition 6.1).

Fix an a € An(Fo) C F[T]geg=n (cf. the end of Section 2.2). If a has no
repeated roots, then
(79) F' = F[T}/(a)
is a semi-simple I-algebra. There is a unique Fp-linear involution on F” sending
T — T~! and extending the Galois involution for F//Fy. Then the fixed subal-
gebra F) is a product of totally real field extensions of F, and F' ~ F' ®p, F}
with the involution of F’/F induced from that of F'/Fp.

Now let a € A, (Op,[1/9]) be irreducible over F. Then the algebra F’ in
(7.9) is a field. Throughout the rest of the paper we will assume F’ is a CM
extension of F). This is a necessary condition for the functor in Definition 7.6
below to be non-empty. We denote

(7.10) Ra = OF[1/0][T]/(c),
viewed as a sub-ring of the CM field F".

Definition 7.6. The functor CM(a) = CM () associates to each scheme
S in (LNSch),0,[1/0) the groupoid of tuples (Ao, 0, Ao,7o, A4, ¢, A, 7, ¢) where
(Ao, 10, 0, g, A, 1, A7) € M (G) and ¢ € Endo,,(4) ® Z[1/2] such that
e the polynomial a annihilates the endomorphism ¢;

e @ is compatible with A, i.e., ¢*A = A, or equivalently, the Rosati involution

sends ¢ to ¢ 1; and

e o preserves the level structure 7, i.e., we have a commutative diagram
Vo(Ao, A) —— V(Foa)
‘L‘P lid
Vo(Ao, A) =2 V (Foa)

for some n1,m2 € 7.
Morphisms in the groupoid are defined in the obvious way.

We have a natural forgetful map
CMi () — Mk (G).
We call CMk () the (naive) fat big CM cycle, or simply CM cycle.

Remark 7.7. The abelian scheme A in the moduli functor CM(«) carries
an Rg-action where the T in (7.10) acts by ¢. Our moduli functor CM(a) is
analogous to the big CM cycle defined in [18], where R, is replaced by the ring
of integers Op+ in F' = F[T]/(c). A minor difference is that we do not impose
any Kottwitz signature condition in our Definition 7.6, while [18, Def. 3.11]
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does. The main new feature of our moduli functor CM () is that we allow R, to
be a non-maximal order in Op+[1/9]. As aresult, it could have very complicated
structure in positive characteristic (e.g., with large dimensional components).
A complete understanding of the geometric structure of CM(a) seems a hard
question (e.g., to determine all of its irreducible components in its special
fibers), and the AFL type identity in this paper gives us a partial answer.

We also define a twisted variant of CM(a).

Definition 7.8. Let g € G(Fop). The functor CM(a, 9) = CMk(, g) as-
sociates to each Og[1/0]-scheme S the groupoid of tuples (Ag, to, Ao, 7, A, L, A,
7, ), where (Ao, to, Ao, 7o, A, L, A7) € MK.G(E?") and ¢ € Endo,.(A) ® Z[1/7]
such that
e the polynomial a annihilates the endomorphism ¢;

e o is compatible with A, i.e., ¢*A = A, or equivalently, the Rosati involution

1.

sends ¢ to ¢~ *; and

e we have a commutative diagram

Va(Ag, A) —2 V(Foo)

Lol
Vo(Ag, A) —— V(Fpp)

for some n1,m2 € 7.

Morphisms are defined in the obvious way.

Denote by Ram(a) the set of non-archimedean places v { 9 of F where
Ry = Op[1/0][T]/(e) is non-maximal (i.e., Rqy = Rq ®0p, OFyp is not a
product of DVRs).

PROPOSITION 7.9. Let a € An(Op,[1/0]) be irreducible over F. Let g €
[Lojo G ().
(a) The morphism CM(c, g) — M is representable, finite and unramified.
(b) The morphism CM(a, g) — Spec Og[1/0] is proper. Its restriction to the
open sub-scheme Spec Og[1/0] \ Ram(a) is finite étale.

Proof. The first part follows similarly to Proposition 7.3. (By the theory
of Hilbert scheme, the morphism is representable by a disjoint union of schemes
of finite type; it is of finite type by the first condition a(yp) = 0; 4 it is then
quasi-finite because there are only finitely many ways to endow an action of
the order R, to a given (A,¢,\) over an arbitrary field; the unramifiedness

4 Alternatively, one can argue using Lemmas 7.11 and 7.15.

This content downloaded from
18.9.61.111 on Sat, 01 May 2021 15:25:00 UTC
All use subject to https://about.jstor.org/terms



912 W. ZHANG

follows from the rigidity of quasi-isogeny; by the valuative criterion by the
Néron property of abelian scheme, the morphism is proper, and hence finite.)

The properness of CM(a, g) — Spec Og[1/?] follows by the valuative cri-
terion. (The toric part of a semi-abelian scheme will have too small dimension
to carry an action of R.) Finally, the argument of [18, Prop. 3.1.2(3)] still holds
to show the finiteness and étaleness over Spec Og[1/0]\ Ram(a): at every place
above v ¢ Ram(a), the local order Ry, is maximal, and hence the p-divisible
group has formal multiplication by a local maximal order. |

7.5. Hecke correspondences and their fized point loci. We first introduce
the characteristic polynomial of an endomorphism of an abelian variety. Then
we apply it to study the fixed point loci of Hecke correspondences.

Let k be an arbitrary field, and let A be an abelian variety over k. Then we
define the characteristic polynomial of ¢ € End®(A), denoted by charg(y), as

ChaIQ(‘P) = det(T - ‘P|VE(A)) S Qﬁ [T]deg=2 dim A

where £ is any prime different from the characteristic of k, and V;(A) denotes
the rational f-adic Tate module of A. Similarly, if ¢ : ¥ — End°(A) is an
F-action, and ¢ € Endj(A), then Vy(A) is a free F' ®g Qp-module of rank
n = 3[‘};—%]4 We then define

charp(p) = detpgqyq, (T — ¢|Ve(4)) € F ®q Qe[T]deg=n;
viewing V¢(A) as a free F' ®g Q¢-module.
LEMMA 7.10.
(a) The characteristic polynomial charg(y) is in Q[T]deg=2dima and is inde-
pendent of the choice of £.

(b) If v : F — End°(A) is an F-action, and ¢ is in Endz(A), then the charac-
teristic polynomial charp(y) is in F [T |deg=n and is independent of the choice
of £.

Proof. The characteristic polynomial charg(yp) is determined by its value
at T'=m € Q C End°(A), in which case we have

charg(y)(m) = deg(m — ¢) € Q0.

This proves the first part.

Let trg(p) be the negation of the coefficient of T24™ A~ in the polynomial
charg(y). Then we obtain a Q-linear map trg : End°(A) — Q. Then knowing
trg(¢?) for all i > 0 is equivalent to knowing charg(y). If ¢ commutes with
the F-action ¢ : F' — End°(A), we define trp(yp) € F, characterized by

trr/q(atrr(p)) = trg(c(a)p) for all a € F.
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From trp(p') € F for all i > 0, there exists a unique polynomial in F[T]geg—n
recovering the characteristic polynomial charp(y). This proves the second
part. |

LEMMA 7.11. Let S be a connected locally noetherian scheme, and let
A — S be an abelian scheme.

(a) If ¢ € End°(A), then the function s € S + charg(p) € Q[T]deg—2dim A S
constant.

(b) Let v : F — End°(A) and ¢ € Endy(A). Then the function s € S —
charp(y) € F[T]qeg—n is constant.

Proof. 1t suffices to show the assertion when some rational prime £ is
invertible on S. (Otherwise, choose two primes ¢; # {3, cover SpecZ by open

sub-schemes SpecZ[1/¢;] and SpecZ[1/{3], and then pull back to cover S.)
Then the local constancy follows from the fact that the rational f-adic Tate
module V;(A) is a lisse étale sheaf on S. O

We now define Hecke correspondences.

Definition 7.12. Let g € G(Fop) C G(Ag). The functor Hkix, 4k
associates to each Og[1/9]-scheme S the groupoid of tuples

(Ao, Lo, )‘01 ﬁO: A: L, /\: ﬁa Ara 511 )‘!1 ﬁra So)a
where (Ao, t0, Ao, o, A, 1, A, 7), (Ao, 0, Ao, Tio, A, , X', 7)€ M (G)(S), and
a quasi-isogeny ¢ € Homo, (A, A") ® Z[1/?] such that
e  is compatible with A and X, i.e., *X = A;
e there exist 7 € 7 and 7’ € 77’ such that the following diagram commutes:

Vo(Ao, A) —1— V(Foa)

|+ |
Vo(Ag, A') —1— V (Fy).
Here the left vertical map on rational Tate modules is induced by ¢. Note

that this is to be understood similarly to the definition of level structure (cf.
Definition 6.1).

Morphisms are defined in the obvious way.
We have a natural morphism
Hk[KGgK(_;'] — M X0g[1/7) M.

This morphism is finite, and the projection to any one factor is a finite étale
morphism.
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Now consider the fiber product, called the “fixed point locus of the Hecke
correspondence Hkx ., ],

Mk gka) = HKk g gk g] Xmxm Am — Hk(ie g k)

l J

A
M > M X0g[1/7] M.

Since M is a scheme over Og[1/?] (under our smallness assumption on the com-
pact open K), an object in M|k, 4k ](S) can be represented by (Ay, to, Ao,
ﬁoa A? Ly /\a UL (P)-

By Lemma 7.10 and Lemma 7.11, we obtain a locally constant map (for
the Zariski topology on the source)

(7.11) charp : Mk kg — F[T]deg=n,

which sends a point (Ao, Lo, Ao, 7o, 4, ¢, A, 7, ) in Mk, g k] to charp(p). The
image is a finite set by Lemma 7.11 because the source is of finite type and hence
has only finitely many connected components. It follows that the fixed point
locus Mk 4K is @ disjoint union of open and closed subschemes, indexed
by the image under the map (7.11):

(7.12) Miggorg= ||  charg'(a).
aclm(charg)
LEMMA 7.13. If a € F[T]|geg—n lies in the image of the map (7.11), then
it is conjugate self-reciprocal, and all of its coefficients lie in Op[1/0] (i.e.,
a € A,(OR(1/0]) in the notation (2.11)).

Proof. Suppose that « is the image of a point (Ao, to, Ao, 7o, 4,2, A, 7, @)
over an algebraically closed field k. Since the endomorphism ¢ preserves the
polarization A, it preserves the hermitian form on V4(Ap, A) for any £4 9. Then
the first assertion follows from the easy fact that the characteristic polynomial
of an element preserving a hermitian form is conjugate self-reciprocal. To show
that a € Op[1/0][T], it suffices to show that for every prime £ { 9, we have
a € O @z Zg[T] when viewing a € F ®qg Q[T]. If £ is different from the
characteristic of the field k, the Tate module Ty(A) is a free Op ®z Zg-module.
The endomorphism ¢ preserves Ty(A), and hence its characteristic polynomial
has coefficients in Op ®g Zy. If £ is equal to the characteristic of the field k,
the desired integrality follows using the Dieudonné M(A), a free O ®z W (k)-
module of rank n, where W (k) is the ring of Witt vectors of k. O

Remark 7.14. Similarly, if ¢ € End°(A) preserves a polarization A : A —
AV (i.e., p*A = X), then charg(yp) is self-reciprocal (i.e., T24™ 4 charg () (T 1)

= charg(¢)(T)).
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Finally, we relate the fixed point locus to the twisted CM cycle CM (e, g)
in Definition 7.8.

LEMMA T7.15. Let a € An(Or,[1/0]) be irreducible over F'. Let g €
G(Fop). Then the fiber of the map charg (7.11) above the polynomial o is
canonically isomorphic to the twisted CM cycle CM(a, g) in Definition 7.8.

Proof. By Definition (7.12), the fiber of the map charp (7.11) above « is
the functor whose S-points are the groupoid of tuples (Ao, to, Ao, 7o, A, £, A, 7, @)
satisfying the same conditions as in Definition 7.8, except the first one, i.e.,
a(p) = 0. This condition is equivalent to the condition on the characteristic

polynomial of ¢ by Cayley—Hamilton theorem and the assumption that « is
irreducible. O

7.6. Derived CM cycle LW(a,g). In Section 7.5, the twisted CM cycle
CM(a, g) is recognized as a union of connected components of the fixed point
locus Mk, g k) (cf. (7.11)):

(7.13) W(G,Q‘) —)M[KGQKG] 4>Hk[KGgKG]

J l

M # M XO0g[1/7] M.

This allows us to defines a derived CM cycle, by taking the restriction of the
derived tensor product

L
(114)  “CM(a.0) = (Ot g © OM) lemt(ag)€ Ko(CM (a.)).

Moreover, since A is a regular immersion of codimension n — 1, this element
belongs to the filtration F"_lng(a’g)(Hk[KGgKG]), and hence by (B.3),”

(7.15) LeM(a, g) € Fy K (CM(a, g)).

We extend the derived CM cycle to a weighted version. Let S(G(Fpp),Kaga)
be the space of bi-K p-invariant Schwartz functions on G(Fpy). For ¢, €
S (G(Fop), Kip), we denote ¢ = lg» ® o € S(G(Agy), K¢); here K2 =
[Iop K& - We then define LCM (e, ¢p) as the sum of above twisted CM cycles

(7.16) LeM(a, do) = > ¢o(g) “CM(a, g),
geKg\G(Ao,5)/Kg

5Strictly speaking the assertion (B.3) only applies to two closed subschemes Y, Z of X.
Here, the right-most morphism in (7.13) is finite and hence preserves the dimension of any
closed subscheme. Therefore we may apply (B.3) to the image of this morphism.
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916 W. ZHANG

where we regard each summand “CM (c, g) as an element in

9€Kg 2\G(Fop)/Kga

Moreover, these elements lie in the filtration; cf. (7.15),

(7.17) LeM(a, ¢o) € &y F Kj(CM(e, g)).
geK g o\G(Fo,0)/Ka,o

7.7. Hecke correspondences in the formal neighborhood of the basic locus.
We now consider the restriction of the Hecke correspondence Hkg , 4 K, to the
formal neighborhood of the basic locus at a non-archimedean place vg { 9 of Fp,
inert in F, via the RZ uniformization (7.4). We resume the notation there.
We consider the fiber product (in the category of locally noetherian formal
schemes)

ka}ngKG] » Hkik g g k)

| |

MOE,, XSpfOE,, MOE,, — M XOE[IXD] M.

The commutative diagram in fact lives over the base Z2(Q)\(Z%(Af)/K z0);
cf. (7.5). Therefore it suffices to consider the fiber (cf. (7.6)) over any fixed
element of Z%(Q)\(Z%(Ay)/Kze). It follows immediately that

PROPOSITION 7.16. Let
Bk o= {(01.92) € G(AR))/KY x G(AY))/KE | o702 € KagK)

with the two obvious projection maps, and the diagonal action by G'(Fy) from
the left multiplication. Then the fiber of the Hecke correspondence Hk’l}{c 0Kg]

over any fized element of Z¢(Q)\(Z%(As)/K ) (cf. (7.6)) can be identified
with

Gy g kgl ——— G'(Fo)\ [Noy, < Bk ]

[KcgKg]

(Mz, o) == (@'(F)\ [Noy,  ca/Ky])’

where the right vertical map is induced by the diagonal NOE — NOE XNOE

and the two projection maps from HkEKO ) aKgl*
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WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 917

7.8. CM cycles in the formal neighborhood of the basic locus. We now
consider the restriction of the fat big CM cycle and its derived version to the
formal neighborhood of the basic locus at a non-archimedean place vg { 9 of Fy,
inert in F', via the RZ uniformization (7.4). We resume the notation there.

Let a € An(OF,y[1/9]) be irreducible over F. We denote by CM {«) (resp.
CM e, g)) the formal completion along the basic locus of the CM cycle CM(a)
(resp. CM(av, g) for g € G(Fpp)). We denote the derived CM cycle

LCJ'VIA(&?Q) S K:](Cf\/[’(a,g)),
and for ¢g = 1K§; ® ¢ € S(G(Aor), Ki),

LeMa, ¢o) € P K{(CM e, g)).
9geK g o\G(Fo,0)/Kag
For 6 € G'(Fo,), let N be the fixed point locus of § on the RZ space
N for Fu,/Fou,(cf. Section 3.1), and let N‘S be its base change to O .
For (8,h) € G'(Fp) x G(A, Of) JKZ, we deﬁne ‘a closed formal subscheme of

No,, x G(AR,)/K:

We consider the sum
(7.19) D eM(d k)

over all (0',h') € G'(Fo) x G(Ag’;)/Kg in the G'(Fp)-orbit of (6,h). Here
G'(Fpy) acts diagonally on G'(Fo) x G(Ay’)/K¢& by g- (8,h) = (969", gh).
The sum is G’ (Fp)-invariant and hence descends to the quotient formal scheme
(7.6), which we denote by [CM(d, h)]Kz’;O‘

Furthermore, we have a derived version of (7.18) and (7.19) by replacing
the naive fixed point locus J\%E in (7.18) by the derived fixed point locus

LNgE,, defined by (3.12).
We then have an analog of Proposition 7.4.
PROPOSITION 7.17. Let a € An(Or,[1/0]) be irreducible over F.
(i) The restriction of CM{(«) to each fiber of the projection (7.5) is the disjoint
Union
[T [eM@ 1) g,
(8:h)

where the index runs over the set

{(8,h) € G'(Fo)\(C'(a)(Fo) x G(AL,)/KZ) | h"'6h e K&} .
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918 W. ZHANG

(i) Let ¢ = 1, ® ¢ € S(G(Ao,r), Kg), where ¢y € S(G(Foyp),Kgp). The
restriction of “CMa, ¢p) in (7.16) to each fiber of the projection (7.5) is the
sum

Z o2 (h16h) - [LCM(5, h)]Kgﬂ ,
(B (Fo)\ (G () (Fo) xG(AT) /K L)

as an element in the group @ger; \G(Fo0) /K, Ko(CM (@, 9)).

Remark 7.18. One can define an analog of the cycle LC)\/I(O:,(;SD) on a
semi-global integral model (i.e., over the localization Og,w) of Op at a place
v above vp; cf. [40, §4]). Then we can allow more general level structure K7
away from vg, and therefore allow ¢ = 1g,, ® 9™ € S(G(Ag,r)) where

% € S(G(Agf'f),Kg? .

Proof. We only prove part (i); part (ii) concerning the derived version
follows along the same line.

Over the formal scheme (7.6), CM () consists of G’ ( Fp)-cosets of (X, hK /7
€ No, x G(Ag;)/Kg' together with an isomorphism ¢y, : X — X and
g€ G(Ag?f), satisfying the following conditions: there exists § € G'(F}) such
that the endomorphism of the framing object X;, induced by ¢y, is §, and both
g and ¢ fix th? and induce the same automorphism of hK E’;‘J; the polynomial
« annihilates g and @y, (or equivalently d by the rigidity of quasi-isogeny). In
particular, § € G'(a)(Fp) by the irreducibility of a.

Here we view G(Ag’)/K{ as a groupoid in which the automorphism
group of hK Y is isomorphic to RKZXh™!. If both § and g fix hK} and induce
the same automorphism of hK EP, then g = 4 (“rigidity away from vy”). It
follows that the condition g fixing hK? is equivalent to SAK = hK2, ie.,
h~'6h € K.

The condition on the existence of a quasi-isogeny ¢y, lifting § amounts to
XeN,

Therl(}efore, for a fixed & € G’'()(F)), the desired pairs (X, hK /') are ex-
actly those lying on Ngﬁ‘v X1, K subject to the condition h~16h € K & . Then

it remains to sum over all § € G'(a)(Fp) to complete the proof of part (i). O

8. Modular generating functions of special divisors

In this section we collect a few modularity results due to various authors
for the generating functions of special divisors with valued in Chow groups,
and in a reduced version of arithmetic Chow groups.

8.1. Generating functions of special divisors on MKQ(G). We first define

the generating functions of special divisors on the canonical model M Kg (Ef)

This content downloaded from
18.9.61.111 on Sat, 01 May 2021 15:25:00 UTC
All use subject to https://about.jstor.org/terms



WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 919

over Spec . The moduli functor is introduced at the end of Section 6 for
an arbitrary compact open subgroup K of the form Kz = Kzo x Kg.
For ¢ € S(V(Aoy))Ke and £ € Fo 4, we have defined the divisor Z(£,¢) €
Ch'(Mk_(G)) by (7.1). When £ =0, we define

(8.1) Z(0,4) = —4(0) c1(w) € Ch!(Mk_(G)),

where w is the automorphic line bundle [22] and ¢; denotes the first Chern
class.

In Section 11.1 we will recall the Weil representation w of H(Ag ) on
S(V(Ag,s))¥c. We define the generating function on H(Aq) by

(82)  Z(h,6) = Z(0,w(hg) o)W (hoo) + > Z(E.w(hys)d) W™ (hoo),

£ekp 4

where h = (hoo, hy) € H(Ap), heo = (hy)yjeo € Hv|c>o SLy(Fp,y) and

W (hoo) = [T W (h

v|oco
cf. (1.5) for the weight n Whittaker function Wg(n) on SLo(R).

THEOREM 8.1. The generating function Z(h,¢) lies in

Anol(H(Ao), K, n)g Q) Ch' (M (G) g,
Q
where K C H(Ao,f) is a compact open subgroup that fizres ¢ € S(V(Ao,z))

under the Weil representation.

For the definition of the vector space Ao (H(Ay), K, n)@, we refer to (1.10)
(and (1.9)). One can replace the field Q by a number field, but it will not be
more useful in this paper.

The result has an analog for orthogonal Shimura varieties, which is due
to Borcherds when F = Q (generalizing Gross—Kohnen—Zagier theorem), and
[44] for totally real fields Fp; Bruinier also gave a proof in [4], where he also
constructed the automorphic Green function we will use later. By the embed-
ding trick [28, §3.2, Lem. 3.6], this result implies the analogous modularity for
Shimura varieties Shx, (Resp, /g G, {hc}).® Then the assertion in the theorem

above follows from the fact that, after base change to C, M, Kg (5) is a disjoint
union of copies of Shg, (Resg, g G, {hc}); cf. (6.6).

In the unitary case, one expects to obtain a U(1, 1)-automorphic form. However, the
SLa-automorphic form suffices for our purpose, and in fact the extra information in U(1, 1)-
modularity is not useful for us at all because the analytic side only has SLa-modularity.
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920 W. ZHANG

8.2. Complex uniformization of special divisors. We now study special di-
visors over the complex numbers. The situation is analogous to the description
of the special divisors in the formal neighborhood of the basic locus; cf. Sec-
tion 7.3.

We start with the complex uniformization of our Shimura varieties. This
is very much similar to (7.4). Let v : E < C be a complex place of the reflex
field E. Its restriction to F' (resp. Fp) is a place denoted by wo (resp. vp). Let
My c = Mg, (Ei) ®g,, C be the complex orbifold via v. Let V' be the “nearby”
hermitian space, i.e., the unique one that is positive definite at all archimedean
places except vp where the signature is (n — 1,1), and isomorphic to V locally
at all non-archimedean places. Then let G’ be the unitary group (viewed as a
Q-algebraic group) associated to V’. Let D,, be the Grassmannian of negative
definite C-lines in V' ®p 4, C. Then we have a complex uniformization

(8.3) My = G'(Q)\ [P x GlAg) /K.

When the embedding v : E < C is the natural one for the reflex field E (recall
that it is a subfield of C), the uniformization is [40, Rem. 3.2, Prop. 3.5, and
in general it follows from the proof of loc. cit.

Analogous to (7.5), we have a partition by the projection

(8-4) My c — ZYQ)\(Z%Af)/K 20),
where each fiber is naturally isomorphic to

(8.5) Myco = G'(Fo) \ | Do x G(ho,7)/Ka]-

Here we fix an isomorphism G'(Ag ) ~ G(Ag,f).

Now we return to describe the complex uniformization of the special di-
visors. For each u € V’(F,) with totally positive norm, let Dy, C Dy,
be the space of negative definite C-lines perpendicular to u.” For a pair

(u,g) € V'(Fo) x G(Ao,r)/ K¢, we define
(8.6) Z(U,Q)KG = Lyyu X 1§'KG’

We consider the sum

(8.7) Y Z(W, ¢ ke
over (u',¢") in the G'(Fp)-orbit of the pair (u,g) for the diagonal action of

G'(Fp) on V'(Fy) x G(Ags)/Kg. The sum is G'(Fp)-invariant and hence de-
scends to a divisor on the quotient (8.5), denoted by [Z(u, g)]k,,-

"The codimension one analytic space Dyy.u 0n Dy, is the archimedean analog of the local
KR divisor Z(u) on A in Section 7.3.
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Then, we have an archimedean analog of Proposition 7.4 for the special
divisor Z(&,¢) defined by (7.1). In the case of Fj = Q and a special level
structure, this is proved in [25, §3.3]; in general, the proof in loc. cit. works
verbatim and hence we omit the detail.

PROPOSITION 8.2. Let& € Fy 4. Then the restriction of the special divisor
Z(&,0) ®p, C to each fiber of the projection (7.5) is

(8.8) > ¢~ "u) - [Z(u, 9)]kg-

(u,9)€G’ (Fo)\(V{ (Fo) xG(Ao,5)/Ka)

Remark 8.3. We may rewrite the above result into a form that has ap-
peared in the formula of special divisors in [44, §1]. Let G, C G’ be the
stabilizer of u under the action of G’ on V’, viewed as an algebraic group over

Fy. Instead of (8.6), we define
Z(u,9)Kg = Duoju X L (a5 g Ko

Similarly, we denote its image in the quotient (8.5) by [Z(u, g)]k;. Then we
may rewrite the sum as (8.8):

3 > o(g7 ) - [Z(u, 9) kg

ueG (Fo)\V{(Fo) g€G1, (Ao s)\G(Ao,5)/Ka

This is exactly the formula in loc. cit.

8.3. Green functions. We recall the Green functions of Kudla [23] and
the automorphic Green functions (cf. [36], [4]). The former is more convenient
when comparing with the analytic side, while the latter is more suitable for
proving (holomorphic) modularity of generating series. The difference between
them is studied by Ehlen—Sankaran in [8] when Fj = Q.

We first recall Kudla’s Green functions, defined for the orthogonal case
in [23], which can be carried over easily to the unitary case (cf. [28, §4B]).
Let u € V'(Fp) be as in the previous subsection. Let z € D,,. Let u, be the
orthogonal projection to the negative definite C-line z of V' ® ., C. Define

(u, z)?

(8.9) R(u,z) = (uz,u;) = G

where z is any C-basis of the line z.
We will need the exponential integral defined by

o0 e—t
(8.10) Ei(—r) = —/ —dt, >0,
r
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922 W. ZHANG

This function has a logarithmic singularity around 0; more precisely, when
r— 0T,

o~ ()"
Ei(—r) =~y +logr+ ﬂZ::l P
Here ~ is the Euler constant.
Let hioo = (hu)ujoo € [Tojeo SL2(Fo) and hy = (1%) (WWG_U) Ky in
the Iwasawa decomposition; cf. (1.6). For each non-zero vector u € V(Fp),
Kudla [23] defined a Green function on D,,, parametrized by hoo:

(8.11) G¥(u, hoo)(2) = —Fi(27ay, R(u,2)), 2z € Dy, \ Dyg-

It has logarithmic singularity along the divisor Dy, . Note that this is defined
for every non-zero vector u € V'(Fp); in particular, « may have null-norm. If
Dy, u is empty, the function is then smooth on Dy,. When u = 0, we set

(8.12) G (0, hoo) = — log |ay,|.

Now we descend the Green function on D,,, to the quotient (8.5): for all
& € Fy, define

(8.13) GX (€ hoosd) = Y dlg u) - (G (1, hoo) X 1K)

where the sum is over (u,g) € V{(Fo) x G(Ags)/K¢. This defines a Green
function for the divisor Z (&, ¢); cf. [28, Prop. 4.9].

We now recall the automorphic Green function [36], [4], [5]. Since the role
of those are indirect to this paper, we just say that there is a Green function
GB(&,¢) for each £ € Fy 4+, and ¢ € S(V (Aof)); cf. [5, §7.3].

We define the generating function of the difference of the two Green func-
tions

(814) Zuycorr(h,8) = Y (G5 (€, hoo, w(hy)d) — GB (€, w(hy)8)) W™ (hoo),

£eky

where the notation is the same as in (8.2). We note that this definition depends
on the archimedean place vy of Fj, though it is omitted in the right-hand side
of the equality.

The following theorem is due to Ehlen-Sankaran [8].

THEOREM 8.4. Assume Fy = Q. The generating function Zso corr(h, @)
lies in the space Aexp(H(Ao), K,n), in the sense that, for every point [z,g] €
M, c, the value of the generating functions at [z, g] lies in Aexp(H(Ao), K, n).
Here K C H(Ag s) is a compact open subgroup that fixres ¢ € S(V (Ao r)) under
the Weil representation.
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Proof. In [8, Th. 3.6], the authors proved the assertion for orthogonal
groups, from which the case of unitary groups follows (e.g, by [8, proof of Th.
413, p. 2131)). O

—1
8.4. Modularity in the arithmetic Chow group Ch,(M). We will use the
Gillet—Soulé arithmetic intersection theory; cf. [12], [10]. (In the non-proper

case, cf. [7].) We first recall the arithmetic Chow group Ch' (M) (with Q-
coefficient) for a regular flat scheme (possibly non-proper) M — SpecOg.
Elements are represented by arithmetic divisors, i.e., Q-linear combinations
of tuples (Z, (gZ,w)weHomQ(E,@))! where Z is a divisor on M and gz, is a
Green function of Z,,(C) on the complex manifold M,,(C) via the embedding
w: E < Q c C (cf. [12, §3.3]). Principal arithmetic divisors are tuples
associated to rational functions f € E(M)*:

(div( f), (—log|f Ii)weHomQ(E,@) :

—1

(For example, when E = Q, we have V, = (0,2log |p|) in Ch (M), where V,
is the fiber of M over a prime p.)

Now it is clear we can extend the same definition to a regular flat scheme
M — Spec O\ S for a finite set S of non-archimedean places. We still denote
it by Ch (M).

Remark 8.5. If we start with a regular flat scheme M — SpecOpg, and a
finite set S, then two groups Ch (M) and Ch (M%) for M = M Xspec 0y
SpecOg \ S are related as follows. We denote by Ch|]S|(M) the subgroup of

—1
Ch (M) consisting of elements supported at the fibers above v € S. This is a
finite dimensional vector space. Then there is a natural isomorphism

Ch' (M)/Chlg (M) — Ch' (M5).

Now we specialize to our interest, the moduli space M = M Kg (Ef) in-
troduced in Definition 6.1. Let S be the set of places v | 0. Recall that the
morphism Mk (G) — Spec Og[1/d] = Spec O \ S is smooth.

Let ¢ € S(V(Ao,f))KG be of the form ¢ = 1,2 ®y; cf. (7.2). For £ € Fy 4,
we endow the special divisor Z(§, ¢) (cf. (7.2)) with the automorphic Green
function G (&, #). Denote by zZB (&, @) the resulting element in 5}11 (M). When
£ =0, we define

—1
(8.15) ZP(0,4) = —$(0) c1 (@) € Ch (M),
where W = (w, || - | pet) is the extension of the automorphic line bundle w to the

integral model M, endowed with its Petersson metric [5, §7.2].
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We define the generating series with coefficients in the arithmetic Chow

—1
group Ch (M),

(8.16) ZB(r )= Y. ZB(&e)d,
EER, £20
where
(8.17) T = (T)ujoo € HH’ ¢ = 2mitrR/Q(TE)
v|oo

The following theorem can be deduced from [5].

THEOREM 8.6 (Bruinier-Kudla-Howard-Rapoport—Yang). Let Fy = Q.
—1
The generating series 23(, @) lies in Apol(I'(INV), n)@%Ch (M)@, where N

depends only on ¢ and all prime factors of N are contained in S.

Proof. In [5] the authors proved a stronger version (i.e., Theorem B in
loc. cit.) in a maximal level case (with principle polarization) over the full
ring of integers of E. Since the arithmetic Chow group of M considered here
omits a finite set of bad places S (including primes ramified in F'), the compu-
tation of divisors of the regularized theta lifts and Borcherds product on the
integral models over Spec Og[1/?] of loc. cit. still applies to our (even simpler)
situation. O

9. Local intersection: non-archimedean places

9.1. Arithmetic intersection theory. We first recall an arithmetic inter-
section pairing on a pure dimensional flat (not necessarily proper) morphism
M — B = Spec O, of regular schemes with smooth generic fiber. Let Z; (M)
be the group of proper (over the base B) 1-cycles on M (with Q-coefficient).
Then there is an arithmetic intersection pairing between two QQ-vector spaces
(cf. [3, §2.3] when the ambient scheme is proper)

(9.1) (,): Ch (M)x Zy(M) —R.

Now let S be a finite set of non-archimedean places of F, and let S, be

—1
the subset of places above p. Let M — SpecOpg \ S, and let Ch (M) be its
arithmetic Chow group defined in Section 8.4. Consider the quotient of R by
a finite dimensional Q-vector space,

(9.2) Rs := R/spang{logp : #5, # 0},

which is an (infinite dimensional) Q-vector space. Then the definition of [3]
works directly if we replace the base Spec Og by Spec Og \ S (i.e., without an
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integral model over the full ring of integers Op), and it yields a pairing with
valued in Rg:

(9.3) (,): Ch (M) x Z1.(M) —Rg.

Note that the cycles in gl,C(M) are assumed to be proper over Spec O \ S.

We note that by [3, Prop. 2.3.1(ii)], for cycles in gl,c(M) supported on
special fibers, the pairing only depends on their rational equivalence classes.
This motivates us to define a quotient group Z; (M) of Z; (M) by the sub-
group generated by 1-cycles that are supported on proper subschemes Y of the
special fibers and are rationally equivalent to zero on Y. We have the resulting
pairing

(9.4) (,): Ch (M) x Z1.(M) —sRs.

We now let M = MKQ (G) be the moduli stack introduced in Defini-
tion 6.1. We apply the above pairing to M = Mk (5) — B =SpecOg\ S for
any finite set S containing all places v | 9. We define an element in Z; (M)
starting from the derived CM cycle “CM(a, g) (7.14), which is an element
in Fj K{(CM(a,g)), (7.15). The finite morphism CM(a,g) — M induces a
homomorphism

KB(CJ\/[(CI, g)) — KE),CJV[(Q,Q')(M)

preserving the respective filtrations, where K, B,C'M( a, g)(M) denotes the K-group
of coherent sheaves with support on the image of CM(«, g). Since CM(av, g) =B
is proper and the generic fiber of CM(«, g) is zero dimensional (cf., Proposi-
tion 7.9(b)), there is a natural homomorphism Chy cpf(a,g) (M) — Z1.(M).
We now consider the composition

FlKa(CJ\/I(a,g)) — GrlKEI,CJ\/I(a,g)(M) N—) Ch],CJ\/I(a,g)(M) — Zl,c(M),

where the isomorphism in the middle is [11, Th. 8.2] and Gr; denotes the

grading F} /Fp. By abuse of notation, we still denote by LC)\/I(O:, g) the image
in 21 (M) of the element “CM(a, g) € F1K}(CM(a, g)) (cf. (7.15)) under the

above composition.

9.2. Intersection of special divisors and CM cycles. For the rest of the
article, we let ® = ®,,®,, € S((G x V)(Ag,r)) be of the form ¢y ® ¢, where
e ¢y= IKE ® ¢op and ¢gp € S (G(Fop): Kap) (cf. (7.16)); and

e =15 ® ¢ and ¢ € S(V(Fop))Kc (cf. (7.2)).
Recall from Section 7.4 that we have also fixed a conjugate self-reciprocal
polynomial a € Op[1/9][T]geg—n, irreducible over F. We define a generating
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series using the intersection pairing (9.4),

(9.5) Tnt(r, ®) =~ (2B(r.¢). “CM(a, do)).
where ZB(7, ¢) is (8.16), and
(9.6) 7(29) = #ZUQ\(Z2%Af) /K ze).

Remark 9.1. By Theorem 8.6, when Fp = @, this is a holomorphic mod-
ular form (of weight n, and level depending only on ¢) with coefficients in the
Q-vector space RS@ = Rg ®g Q, i.e.,

(9.7) Int(-, @) € Apal(I'(V), n)@ ®g RS,@‘

Qur results in this and the next section are still valid for general totally real
fields Fy since they do not use the modularity.

Similarly, for each £ € Fp 4, we define

9.8)  Int(£,®) = W (2B(€.6), “CM(ardy).
When £ = 0, this is by definition

(9.9) Tnt(0, &) — _W (@, eM(a,b0)) $(0).
Then by (8.16),

(9.10) Int(r,®) = >  Int(£,®) ¢

£€F),£20

Now let & # 0. We will express the arithmetic intersection number (9.8)
in terms of the local intersection numbers from the AFL over good places and
the archimedean local intersection.

9.3. The support of the intersection. We first study the intersection of
the special divisor Z(&, ¢) and the CM cycle “CM(a, ¢y). First we have the
following analog to [40, Th. 8.5].

THEOREM 9.2. Let £ # 0 and ® = @y, ®y, € S((G x V)(Agy))KC. Let
S be a finite set of places containing all places v | 0 and such that at vo ¢ S,
¢)’U0 = 1K&,u0 & 11\80‘

Then the following statements on the support of the intersection of the
special divisor Z(&,¢) and the CM cycle CM(c, ¢o) on M hold:

(i) The support does not meet the generic fiber.

(ii) Let v ¢ S be a place of E lying over a place of Fy that splits in F'. Then
the support does not meet the special fiber M ®@0¢y, ky.
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WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 927

(iii) Let v ¢ S be a place of E lying over a place of Fy that does not split in F'.
Then the support meets the special fiber M ®o,, Kk, only in its basic locus.

Proof. The proof of [40, Th. 8.5] goes through verbatim. (Since a is
irreducible over F', the pair (g, u) is regular semisimple for any non-zero vector

u in V(Fyp).) O

Since their generic fibers do not intersect by Theorem 9.2, the intersection
pairing Int(&, @) localizes to a sum over all places of E. We define

(9.11) Int} (&, ®) := (ZB(¢,4), “CM(a, o)) logav,

where g, is the cardinality of the residue field of Og () for non-archimedean v
(see below for the archimedean case). Here we recall that the local intersection
number (-, -}u is defined for a non-archimedean place v through the Euler—
Poincaré characteristic of a derived tensor product on M ®oy O ,); cf. [12,
4.3.8(iv)]. For an archimedean place v, the local intersection number is the
value of the Green function at the complex point of the CM cycle:

(9.12) Int} (£, ®) == (G2 (€, 8), “CM(e, do)uc) logaw,

where by definition logg, = 2 for complex places v (and 1 if v were a real
place).
For a place vy of Fy, we set

(9.13) Int,, (£, ®) := ﬁi}m (&, ®).

vi|vo

Then we have a decomposition into a sum over places vy of Fp

(9.14) Int(£,®) = ) Inty, (€, D).

Combining (9.10), we obtain a decomposition of the generating function of
arithmetic intersection numbers

(9.15) Int(7, ®) = Int(0, ®) + » " Inty, (7, D),
Vo
where
(9.16) Intyo(7,®) := Y Tntyy (¢, D) g
£eFo,+

COROLLARY 9.3 (to Theorem 9.2). If vg is split in F//Fy, then

(9.17) Ity (€, B) = 0.
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928 W. ZHANG

9.4. Local intersection: inert non-archimedean places. Now let vy be a
place of Fjy inert in F', and let wy be the unique place of F' above vy. The
notation here follows Section 7.3.

THEOREM 9.4. Assume that vo 10 and ® = @y, ® O, where
o, = kg, ®1ag-
Then
(9.18) Inty, (&, ®) = 2log gy, > Inty, (8, u) - Orb((6, u), ).
(:u)€[(G' (a)x V) (Fo)]

Here Inty, (6, u) is the quantity defined in the AFL conjecture (semi-Lie algebra
version) for the unramified quadratic extension Fy,/Fo, (cf. (3.13)), and the
orbital integral is the product of the local orbital integral defined by (2.15) with
Haar measures on G(Foy) such that vol(Kg,) = 1.

Proof. The proof follows a similar line to [46, Th. 3.11] and [40, Th. 8.15].
First, by Theorem 9.2(iii), the intersection only takes place in the basic locus.
Hence it suffices to consider the question in the formal completion along the
basic locus. We now fix a place v of E above vg. Now by Propositions 7.4
and 7.17, it suffices to consider the intersection number for each fiber of the
projection (7.5) and multiply the result by the factor 7(Z?) (hence canceling
the factor 7(Z?) in the denominator of (9.13)). Therefore we consider only
the intersection on the fiber Maé,, os cf. (7.6).

Recall that by Proposition 7.4, the restriction to MBE 0 of the special
divisor Z(&, @) is ’
Z @™ (Q‘I_lu) ) [Z(Ua Q‘f)] K2
(u,g") €G! (Fo)\(V{ (Fo)xG(A%) /K&

and by Proposition 7.17 the restriction of the derived CM cycle LCJ\/[(CI, ¢o) is
the sum

2 65 (h™18h) - [“CM(8, 1) g

(8,h)EG (Fo)\(G' () (Fo) xG(Ag%) /K )

We may compute the intersection number by pulling-back to the covering for-
mal scheme N 5, X G(AUO )/K{ in the uniformization (7.6). The intersection

number “CM (e, ¢o) ﬂ Z(&,¢) log gy (restricted to M 0p ,ﬂ) is equal to a sum of

L
&g (h™16h)¢™ (¢" " u) - “CM(8, h) o O Z(u,¢")gc2o - log g,
over G'(Fp)-orbits (via diagonal action) of tuples (4, h, u, g’):
(8,h) € G'(a)(Fp) x G(Agy)/Kg  and (u,g') € V{(Fb) x G(Agp) /K¢ -
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L
Here, we are abusing the notation N to denote the Euler—Poincare character-
istics of the corresponding derived tensor product.
By (7.7) and (7.18), we obtain

L L
MG B 0 2(u, 9) g -logas = "NG,, 1 Z(w)og, logay - 1xo(9'™'h).

The first term is equal to

L L
LNéSEV N Z(u)o, loggy = [Ey : Fy,| - (LNJ N Z(u)) log qu,
= 2[Ey : Fyy| - Inty, (6, ) log gy, -
Here the factor 2 is due to gy, = q,go. In particular, it is invariant under the
(diagonal) action of G'(Fp) on the product (G'(a) x V{)(Fp).

The second term (¢, k) € (G(Ag%)/KgZ)* = 1 K2 (¢'h) is also invariant
under the (diagonal) G’(Fp)-action. For a fixed pair (4, u), we obtain

Z Q5g°(h_15h)q5vo(g’_lu) . lKéo(g!_lh)
(@' h)E(G(AY,) /K

— Z o¢° (K1 6h)¢™ (R ™" - u)

heG(AYY) /KL
:/ W(h SR (W - ) dh
G(Ag’y)
= Orb ((d,u), ™),
where we note that the Haar measure on G'(Aji”) is normalized such that
vol(Kg) = 1.

L
To summarize, the intersection number “CM(a, ¢g) N Z(, @) log g, (re-
stricted to MBE,, o) is equal to

2[E, : Fuol Y Orb ((6,u), ") - Inty, (6, ) log gy,
(0u)
where the sum is over G'(Fp)-orbits of pairs (6,u) € (G'(a) x V) (Fo).
Finally the sum over all places v | vp will cancel the factor [E : F| in
(9.13) by
Z evfwufvfwu = Z dv,’wu = [E : F],
v|wo v|wo

where €, /.y, (respP. f, jwys @y w,) denotes the ramification degree (resp. inert
degree, degree) of the extension E, /Fy,. This completes the proof. |
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930 W. ZHANG

10. Local intersection: archimedean places

The goal of this section is to compute the local intersection at v of E above
an archimedean place vy of Fp. In fact, we will replace the automorphic Green
function by Kudla’s Green function; i.e., we consider the analog of (9.12):

(10.1) mt5¥ (€, @) .= (GK (&, 6), “CM(a, do)v,c) logaw.

When Fy = Q, the difference is addressed by Theorem 8.4. Similar to (9.13),
we set for £ € Fy,

(10.2) Inth (€, D) := W D Ith* (g, ®).

vi|vg

We note that by (8.11) and (8.12), there is a parameter h,, € H(Fp ®g R)
implicitly in the above expression.

The strategy is analogous to Theorem 9.4. We follow the notation in
Sections 8.2 and 8.3.

THEOREM 10.1. Let ® € S((G x V)(Ag,f)). Let £ # 0. Then we have

(10.3) Inth (£, ®) = > Inty, (8, w) - Orb ((8,u), ®) .
(S)el(G" (@) xVE) (Fo)

Here Inty, (8, u) is defined as the special value of the function
(10.4) Int,, (0, u) = Q'K(u,hco)(za),

where z5 is the unique fized point of 6 on Dy,. Moreover, the point z;5 does not
lie on Dy, for any non-zero vector u € V'(Fp).

Proof. The proof goes along the same line as that of Theorem 9.4, so we
will not repeat the details, except to prove the claim on the point zs. Consider
the n-dimensional C-vector space V' ®p,, C with the induced hermitian form.
If a negative definite C-line is fixed by 4, it must be an eigen-line for 4, which
must be unique by the signature (n — 1,1) condition on the hermitian form on
V' ®Fuw, C. If z5 lies on a divisor Dy, 4 for non-zero vector u € V'(Fp), it also
lies on D, 5., the translation of Dy under 8%, for all i € Z. Equivalently,
the line zs is perpendicular to all §* - u € V' ®Fwo C. Since u € Vp(F) is a
non-zero vector and its characteristic polynomial « of § is irreducible over F',
the vectors &' - u span V' over F, hence they also span V' ® Fuw, C over Fy,.
Contradiction! O

It remains to compute (10.4), or equivalently R(u,z;) defined by (8.9).
The element § € G'(a)(Fo) induces an action of the CM field F” (cf. (7.9))

on V' and makes V’ into a one-dimensional F’/Fj-hermitian space (W, (-,-) r)
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satisfying
(105) (RF"XFH/& tI’Fr?}F(', )Fé) é/ (V’, (', ))

Here Rp//pW denotes the “restriction of scalar” of W, i.e., to view it as an
F-vector space.

Remark 10.2. The above construction § € G'(a)(Fp) — (W, (-,-)py) de-
fines a bijection between the set of G'(Fp)-conjugacy classes in G’'(a)(Fp) and
the set of one-dimensional F'/F{-hermitian spaces (up to isometry) satisfy-
ing (10.5). In fact, fixing a dy € G'(a)(Fo), we denote by Wy the associ-
ated F’/Fj-hermitian space and by T the centralizer of o in G’. Then T
is an anisotropic Fp-torus isomorphic to Res F}/Fo U(Ws). Now the pointed
set of G'(Fp)-conjugacy classes in G'(a)(Fp) (with the conjugacy class of dp
as the distinguished element) is bijective to the pointed set ker(H!(Fp,T) —
H'(F,,G")). Moreover, the pointed set ker(H!(Fp,T) — H(F,,G")) is natu-
rally isomorphic to the pointed set of one-dimenional F’/Fj-hermitian spaces
(up to isometry) satisfying (10.5) (with the F’/F/-hermitian space Wy as the
distinguished element). A similar remark applies to local fields rather than
F'/Fy (except that the torus T may not be anisotropic).

It follows from (10.5) that the F'/Fj-hermitian space W has signatures
(1,0) for all but one archimedean place v} of F{j over vg. We define a refined
invariant

(10.6) ¢ =dq'(u) € Fy,

where ¢’ is the quadratic form attached to the F’/F{-hermitian form on W;
cf. (1.4). In particular, trg /g, () = &.
According to the action of F{j, we have an orthogonal direct sum decom-
position
V! @F,‘wn C= @ Cl’"a

U’EHom(Fd,]R),UHpO:UO

where F{) acts on the line C, through v’ : Fj < R. Then there is a unique
negative-definite summand, say C”ﬁ for a place vj, above vg. It follows that

(10.7) R(u, z5) = vo(q'(u)) = —|&']u;,
where the last equality is due to the fact vj(q'(u)) < 0.

COROLLARY 10.3. Under the same assumptions as Theorem 10.1, we
have

(10.8) ntX (¢, ®) = — Y Bi(-2n(¢/|,) - Orb((8,u), D),
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932 W. ZHANG

where the sum runs over the G'(Fy)-orbits (6, u) in the product (G'(a)xV{)(Fp),
& = q'(u) is the refined invariant defined by(10.6), and vy | vo ts the unique
archimedean place of F§ where £ is negative.

Finally, we address the difference between the two Green functions. De-
fine, for any place v | co of Fy and h € H(Ay),

(109)  TntKB(h, &) — W (Zocore(h9),  “CM(a, 60))
(cf. (8.14)), and define
(10.10) Imt® B (h, ®) = Inty" P(h, ®).

v|oco

We note that the definition works without any reference to the integral mod-

els M, hence makes sense for all ¢y € S (G(Ag ), Kg) and ¢ € S(V(Ag 7))%e.

COROLLARY 10.4 (to Theorem 8.4). Let Fy = Q. Then the function
h € H(Ag) — IntX~B(h, ®) belongs to Aexp(H(Ao), K,n), where K C H(Ag f)
is a compact open subgroup that fires ¢ € S(V (Ao s)) under the Weil represen-
tation.

11. Weil representation and RTF

Starting from this section, we study a partially linearized version of the
Jacquet—Rallis relative trace formula and the “action” on the RTF by SLa(Ag)
under the Weil representation (by changing testing functions on the linear

factor of the RTF).

11.1. Weil representation and theta functions. For now we let I' be a
global field. Let (V,q) be a (non-degenerate) quadratic space over F' of even
dimension d, where q : V — F' is the quadratic form with the associated
symmetric bilinear pairing (-,-) : V. xV — F by (1.2). Let O(V') = O(V,q) be
the isometry group, viewed as an algebraic group over F'.

Let S(V(AF)) be the space of Schwarz functions. The product group
O(V)(Ar) x SLa(AFr) acts on S(V(AF)) via the Weil representation denoted
by w: for ¢ € S(V(AF)), the function w(g, h)¢ is defined by

(w(g,h)9)(z) = (w(h)$(9™ ), (9,h) € O(V)(Ar) x SLy(Ar),
where the action of SLy(Ar) is defined as follows. Let xy = [],xv, be the
quadratic character of F*\AJ defined by
xv(a) = (a,(=1)¥? det(V))r,
where (-, ) is the Hilbert symbol over F' and det(V) € F*/(F*)? is the deter-

minant of the moment matrix %((mg, xj))1<ij<d of any F-basis x1,...,zq of V.
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For a place v of F', and ¢, € S(V(F,)), the action of SLy(F}) is determined by

oo 1) fule) = s @),
(11.1) wy (1 31)) do(z) = Y (ba(z))du(),

wn (_1 1) Bo(@) =, dul2),

where 7y, is the Weil constant (a fourth root of unity under our assumption
that dimV,, is even), and the Fourier transform is defined by

5u@)= [ ulw)b () o
V(Fy)

Here dy is a self-dual Haar measure on V(F}).
For ¢ € S(V(AF)), we define the theta function by the absolute convergent
sum

05(9,h) = > w(g,h)d(&), (9,h) € O(V)(AF) x SLy(Ap).
tev

This is left invariant under O(V)(F') x SLa(F).

11.2. Automorphic kernel functions. In this subsection we work with a
fairly general setting. It serves to explain the idea behind the more explicit
setting in later sections.

Let G be a connected reductive algebraic group over F', acting on V and
preserving the quadratic form q (i.e., the homomorphism G — GL(V') factors
through O(V,q)). Let X be an affine variety over F' with an action of G, and
let X o be the categorical quotient. Consider the diagonal action r of G on
X x V. Then G(AFf) acts on S((X x V)(AF)).

The group SLy(Af) acts on S((X x V)(AF)) through the second factor V/
via the Weil representation. Note that now the formula (11.1) for the action of
SL2(AF) is only applied to the second coordinate; e.g., locally at v, the element
(_1') acts on S((X x V)(Fy)) by (up to the Weil constant yv,) the partial
Fourier transform with respect to the V-component.

Let a € X q(F) be a fixed semi-simple element and X () the preimage
of @ (under the quotient map X — X,g). Let ¢ € S(X(Ap)) and ¢ €
S(V(Afr)). We define the automorphic kernel function associated to ® =
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934 W. ZHANG

po® ¢ € S((X xV)(AFR)),

(11.2) Ksa(g,h) = Z d)o(g_l -m)w(h)qS(g_l -u)
(zu)E(X (@) xV)(F)
= > w(h)®(g™" - (z,u)),
(zu)e(X () xV)(F)

where g € G(Afp),h € SLyo(Ap). This is again left invariant under G(F') x
SLo(F). It follows that

(11.3) h € SLy(Ap) — J(h, ®) := /[G] K#.a(g, h)dg,

when absolutely convergent, is left invariant under SLy(F'). The same applies
if we replace the pure tensor ¢9 ® ¢ by a more general function ® in S((X X
V)(AF)). (This does not make any essential difference at non-archimedean
places, but does at archimedean places.)

Now we return to our earlier convention. Let Fp be a totally real field,

and let F'/Fy be a CM field extension. Let

n =0/ Fo \Ay — {£1}

be the quadratic character by class field theory. Note that now Fj plays the
role of the base field F' in above discussion.

11.3. The case of unitary groups. Now we consider the Jacquet—Rallis
RTF for unitary groups. Let V be a F'/Fp-hermitian space of dimension n.
Let G = U(V) be the unitary group, and let X = G with the conjugation
action by G. Let a € An(Fp) be irreducible over F' (cf. the end of Section 2.2).
We rewrite the kernel function (11.2) according to (d,u) € (G(a) x V)(Fo)
regular semisimple (equivalently u # 0 by the irreducibility of «) or not, and
then (11.3) becomes

3(h, @) ][G] S r(e)w(h)(,u)dg

(8, u)e(G(a) xV)(Fa)

w(h)®(g™"!-4,0)dg
(11.4) /G] seCa )

] w(R)B(g™" - (5,u)) dg.
[G]

(s.u)e (G(G)XV)(FG)

The summands in (11.4) are related to the global Jacquet—Rallis (relative)
orbital integral (for the G-action on G x V') of w(h)®. For ® € S((G xV)(Ao))
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and a regular semisimple (4,u) € (G x V')(Fp), we define

(11.5) Orb((8,u), ®) := f (g™ - (d,u))dg.

G(Ao)
For § € G(a)(Fo), we define

(11.6) Orb((4,0), ®) := vol([Gs]) (g~ -4,0)dg,
G5(A0)\G(Ao)

where Gj is the centralizer of 4 in G, an anisotropic Fj-torus.

The first summand in (11.4) is a sum over the set of G(Fp)-conjugacy
classes in G(a)(Fp) (cf. Section 2.2),

(11.7) D" Orb((5,0),w(R)®).
0€[G(a)(Fp)]
There are only finitely many non-zero terms (uniformly in h € H(Ay)), and
hence the sum is absolutely convergent. The second summand in (11.4) is a sum
over the set, denoted by [(G(a) X V')(Fp)|rs, of regular semisimple (equivalently,
u # 0) G(Fp)-orbits in (G(a) x V)(Fp):
> Orb((8, u), w(h)®).

(8,u)€[(G(a)x V) (Fo)lrs

We first justify the convergence. We recall that H = SLj .

LEMMA 11.1. (a) For any ® € S((G x V')(Ay)), we have

> ]G( 18(e™ (3wl dg <o

(8, u)e[(GxV)(Fo)lrs
In particular, the same holds if we only sum over (8,u) € [(G(a) X V)(Fp)]rs.
(b) Assume that ® is Koo-finite for the mazimal compact Ko = ], SO(2,R)
of H(Fo,c). Then the sum in J(h,®) converges absolutely and uniformly for

h in any compact subset of H(Ag). In particular, the function h € H(Ay) =
SLa(Ag) — J(h, ®) is smooth and left invariant under H(Fyp).

Proof. For part (a), we prove a stronger result:

> [ e Guwlds <o
(B:u)E[(GX V) (Fo)]s ¥ G(40)

We first note that this is easy when ® has compact support, since the sum
would then have only finitely many non-zero terms. Next we may and do
assume that ® = [, ® is a pure tensor (otherwise we can dominate ® by a
finite sum of pure tensors).

We refer to [1, §A.1] for the terminology in our proof. Consider X = GxV,
and the categorical quotient B = X ) with the natural map = : X — B. The
regular semisimple locus in B (resp. X ), denoted by Bis (resp. Xis), is defined
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by A # 0 (resp. A o w # 0) for a regular function A on B (resp. its pull-back
to X). Then the restriction g : X;5 — Bys is a G-torsor.

We fix a norm || - | x on X (Ag), which is the product of local norms || - | x,
on X(Fpy). Similarly, we fix norms on Xy5(Ag) and X,s(Fp,p). For the norm
on the affine line, we write |t| (resp. |t|,) for ¢t € Ag (resp. t € Fyy), defined
by [t|v = max{1,|t|»}, cf. [1, §A.1, before (1)].

For ® € S(X(Ao)), we have

(11.8) 18(z)| < |z|x™  for all z € X (Ao)

for any constant d; > 0 ®. By [1, Prop. A.1.1(iii)], for all z € Xys(Ay),
|2l X ~ llx [A o m(z) "]

In particular, there exists a constant do > 0 such that, for all z € Xys(Ao),
=1, < lelx [A o m()~].

By (11.8) and [1, Prop. A.1.1(vii)], for any d3 > 0, there exists d; > 0 large
enough such that

[ @ ads<ison@ " [ g-alh®
G(Ao) G(Ao)

—1)d —d
< |Aom(z)” | |ms(2)lp,}

(11.9)

for all x € Xrs(Ap). Note that this implies similar estimates: for any d3 > 0,
there exists di > 0 such that

(11.10) / )|¢’ o(9- 20)| dg < A o m(ay) T 5t s (w0) |52,
0w

holds for every place v, and

ary T iute-eldg < T 1o n(e ™ [ rateol,

vgS vgS

holds for any finite set S of places, where (zy)ygs € Xrs([Jvgs Fo,v). Here we
emphasize that dy, d3 can be made independent of v.
Now we claim that for any ds > 0, there exists d; > 0 such that

(11.12) / |u(g - )| dg < |A 0 m(wy) ;4 mrs(@0) |52,
0w

holds for every place v. (Here we emphasize that di,ds can be made indepen-

dent of v.) Indeed, if |Aom(xy)|, < 1, then |Aom(zy) |, = |Aom(zy) Y|y, and

8Here, for two functions f1, f2, the notation f; < fo means that there is a constant ¢ such
that fi1 < cfa.
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hence (11.12) follows from (11.10) in this case. Now suppose |A o 7w(zy)|, > 1
and then |A o m(z,) ™|, = 1. It follows from (11.10) that

—db
(11.13) / o el ) o < (o)l
0,v

for any constant d3 > 0. By [1, Prop. A.1.1(ii)] applied to the morphism
A : Bis — Al (here A! denotes the affine line), there exists a constant d; > 0
such that
lA®)], < blg,
for all b € Brs(Fo,v)-
Note that |A(b)|y < |A(b)|l». Choosing dy = d3 + dids in (11.13), we
arrive at the estimate (11.12) (for any constants d;,ds > 0).

Since the support of the non-archimedean component ®*° = vaoo d, is
compact, its image under A o 7 is also compact in Ag ;. It follows that for

z € Xis(Ap) Nsupp(P),
(11.14) H||A0?r(:t: |U<<H|Aon' (z)* H|A0ﬂ'

vfoco vfoo vtoo

It follows that when = = (zy)y € Xs(Ao), for any d3 > 0, there exists d; > 0
such that

| 1(a-a)dg
G(Ao)
_H/ |‘I>,U(g.m,v)|dg H/G'(Fo,u) |®y(g - zv)| dg

v|oco
< [T1A o m(@) ;" Ims(zo) 52,
v|oco
1A o 7o) |2 Imes(e0) 152, (by (11.12) and (11.11))
v|oo
< [T1A o m(a) [ ® (@) 15, (by(11.14)).
v

Finally, let # € X5(Fp). By the product formula [T, |A o w(z)[, = 1, we
obtain

[ 1802l do < @)l
G(Ao)

for any constant d3 > 0. The desired convergence then follows from [1, Prop.

A.1.1(v)] (applied to Bis):
> g <o

beB;s (FD)

for ds large enough.
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938 W. ZHANG

To show part (b), it suffices to show that the constant implicit in < of
(11.8) can be made uniform for w(h)® for h € H(Ay) in a neighborhood of 1.
The function ®* is invariant under a compact open of H(Ag ¢). So it suffices to
consider h € H(Fj ). By the K -finiteness assumption, it suffices to consider
upper triangular elements in H(Fp ). Then it is easy to see the constant can
be made uniform by the formula (11.1). O

To summarize, we obtain

(11.15) J(h,®) = > Orb((8,u), w(h)®).
(8:u)€[(G(a)xV)(Fo)]

When @ is Koo-finite, it follows easily that for & € F°, the &-th Fourier
coefficient of J(-, ®) is equal to

(11.16) > Orb((8, u),w(h)®).

(B:u)el(G(a)xVe)(Fo)l
Here we refer to (1.12) for the definition of Fourier coefficients.

11.4. The case of general linear groups. Now we consider the Jacquet—
Rallis RTF for general linear groups. Let V = F{J' be the n-dimensional
vector space of column vectors over Fy. We identify the dual vector space
Vo = Homp,(Vo, Fo) with the space of row vectors. Consider the natural
quadratic form on V' =V x Vj':

q: VoxVy——F

(11.17) ' = (uy, ug) — us(uq).

Let
(,): V' xV' — F

be the the associated symmetric bilinear pairing (so that (u’,u’) = 2q(u’)).
Let G' = GL(Vp) act on V' by (std,std¥). Then G' ~ GL,, , via the given
identification Vp = FJ'. Consider the diagonal action of G’ on S, x V’; cf. (2.2).

Now let a € A,(Fp) be irreducible over F. We rewrite the kernel function
(11.2) according to (v,u’) € (Sp(a) x V')(Fp) regular semisimple or not. By
the irreducibility of «, precisely three orbits are not regular semisimple, i.e.,
(y,u") where v’ are

{(0,0)},
(11.18) 04 = {(u1,0) : w1 € Vo(Fv) \ {0},
0_ = {(0,u2) : uz € V5 (Fo) \ {0}}.

They will be called “(relative) nilpotent”; the last two are regular (i.e., with
trivial stabilizers).
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WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 939

We define the (global) Jacquet—Rallis (relative) orbital integral (for the
G'-action on S, x V'). For ® € S§((S, x V')(Ag)) and a regular semisimple
(7,u) € (Sp x V')(Fyp), we define

(11.19)  Orb((y, /), ®',s) := /G’(AO) &'(g7" - (v,u')) | det(g)|F,m(9) dg-

Here and thereafter we will simply denote by 7 the character nodet of G'(Ay).
The global orbital integral is a product of local orbital integrals

(11.20)  Orb((y,u), ®,, s) := /G’(F )i’;(g_l'(%U'))Idet(g)lin(g)dg-

We consider a one-parameter family of (11.3): for ® € S((S, x V')(Ay))
and s € C, we will define

30 #,5) = [ S oW () | |det(a) f(e) da.

[\ (ru)e(Sn(@)x V") (Fo)
Similar to the unitary case, we write it as a sum over orbits:
(11.21) J(h,®',s) =J(h,®',s)o + J(h, D', 8)s,

where

J(h}@”s)rs = Z Orb((ﬂhuf)?w(h)@’?s)a
(v, u)E[(Sn(a@)x V") (Fo)lrs

and the term J(h, ®’, s)o is the sum over the two regular nilpotent orbits in
(11.18), which will be defined in Section 12.6 by an analytic continuation. We
have discarded the orbit {(0,0)} since n is then a non-trivial character on the
stabilizer.

We first justify the convergence for the regular semisimple part J(h, ®’, s);s.
We will defer the H(Fp)-invariance to the next section; cf. Theorem 12.14.

LEMMA 11.2. (a) For any ® € S((Sn x V')(Ag)), the sum

> [ 1@ () det(o)l do < o0
(7.0 )€[(Snx V") (Fo)les &' (40)

converges absolutely and uniformly for s in any compact subset in C. In par-
ticular, the same holds if we only sum over (y,u’) € [(Sp(a) X V') (Fp)]s-

(b) Assume that ® is K, -finite for the mazimal compact Ko, =[], SO(2,R)
of H(Fy,). Then the sum in J(h,®',s)s converges absolutely and uniformly
for (h,s) in any compact subset of H(Ag) x C.

Proof. This follows the same argument as the proof of Lemma 11.1. [
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940 W. ZHANG

12. RTF with Gaussian test functions

We now simplify (11.15) (resp. (11.21)) for a fixed a € An(Fp) by plugging
in a Gaussian test function at every archimedean place.

12.1. Gaussian test functions: the compact unitary group case. Now let
F'/Fp be the the archimedean local field extension C/R. Let V' be an n-dimen-
sional positive definite hermitian space with the unitary group G = U(V). We
define a special test function, called the Gaussian test function (cf. [40, §7]) in
the semi-Lie algebra setting,

(12.1) B(g,u) = 1g)(9) - e ™™ € 8((G x V)(R)).

Since it is invariant under G(R), its orbital integrals (2.15) take a very simple
form:

(12.2) Orb((g,u), ®) = e "W,

Here we normalize the Haar measure on G(R) such that vol(G(R)) = 1.

We explicate the action of SLy(R) by the Weil representation (for the fixed
additive character ¢ : z € R + €2™). Write h € SLy(R) according to the
Iwasawa decomposition

1/2
(12.3) h= (1 i’) (a’ a—lfi’) ko, acRy, beR,

where k(f) is as in (1.7). First of all, the Gaussian test functions above
are eigen-vectors of weight £ = n under the action of the maximal compact

SO(2,R) of SLy(R), i.e.,

(12.4) w(kg)® = xn(ko)®,

where xy, is the character (1.8). In general, for h of the form (12.3),
w(h)®(g,u) = xn(ko) Loy (9) ® |a|1f2efri(b+M)(u,u)_

12.2. Gaussian test functions: the general linear group case. On the gen-
eral linear group side, we define Gaussian test functions to be any smooth
transfer of the Gaussian test functions on the unitary side (cf. [40, §7]). We re-
call the bijection of regular semisimple orbits (2.7) and (2.9). Note that in the
disjoint union, one component is from the positive definite hermitian space V.
We defined the notion of transfer at the end of Section 2.3.

Definition 12.1. We call ®' € S((Sn x V;)(R)) a Gaussian test function
if it is a transfer of the tuple {®y }v where ®y is the Gaussian test functions
(12.1) for the positive definite hermitian space V', and ®y = 0 for all the other
(isometry classes of) hermitian spaces V.
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It is expected that Gaussian test functions exist. However, it seems very
difficult to explicate the Gaussian test functions on (S, x V’)(R) (with one
exception: the case n = 1). Fortunately a weaker version suffices for our
purpose. We only need a partial matching, i.e., only Schwartz functions that
have matching orbital integrals for elements with a fixed component on 5,,; we
will name them “partial Gaussian test functions.”

We call the subset T}, of diagonal elements in Sy (R) the compact Cartan
subspace of Sp(R). We have

T, —~— U(1)(R)"™

Let T7° denote the open subset of the regular semisimple elements in the Cartan
subspace T, (i.e., those with distinct diagonal entries).

Definition 12.2. Let €2 be a compact subset of T35, We call & € S((Sp X
Va)(R)) a partial Gaussian test function (relative to ) if, for all regular
semisimple (v,u') € Q x V' matching (§,u) € (U(V) x V)(R) for the posi-
tive definite hermitian space V', we have

(12.5) Orb((v,u"), ®") = Orb((d, u), ®),

where in the right-hand side ® is the Gaussian test functions (12.1), and
Orb((,u’),®") = 0 whenever a regular semisimple (7, ') matches an orbit
from non-positive-definite hermitian spaces in (2.7).

Now we construct “partial Gaussian test functions” explicitly for any com-
pact subset 2 of T)"°. We first consider the case n = 1 and then reduce the
general case ton = 1.

12.3. Gaussian test functions when n = 1. Assume n =dimV = 1. Then
G'(R) ~ R*, and the symmetric space Si(R) is compact. The orbital integrals
have been defined in Section 2.3; cf. (2.14). Since the G'-action on S is trivial,
we simply work with the vector space component and suppress the v € S;(R)
in the orbital integrals.

Let V = C be 1-dimensional hermitian space (with the standard norm),
and let

p(z) =e TF e S(V).
Then we have (; = ¢.
Let V' ~ R x R, with R*-action

t-(z,y) = (t 'z, ty).

Recall from (11.17) that the quadratic form on V' is q(z,y) = xy. We consider
the following Schwartz function in the Fock model:

(12.6) & (z,y) = 273/2(z + y)e 27"V € SR x R).
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942 W. ZHANG

It has the symmetry
(ﬁ!(m: y) = éf(yax)a éf(_ma _y) = —(,?5,($, y)
Recall that the K-Bessel function is defined as

K(c) = %/ e_%c(uﬂf“)usd—u, c>0,seC.
Ry u

LEMMA 12.3. Let £ € R*. Then
Orb((1,€),d',s) = 271/2|¢|(=sTD/2 (K (s11)2(7|&]) + (€K (s—1)j2(m£]))-

In particular,
e ™, £>0
Orb((1,£),¢') = ’ ’
(1,9),4) {0? e
and when & < 0,
1
dO0rb((1,£€),¢') = Ee—’fﬁ Ei(—2x¢]).
Here Ei is the exponential integral (8.10).

Remark 12.4. Here the special value at s = 0 has taken into account the
transfer factors; cf. Section 2.3.

Proof. By definition of orbital integrals (2.14) (except we have suppressed
the s1 and S7 component), we have

Orb((1,€), ¢, s)
=272 [ (e n(©)lel/ge D
R, t

= 27 1/2g| et/ ] (t+n(&)/t)e—%’flﬁlﬁ’*ﬂf’ﬁ)t—f*%
R+

_ _ _1 2 2y, 1. dt
= g2 [ AR g g

R, t
du

u

_ 9-3/2g|(~s+1)/2 / e~ HrIEI U /0) (4 (~5+D/2 )y (—s-D/2)

R+
=272 D2 (K vy a(l€]) + n(€) K (—s—1y2(m[€])) -

To evaluate at s = 0, we note that

—£

Te

Ki2(§) = \/; arn

Also we note that the transfer factor (2.17) takes value one at elements of the

form (1,&), applied to F'/Fy = C/R.
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The assertion for the first derivative follows from the following iden-

tity [35]): . .

[m e

— K = —/ ———= Ei(—2y), 0. O
dsls=1/2 s(v) 2 yl/2 i(=2), v>

We now explicate the action of SLo(R) by the Weil representation w.
Similar to the unitary case, the Gaussian test functions above are eigen-vectors
of weight k = n = 1 under the action of the maximal compact SO(2,R); cf.
(12.4), (1.8). Write h € SLa(RR) according to the Iwasawa decomposition

1/2
h— (1 f;) (a a—lﬁ’) kg, acRy, beR,

where £y € SO(2,R) is as in (1.7).
LEMMA 12.5. Let £ € R*. Then
Orb((1,£),w(h)4', s)
= 272y (kg)alg|(~5TV)/2 (K(—s+1)/2(malé]) + n(&)K (_s_1)2(mal€])).

In particular,

1/2mi(b+ia) 0,
Orb((1,£),w(h)¢’) = {; ‘ g z 0

and when & < 0,
d0rb((1,€),w(h)¢’) = %xl(rcg)alﬂ e™iIEl(0—ia) Bi(_27al€|).
Here Ei is the exponential integral (8.10).

Proof. This follows by straightforward computation using Lemma 12.3,
and the formulas (11.1) defining the Weil representation in Section 11.1. [

12.4. Partial Gaussian test functions: general n. We will use the Iwasawa
decomposition of the group G'(R) = GL,(R),

(12.7) G'(R) = ANK,
where K = SO(n,R), N is the group of unipotent upper triangular matrices,
and A ~ (R*)™ is the diagonal torus. We have a homeomorphism

! ~
(12.8) G'(R) ~ AN X un—1 K
as real manifolds, where the fiber product is over the intersection AN N K,
which is equal to

KNA=ker(u§ — pg) ~ pi~t.
We will take the natural Haar measure on each factor (e.g., the measure IC?I on

R* and the product measure on (R*)™ ~ A) and take the induced measure on
G'(R) by the above product (12.8).
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Note that the torus A is the stabilizer of a regular semisimple element in
the Cartan subspace T},,. Then NK - T} (the conjugation action) defines an

@ n
C

open subset S;™ (“c” is for “compact”) in Sy,:

NK xTF® ——= Sy™ C Sp
(h,t) ——— h™th.
The map is a K N A-torsor and induces a K N A-torsor:
NK xTE x (Vo xVg) —— 8" x (Vo x V)

(12.9)
(h,t, /) ———— (R 1th,h - ).

Now let €2 C T° be any compact subset. We consider functions on NK x
TR x (Vo x Vy) of the form ¥ = ¢y @ ¢', with ¢’ € S(Vp x V) and

(12.10) b0 = PN ® PK ® PT,,

where

(1) the function @1, € C°(T}®) satisfies ¢T, |0 = 1q,

(2) the function pn € C2°(N) satisfies [ on(n)dn =1,

(3) the function @ is a constant multiple of 1g such that [, ¢k (k)dk =1,
(4) the function ¢’ is invariant under the finite group K N A.

By the K N A-invariance of ¢g and ¢', the function ¥ = ¢g ® ¢’ descends
along the map (12.9) to a Schwartz function ¢ on S;"™ x (Vg x V). Then the
extension-by-zero of ®“, denoted by @, is a Schwartz function on S, x (Vo x V).

Finally we specify ¢’ on Vo x V. Identify V x V" with R® xR"™ ~ (RxR)",

and we define

(12.11) ¢ =272 T (i +yp)e 27D,
1<i<n
cf. (12.6) for the case n = 1. It is obviously invariant under K N A. Therefore
by our recipe this function ¢’ (with any ¢o above) gives us a Schwartz function
@' on S, x (Vo x V).
Now we define the orbital integral Orb(v’, ¢, s) for v’ € Vo x V{J, relative

to the A-action on Vj x V{J', in the obvious way generalizing the case n = 1; cf.
(2.14).

LEMMA 12.6. Let v € Q C T;°. Then for any regular semisimple (y,u'),
we have
Orb((y,u"), ®, s) = Orb(u', ¢', 5),
where the left-hand side is the local orbital integral (11.20).

In particular, by Lemma 12.3 and (12.2), the function ®" is a partial
Gaussian test function (relative to the compact subset ).
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Proof. By the Iwasawa decomposition (12.7), the local orbital integral
(11.20) is equal to

/ / ' ((nk)™"- (v,a™t - o)) | det(a)|*n(a) dn dk da.
AJNK

By our choice of &, we obtain

/ ®'((nk)™1 - (v,u")) dn dk
NK

—( [ entman [ ext)at) er,(6w)
N K
=¢'(u').
Therefore
Orb((~,u'), @', s) = / @'(a™" - u')|det(a)|*n(a)da = Orb(v’, ¢', s).
This completes the proof. |

Remark 12.7. This result also holds if u’ is a regular nilpotent orbit and
the orbital integral is regularized by (12.18) and (12.27) below.

12.5. Modular analytic generating functions when n = 1. Now we return
to the global situation Section 11.4. Assume that n = 1. Then we may
identify V' = Fy x Fp, and the special orthogonal group SO(V’,q) can be
identified with the Fy-group G’ := GL1 p,, via the action on the V' by g -
(u1,u2) = (¢ 'u1, gus). The map v’ = (u1,uz) — & = q(u’) = uruz identifies
the categorical quotient Vf;G’ with the affine line. Note that regular semisimple
orbits (for the G’-action) are exactly the fibers over £ # 0, and each fiber has
exactly one G’-orbit.

Let ¢' € S(V'(Ag)). Consider the integral,

(12.12) J(gﬁ’,s)zf[gq Yo gt | lgl*n(e) dg.

w' eV (Fo)
The integral is not necessarily convergent, and we define it by a regularization
procedure as follows.

Recall from (11.21) that we can write the integrand as a sum over the
G'(Fp)-orbits in V'(Fp). Then the regular semisimple part is

(12.13) Z Orb(u/, ¢/, 5),
E=q(u) Ry

where

(12.14) Orb(/, ', 5) = / #(g7" - u)|g|n(g) dg.
G'(Ao)
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By Lemma 11.2, the sum in (12.13) converges absolutely and uniformly for s
a compact set in C.
The fiber over £ = 0 breaks into three orbits:

{(0,0)},
0y = {(u1,0) : uy € F{},
0_ = {(0,u9) : up € FDX}'

The stabilizer of the first one is G’, and the other two have a trivial stabilizer.
Note that 7 is non-trivial on G’(Ag), and hence we define the integral for the
first orbit to be zero. For the other two orbits, we define

(12.15) Orb(04,¢',s) :=] ¢'(9,0)l9/*n(9) dg
A
and
(12.16) Orb(0_,4',s) = /X ¢'(0,97)|gl*n(9) dg = fx ¢'(0.9)lg|"*n(9) dg.
AJ Ag

Both will be understood as Tate’s global zeta integrals. More precisely,
(12.17) Orb(04,¢',s) = L(s,n) [ | Orb(0+, 4, ),
v

where the local orbital integral for the regular nilpotent 0 is defined as (the
analytic continuation of)

Sz, (9:0)lglsm(9) dg

L (S? 7?'0)
We note that the local Tate integral (12.18) is absolutely convergent when

(12.18) Orb(05, ¢, s) :==

Re(s) > 0 extends to an entire function of s (a polynomial in ¢* when v is
non-archimedean) and equal to one for unramified data. Here L(s,7) is the
complete L-function of the Hecke character 7. Similarly, for 0_, we have

(12.19) Orb(0_,¢',s) = L(—s,n) [ ] Orb(0—, 4, —s),

where

, S, #,(0.9)lal5*n0(g) dg
Orb(0—, du, =8) = =750y

To summarize, we define (12.12) as the sum of (12.13), (12.15), and (12.16)
(or rather, their analytic continuation to s € C):
(12.20) J(¢',s) = Orb(04,¢',s) + Orb(0_,4',s) + > Orb(u/,¢',s).
E=q(u)eFy*

Define the analytic generating function on H(Ay),
J(h,d',s) = J(w(h)d',s), heH(Ay).
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Remark 12.8. The function J(-,¢’,s) may be viewed as the generating
function of the above relative orbital integrals (12.14), (12.15), and (12.16),
parametrized by £ € Fy. This is the analytic analog of the modular generating
function of special divisors in Section 8.

THEOREM 12.9. The function J(h,¢',s) is smooth in h € H(Ag) and
entire in s € C. As a smooth function in h € H(Ay), it is left invariant under

H(F).

Proof. By Lemma 11.2, the smoothness and the entireness follow from
the same property for each of (12.13), (12.15), and (12.16). To show the
H(Fp)-invariance, we first note that the invariance under the upper triangular
elements follow from the definition of the Weil representation and that of the
function J(h, ¢’, s). It remains to show the invariance under w = (_1 1), ie.,
the functional equation

(12.21) J(@,5)=U(d.s9)
holds for all ¢'.

By Poisson summation formula (note that the action of G'(A() commutes
with the Weil representation),

Yo=Y ), geG(ho),
u'eV’ u' eV’
or equivalently,

Z ¢f(g—l i u:) _ Z (’;'g.f(g—l . ur)

wWeV!, €40 wWeV!, £40

== Y Hlat )+ Y Hlat), geC(Ay).

weVi_, weVy_,

(12.22)

We introduce a partial Fourier transform ¢’ — JF;(¢’) for one of the two
variables:

Fi(@) s u2) = [ 6 un, ) urwa) o
Ag
Apply Poisson summation formula to the line u; = 0:
D ¢0,07 ug) =g Y Fi(¢)(gua,0).
'u.QGFg 'I'J.]EFU

We obtain an alternative expression of the right-hand side of (12.22) as the
sum of
— ) (#'(gu1,0) + |g|F1(4')(gu1,0)) + ¢/(0,0)
'I'J.]EFU
and R R R
3 (@(9u1,0) + g Fa(#) (914, 0)) — #(0,0).

uyeFp
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Denote [G']! = G'(Fy)\G'(Ag)*, where
G'(Ao)" := ker(|det | : G'(Ag) — Ry).
We embed R, into G'(Ag) = A by sending t € R} to (t,), where

tlz’[Fﬂi@l? v I 00,
t'U -

1, v oco.
Then we have a direct product

G'(Ao) —= G'(Ao)! x Ry

(12.23)
g (gl s t).

Since the quotient [G’]! is compact, we may integrate (12.22) over [G']' first,
and this kills the zero orbits (due to the non-triviality of 7|g1). Then we
integrate over Ry. (Now we use the alternative expression of the right-hand
side.) Since the Tate integrals converges absolutely when Re(s) > 1, we obtain

Orb(0+,4', s) + Orb(0+, Fi(¢),1+5) + Y Orb(u,¢',5)
EeFy

=Orb(0+,4',s) + Orb(04, Fi(¢),1+5) + Y Orb(v,¢',s)
EeFy

when Re(s) > 1. Finally, we note that by (12.19) and the functional equation
of Tate integrals,

Orb(0—, ¢, s) = Orb(04, Fi(¢'),1 + ).
By analytic continuation, this completes the proof of (12.21) forall s e C. O

Remark 12.10. The integral (12.12) can be viewed as the theta lifting for
the pair

(SO(Viaq)a SLZ):

from the automorphic representation 7|-|* of SO(V’) ~ GL; to SLa. Therefore,
the representation space spanned by h +— J(h, ¢, s) is the space of degenerate

Eisenstein series for the induced representation Indgfﬁg)) (n1]-1%). (Here B is the

Borel subgroup of upper triangular matrices). In this way, the two nilpotent
orbital integrals become the constant terms of the associated Eisenstein series.

LEMMA 12.11. Letv | oo, and let ¢), be the Gaussian test function (12.6).
Then the local nilpotent orbital integral (12.18) is equal to

Orb(04, ¢, s) = 2271,
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The action of the group SLy(R) is given as follows, for h € SLy(R) in the form
of (1.6):

Orb(04,w(h)¢’, s) = x1(kg)a /22571,

Proof. By (12.6), we obtain ¢} (z,0) = 9-3/22¢=3™" Then Orb(04, ¢, s)
is the Tate’s local zeta integral at an archimedean place:

2/ e_%”2|$|s+lﬁ:/ e_%m|:t:|(s+l)ﬂG“:—:tj
Ry Ry

= (n/2)"*TVP0((s +1)/2).

Note the local L-factor in (12.18) is by definition
— +1
L = g~ (s+D/2p (3—) .
(s,m) = :

We obtain
Orb(04, ¢, s) =227,
The action of SLa(R) is determined in a way similar to Lemma 12.5. [

12.6. Modular analytic generating functions for general n. We now return
to the setting of Section 11.4 for general n.

Recall from Section 7.4 that we have fixed @ € An(Fo) C F[T]deg=n
irreducible over F, the field F = F[T] /() and its subfield Fjj. Then Sy, (a)(Fo)
consists of exactly one G'(Fp)-orbit; let us fix a representative y € Sp(a)(Fp).
Denote by T” the stabilizer of -, which is isomorphic to Res 7 /Fo Gm. 1t follows
that the character n o det (of G’(Ag)) is nontrivial on 7”(Ap), which can be
identified (via T ~ Respy /g, Gy,) with the quadratic character associated to
F'/F} by class field theory

’q! =NFI/F} : A;;(.‘; — {:l:l}.

Similar to the F”/F{-hermitian form (10.5), via the action of F{j, the vector
space Vy (hence V) carries a structure of a one-dimensional Fj-vector space.
Furthermore, we can identify

Hompy (Vo, Fp) ~ Vg
as one-dimensional F|-vector spaces. There is a unique bi-F{j-linear symmetric
pairing
(12.24) (-, ')F& V! x VI —— F}
such that

(u1,u2) = trpg Ry (U1, u2) Ry
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Let
(12.25) qd: Vox Vg —— Fj
be the associated quadratic form over Fj.

Definition 12.12. An element v € S, (Fp) is compact, if locally at all places
v | 00, it lies in the G'(Fpy)-orbit of the compact Cartan subspace Tn(Fp).

Then v € Sy (a)(Fp) is compact if and only if the field F’ is a CM extension
of a totally real field Fjj, which we have assumed since Section 7.4.

Now, for every v | oo, we fix the archimedean ®, € S((Sn x V')(Fo)) to
be the partial Gaussian test function constructed in Section 12.4 (relative to a
fixed compact neighborhood €y C Sp(Fov) of v). Recall that @), is associated
to the function ¢}, defined by (12.11).

There are two regular nilpotent orbits for the T"-action on V'(Fp), denoted
by O+ in (11.18). We now define the constant term J(h,®’,s)o in (11.21) as
the sum of the two regular y-nilpotent orbital integrals Orb((~,0+),®’,s) in a
similar way to (12.15). More precisely, we define

(12.26) Orb((v,04),®’, s) := L(s,7n’) HOrb((’y, 04),®,,s),

where the local orbital integral is defined as

Jer(po.) @o(a7" - (7,04)) | det(g)[3n(g) dg
L(s,n},) '

(12.27)  Orb((v,04), D), s) =

Here the denominator is defined as

L(s,m,) = [ [ L(s.my),

vl |y

where v’ runs over all places of F{j above v. Note that L(s,n’) = L(s, Ind?‘}n’)

We define Orb((v,0_),®’,s) similarly. Here we normalize the measure on
G'(Fov) such that vol(G'(Op,,)) = 1 for all but finitely non-archimedean
places v.

LEMMA 12.13. The integral (12.27) is absolutely convergent when Re(s) >0
extends to an entire function of s (a polynomial of qﬂts for non-archimedean v).

Furthermore, for a fized v and a pure tensor ® = ®,Q,, where @, =
1(SnxV’){OF0,u) for all but finitely many v, the integral (12.27) is equal to one
for all but finitely many places v (depending on vy and ®).

Proof. When v | 0o, by Lemma 12.6, the desired claim follows from (the
product of n copies of) the same claim for n = 1.
Now let v be non-archimedean, and let ®; be as in Section 12.4. We fix

a large compact subset , of G’(Fpy) such that ®/ (¢! - v,4') = 0 unless
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g €8y, -T'(Fpp). We introduce a Schwartz function (with a parameter s € C)
on V'(Fou),

(1228 )= [ @ (o) |det(o) (o) do.
It is easy to see that it is of the form
(12.29) G = Y @ bus,
1<i<m
where

a; €Q, M€ Qi, ¢; € S(V!(Fﬂ,v))-
Then, for a suitable choice of measure dg on €2, in the integral (12.28),

(12.30) Orb((v,04), @, s) = Orb(04, ¢}, , 5).

Here we view Vj as a one-dimensional Fjj-vector space and Vj as its Fjj-dual
vector space, and the right-hand side is (12.19) relative to the quadratic exten-
sion Fy /Fy , at v (i.e., Fy is the product of F, = F' ®p; F{) ,, over all places v/
of F{, over v). This shows that the local orbital integral for 04 is a polynomial
of qﬁs, v'|v, particularly, an entire function in s.

Finally, let us assume that v is unramified in F’ and @), = L(S,xV1)(Ory0)-
(Here we implicitly identified Vj = F§' and endow it with the natural inte-
gral structure.) For all but finitely many places v, the element « belongs to
Sn(OFy,w) and generates the maximal order Op; in Fy. Then it is easy to see
that ¢; . = 1y1(0p,.,) 0 (12.30), and hence the integral is equal to one by the
standard computation of Tate’s local zeta integral for unramified data. |

THEOREM 12.14. The function (h,s) € H(Ag) x C — J(h, ?', s) is entire
in s € C and left invariant under H(Fp).

Proof. By the proof of Lemma 12.13, (12.29) and (12.30), there exists a
finite collection of

a;€Q, NeQf, ¢ieS(V'(A))

such that

J(h,®',s) = " a; A I(h, ¢}, ).

1<i<m

Here we note that for almost all places, the ¢, ; = 1y, ,) in (12.30), and
the ¢; are of the form ®,¢}, ; for ¢}, ; from (12.29). The desired claims follow
now from Theorem 12.9 for n = 1, applied to the new quadratic extension

F'/F}. O
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For simplicity, we combine the two nilpotent orbital integrals into one:
(12.31) Orb((v,04),®', s) := Orb((y,04+), ¥, s) + Orb((~, 0—,d’, s).
Then we obtain an expansion as a sum of orbital integrals

J(h, @, s) = > Orb((7,u), w(h)®, )

(1w )E[(Sn (a)x V) (Fp)]
ul #£0

(12.32) — Orb((7,04), w(h)®, s)
- > Orb((v,u),w(h)®', s).
(7-u")E[(Sn(a) xV")(Fo)lrs
Moreover, for £ € F°, the £-th Fourier coefficient of J(-, @', s) is equal to
(12.33) > Orb((7,u"),w(h)®, s).
(7,u")E[(Sn () xV{) (Fo)]
This is the analog of (11.16) on the unitary side.
12.7. The decomposition of the special value at s = 0. We set
J(h,®") := J(h,®',0),
Orb((7,u"), w(h)®") := Orb((v,u"),w(h)®’,0).
Then the decomposition (12.32) specializes to

(12.34) J(h,®") = > Orb((7,u), w(h)®).
(v, u")E[(Sn () x V) (Fp)]
ul£0
We set

03(h, @) := di| A, @,5),
(12.35)

dOrb((v, '), ®') Orb((y,v'), @i, s).

= 5l
(The second equation also applies to the nilpotent orbit, in which case the local
orbital integrals are defined by (12.27).)

Now we introduce

Jy(h,®") := 8Jy(w(h)®’), where
(12.36)  OJ,(®) := > dOrb((7,u'), ®.) - Orb((v,u’), ®").

(v u")E[(Sn(a)x V) (Fp)]
u’ 0

In the nilpotent case, Orb((y,04+), ®") is interpreted as

L(0.7) ] Orb((7.0x). 8");
wH#v
cf. (12.26).
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We define
d
r !
80rb(04, ®') = E’SZDL(S,W) IJ Orb((v,04), ®,,0),

and similarly for d0rb(0_,w(h)®’). Then we define
(12.37) 80rb(04,®") = 80rb(04, ') + HOrb(0—, d’).
Then by Leibniz’s rule, we obtain a decomposition:

(12.38) 0J(h, ®') = B0rb(0x,w(h)®') + Y 8Ju(w(h)®").

We call 90rb(04,w(h)®’) the nilpotent term; it is part of the constant term
(i.e., the 0-th Fourier coefficient).

Part 3. Proof of the main theorems
13. The proof of FL

13.1. Smooth transfer: the global situation. In Section 2.3, we have de-
fined the local transfer factor; cf. (2.17). The definition depends on a choice
of an extension 77 of the quadratic character n attached to the local quadratic
extension. In the global case, we fix an extension of the quadratic charac-
ter np/p, of Fy'\Ag to a character i of F>*\A* (not necessarily of order 2).
The transfer factor for a global element then satisfies a product formula and
transforms according to the desired rule; cf. [40, §7.3].

We are now in the setting of Section 12.6; in particular, we have fixed
an irreducible @ € An(Fo) C F[T)deg=n- Let ' = ®,®), € S((Sn x V;;)(Ao))
be a pure tensor such that for every v | co, ®), is the partial Gaussian test
function. We define a weaker notion of smooth transfer. Fix an Fy/Fp .-
hermitian space V,,.

Definition 13.1. For a fixed a € A, (Fy ), we say that @ partially (relative
to a) transfers to ®, € S(U(V,) x V) (Fo ) if we only require the equality (2.18)
in Definition 2.2 to hold for matching orbits

(7,4) € (Sn(@) x Va)(Fop)rs and (8,u) € (U(Va)(a) x Vo) (Fo)ss,
and Orb((v,u"), ®}) = 0 for any other (v,u’) € (Sn(a) x Vyi)(Fov)rs-
For ®'%° = @,;,,®;, € S((Sn xV;;)(Ag 1)), we say that it partially transfers
to (or matches) ®° = @1, Py € S((U(V) x V))(Ag ) if ®;, partially transfers

to @, for every v { oco.

Remark 13.2. At those places of Fp split in F', we will further demand &,
and @] to match in an elementary way analogous to [47].
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13.2. Comparison. In this subsection, we compare J(h, ®’') with J(h, ®) in
the “coherent” case, i.e., ® = ®,®, € S((U(V) xV)(Ay)) for an n-dimensional
F'/Fy-hermitian space V. We further assume that V is totally positively def-
inite and @, is the Gaussian test function for every v | oo; cf. (12.1) in Sec-
tion 12.1.

PrRoOPOSITION 13.3. The function
h € H(Ag) — J(h,®"), resp. J(h,®),

lies in Anol(H(Ao), K,n), where K is a compact open subgroup of SLa(Ag ;)
that acts trivially on both ® and ®'.

Proof. The K -invariance follows immediately from the definition of J(h, ®')
and J(h,®). By Theorem 12.14 (resp. Lemma 11.1) the function J(-, ®’) (resp.
J(-,®)) is invariant under H(Fp). The weight n condition follows from the
action under SO(2,R) by (12.4) for ® and by Lemma 12.5 for @’

Finally we need to show the holomorphy on the complex upper half plane
HF0 U and at all cusps. Equivalently, for any hy € H(Agy), the function
.]]if (r,®') (resp. Ji; (7,®)) defined by (1.11) is holomorphic in 7 € [[yje0 H,
and holomorphic at the cusp icc.

By (12.34) and Lemmas 12.3 and 12.6, the &th Fourier coefficient of
.]J%f (hoo, @) vanishes unless £ € Fy and £ > 0 (i.e., totally semi-positive).
Hence the Fourier expansion takes the form

Jif(r,'I)’)z Z A¢qf, Ag eC,

£€Fp, €20

where A¢ = 0 unless £ lies in a (fractional) ideal of Fy depending on ‘I’} and hy.

This shows that J(-, ') € Anoi(H(Ap), K,n). The assertion for ® is proved
similarly. |

Now let us fix a regular elliptic compact element vy € Sp(a)(Fo) (cf. Sec-
tion 12.6). Let S be a finite set of non-archimedean places of Fy such that

e S contains all places with residue characteristic 2;

e for all v € S, @, partially (relative to a) transfers to ®, € S(U(V,) x
V) (Fop);® and

e for every non-archimedean v ¢ S, the hermitian space V; is split, ®, =
LUuwv)xV)(Omy.v) (with respect to a self-dual lattice in V;), and &, =
L(SnxV1)(Ory0)-

“Transfers exist by the result of [47]. Here we only need the weaker result of the existence
of partial transfers for fixed o, which can be deduced easily from the n = 1 case.
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‘We consider the difference
&(h) = J(h, @) — J(h,®), heH(A).

THEOREM 13.4. Assume that Conjecture 2.3 part (a) holds for all Fy,
withv ¢ S and for Sp. Then & = 0. (Note that we are in the case dimV = n.)

Proof. Let B (for “bad”) be the (finite) set of non-archimedean places
v & S of Fy where Ryy = Ra ®0p, OFD"U is not a product of DVRs.

By Proposition 13.3 and our choice of ® and @/, the function &(h) €
Anol(H(Ag), K, n) where the compact open subgroup K = [Tojeo Kv C H(Ag )
can be chosen such that K, is of the form (13.3) for every v € B. This is easy
to see if the additive character 1, is of level zero. In general, it is known how
the Weil representation depends on %, and the desired K,-invariance holds for
any 1, at v € B.

By the vanishing criterion Lemma 13.6 below, it suffices to show that for
£ e Fy,

We ¢(hoo) =0
whenever (£, B) =1 (i.e., v(§) =0 for all v € B).
Now let (¢, B) = 1. By (12.33), the &-th Fourier coefficient of J(hoo, ®’) is

Z Orb((7,u"),w(heo )®’).

(7,u")E[(Sn (@) xV{)(Fo)]

Similarly, by (11.16), the &-th Fourier coefficient of J°(7, ®) is

> Orb((8, %), w(hoo)®).

(8, u)€[(G(a)xVe)(Fb)]
By our choices of partial Gaussian test functions, for every v | oo,
(13.1) Orb((7, "), w(hy)®,) = Orb((8,u), w(hy)®,)

holds for every (-, ') matching (4, u).
We now claim that the equality

(13.2) Orb((v, "), ®}) = Orb((8,u), Dy)

holds for every non-archimedean place v and every matching pair (y,u’) €
[(Sn(a) x 1VE")(JF’O)] and (d,u) € [(G(a) x V¢)(Fp)] (when (£, B) = 1). From the
claim it follows that A¢ = 0 whenever (£, B) = 1.

To show the claim, first let v € B. Since (§, B) = 1, £ is a unit at v. There-
fore by Proposition 2.7(ii), Conjecture 2.3 part (a), which we have assumed to
hold, implies (13.2).

If v ¢ SU B, then Rqp is a maximal order, and (13.2) follows from
Proposition 2.6 when v is inert. When v is split, the identity is trivial.
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If v € S, by our assumption on ®; and ®,, they partially match (relative
to the fixed «), and hence (13.2) holds. This proves the claim.

Now by (13.1) and (13.2) we conclude that Wg ¢(ho) = 0 whenever
(&, B) = 1. This completes the proof. O

COROLLARY 13.5. Under the assumption of Theorem 13.4, we have for
all £ € Fy,

> Orb((y,u'), ®') = > Orb((6, u), ®).

(7,u")E[(Sn (@) xV{)(Fo)] (8:u)€[(G(e) xVe)(Fo)]

Proof. This follows from Theorem 13.4, comparing the &-th coefficients of
J(h,®') and J(h, ®). O

13.3. A lemma on Fourier coefficients of modular forms. Let ¢ be a con-
tinuous function on H(Ag), left invariant under H(Fp). Recall its Fourier
expansion from (1.12) and (1.13). Let ¢, be the level of v, i.e., the maximal
integer such that 1, is trivial on @, “” OF, », where @, is a uniformizer of Fp .

LEMMA 13.6. Let B be a finite set of non-archimedean places of Fy,. As-
sume that ¢ is right invariant under a compact open K = [[yo0 Kv C H(Aof),
where

(133)  Ky=m(@) " HOm)m(=g), m(wt :(wgv 1)

for all v € B. Suppose that Wy ¢(hoo) vanishes identically (as a function in
hoo € H(Fo,eo)) for all £ € Fy° such that (§,B) = 1 (i.e., v(§) = 0 for all
v € B). Then ¢ is a constant function. In particular, if ¢ is of (parallel)
weight n with n # 0, then ¢ = 0.

Proof. We prove the assertion by induction on #B. If B is empty (i.e.,
Wse(hoo) = 0 for all £ € F), then ¢(ho) = Wy e—o(hoo) is left invariant
under N (Fp ) and left invariant under H(Fp) N K. Now note that for every v,
H(F),) is generated by N (Fp,) and any single element in H(Fp, )\ B(Fpp). It
follows that ho, € H(Fp ) — ¢(hs) is constant, and hence h € H(Ag) — ¢(h)
is constant since H(Fp) H(Fp,o0) is dense in H(Ag) by the strong approximation
theorem for H = SLy g,.

Now assume that B contains at least one element, say vy € B. Consider

vo T

by, € @, o OFO,UO and the unipotent matrix

1 b
n(b/UD) = ( ;D) S N(FD,’UO)'
Consider the function

d(h) := ¢(hn(by,)) — é(h), h € H(Ao).
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Then we claim that Wy . (heo) =0 for all £ € F© such that (§, B\ {vp}) = 1.

To show the claim, the case vy(by,) > —c,, is obvious, and therefore it
suffices to consider the case wvg(by,) = —cy, — 1. From the K, -invariance
it follows that Wy ¢(heo) = 0 and Wy ¢(hoon(by,)) = 0 unless vo(§) > 0. If
vo(§) > 1, then vo(€by,) > —cy, and hence 1y, (£ by,) = 1. It follows that,
unless vp(£) = 0, we have

W5 ¢(hoo) = Wi g(hoo n(buy)) — W g (hoo)
= Yy (§ by ) Wse(hoo) — Wo e(hoo) = 0.

The claim now follows. N
By induction, we conclude that ¢ is a constant function, i.e., Wg £(h) =0

for all { € F*. It follows that W ¢(h) is right invariant under N (wﬂ_ﬂcuo_lo Fovo)-
It is well known that the groups N (toy, OFU o) and N_ (o Opu v0) C Ky
generate H(Fp,,). (This is equivalent to the fact that N(wy'Op,,) and
N_(OFyv) generate H(Fpy,); for a proof, see [27, Prop. 8.1. 2] ) Here N_
denotes the transpose of N. It follows that, for all £ € F;°, Wy is right
invariant under H(Fp,,), and therefore it must vanish. Finally the assertion
follows from the case when B is empty. |

13.4. A refinement of Corollary 13.5. We recall from (2.10) that B = B,
is identified with the categorical quotients (U(V') x V') yy(vy and (S, x V71) jGL,.-

LEMMA 13.7. Fiz bp € B(Fp). Fiz a non-archimedean place vi of Fp,
split in F'. For every place v # v1 of Fo, we fix a compact subset 2, C B(Fop)
containing by, such that for all but finitely many non-archimedean places v, {1,

is equal to B(Og,,). Then there erists a neighborhood 0y, C B(Fou,) of bo
such that

B(Fp) N HQv = {bo},

where the intersection is taken inside B(Ay).

Proof. We may embed B as a closed sub-variety of some affine space Y =
A™ over Fp (e.g., by (2.10)) such that for almost all v, B(Op,,) = Y (Og,,) N
B( Fo, U) For every v # v, by the compactness of Q, we may choose a compact
subset Q, C Y (Fo,v) such that Q, = Q, NB(Fo,v), and such that 0y — Y (Og,,)
for almost all v. By a standard argument using the product formula (i.e.,
[T |zlo = 1 for & € Fy°), there must be a small neighborhood Qy, C Y(Fou,)
such that

Y (Fo) N Hﬁv = {bo}-

Set Q,, = ﬁm N B(Fp ;) to complete the proof. O

We are now ready to refine the result of Corollary 13.5.
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ProproOSITION 13.8. Under the assumption of Theorem 13.4, for every
(6,u) € (U(V)(a) x V)(Fp)rs matching (y,u’) € (Sp(a) x V1) (Fo)rs such that
£ =q(u) # 0, we have

Orb((v,u"), ®") = Orb((d, u), ®).

Proof. Let by € B(Fp) be the (common) image of (d,u) and (v, u’), and let
£ = q(u) = q(«’). Fix a non-archimedean place v; of Fy, split in F. Decompose

Orb((6,u), ®) = Orb((8,u), ®**) Orb((6, u), Py, )

and
Orb((y,w'), ) = Orb((y, w), &) Orb((7, v'), ®},, ),
where the local orbital integral Orb((4,u), ®y,) = Orb((y,u’), ®;,). We may

assume that the local orbital integrals at v; are nonzero (otherwise both sides
vanish). It remains to show

(13.4) Orb((68,u), ®"1) = Orb((y,u"), ®"™1).

For every non-archimedean v # v1, we define a compact set €, C B(Fo)
to be the image of the support of ®, for v € §, and @, = B(Op,,) for all
véS.

For v | oo, we define €2, to be the image of (U(V)(a) x V¢)(Fow). Since
the hermitian space V ®, Fo,y is positive definite, the set (U(V')(a) x Ve)(Fo,v)
is compact, and hence so is €2,.

Now apply Lemma 13.7 to choose a small neighborhood Q,, C B(Fo,)
of by such that B(Fp) N @ = {bp}, where Q& = [],€,. Then we choose a
point-wise non-negative function ®,, with non-empty support whose i e image in
B(Fp,v, ) contains bg and is contained in €2,,. Choose 'I)" to match &,, in the
elementary way (cf. Remark 13. 2) Now apply Corol]ary 13.5 to this new pair
of functions & = ®"! @ &,, and &’ = ' ® 'I)’

> Orb((v,u"), ®') = > Orb((4, u), ®).

(7,u")E[(Sn (@) xV{)(Fo)] (8:u)€[(G() xVe)(Fo)]

Now the non-zero terms in each side only involve regular semisimple orbits
with invariants in £2: this is clear for the unitary side by our choice of €2, and
it is true for the left-hand side because ® partially (relative to a) transfers to
®, for all v € S and v | co. It follows that each side has one term left, namely,
the one with invariant by € B(Fp):

Orb((v,u), ®") = Orb((8, u), ®).

By the point-wise positivity of ®,,, the local orbital integral at the place v;
does not vanish. We hence deduce the desired equality (13.4). This completes
the proof. |
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13.5. Proof of the FL conjecture. Now we return to the set up of Conjec-
ture 2.3 in Section 2.4.

THEOREM 13.9. Conjecture 2.3 holds for Fy with ¢ > n. (Recall that q
denotes the cardinality of the residue field of Op,.)

Proof. By Proposition 2.7, it suffices to prove Conjecture 2.3 part (b). We
will do so by induction on dim Vj.

The case dim Vg = 1 is trivial. Assume now that Conjecture 2.3 part (b)
holds when dim Vp = n — 1. Then by Proposition 2.7 part (i), Conjecture 2.3
part (a) holds for Sy, over Fy with ¢ > n.

We now want to apply Proposition 13.8. We now change the notation:
we denote by Fp a totally real field with a place vg such that Fp ., is the local
field in Conjecture 2.3. We then choose the following local data:

e an unramified (local) quadratic extension Fy,/Fp g3

the split Fi, /Fo,y,-hermitian space Vj, of dimension n;

an element (gyy, tyy) € (U(Vyg) X Vi) (Fo,00 )sts — We further assume that the
characteristic polynomial of g,, has integral coefficients (in Opwu), det(1 —

Gup) 1s a unit, and (Uyg, Uyy) 7 0;
e an element (7yy,,uy,) € (Sp X Vy1)(Fo,ug)sts matching (gy, , Uy, )-
To globalize the data, we first use the Cayley transform; cf. (4.1). Let
Tuo = ¢ (Gup) = %ﬁ, an element in the Lie algebra u(Vy,) C Endg, (Vag)-
We now choose a totally negative element € € F* such that vp is inert in

F' = Fy[\/€]. Denote by wy the place of F' above vy. Consider :132',,0 = m%. Then

the characteristic polynomial of :132',,0 has coeflicients in the base field Fy,.
Next we choose a totally real field Fjj with [F{ : Fy] = n and an element
zf € F} such that, when setting F' = Fj[,/€] and

= fex, g=c(z)=—

we have Op,, [g] = Or,, [guo] as subrings of F' @ Fy,. To achieve this, it
b

suffices to approximate the characteristic polynomial of z7, by a polynomial

11—z
142z’

with coefficient in Fj, and we may prescribe its local behavior at finitely many
places by weak approximation. (Here the regular semi-simplicity allows us to
determines the isomorphism class of the local field F'[gy,] by the characteristic
polynomial of gy,.)

With such a choice, we have g € F'\. For the CM extension F'/F},
there exists a one-dimensional F’/Fj-hermitian space W such that W is totally
positive definite, and V = RESFé /Fy W, as an n-dimensional F'/Fo-hermitian
space, is locally at vg isometric to V4. Such a hermitian space W exists because
we are only imposing local conditions at finitely many places. Then we have
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an embedding Resgy /g, UW) — U(V) , and we will view g as an element of

U(V)(Fo). Let a € An(Fp) denote its characteristic polynomial.

Now we choose u € V' (and possibly replacing g by an element vp-adically
closer to g,,) such that the pair (g, u) is vp-adically close to (gy,, Uy, ) and such
that

(13.5)
Orb((9, w), LU (V) xVar ) Oy ,,)) = OB((905 Uvo ) L(U(Vag) Ve ) (O, ))-

This is possible due to the local constancy of orbital integrals near a regular
semisimple element. Let (v, u") € (S, xV,)(Fp) be a regular semisimple element
matching (g,u). Again by local constancy of orbital integrals we may assume
that, possibly replacing (g,u) by an element in (U(V) x V)(Fp)ss that is vo-
adically closer to (gy,, Uy, ),

(13.6)  Orb((v,u), L(5,xv)(Or, ) = OrP((Yeo» g ) 1(5,xV2)(Ory . )):

Next, we let S be a finite set of of non-archimedean places of Fp, such that
e v ¢S,
e S contains all places with residue cardinality less than n;

e for every non-archimedean v ¢ SU{vg}, the ring R, is locally maximal at v,
and V), is a split hermitian space.

Choose functions ® = ®,®, and ® = ®,®/, satisfying the following con-
ditions:

e For every archimedean v, ®, and @/ are the (partial) Gaussian test functions
(relative to a small neighborhood of v in Sy (Fow)).

e For every non-archimedean v € S, ®] partially (relative to a) transfers to
®, € S((U(Vy) x V4,)(Fop)) and the local orbital integrals do not vanish at
(g,u) and (7, '); cf. Definition 13.1.

e For every non-archimedean v ¢ S (in particular at vp), noting that the
hermitian space V,, is split, choose ®, = 1(U(V)><V)(OFD‘1,) (with respect to
a self-dual lattice in V,)) and &), = 1 SnxV')(Ory )" By enlarging S suitably
(while keeping vo ¢ S), we may further assume that, for every v ¢ S, the
image of (g, u) in B(Fp) lies in the image of the support of (U(V)xV)(Or, v)-

By the last condition, for every non-archimedean v ¢ S, the local orbital

integral of ®, does not vanish at (g, u) (since the function ®, is point-wisely

positive on its support). It follows from the special case Proposition 2.6 that
the same non-vanishing holds for ®) for every place v ¢ S U {vp}.

Now, by the induction hypothesis, we are ready to apply Proposition 13.8
to conclude

Orb((v, "), ®") = Orb((g, u), D).
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By our choices, Orb((~,u'), ®,) = Orb((g,u),®,) for all v # vg, and they do
not vanish. It follows that

Orb((v, u"), ‘I’;,D) = Orb((g,u), ®y,).
By (13.5) and (13.6), we have

Orb( (v ui:o)a 1(Sn xVa)(OFy 4, )) = Orb((guy, ) 1(U(VvD)XVu0)(OFG‘UD))'

We have assumed that g,, € U(V,,) is regular semisimple with det(1— g,,)
€ O;wo and (Uyg, Uyy) 7 0. We now remove these assumptions. The condition
det(1 — gy) € O},ﬁwﬂ is harmless since we may multiply g,, by a suitable ele-
ment in F}j (cf. the proof of Proposition 4.12). The set of elements (gy,, ty) €
(U(Vag) X Vo) (Fo .00 )srs With (tyg, ty,) 7 0 is dense in (U(Vy,) X Vi) (Fo,v0 )rs-
By local constancy of orbital integrals at regular semisimple elements, Con-
jecture 2.3 part (b) holds when dimVy = n (over Fp,, with ¢ > n). This
completes the induction. |

14. The comparison for arithmetic intersections

As a preparation for the proof of the AFL conjecture, in this section we
compare 0J(h,®’) with the arithmetic intersection number Int(7, ®) (cf. (9.5)
in Section 9).

Let V be the n-dimensional F'/Fp-hermitian space that we use to define
the Shimura variety Shx_ (Ei, {hs}) in Section 6.1.

As in Section 13.1, we fix an irreducible a € A, (Fpy) C F[T]geg—n and fix
v € Sp(a)(Fp) (cf. Section 12.6). Let ® = @yeao®y € S((U(V) x V)(Agf)) be
a pure tensor. Let ® = ®,P] € S((S, x V,.)(Ag)) be a pure tensor such that

e for every v | 0o, @, is the partial Gaussian test function; and
e for every non-archimedean v, ®), partially (relative to a) transfers to ®,,.
Remark 14.1. We are now in the “incoherent” case in the following sense.

Due to the signature of such V at the archimedean places, there does not
exist any global F'/ Fy-hermitian space V such that ®’ transfer to a function in

S((U(V) x V)(Ao)); cf. [46, §3.2).
We now study 8J(h,®’), and we recall 8], (h, ®') from (12.36).
LEMMA 14.2. Let v be a place of Fy split in F. Then 0],(h,®") =0

Proof. This follows from the same argument in [46, Prop. 3.6] (also cf. [40,
§7.2]). O

If v is non-split (including the archimedean places), then let V(v) be the
“nearby” F'/Fp-hermitian space at v; cf. Theorem 9.4 (resp. Theorem 10.1) for
non-archimedean (resp. archimedean) places. Then, for a non-archimedean v,
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the regular semisimple terms in 8J,(h,®") (cf. (12.36)) is a sum over orbits
(7,u’) € [(Sn(a)x V') (Fp)]s matching (6, u) € [(U(V(v))xV (v))(Fo)]rs; we will
show that the same holds for archimedean places v; cf. Lemma 14.4. Moreover,
we have a Fourier expansion (cf. (1.12))

(14.1) 3l (h,®) = Z 03, (&, h, @),
ek
where 9], (&, h, ®') is the sub-sum,
(14.2)
Ty (&, h, @)

— Y 90mb((7. ), w(he)®,) - Orb((y,u),w(h)B").
(v.uh)El(Sn (a)x V) (Fp)l
u! £0

14.1. The archimedean places. Let v | co. Recall that V' = V; x V for
Vo = EJ carries the tautological quadratic form (11.17)

q: Vox Vg — Fy
and an induced quadratic form (12.25)
q: VoxVy——Ff,
such that for all ' € V', ¢'(v) = trgy /g, q'(v'). Set
Fyy = Fy ®po R II R.
v'eHom(F},R),v'|v

LEMMA 14.3. Let £ € Fy,, be an invertible element, and let u' € V'(Fp,»)
with q'(uv') = ¢'.
(a) We have

Tftl'F! /Fuv(f)
1

e when &' € Fé,,v is totally positive,

0, otherwise.

Ol’b(("y, u!)a Q;.’) = {

(b) Now assume that & is not totally positive. Then 0Orb((y,u’),®;,) = 0,
unless & is negative at ezxactly one archimedean place v' of Fj and this place
v’ is above v, in which case

00sbi(7,u'), 8,) = ye b/ Bi(—2mg|).
Proof. This follows from Lemmas 12.3 and 12.6. |
LEMMA 14.4. Let § € FJ. Then
mtX (¢, ®) = —207,(¢, @').
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Proof. 1t follows from the previous Lemma 14.3 that
1
00,(6,) = £ 3 Fi(~2nl€'|y) - Orb ((7,u), @),

where the sum runs over (v,u') € [(Sn(a) x V{)(Fo)] such that the refined
invariant q'(u') = £ € F{) is negative at exactly one archimedean place v’ of Fj
and this place is above v.

By Corollary 10.3,

mtK (&, ®) = - Ei(—~2nl¢/|,7) - Orb ((8,u), B),

where the sum runs over (§,u) € [(U(V(v))(a) x V(v)¢)(Fo)] such that the
refined invariant £’ is negative at exactly one archimedean place v" of F{j and
this place is above v.

Therefore, the orbits (4,%) in the sum in IntX (&, ®) are bijective to the
orbits (y,%') in the sum in 8J,(&, ®'). Now the assertion follows from the fact
that ®* and ®'* are partial transfers of each other. |

14.2. “Holomorphic projection”. For the rest of this section, we assume
that Fy = Q. Recall that the difference Int®~B(h, ®) between the two Green
functions is given by (10.9) and (10.10). (Note that this makes sense for any
Schwartz function ®*°.) The following result plays the role of “holomorphic
projection” of the modular generating function on the analytic side.

PROPOSITION 14.5. Let Fy = QQ. The sum
OTpo1(h) :=20](h, ®') + IntX~B(h,®), heH(A),

lies in Apoi(H(Ag), K, n), where K is the compact open subgroup of SLa(Ag ;)
that acts trivially on both ® and ®'.

Proof. First of all, note that the function h € H(Ag) + 20J(h, ') belongs
to Aexp(H(Ag), K,n). One way to see this is to use the Fourier expansion
directly. Another way is to identify it with a linear combination to SLa(A) of
the restriction of (the first derivative at s = 0 of)) a degenerate Siegel-Eisenstein
series of parallel weight one on SLQ(AF&); cf. Remark 12.10.

By Corollary 10.4, the second summand IntK_B(-, ®) also belongs to
Aexp(H(Ag), K,n). Therefore to complete the proof, it suffices to show the
holomorphy of the sum AJ}1(h) on the complex upper half plane H and at all
cusps. Equivalently, for any hy € H(Ag f), the function 6‘,]}5'10],% (associated to
OJho1 via (1.11)) is holomorphic, and holomorphic at the cusp ico. Since we
can vary ®*° and ®°, and by Theorem A.1 the Weil representation commutes

with (partially relative to a) smooth transfer, it suffices to consider the case
hy =1 (but allow all matching ®>° and ®'*).
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We claim that the Fourier expansion of 6.]]%’10] takes the form

(14.3) OBha(T)= Y Aed’, A¢€C,

£€Fp €20

where A¢ = 0 unless £ lies in a (fractional) ideal of Fy (depending on @', ®).
In other words, the non-holomorphic terms all cancel out. The desired holo-
morphy follows from the claim.

To show the claim, we use the decomposition (12.38) as a sum over places
v of Fp.

First, by Lemma 14.2, 8J,(h, ®") = 0 if v is a split place.

Next let v be a non-archimedean non-split place. By (14.1) and (14.2), and
the fact that ®_ is a (partial) Gaussian test function, we have 8J,(&, h, ®') =0
unless £ > 0. We obtain

(14.4) oy(m, @) = Y A1, ( ),

£€F,£20

where, for £ > 0,

(145) 05y(&, ') = ) 9Orb((y, '), &) - Orb((y, ), ).

('T“ﬂ")E[(Sn(ﬂ)XVé)(FO)]
ul #0

It follows that 20J°(7,®') has the desired form of Fourier expansion as in
(14.3).

Finally let v | co. We observe that by Lemma 14.4, modulo the constant
terms, the sum 28], (h, ®') + IntX B (h, ®) is equal to — Int2 (h, ®), which has
the desired form of Fourier expansion. It remains to consider the constant
terms. Note that Lemma 14.3 also applies to all v’ € V' with refined invariant
q'(v') = & € Fy* (possibly £ = trpr /1, ¢ = 0). Similarly, Theorem 10.1 also
applies to all u € V(v) with refined invariant q'(u) = & € Fy* (i.e., u # 0).
Therefore, by the proof of Lemma 14.4, the contribution from null-norm (£ = 0)
non-zero vectors v € V' (v) cancels that from v’ € V’ with q'(u') =& # 0 € F}.
It follows that the constant term of 287, (h, ®) + IntX~B(h, ®) is the sum of
the nilpotent term 2 dO0rb(04,w(h)®’) (from 20J(h,®'); cf. (12.37)) and the
only term that has not been cancelled in (10.9), which by (8.12) is

- > Orb((8,0), ®)log |aly;
SE[U(V (v))(@)(F)]

cf. (11.6) and (11.7). By Lemmas 12.11 and 12.6, the nilpotent term is

2800rb(04,®") = 20rb((v,04+),®") log|al, + C
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for some constant C' (depending on +y, ®’). Since ® matches @', we claim

1
Orb((7,04),%) = —Orb((7,0-), ) =5 >, Orb((4,0),®).
S€[U(V (v))(@) (Fo)

In fact, this follows from the argument in [19, (10.4)] (for the quadratic ex-
tension F'/F{). In loc. cit., Jacquet proves the analogous identity in the “co-
herent” case. (Here “coherent” is in the sense of Kudla for one-dimensional
hermitian spaces.) Since the proof verbatim applies to the current setting, we
omit the detail. Therefore the two terms with log |a|, cancel, and the sum is
a constant independent, of . This shows that 20, (h, ®) + IntX~B(h, ®) also
has the desired form of Fourier expansion when v | co.

The proof is now complete. |

14.3. The comparison. Now let M = Mk (G G) be the moduli stack in-
troduced in Definition 6.1. Let S be a finite set of non-archimedean places of
Fp such that

e S contains all places v | 9 and all places with residue cardinality < dim V;
and

e for every non-archimedean v ¢ S, the hermitian space V,, is split,

Py = Lu(v)xv)(Ory.0)

(with respect to a self-dual lattice in V;), and

D = 1(S,xV;)(Ory0)-

Now we have the FL for all places v ¢ S by Theorem 13.9, hence ®,, and @/
match for every place v{S. Then in Proposition 14.5, we can assume that the
compact open subgroup K C H(Ag r) is the principal congruence subgroup
K (N) of level N, where the prime factors of N are all contained in S.

We have been assuming that the function ® € S((U(V) x V)(Aq)) is
valued in Q. By Proposition 14.5, 6.]]{’101(-,'1)’) lies in Apoi(I'(NV),n)g ®g R
(the Green function takes values in R). By passing to the quotient R — Rg
(cf. (9.2)) and then extending coefficients Rs — Rgg, we obtain an element,
still denoted by 9J% (-, @), in Ana(T(NV), n)g ®g Rsg-

By Theorem 8.6 (cf. (9.7)), Int(-,®) (defined by (9.5)) also belongs to
Anol(I'(N), n)g ®g Rg g, hence so does the sum

& (1) = 201} (7, ®') + Int(1,®), T €H.

Write the Fourier expansion (at the cusp ico) as

E(r)= Y At A eRgy
EEFD, €20

This content downloaded from
18.9.61.111 on Sat, 01 May 2021 15:25:00 UTC
All use sub]ect to https://about.jstor.org/terms



966 W. ZHANG

THEOREM 14.6. Assume that Conjecture 3.8 part (a) holds for all p-adic
field Q, with p ¢ S and for S,,. Then

(a) & = 0;

(b) for every non-archimedean place v ¢ S, and £ € F;*, we have
—20]y(&, @) = Inty (&, D)

as an equality in Qlogp, where py, denotes the residue characteristic of Foy;

here 8Jy(&, ®") (resp. Inty (&, ®)) is defined by (14.5) (resp. (9.13)).

Proof. The proof of part (a) is analogous to that of Theorem 13.4. Recall
from (9.15) and (9.16) that we have a decomposition of the generating function
Int(7, ®) (excluding the constant term Int(0, ®) defined by (9.9)) as a sum of
Int, (7, ®) over the places v of Fy. We have the following equalities, as formal
power series in RS,@[[QUN ] modulo constant terms:

£ () — Int(0, ®) =(201° (7, ®') + Int* "B (7, ®)) + (Int(r, ) — Int(0, B))
=" (201(7, @) + Ity B (7, ®) + Inty (7, D) )

v|oco

+ > (208(r, @) + Inty(T, D))
=3 (;;2,(7, &) + Intk (r, ®))
mi 3" (203(7, @) + Inty (7, @) )
_ i?z&]ﬂ,(r, ') + Inty (7, ) ,
vfoo, v S

where the last equality (modulo the constant term) follows from Lemma 14.4.
Here the sums 20° (7, &) + IntX—B(7, ®) (resp. 201 (7, ') + Int¥ (7, ®)) both
belong to R ST [qlf N ], even though each summand does not due to the presence
of “non-holomorphic” terms.

Recall from (9.16) that we have the expansion of Int,(7,®) in terms of
Int, (&, @) defined by (9.13). Also recall from (14.4) that we have an expansion
of 8J (7, ®') in terms of 8J,(&, @) defined by (14.5).

Let B be the (finite) set of non-archimedean inert places v ¢ S of Fj
where R, is not a maximal order in F;, = F' ®p, Fp,. By the vanishing
criterion Lemma 13.6, to show £’ = 0, it remains to show the vanishing of the
&-th Fourier coefficients when (£, B) = 1.

If v ¢ S is split in F', the intersection number Int, (7, ®) = 0 vanishes by
Corollary 9.3, and 20]% (7, ®') = 0 by Lemma 14.2.
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If v ¢ S is inert, then by Theorem 9.4 and (9.16) we obtain the g-expansion
of Inty, (7, ®). Similarly, (14.4) and (14.5) give the g-expansion of 28]’ (7, ®').
There are two cases:

(3) If v ¢ SU B, then R, is an maximal order and we apply Proposition 3.9
at v to conclude that the v-th summand 28]’ (7, ®) 4 Int, (7, ®) is zero. (Note
that now ®®) and &) match.)

ii) If v € B, then the v-th term 28]° (7, ®')+Int, (7, ®) is a formal power series
v

in ¢'/N with coefficients in Q log ¢, (or its image in Rg @). By Proposition 4.12,
our assumption on Conjecture 3.8 part (a) (for all p-adic field Q, with p ¢ S

and for Sy) implies that for (7, u') matching (4, u),
_ 601‘}3((7? u’), I(Sﬂ XVF{)(OFD‘-U)) = I‘[ltl,((s, u) - log qy,

whenever q(u) = q(u’) = £ is a unit at v. In other words, the &-th Fourier

coefficient of 20J° (7, ®') + Inty(7, ®) vanishes if £ is a unit v, which holds if

(&,B) =1.

Therefore, whenever (£, B) = 1, the ¢-th Fourier coefficient of £” — Int(0, ®)

(equivalently £”) vanishes. By Lemma 13.6 this completes the proof of part (a).
Now we turn to part (b). By £ = 0, taking the &-th Fourier coefficient

(for £ > 0) yields

D (2005(6, @) +Inty(€,8)) =0

vtoo,vES

as an equality in RS,@- Note that there are finitely many nonzero terms in the
sum; in fact, we have proved the v-term vanishes unless v € B. Since both
8Jy(&,®') and Inty(&, @) lie in Qlogp,, and {logp, | v € B} are Q-linearly
independent inside RS,@: the v-th term for each v must vanish. This completes
the proof of part (b). O

Remark 14.7. A byproduct of Theorem 14.6 is that the constant term of £°
vanishes. This amounts to an equality relating a certain part of the nilpotent
term (12.37) to the arithmetic degree of the restriction of the metrized line
bundle & to the derived CM cycle. This may be of some independent interest.

COROLLARY 14.8. Let v ¢ S be inert, and assume that Conjecture 3.8
part (a) holds for all p-adic field Qp with p ¢ S and for Sn. Let (6,u) €
(U(V(v))(a)xV (v))(Fo)sts be an element matching (v, u") € (Sn(a)x V") (Fo)srs-
If q(u) # 0, then

— 601‘b(('¥, H’)? l(SnXV,{)(OFD‘v)) = ]—_Iltg((s, u) . 10g qu.

Proof. We run the same argument as in the proof of Proposition 13.8,
where we note that the compactness (modulo U(Vy)(Fpe)) of the support of
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the function Int,(-,-) holds by Theorem 5.5. We then obtain a refinement of
the equality in part (ii) of Theorem 14.6:

— d0rb((v,u"), ®,) - Orb ((v,u"), ") = Int,(4,u) - Orb ((6,u), ®).

(We warn the reader that here ® does not have the archimedean component.)
Here we note that Int, (&, @) in part (ii) of Theorem 14.6 is given by (9.18).
Now the away from v factors on the two sides are equal and can be chosen
to be non-zero (e.g., the function ®®) can be chosen point-wise non-negative
with non-empty support containing (4, u)). O

15. The proof of AFL

Now we return to the set up of Conjecture 3.8 in Section 3.
THEOREM 15.1. Conjecture 3.8 holds when Fy = Qp and p > n.

Proof. The proof is parallel to that of Theorem 13.9. We prove Conjec-
ture 3.8 part (b) by induction on n = dimV,,. The case n = 1 is known [46].
Assume now that Conjecture 3.8 part (b) holds for V,,_;. Then by Propo-
sition 4.12 part (i), Conjecture 3.8 part (a) holds for S,,. We now want to
globalize the situation in order to apply Corollary 14.8.

We start with the following local data:

e aplace vg of Fy=Q, and an unramified (local) quadratic extension F, /Fp yy;
e the non-split F,, /Fp 4,-hermitian space V,, of dimension n;
® (Guys Uy) € (U(Vy) X Vi) (Fp v )srs — we further assume that the character-
istic polynomial of g,, has integral coefficients (in Opwﬂ) and det(1 — gy,) is
a unit, and (uy,, Uy, ) # 0;
(Yvos Usy) € (Sn X V') (Fo,ug) (Fo,vp)sts matching (gug, ty, )-

By the proof of Theorem 13.9, there exist the following global data:
e an imaginary quadratic field F'/Fy such that F ®p, Fou, =2 Fup;

a totally real number field F{}, and its quadratic extension F’ = Fjj ®F, F’;
e an element g € F"' such that Op,, [g] = OF,, [9v,] as subrings of F' @ Fu,;

a totally positive definite n-dimensional F'/Fp-hermitian space V' (vp) that is
locally at vy isometric to Vy,, and an embedding F"* < U(V (vg))(Fb);

u € V(vg) such that the pair (g,u) is vp-adically close to (gy,, uy,) (in par-
ticular, (u,u) # 0).
Let a € Apn(Fo) denote the characteristic polynomial of g as an element in
U(V (wo))(Fo).

Now we define the Shimura variety and its integral model M as in Defi-
nition 6.1 for the nearby hermitian space V of V(vg) at vp (that is, non-split
at vp, with signature (n — 1,1) at v | 0o, and isomorphic to V(vg) elsewhere).
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WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 969

Let 9 be a finite set of places as in Section 6.2.2 such that vy { 0. Let S the set
of non-archimedean places such that

e v ¢S,
e 5 contains all places dividing 0 and all primes less than n;
e for every non-archimedean v ¢ SU{vg}, the ring R, is locally maximal at v.

Then we proceed as in the proof of Theorem 13.9 to choose (v,u') €
(Sn x V1)(Fp) to match (g,u), and choose (partial) Gaussian test functions ®
and @’.

Now we apply Corollary 14.8 to obtain
—00rb((7y,u"), ®;,) = Intyy (g, u) log gy, -

Therefore Conjecture 3.8 part (b) holds when (g,u) € (U(Vn) X Vi)ss. By
the local constancy of the orbital integral, and of the intersection numbers
by Theorem 5.5, near a strongly regular semisimple (g,u), we conclude that
Conjecture 3.8 part (b) holds when (gu,, ) € (U(Vn) X Vi)srs. This completes
the induction. O

Appendix A. Weil representation commutes with smooth transfer

We retain the notation from Section 2. Let F'/Fp be a quadratic extension
of local fields. (The case E = F' x F' could also be allowed but in that case the
result below is trivial.) Recall that V,, = Fg' x (F')*. We have a bijection of
regular semisimple orbits (cf. Section 2.3):

[Iv [(U(V) x V)(Fo)],, — [Sn(Fo) x Vilrs,

where the disjoint union runs over the set of isometry classes of '/ Fp-hermitian
spaces V of dimension n. The notion of smooth transfer is as in Definition 2.2
(with respect to the transfer factor there). Here let us focus on one hermitian
space V at a time.

The Weil representation (for even dimensional quadratic space) is defined
in Section 11. Here we apply the formula (11.1) to the second variable in
the functions in S(S, x V;}) and S(U(V) x V) respectively. To fix the set
up, we recall that the structure of Fj-bilinear symmetric pairing on V,, is the
tautological pairing

(W u) = 2ua(wr), o' = (u1,u2) € Ff x (Fy)",
and on V the quadratic form is the induced one, i.e.,
(u,u)py = trpypy(u, u)r, w eV,
where (-,-)p : V xV — F is the hermitian pairing (F-linear on the first factor
and conjugate F-linear on the second one).

We now deduce the following result from [47] when F' is non-archimedean
and [43] when F' is archimedean.
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THEOREM A.1 (Weil representation commutes with smooth transfer). If
@' € §(S, x V,)) matches a function ® € S(U(V) x V), then w(h)® also
matches w(h)® for any h € H(F).

Remark A.2. Similar results hold for the partial Fourier transforms on the
Lie algebra s, x V,, and u(V') x V. A similar result for the endoscopic transfer
can be deduced from a theorem of Waldspurger.

Proof. We need to check the assertion for h of the form (¢ ,-1),(!?) and
(_11),asin (11.1).

The assertion for h = (1%) b € F is trivial.

Now let hgy = (* ,-1). Then

Orb((g,u),w(ha)®) = xv (a)lal™ Orb((g, au), ®)
for all (g,u) € (U(V) x V). Here
xv(a) = (a, (=) det(V)),
where det(V') is the discriminant of V' as a quadratic space. We claim
(A1) xv(a) = n(a)®me V.

Since det(Vy @ V2) = det(V1) det(V2) (in Fy¢/(Fy)?) for orthogonal direct sum
Vi @ Vs, it suffices to prove the claim when dimpV = 1. Then there are only
two isometry classes, and one can check the claim directly.

On the other hand,
Orb((~, u’),w(ha)@", s) = XV (a)|a|™ Orb((~, au’), @, s).

Now xyy is the trivial character since V; is an orthogonal direct sum of n-copies
of the hyperbolic 2-space. We now note that the transfer factor (2.17) obeys

w(y, au’) = n(a)"w(y, ).

This proves the assertion for w(hg),a € F'*.
Finally, let h = (_1 1). Then

Orb((g, u),w(h)®) = v Orb((g, u), 3),

where ~y is the Weil constant. We claim that for our V induced from a
hermitian form,

YW = n(det(v)FXF[]) E(nﬂ 1/2= ‘d))dimF Va

where det(V)p/p, € Fy'/NmF™ is the hermitian discriminant of V' (as an
F'/Fo-hermitian space). First note that the right-hand side is multiplicative
with respect to orthogonal direct sum V; @ V5,

det(V1 fas} %)p;po = det(‘fl)pfpo det(Vg)pxpD.

This content downloaded from
18.9.61.111 on Sat, 01 May 2021 15:25:00 UTC
All use subject to https://about.jstor.org/terms



WEIL REPRESENTATION AND ARITHMETIC FUNDAMENTAL LEMMA 971

Note that, by definition, the Weil constant ~y satisfies

——

Yogq=qvvo(—q),
where pogqg : V — Fy — C (resp. ¢ o (—q)) is the function precomposing
¥ with g (resp. —¢). Here the Fourier transform is understood as applied to

distributions. It follows that it is also multiplicative with respect to orthogonal
direct sum V| @ V!
TigVe = M " MWa-

Therefore it suffices to show the claim when dimg V' = 1. Then one can check
the claim directly. In fact, it is easy to see that we have v, = n(a)™F Yy,
where V,; denotes the new hermitian space by multiplying the hermitian form
by a € F;. Hence we may just check the case det(V)r/r, € Nm F'*, which is
done in [20, Lemma 1.2] (where the constant A/, (%) in loc. cit. is the same
as €(n,1/2,7)).

On the other hand, the Weil constant vy = 1 since V,; is an orthogonal
direct sum of n-copies of the hyperbolic 2-space. Hence

Orb((7, %), w(h)®', s) = Orb((y,v), &', s).

Now the desired assertion follows from [47, Th. 4.17] '° when F is non-
archimedean, and the proof of [43, Th. 9.1] when F' is archimedean. Note that
in [43], €(n,1/2,9) = /=1 for the choice of the additive character ¥(z) =
2™Vl 4 c R O

Appendix B. Grothendieck groups for formal schemes

We collect some facts regarding formal schemes and the Grothendieck
group of coherent sheaves, largely following the work by Gillet—Soulé [11]. No
result here is new.

B.1. Grothendieck groups. Let (X,Ox) be a noetherian formal scheme
[15, §10]. Let Y be a closed formal subscheme of X (i.e., closed subscheme of
a formal scheme in the terminology in loc. cit.). Let J be the sheaf of ideals
defining Y. A coherent sheaf F of Ox-module is said to be formally supported
on Y if it is annihilated by 7™ for some n > 1. We make this explicit when
(X,0x) is an affine formal scheme, say, the formal completion of Spec A at
Spec A/I for an ideal I of A, where A = ]'Lnn A/I™ is I-adically complete.

Then we may assume that Y is defined by an ideal J of A (ie., J = J A of.
[15, §10.10]). Then a coherent sheaf F of an Ox-module is formally supported
onY if M =I'(X,F) as an A-module (equivalently the sheaf J of an Ospec A-
module) has support contained in the closed subset Spec(A/J) of Spec A.

%Note that in [47], the factor n(det(V)r,r,) is missing.
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Then the definitions in [11, §1] for noetherian schemes carry over to the set-
ting of noetherian formal schemes. Let K{(X) denote the Grothendieck group
of coherent sheaves of Ox-modules. Let K} (X) denote the Grothendieck
group of finite complexes of coherent locally free Ox-modules, acyclic out-
side Y (i.e., the homology sheaves are supported on Y); cf. [11, §1.2]. Let
Ko(X) = K (X). The tensor product of (complex of) locally free sheaves
induces the cup product

U: KY(X) x K¢(X) —— KY"%(X)
by [F]U[G] = [F. ®Gl]; cf. [11, §1.4].

There is a descending filtration on K(}; (X)) by the subgroups
(B.1) F'K§ (X) = Uzcy.codimy 221 Im(KF (X) — K{' (X))
The associated graded groups are
(B.2) Gr'K{ (X) = F'K{ (X)/F™ K] (X).
Similarly, there is an ascending filtration F;K{(X) on K}(X),

FKy(X) = Uzcx dimz<i Im(K((Z) — Kj(X)).

From now on we assume that X is regular of pure dimension d. Then we
have natural isomorphisms

KJ (X) — Kj(Y)
and
Fd_iKg (X) AN EK((Y) .

When X is a scheme, the construction of the Adam operations {)* | k € Z>1}
in [11] induce a decomposition

Ky (X)o=EPKs (X
i=0
where 9* acts on (the “weight-i” part) K3 (X) by the scalar k*. Moreover,
by [11, Prop. 5.3],
FIK§ (X)o =P Kq (X)g,
izj
and for ji1,j2 > 0, by [11, Prop. 5.5], the cup product has image
(B.3) FIKY (X)g - F2K§ (X)q € F'T2K "% (X)q.

This inclusion is used in (7.15). When X is a formal scheme, we expect the
same argument to prove (B.3), and we use this case of (B.3) only in the proof
of Proposition 5.2. However, due to the lack of reference, we also indicate a
proof of Proposition 5.2 without using (B.3); cf. Remark 5.3.
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Finally, we relax the noetherian hypothesis. For our purpose, we only
consider locally noetherian formal schemes (X, Ox). It can be written as an
increasing union indexed by a poset I,

(X:\ OX) = U'F-EI(XT,} OX,‘,):\

of noetherian formal subschemes such that the transition maps f; » : X; — Xy
are open immersions of formal schemes. We then define

Ko(X) = lim Ko(X3), Ko(X) = lim Ko(X;).
iel el
If Y is a closed formal subscheme of X, setting ¥; = Y xx X; to write ¥ as
the union of Y;’s, we define
Ky (X) = lim Kg* (X;).
iel
Similarly, we have the filtrations F*KY (X) and F;K}(X), and they have the
same properties as in the noetherian case. All of these K-groups depend only
on X, rather than the choice of such unions U;c; X;.
Now let w : W — S = Spf A be a morphism of formal schemes, where A

is a complete discrete valuation ring. When 7 is proper [16, III, 3.4.1] and W
is a scheme (not only a formal scheme), we have a “degree” map

Ko(W) > 7
[€] ——— Yicz(—1)' lengtho, Rim.E.
The assumption on 7 and W implies that all R*r.£ are torsion coherent sheaves

and hence have finite lengths. It is easy to see that this is independent of the
choice of £ in its equivalence class. Now let X be regular with two closed

formal subscheme Y and Z. If 1 : W =Y NZ — S = Spf A is proper and W

is a scheme, we obtain a homomorphism
K(};(X) X KDZ(X) — 7
L
(FLIG) ———x(X, F ® G),

where the Euler—Poincaré characteristic is defined by

(B.4) XX, F$G):= ¥ (—1)" lengtho, Rim. (Tor%% (F, ).
i,jeL

We also denote

L L
(B.5) Y Nx Z := Oy ®oy Oz € K{(Y N Z) ~ KY"%(X),

L
and if the ambient formal scheme X is self-evident, we simply writeitas Y N Z.
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974 W. ZHANG

B.2. A few lemmas. For convenience we record the following results.

LEMMA B.1. Let X be a locally noetherian formal schemes of the above

type. Let X = X1 U X9 be a union of two closed formal subschemes. Then

there is a natural isomorphism!!

Ky (X) ~ K§(X1) K§(Xa)

N

Ka(XlﬁXQ) - KE,(X]I"]XQ) KE,(X]I"]XQ)

€] —— ([€ ®ox Ox,],[€ ®0ox Ox,])-

Proof. We immediately reduce the question to the case when X is noe-
therian, which we assume now. Let Z and J be the ideal sheaf of Ox defining
X1 and X3 respectively. Consider the exact sequence of Ox-modules

0—Ox/(INJ)—Ox/IT®Ox/T —Ox/(T+J)——0.
Tensoring £, we obtain an exact sequence

Tor¥X (£, Ox,nx,) — EROx /(INJ) — £ ® Ox, ® £ ® Ox,
— E®0x,nx, — 0.

Since both Tor?x (€,0x,nx;) and € ® Ox,nx, lie in Kj(X1 N X3), we have

Ky(X)
ERO0x]+[EROx]=[ERO0x/(ZN 0 :

[ x|+ x| = | x/XNJ)] € Kj(X10 Xa)

Since X = X; U X5, we have Z N J = 0 and the proof is complete. |

In the case of “proper intersection,” the derived tensor product can be
simplified:

LEMMA B.2. Let X be a (locally noetherian) pure finite dimensional for-
mal scheme of the above type, and let Z1,Z> be two pure dimensional closed
formal subschemes on X. Assume that the closed immersion Z1 — X is a
reqular immersion (e.g., if both X and Z; are regular), and Zy is Cohen—
Macaulay:

Z1NZy—— 7y

| s |
7z — X.
(1) If Z1 N Z3 has the expected dimension (i.e., codimx Z1 N Zz = codimx Z1 +

codimx Z> at every point of Z1 N Z3), then the higher Tor sheaves vanish, i.e.,
Tor?* (0z,,02,) =0, i>0.

"1Here K§(X1NX2) — K§(X1) is not necessarily injective, so the quotient simply denotes
the cokernel.
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In particular, as elements in K((Z; N Zs),

L
OZ] & 022 = Ozl & OZQ‘

(ii) Let Z1NZy =Y UY' be a union of closed formal subschemes such that' Y
has the expected dimension. Then

ToryX(0z,02,)ly =0, >0,
as an element in K{(Y)/K{(Y NY’).

Proof. This follows from the same argument as in the proof of [37, Prop.
8.10] regarding the vanishing of higher Tor terms. We prove the first part; the
second part is proved similarly by combining Lemma B.1.

Let  be a point on Z; N Z3. We need to show that (Ogz, c% 0z,)x
is represented by Oz ,nz,». Let R be the local ring of x on X. Since the
closed immersion Z; — X is a regular immersion, by definition Z; is de-
fined at x by a regular sequence fi,..., fm of B. Then the Koszul complex
K(fi,-.., fm) is a free resolution of the R-module Oz, ,. It follows that the

complex K(f1,..., fm) ®r Oz, » represents (Oz, t% 02z,)z-

Now, since Z3 is Cohen—Macaulay, the dimension hypothesis implies that
the images f1,...,fm of fi,..., fm in Oz, again form a regular sequence
which generates the ideal defining Z; N Z2 at z in Z;. Hence K(fy,..., fm) is
a free resolution of the Oz, »-module Oz,nz, . On the other hand, we have

K(fla-- . :fm) ®r OZ;),.’B = K(?l?!?m)

L _ _
It follows that (Oz, ® Ogz,); is represented by K(f,..., f,,), or equivalently

by Oz nz,.2- This completes the proof.
O
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